第一章线性规划
第一章 线性规划
例 1.5 (汽油混合问题) 一种汽油的特性可用两个指标描述:其点火性用“辛烷数” 描述,其挥发性用“蒸汽压力”描述,某炼油厂有四种标准汽油,设其标号分别为 1,2, 3,4,其特性及库存量见表 1.5,将上述标准汽油适量混合,可得到两种飞机汽油,其标 号分别为 1,2,这两种飞机汽油的性能指标及产量需求见表 1.6,问应如何根据库存情况 适量混合各种标准汽油,使既满足飞机汽油的性能指标,而产量又为最高。
注:前苏联的尼古拉也夫斯克城住宅兴建计划采用了上述模型,共用了 12 个变量,10 个约束条件。
表 1.2 资源 住宅体系 砖混住宅 壁板住宅 大模住宅 资源限量 造价 (元/m2) 105 135 120 110000 (千元 钢材 (公斤/m2) 12 30 25 20000 (吨) 例 1.2 的数据表 水泥 (公斤/m2) 110 190 180 150000 (吨) 砖 (块/m2) 210 —— —— 147000 (千块) 人工 (工日/m2) 4.5 3.0 3.5 4000 (千工日)
3.线性规划模型的一般形式 以 MAX 型、≤约束为例 决策变量: x1 ,
(1-4)
, xn
目标函数: Maxz = c1 x1 +
+ cn x n
⎧a11 x1 + + a1n x n ≤ b1 ⎪ ⎪ 约束条件: s.t.⎨ ⎪a m1 x1 + + a mn x n ≤ bm ⎪ ⎩ x1 , , x n ≥ 0
2
Maxz = x1 + x 2 + x3 ⎧0.105 x1 + 0.135 x 2 + 0.120 x3 ≤ 110000 ⎪0.012 x1 + 0.030 x 2 + 0.025 x3 ≤ 20000 数学模型为: ⎪0.110 x1 + 0.190 x 2 + 0.180 x 3 ≤ 150000 (1-3) s.t ⎨ 0.210 x ≤ 147000 ⎪0.00451 x + 0.003x 2 + 0.0035 x 3 ≤ 4000 ⎪x , x , x 1 ≥ 0 ⎩ 1 2 3
第一章线性规划-模型和图解法
a22 am2
a1n
a2n amn
(P1,
P2 ,
, Pn )
用向量表示时,上述模型可写为:
max(min)Z CX
s.t
n j 1
Pj x j
(, )b
X 0
线性规划问题可记为矩阵和向量的形式:
max(min)Z CX
s.t
AX
X
(, )b 0
max(min)Z CX
x21 x23
x14
x23
x32
x41
xij 0(i 1, ,4;
15
x22 x31 12
x23 x32
j 1, ,4)
10 20
二。线性规划问题的数学模型 下面从数学的角度来归纳上述三个例子的共同点。 ①每一个问题都有一组变量---称为决策变量,一般记为
x1, x2 , , xn. 对决策变量每一组值:(x1(0) , x2(0) , xn(0) )T 代表了
表1-3
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
表1-4
单位;元/100m2
1个月 2个月 3个月 4个月
2800 4500 6000 7300
表1-2
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
max(min) Z c1x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn (, )b1
s.t
a21x1
a22 x2
a2n xn
(, )b2
am1x1 am2 x2 amnxn (, )bm
第一章线性规划
一、线性规划问题及其数学模型 1、问题的提出
例1 某工厂用A,B,C,D四种设备生产I,II两种产品, 已知生产单位产品所需各种设备的数量、在计划期内 各种设备的拥有量以及每单位产品I,II的利润见下表 所示,问应如何安排生产才能使总利润最大?
设 备
A 2 2 12
B 1 2 8
C 4 0 16
D 0 4 12
线性规划介绍
历史悠久,理论成熟,应用广泛 运筹学的最基本的方法之一,网络规划、整 数规划、目标规划和多目标规划都是以线性规 划为基础的。 解决稀缺资源最优分配的有效方法,使付出
的费用最小或获得的收益最大。
线性规划理论的发展: 1939年前苏联康托洛维奇(KOHTOPOBUZ) 《生产组织与计划中的 数学方法》提出 “解乘数法”。
产 品
单件利润 (元)
Ⅰ Ⅱ
有效台数
2 3
建立该问题的数学模型 解(1)决策变量:设生产产品I x1个单位,产品II x2个 单位; (2)目标:总利润最大,于是记成max z=2x1+3x2, z 称为目标函数; (3)限制条件 (约束条件) a:各种设备的数量有限,无论如何安排生产,x1,x2 均应满足如下条件:2 x 2 x 1 2
设司乘人员在各时间段一开始时上班,并连续 工作8小时,问该公司线路至少应配备多少司乘人 员。列出该问题的数学模型
设x1,x2,…,x6为各班新上班人数,考虑到在每个时间 段工作的人数既包括该时间段新上班的人又包括上一 个时间段上班的人员,按所需人员最少的要求可列出 本例的数学模型:
目标函数:
m in z x 1 x 2 x 3 x 4 x 5 x 6
min z 1000 x 1 800 x 2
第一章线性规划
x11 + x12 + x13 + x14 = 2000 x21 + x22 + x23 + x24 = 1100 x11 + x21 = 1700 x12 + x22 = 1100 x13 + x23 = 200 x14 + x24 = 100 xij ≥ 0(i = 1,2;j = 1,2,3,4).
其中c =(c1,c2,…,cn)为行向量,称为价值向量,
a11 a A = 21 a m1 a12 a22 am 2
C
单500
75
解:(1) 确定决策变量:设x1,x2为下一个 生产周期产品甲和乙的产量;
(2) 所满足的约束条件:
对资源A的限制:3x1 + 2x2 ≤ 65 对资源B的限制:2x1 + x2 ≤ 40
对资源C的限制: 3x2 ≤ 75
基本要求:x1,x2 ≥ 0 ; (3) 明确目标函数: 获利最大,即求Z= 1500x1 + 2500x2的最大值,用 max表示最大值,s.t.(subject to的简写)表示约束条件,则该模型 可记为: max Z = 1500 x1 + 2500 x2 s.t. 3 x1 + 2 x2 ≤ 65 2 x1 + x2 ≤ 40 3 x2 ≤ 75
标准形式
max z = c1 x1 + c2 x2 + … + cn xn (1.2a)
第1章 线性规划
1.1 线性规划问题及其数学模型
线性规划
该公司想达到的目标为:投资 风险最小,每年红利至少为6.5万 元,最低平均增长率为12%,最低 平均信用度为7。请用线性规划方 法求解该问题。
1.1 线性规划问题及其数学模型
解:
(1)决策变量
线性规划
本问题的决策变量是在每种投资项目上的投 资 额 。 设 xi 为 项 目 i 的 投 资 额 ( 万 元 ) ( i=1,2,,6)
(2)目标函数
本问题的目标为总投资风险最小,即
Min z 0.18x1 0.06x2 0.10x3 0.04x4 0.12x5 0.08x6
线性规划
运筹学
线性规划
线性规划
本章内容要点
线性规划问题及其数学模型;
线性规划的电子表格建模; 线性规划的多解分析。
线性规划
本章内容
1.1 线性规划问题及其数学模型
1.2 线性规划问题的图解法
1.3 用Excel“规划求解”功能求解线性规划问题
1.4 线性规划问题求解的几种可能结果
本章主要内容框架图
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解 无穷多解 无解 可行域无界(目标值不收敛)
1.4 线性规划问题求解的 几种可能结果
线性规划
唯一解
线性规划问题具有 唯一解是指该规划 问题有且仅有一个 既在可行域内、又 使目标值达到最优 的解。例1.1就是一 个具有唯一解的规 划问题
(1-1)
第一章 线性规划
第1章线性规划Chapter 1 Linear Programming本章内容提要线性规划是运筹学的重要内容。
本章介绍线性规划数学模型、线性规划的基本概念以及求解线性规划数学模型的基本算法——单纯形法。
学习本章要求掌握以下内容:⏹线性规划模型的结构⏹线性规划的标准形式,非标准形式转化为标准形式⏹线性规划的图解以及相应的概念。
包括:约束直线,可行半空间,可行解,可行域,凸集,极点,目标函数等值线,最优解⏹线性规划的基本概念。
包括:基,基础解,基础可行解,基变量,非基变量,进基变量,离基变量,基变换⏹单纯形法原理。
包括:基变量和目标函数用非基变量表出,检验数,选择进基变量的原则,确定离基变量的方法,主元,旋转运算⏹单纯形表。
包括初始单纯形表的构成,单纯形表运算方法⏹初始基础可行解,两阶段法⏹退化的基础可行解§1.1 运筹学和线性规划1.1.1 运筹学运筹学(Operations Research)是二十世纪三十年代二次大战期间由于战争的需要发展起来的一门学科。
当时,英国组织了一批自然科学和工程科学的学者,和军队指挥员一起,研究大规模战争提出的一些问题。
如轰炸战术的评价和改进、反潜艇作战研究等,研究结果在战争实践中取得了明显得效果。
这些研究当时在英国称为Operational Research,直译为作战研究。
战争结束以后,这些研究方法不断发展完善,并逐步形成学科理论体系,其中一些主要的理论和方法包括:线性规划,网络流,整数规划,动态规划,非线性规划,排队论,决策分析,对策论,计算机模拟等。
这些理论和方法在经济管理领域也得到了广泛应用,Operations Research也转义成为“作业研究”。
我国将Operations Research译成“运筹学”,非常贴切地将Operations Research这一英文术语所包含的作战研究和作业研究两方面的涵义都体现了出来。
现在,运筹学已经成为管理科学重要的基础理论和应用方法,是管理科学专业基本的必修课程之一。
运筹学第1章-线性规划
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。
运筹学基础及应用课后习题答案(第一二章习题解答)
运筹学基础及应用课后习题答案(第一二章习题解答)第一章:线性规划一、选择题1. 线性规划问题中,目标函数可以是()A. 最大化B. 最小化C. A和B都对D. A和B都不对答案:C解析:线性规划问题中,目标函数可以是最大化也可以是最小化,关键在于问题的实际背景。
2. 在线性规划问题中,约束条件通常表示为()A. 等式B. 不等式C. A和B都对D. A和B都不对答案:C解析:线性规划问题中的约束条件通常包括等式和不等式两种形式。
二、填空题1. 线性规划问题的基本假设是______。
答案:线性性2. 线性规划问题中,若决策变量个数和约束条件个数相等,则该问题称为______。
答案:标准型线性规划问题三、计算题1. 求解以下线性规划问题:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 83x + 4y ≤ 12x, y ≥ 0答案:最优解为 x = 4, y = 2,最大值为 Z = 14。
解析:画出约束条件的图形,找到可行域,再求目标函数的最大值。
具体步骤如下:1) 将约束条件化为等式,画出直线;2) 找到可行域的顶点;3) 将顶点代入目标函数,求解最大值。
第二章:非线性规划一、选择题1. 以下哪个方法适用于求解非线性规划问题()A. 单纯形法B. 拉格朗日乘数法C. 柯西-拉格朗日乘数法D. A和B都对答案:B解析:非线性规划问题通常采用拉格朗日乘数法求解,单纯形法适用于线性规划问题。
2. 非线性规划问题中,以下哪个条件不是K-T条件的必要条件()A. 梯度条件B. 正则性条件C. 互补松弛条件D. 目标函数为凸函数答案:D解析:K-T条件包括梯度条件、正则性条件和互补松弛条件,与目标函数是否为凸函数无关。
二、填空题1. 非线性规划问题中,若目标函数和约束条件都是凸函数,则该问题称为______。
答案:凸非线性规划问题2. 非线性规划问题中,K-T条件是求解______的必要条件。
第一章 线性规划
线性规划
【开篇案例】
一、人力资源分配的问题
某旅行社为了迎接旅 游黄金周的到来,对一日 游导游人员的需求经过统 计分析如表所示。为了保 证导游充分休息,导游每 周工作 5天,休息两天, 并要求休息的两天是连续 的。问应该如何安排导游 人员的作息,既满足工作 需要,又使配备的导游人
下午5时14分
什么是规划?
• 以上问题无一例外都属于规划问题,涉及到求解最大值 和最小值
• 人们经常谈规划,比如国家有5年规划、10年规划、城市 有城市规划,个人有自己的人生规划.
• 规划是在现有的人力、物力水平下,使得目标达到最优 的全面、理性的计划
下午5时14分
线性规划
• 线性规划简介: • 运筹学中最成熟的一个分支 • 静态规划:单周期决策
第一节 下午5时14分 线性规划的一般模型
三、线性规划模型的特征
1. 模型隐含假定
作为严密的数学模型,线性规划蕴含着以下假定: (1)线性化假定
函数关系式f(x)= c1x1+c2x2+… +cnxn,称线性函数。 经济学中大多数函数都是非线性,通过偏导求最优。但在企业
运营决策中,经常考虑比较短时间内的计划安排,通过线性化 更便于应用。
乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?
甲
乙
丙
资源限制
铸造工时(小时/件)
5
10
7
8000
机加工工时(小时/件)
6
4
8
12000
装配工时(小时/件)
3
2
2
10000
自产铸件成本(元/件)
3
5
4
外协铸件成本(元/件)
线性规划(完整版本)
2 线性规划基本概念
生产计划问题
➢如何合理使用有限的人力,物力 和资金,使得收到最好的经济效益。 ➢如何合理使用有限的人力,物力 和资金,以达到最经济的方式,完 成生产计划的要求。
例1 生产计划问题(资源利用问题) 某家具厂生产桌子和椅子两种家具。
桌子售价50元/个,椅子销售价格30元/
个,生产桌子和椅子要求需要木工和油 漆工两种工种。生产一个桌子需要木工4 小时,油漆工2小时。生产一个椅子需要 木工3小时,油漆工1小时。该厂每个月 可用木工工时为120小时,油漆工工时为 50小时。问该厂如何组织生产才能使每 月的销售收入最大?
决策变量、约束条件、目标函数
3 线性规划问题的数学模型
一、问题的提出
解:
例2 某厂生产两种产品,下表给 出了单位产品所需资源及单位产品 利润
产品 资源
I
设备
1
材料 A
4
材料 B
0
单位利润
(元)
2
可利用
II
资源
2
8
0
16
4
12
3
问:应如何安排生产计划,才能使 总利润最大?
1.决策变量:设产品I、II的产量分
别为 1、x2
2.目标函数:设总运费为z,则有: max z = 2 x1 + 3 x2
3.约束条件:
x1 + 2x2 ≤ 8
4x1
≤ 16
4x2 ≤ 12
x1, x2≥0
例3 营养配餐问题 假定一个成年人每天需要从食物中
获得3000千卡的热量、55克蛋白质和 800毫克的钙。如果市场上只有四种食 品可供选择,它们每千克所含的热量 和营养成分和市场价格见下表。问如 何选择才能在满足营养的前提下使购 买食品的费用最小?
第1章 线性规划
第1章线性规划本章介绍了什么是线性规划,线性规划数学模型的概念及其建立数学模型方法;阐述了线性规划的图解法、解的概念及解的形式;详细介绍了普通单纯形法、人工变量单纯形法及单纯形法计算公式。
1.考核知识点(1) 基本概念:数学模型、决策变量、目标函数、约束条件、标准型、图解法、基矩阵、基变量、非基变量、可行解、基解、基可行解、最优解、基最优解、唯一解、多重解、无界解、无可行解、单纯形法、最小比值、入基变量、出基变量、解的判断、大M法、两阶段法、改进单纯形法。
(2) 建立简单的线性规划数学模型。
(3) 求解线性规划的图解法。
(4) 基、可行基及最优基的定义。
(5) 可行解、基本解、基可行解、最优解、基本最优解的定义及其相互关系。
(6) 有唯一解、有无穷多解、无界解、无可行解的判断。
(7) 求解线性规划的单纯形法。
(8) 求解线性规划的人工变量法。
(9) 单纯形法中的5个计算公式。
2.学习要求(1) 深刻领会线性规划的各种基与解的基本概念,它们之间的相互关系。
(2)掌握图解法的计算步骤,注意怎样将目标函数表达成一条直线,这条直线如何平移使得目标函数值上升或下降。
(3) 熟练掌握单纯形法计算的全过程,特别应注意如何列出单纯形表,如何由一个基可行解换到另一个基可行解,基可行解是最优解、无界解或多重解的判断准则。
(4) 理解在什么情况下加入人工变量,人工变量起何作用,用大M法计算时目标函数的变化,两阶段法计算时目标函数的构成,掌握这两种计算方法的全过程,在什么情形下线性规划无可行解。
(5) 理解用矩阵形式代替单纯形表,并用矩阵公式求解线性规划。
3.重点建立线性规划数学模型,有关线性规划解的概念、解的形式,单纯形法计算、大M法、两阶段法。
4.难点解析(1)建立线性规划数学模型建立数学模型是学习线性规划的第一步也是关键的一步。
建立正确的数学模型要掌握3个要素:研究的问题是求什么,即设置决策变量;问题要达到的目标是什么即建立目标函数,目标函数一定是决策变量的线性函数并且求最大值或求最小值;限制达到目标的条件是什么,即建立约束条件。
第01次课--第一章 线性规划
(如果取≥0)
x1 , x2 , , xn (, )0
约束条件 (1-3)
决策变量
30
非负约束条件
国防科技大学
第一节 线性规划的问题及其数学模型
标准形式
max Z c1 x1 c2 x2
cn xn
顶点同时得到最优解,则它们连线上的任意一点都是最
优解,即有无穷最优解。
28
国防科技大学
第一节 线性规划的问题及其数学模型
图解法的优缺点分析
• 直观、简便 • 变量数多于三个以上时,无能为力
通用普遍的 求解方法 (代数方法)
?
单纯形法
模型的标准形式
?
29
国防科技大学
第一节 线性规划的问题及其数学模型 线性规划的数学模型的一般形式:
2
国防科技大学
第一章 线性规划与单纯形法
在军事活动,以及生产、管理、经营等社 会活动中经常提出一类问题,即如何合理地利用 有限的人力、物力、财力等资源,以得到最好的 效果。
3
国防科技大学
第一节 线性规划的问题及其数学模型
例 兵力运送问题 设有A、B两种型号的直升机,每次A能运 载35人,需驾驶员2人,B能运载20人,需驾
目标函数取 最大值
j 1 a11 x1 a12 x2 a1n xn b1 n a21 x1 a22 x2 a2 n xn b2 简记做 aij x j bi (i 1, 2, , m) j 1 x 0 ( j 1, 2, , m) a x a x a x b j mn n m m1 1 m 2 2 约束条件为等式, x , x , , x 0 且右端项为非负 1 2 n 值
第一章 线性规划
常数项bi全为非负。变量xj值非负。
m axz c j x j
j 1
n
s.t.
aij x j bi i 1, , m j 1 x 0 j 1, , n j
n
一般形变成标准形的方法
1、目标函数:求极大值
两边乘以-1,最大变最小。
例
max z x1 2 x2 3x3 3x3 0 x4 0 x5
2 x x x x x 9 1 2 3 3 4 3x x 2 x 2 x x5 4 1 2 3 3 s.t. 3x1 2 x 2 3x3 3x3 6 x1 , x 2 , x3 , x3 , x 4 , x5 0
b
min z 3x1 5 x 2 x3 x1 2 x 2 x3 6 2 x x 3x 16 1 2 3 s.t. x1 x 2 5 x3 10 x1 , x 2 0, x3无约束
1-4线性规划问题的解
1、可行解 2、最优解
一般线性规划的数学模型 线性规划的标准形式 图解法 单纯形法
§ 1、一般线性规划问题的数学模型
1-1 数学模型
例1 用一块边长为a的正 方形铁皮做一个容器, 应如何裁剪,使做成 的容器的容积最大
x
a
v a 2x x,x 0, a 0
2
例2 常山机器厂生产Ⅰ、Ⅱ两种产品。这两 种产品都要分别在A、B、C三种不同设备 上加工.按工艺资料规定,生产每件产品Ⅰ 需占用各设备分别为2h、4h、0h,生产 每件产品Ⅱ,需占用各设备分别为2h、0h、 5h.已知各设备计划期内用于生产这两种 产品的能力分别为12h、16h、15h,又知 每生产一件产品Ⅰ企业能获利2元利润, 每生产一件产品Ⅱ企业能获利3元,问该 企业应安排生产两种产品各多少件,使得 总利润计划期内的产量
第一 线性规划(共188张PPT)
x1 ≥0, x2 ≥0
• 综上所述,该问题的数学模型表示为
maxZ= 3x1 +5 x2
x1
≤8
2x2 ≤12
3x1 +4 x2 ≤36
x1 ≥0, x2 ≥0
5
第一节 线性规划一般模型
• 例2. 运输问题 某名牌饮料在国内有三个生产厂,分布在城市A1、 A2、A3,其一级承销商有4个,分布在城市B1、B2、B3、 B4,已知各厂的产量、各承销商的销售量及从Ai到Bj 的每吨饮料运费为Cij,为发挥集团优势,公司要统 一筹划运销问题,求运费最小的调运方案。
(3)约束条件。产量之和等于销量之和,故要满足:
▪ 供应平衡条件
x11+x12+x13+x14=5 x21+x22+x23+x24=2 x31+x32+x33+x34 =3
§ 销售平衡条件
x11+x21+x31=2 x12+x22+x32=3 x13+x23+x33=1 x14+x24+x34=4
§ 非负性约束
29
第三节 线性规划的标准型
§ 标准化2
minZ= x1 +2 (x2′-x 2〃) +3 x3′
函数。可能是最大化,也可能是最小化。 • 线性规划一般模型的代数式 为:
max(min)Z=c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn ≤(≥,=)b1 a21x1+a22x2+…+a2nxn ≤(≥,=)b2 …………… am1x1+am2x2+…+amnxn≤(≥,=)bm x1,x2,…,xn ≥(≤)0
第一章 线性规划
第一章 线性规划
(Linear Programming, LP)
概述
• 线性规划问题的提出最早是1939年由前苏联 数学家康托洛维奇在研究铁路运输的组织问题、 工业生产的管理问题时提出来的。
(5)若bi < 0,则-bi > 0
举例: 化下列线性规划为标准形
max z=2x1+2x2-4x3 x1 + 3x2-3x3 ≥30 x1 + 2x2-4x3≤80 x1、x2≥0,x3无限制
max z=2x1+2x2-4x3’+4x3” x1 + 3x2-3x3’+3x3” –x4 = 30 x1 + 2x2-4x3+ 4x3” + x5 = 80 x1、x2 、x3’、x3” 、x4、x5 ≥0
称X0为该线性规划对应与基B的一个基本解。
同样,在A中任选m个线性无关的列向量都可以组成一个基, 对应基一个基本解。对于一个LP最多有多少呢?从n个中 选m个进行组合,即:
Cnm=n!/[(n-m)!m!] 因此,基本解是有限的。
举例:找出下列LP所有的基及其对应的基本解 max z=6x1+4x2 2x1 + 3x2≤100 4x1 + 2x2≤120 x1、x2≥0
资源
产品
甲
乙 资源限制
A
1
B
2
C
0
单位产品利润(元/件) 50
1
300kg
1
400kg
1
250kg
100
• 决策变量:x1、x2——分别代表甲、乙两
第一章:线性规划基础
表1.5 效率表
工作 A 人员 甲 乙 丙 丁 X11 0.6 X21 0.7 X31 0.8 X41 0.7 X42 0.7 X32 1.0 X43 0.5 X22 0.4 X33 0.7 X44 0.4 B X12 0.2 X23 0.3 X34 0.3
s.t.
C X13 0.3
D X14 0.1 X24 0.2
6
三、合理下料问题建模:寻求最佳下料方式, 使余料最少. 合理下料问题建模:寻求最佳下料方式, 使余料最少. 有一批长度为180公分的钢管,需截成70 52和35公分三种管料 180公分的钢管 70、 公分三种管料。 例 有一批长度为180公分的钢管,需截成70、52和35公分三种管料。它们的需求量应分别不少于 100、150和100个 问应如何下料才能使钢管的余料为最少? 100、150和100个。问应如何下料才能使钢管的余料为最少? 解:
s.t.
5
二、人员分派问题建模: 合理分派人员, 使总效率最大. 人员分派问题建模: 合理分派人员, 使总效率最大. 设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 例:设有四件工作分派给四个人来做,每项工作只能由一人来做,每个人只能做一项工作。 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少) 希望适当安排人选,发挥各人特长又能使总的效率最大(或完成最快,或费用最少)。 表示各人对各项工作所具有的工作效率。 表1.5表示各人对各项工作所具有的工作效率。
⑤
k •
ο •h • ο a ④ ③ 3 ο ② X1 ⑤
四、L.P. 的一般形式
Max(Min) Z = c1 · x1 + c2 · x2 + --- + cn · xn a11 · x1 + a12 · x2 + --- + a1n · xn ≤(≥, =) b1 a21 · x1 + a22 · x2 + --- + a2n · xn ≤(≥, =) b2 s.t. ------------------------------------------ ---- --am1 · x1 + am2 · x2 + --- + amn · xn ≤(≥, =) bm xj ≥ 0 , j=1, ~, n
第一章线性规划求解4
O
2006/08
4D
6
X1
-18-
---第 1 章 线性规划---
定理3:若线性规划模型有最优解,则一定存在一个基本可 行解为最优解。
证:设 X0=(x10, x20,······,xn0)T 是线性规划模型的一个最优解, z0=zmax=CX0
若X0非基本可行解,即非顶点,只要取充分小, 则必能找出X1= X0-0 ,X2 = X0 +0 ,即X1 、 X2为可行解,
2006/08
-17-
---第 1 章 线性规划---
X2 XO=(0,0,12,16,12)T XA=(0,3,6,16,0)T
6 XB=(3,3,0,4,0)T
2X1+2X2+X3=12 4X1+X4=16 4X2+X5=12
A 3
B (3,3) C (4,2)
XC=(4,2,0,0,4)T XD=(4,0,4,0,12)T
x1 x2 x3 x4 设 A= 1 1 1 0
12 0 1
x3 x4 ——基变量源自10,令 B=01
,则 | B |=1≠0,
令 x1=x2 =0,则 x3 =3, x4=4,X=(0,0,3,4)T ——基本可行解
x1 x3
令 B= 1 1 ,则 | B |=-1≠0,
10
令 x2=x4 =0,则 x3 =-1, x1=4,X=(4,0,-1,0)T ——非基本可行解
z1=CX1=CX0-C=zmax-C ,z2=CX2=CX0+C =zmax+C ∵ z0 = zmax z1 , z0 = zmax z2 , ∴ z1 = z2 = z0 ,即 X1 、 X2也为最优解,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Minz 10x1 4x2
0.1x1 0x2 0.4
s.t
.
00.x11x1
0.1x2 0.2x2
0.6 2.0
0.2
x1
0.1
x
2
1.7
x1, x2 0
线性规划模型的一般形式:以MAX型、 约束
为例
决策变量: x1, , xn
目标函数: Maxz c1 x1 cn xn
先做直线9x1 4x2 360,用两点连线方法(令 x1 0,则x2 90,再令x2 0,则x1 40,于是该直线过 点(0,90)、(40,0));
再确定不等式9x1 4x2 360表示上述直线的哪 半平面,可用代入点的方法(如把原点(0,0)代入 不等式,满足,说明原点所在的半平面即该不等式 所表示的区域)。
约束条件:分别来自资源煤、电、油限量的约 束,和产量非负的约束,表示为
9 x1 4 x2 360
s.t
.
4 3
x1 x1
5x2 10 x
200 2 300
x1, x2 0
解:设安排甲、乙产量分别为 x1, x2,总收 入为 z,则模型为:
Maxz 7x1 12x2
9 x1 4 x2 360
要求在充分利用各种资源条件下使建造住宅的 总面积为最大,求建造方案。
解: 设今年计划修建砖混、壁板、大模住宅各
为 x1, x2, x3,z 为总面积,则本问题的数学模型为:
Maxz x1 x2 x3
0.105x1 0.135x2 0.120x3 110000
0.012x1 0.030x2 0.025x3 20000
AX b
s.t
.
X
0
回顾例1.1的模型
其中
X ( x1, x2 )T 表示决策变量的向量; C (7,12) 表示产品的价格向量;
b (360,200,300)T 表示资源限制向量;
9 4
A
4 3
5 10
表示产品对资源的单耗系数矩阵。
一般地
Maxz CX
AX b
s.t
.
X
资源单耗 产品 甲 乙
资源 煤 电 油
9
4
4
5
3 10
单位产品价格
7
12
资源限量
360 200 300
试拟订使总收入最大的生产计划方案。
线性规划模型的三要素
1)决策变量:需决策的量,即待求的未 知数; 2)目标函数:需优化的量,即欲达的目 标,用决策变量的表达式表示; 3)约束条件:为实现优化目标需受到的 限制,用决策变量的等式或不等式表示。
取A、B、C、D四种养分。市场上可选择的饲料 有M、N两种。有关数据如下:
售价(元
/公斤)
每公斤含营养成分
A
B
C
D
M
10 0.1
0
0.1 0.2
N
4
0
0.1 0.2
0.1
牲畜每日每头需要量 0.4 0.6 2.0
1.7
试决定买M与N二种饲料各多少公斤而使支出的 总费用为最少?
解:设购买M、N饲料各为 x1, x2,则
约束条件: a11 x1 a1n xn b1
s.t . am1 x1
amn xn b
m
x1
,
, xn 0
模型一般式的矩阵形式
记 X ( x1, , xn )T ,C (c1, ,cn ), A (aij )mn ,b (b1, ,bm )T
则模型可表示为 Maxz CX
0.110x1 0.190x2 0.180x3 150000
s.t
0.210
x1
147000
0.0045x1 0.003x2 0.0035x3 4000 x1, x2, x3 0
前苏联的尼古拉也夫斯克城住宅兴建计划采用了上
述模型,共用了12个变量,10个约束条件。
练习:某畜牧厂每日要为牲畜购买饲料以使其获
例1.1 某工厂可生产甲、乙两种产品,需消耗煤、 电、油三种资源。现将有关数据列表如下:
资源单耗 产品 甲 乙
资源 煤 电 油
9
4
4
5
3 10
单位产品价格
7
12
资源限量
360 200 300
试拟订使总收入最大的生产计划方案。
在本例中
决策变量:甲、乙产品的计划产量,记为 x1, x2;
目标函数:总收入记为 z ,则 z 7x1 12x2 ,为体 现对其追求极大化,在 z 的前面冠以极大号Max;
图解法步骤
1.做约束的图形
x2
先做非负约束的图形;
再做资源约束的图形。
以例1.1为例,其约束为
9 x1 4 x2 360
s
.t
4 3
x1 x1
5x2 10 x
200 2 300
x1, x2 0
x1
问题:不等式的几何意义是什么?怎样做图?
如9 x1 4 x2 360,它表示以9 x1 4 x2 360为边界的 一个半平面。因此,它的做图方法是:
s.t
.
4 3
x1 x1
5x2 1规划模型的一个基本特点: 目标和约束均为变量的线性表达式。
如果模型中出现如
x12
2 ln
x2
1 x3
的非线性表达式,则不属于线性规划。
例1.2 某市今年要兴建大量住宅,已知有三种住 宅体系可以大量兴建,各体系资源用量及今 年供应量见下表:
第一章 线性规划
1.1 线性规划的模型与图解法 1.2 单纯形法 1.3 对偶问题与灵敏度分析 1.4 线性整数规划 1.5 运输问题
1.1 线性规划的模型与图解法
一、线性规划问题及其数学模型
在生产管理和经营活动中经常需要解 决:如何合理地利用有限的资源,以得到 最大的效益。
例1.1 某工厂可生产甲、乙两种产品,需消耗煤、 电、油三种资源。现将有关数据列表如下:
资源 造价 钢材 水泥 砖 人工
住宅体系 (元/m2) (公斤/m2) (公斤/m2) (块/m2) (工日/m2)
砖混住宅 105
12
110
210
4.5
壁板住宅 135
30
190
——
3.0
大模住宅 资源限量
120
110000 (千元)
25
20000 (吨)
180
150000 (吨)
——
3.5
147000 4000 (千块) (千工日)
0
中 X 称为决策变量向量,C 称为价格系数向量,
A称为技术系数矩阵, b 称为资源限制向量。
问题:为什么 A 称为技术系数矩阵?
二、线性规划问题的图解法
图解法是用画图的方式求解线性规划的一 种方法。它虽然只能用于解二维(两个变 量)的问题,但其主要作用并不在于求解, 而是在于能够直观地说明线性规划解的一 些重要性质。