液压与气压传动第九章-气动基础知识

合集下载

《液压与气压传动》课程教学大纲-2012版

《液压与气压传动》课程教学大纲-2012版

《液压与气压传动》课程教学大纲课程名称:液压与气压传动英文名称: Hydraulic and Pneumatic Transmission课程编码: 51510501学时/学分: 46 / 2.5课程性质:必修课适用专业:机械设计制造及其自动化、过程装备与控制工程、车辆工程、材料成型与控制工程、包装工程等机械设计与近机类工科专业先修课程:机械制图、理论力学、材料力学、机械原理一、课程的目的与任务本课程是机械设计及近机类工科专业的一门专业基础课,在机械类专业课程体系中起到承上启下的重要作用。

本门课程通过授课、实验等教学环节,使学生熟悉液压与气压传动的基础知识,掌握各种液压与气动元件的结构特点、工作原理及其应用,掌握基本回路的组成和分析方法;掌握液压与气动系统的分析及设计方法,了解液压技术领域中的新理论、新技术、新知识。

通过本课程的学习,使学生能正确选用液压和气动元件,初步具备对液压与气动系统进行分析和调试的能力,提高学生分析和解决工程实际问题的能力。

二、教学内容及基本要求第一章绪论及液压基础知识教学目的和要求:学习本门课程所必备的流体力学基础知识,主要介绍结论性内容和如何应用,学生应在课下自学相关理论。

教学重点和难点:工作介质的粘性,流体力学三大定理。

教学方法与手段:课堂讲授为主,适当安排自学内容,培养学生的自学能力。

教学内容:第一节绪论第二节液压传动工作介质第三节流体力学三大方程及应用第四节管道压力损失,孔口的流量特性第五节空穴现象和液压冲击复习与作业要求:在本章课后习题中选择2-3 道典型题作为作业。

考核知识点:液压传动的工作原理和系统的组成;液压油的粘性和粘度概念;液压传动系统图形符号;液压传动的优缺点;液压流体力学基础知识;液体流态,管道压力损失;孔口的流量特性;空穴现象、液压冲击等概念。

辅助教学活动:布置一定的自学内容。

第二章液压动力元件教学目的和要求:掌握齿轮泵和叶片泵的结构和工作原理,初步掌握其设计计算方法和选型方法。

液压与气压传动知识点

液压与气压传动知识点

液压与气压传动知识点液压和气压传动是现代工业中常用的两种传动方式。

液压传动是指利用压力传递力或者运动的一种动力传动方式,而气压传动则是利用气体的压缩和膨胀来传动力或者运动的一种动力传动方式。

液压传动和气压传动都具有一定的优点和局限性,可以根据实际使用环境和需求来选择适合的传动方式。

一、液压传动的基本原理和特点:1.液压传动基本原理:液压传动使用液体介质传递力或者动力。

利用液体的不可压缩性和容量不变性,通过压力的传递来实现力或者运动的传递。

2.液压传动的特点:(1)可以传递大量的力和扭矩,具有较大的工作能力。

(2)传动平稳,无冲击。

(3)传动效率高。

(4)传动精度高。

(5)需要专门的液压系统设备,维护成本相对较高。

二、气压传动的基本原理和特点:1.气压传动基本原理:气压传动利用气体的压缩和膨胀来传递力或者动力。

通过控制气体的压力和流量来实现力或者运动的传递。

2.气压传动的特点:(1)传动部件轻便,结构简单。

(3)传动速度较快。

(4)传动力和运动平稳性相对较差。

(5)传动效率较低。

(6)需要专门的气压系统设备,维护成本相对较高。

三、液压传动和气压传动的比较:1.功能比较:(1)液压传动一般用于需要稳定传动、大功率和大扭矩传输的场合,例如大型机械设备和工程机械等。

(2)气压传动一般用于工作环境复杂、易爆炸和易燃的场合,例如石油、化工和冶金等行业。

2.优缺点比较:(1)液压传动的优点是传动平稳、效率高、精度高,但成本较高,对环境要求较高。

(2)气压传动的优点是结构简单、安全可靠,但传动力和运动平稳性较差,效率较低。

3.应用领域比较:(1)液压传动广泛应用于船舶、冶金、矿山、工程机械等领域。

(2)气压传动广泛应用于汽车、矿山、石油、化工等领域。

总结起来,液压传动和气压传动都有各自的适用场合和优缺点。

在选择传动方式时,需要根据实际工作环境、力量要求、精度要求和经济成本等方面综合考虑,选择最适合的传动方式。

(完整版)液压与气压传动知识点重点

(完整版)液压与气压传动知识点重点

液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。

2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。

3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。

常用的黏度有3种:动力黏度,运动黏度,相对黏度。

4、液压油分为3大类:石油型、合成型、乳化型。

5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。

2、静止液体内任意一点的压力在各个方向上都相等。

5、液体压力分为绝对压力和相对压力。

6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。

7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。

9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。

当液体整个作线形流动时,称为一维流动。

10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流。

液流完全紊乱,这时液体的流动状态称为紊流。

11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。

当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。

12、连续性方程是质量守恒定律在流体力学中的一种表达形式。

13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。

14、动量方程是动量定理在流体力学中的具体应用。

15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。

液压与气压传动的基础知识

液压与气压传动的基础知识

气压传动的应用范围
岩石钻孔
煤炭、金属矿山,地铁、隧道 等。
流水线
汽车制造、食品包装、制药、 电子等领域。
手持工具
气动钻、电磨、冲孔机等。
总结
液压传动
• 压力大,精度高 • 使用寿命长 • 需要较高的维护成本
气压传动
• 可靠稳定,使用寿命长 • 精度较低,装置体积较大 • 故障排除难
液压与气压传动的基础知 识
液压传动和气压传动是现代工业生产中常用的两种动力传动方式。了解它们 的基本原理和应用可以帮助我们更好地理解和应用液压和气压技术。
什么是液压传动
1 基本原理
2 组成部分
液体被压缩传递压力,将能量转换为力和 运动。
贮液罐、泵、电机、控制阀、执行元件等。
3 常用元件
液压缸、液压马达、液压阀等。
2
组成部分
压工业、食品加工、包装、医药、电子等领域。
气压传动的优劣势
优点
可靠稳定,使用寿命长。
缺点
精度较低,装置体积较大,故障排除难。
应用领域
汽车制造、矿山机械、制造业、建筑等领域。
气压传动的组成部分
压缩机 储气罐 配气阀 气动元件
产生压缩空气 存储压缩空气 控制气缸的排气 气缸、气缸组合等
4 优劣势
载荷大,精度高,使用寿命长,但需要较 高的维护成本。
液压传动的应用领域
建筑机械
挖掘机、铲土车、压路机等。
压力机械
压力机、卷板机、锻压机等。
汽车装配
汽车制动系统、方向盘系统等。
航空航天
飞机起落架、飞行控制、液压 泵等。
什么是气压传动
1
基本原理
气体被压缩传递动力,将压缩空气转换为力和运动。

气压传动基础知识

气压传动基础知识

v2/2+ gz + kp /(k-1)ρ+ghw= 常数
因气体粘度小,不考虑摩擦阻力和位置高度的影响,则有
v2/2+ kp /(k-1)ρ= 常数
▪ 在低速流动时,气体可认为是不可压缩的( ρ =常数),则有
v2/2+ p /ρ= 常数
动量方程 vdv+dp/ρ =0
二、声速和马赫数
声音引起的波称为“声波”。声波在介质中的传播速度称 为声速。声音传播过程属绝热过程。对理想气体来说,声 音在其中传播的相对速度只与气体的温度有关。气体的声
一、理想气体的状态方程
不计粘性的气体称为理想气体。空气可视为理想气体。
一定质量的理想气体在状态变化的瞬间, 有如下气体状态
方程成立: pV / T = 常量
或 p=ρRT
二、气体状态变化过程
等容过程 p1/T1= p2/T2= 常量
在等容过程中,气体对外不做功,气体与外界的热 交换用于增加(减少)气体的热力学能。
杂质,并将空气中的水分分离出来。
▪ 原理:回转离心、撞击,
▪ 性能指标:过滤度、水分离率、滤灰效 率、流量特性
▪ 油雾器 特殊的注油装置。
▪ 原理 当压缩空气流过时,它将润滑油 喷射成雾状,随压缩空气流入需要的润 滑部件,达到润滑的目的。
▪ 性能指标:流量特性、起雾油量
▪ 减压阀 起减压和稳压作用。 ▪ 气动三大件的安装连接次序:分水过滤器
气动系统由下面几种元件及装置组成
气源装置 压缩空气的发生装置以及压缩空气的存贮、 净化的辅助装置。它为系统提供合乎质量要求的压缩空 气。
执行元件 将气体压力能转换成机械能并完成做功动作 的元件,如气缸、气马达。
控制元件 控制气体压力、流量及运动方向的元件,如 各种阀类;能完成一定逻辑功能的元件,即气动逻辑元 件;感测、转换、处理气动信号的元器件,如气动传感 器及信号处理装置。

液压与气动技术全套课件

液压与气动技术全套课件

目录第一章液压传动基础知识绪论第二章液压动力元件第三章液压执行元件第四章液压控制元件第五章液压辅助元件第六章液压基本回路第七章典型液压传动系统第八章液压伺服和电液比例控制技术第九章液压系统的安装和使用第十章液压系统的故障诊断与排除第十一章气源装置及气动辅助元件第十二章气动执行元件第十三章气动控制元件第十四章气动基本回路第十五章气压传动系统实例一、液压与气压传动的研究对象液压与气压传动是以有压流体(压力油或压缩空气)为工作介质,来实现各种机械的传动和自动控制的传动形式。

液压传动传递动力大,运动平稳,但由于液体粘性大,在流动过程中阻力损失大,因而不宜作远距离传动和控制;而气压传动由于空气的可压缩性大,且工作压力低(通常在1.0MPa以下),所以传递动力不大,运动也不如液压传动平稳,但空气粘性小,传递过程中阻力小、速度快、反应灵敏,因而气压传动能用于远距离的传动和控制。

二、液压与气压传动的工作原理图0-1 液压千斤顶a)液压千斤顶原理图b)液压千斤顶简化模型1-杠杆手柄2-小缸体3-小活塞4、7-单向阀5-吸油管6、10-管道8-大活塞9-大缸体11-截止阀12-通大气式油箱1.力比例关系或(0-1)式中A1、A2分别为小活塞和大活塞的作用面积;F1为杠杆手柄作用在小活塞上的力。

在液压和气压传动中工作压力取决于负载,而与流入的流体多少无关。

2.运动关系或(0-2)式中h1、h2分别为小活塞和大活塞的位移。

●从式(O-2)可知,两活塞的位移和两活塞的面积成反比。

将A1h1=A2h2两端同除以活塞移动的时间t得:即(0-3)式中v1、v2分别为小活塞和大活塞的运动速度。

●从式(0-3)可以看出,活塞的运动速度和活塞的作用面积成反比。

(0-4)如果已知进入缸体的流量q ,则活塞的运动速度为:(0-5)●从式(O-5)可得到另一个重要的基本概念,即活塞的运动速度取决于进入液压(气压)缸(马达)的流量,而与流体压力大小无关。

电大“液压与气压传动”模拟试题及答案

电大“液压与气压传动”模拟试题及答案

液压与气压传动课程复习重难点第1章绪论1.液压与气压传动的工作原理2.液压与气压传动系统的组成3.液压与气压传动的主要优缺点第2章液压流体力学基础1.液压油的性质(粘度、可压缩性)2.液体静压力的概念及表示方法(绝对压力、表压力、真空度)3.连续性方程4.液压系统中压力及流量损失产生的原因第3章液压泵和液压马达1.液压泵、液压马达的工作原理2.液压泵、液压马达的主要参数及计算3.掌握齿轮泵和齿轮马达的构造、工作原理及应用(外啮合齿轮泵的问题:泄漏、径向力不平衡、困油现象。

)4.理解叶片泵和叶片马达的构造、工作原理及应用5.理解柱塞泵和柱塞马达的构造、工作原理及应用第4章液压缸1.液压缸的类型和特点2.活塞式液压缸的推力和速度计算方法第5章液压控制阀1.换向阀的功能、工作原理、结构、操纵方式和常用滑阀中位机能特点2.单向阀、液控单向阀结构、工作原理及应用。

3.溢流阀、减压阀、顺序阀、压力继电器的结构、工作原理及应用4.节流阀与调速阀的结构、工作原理及应用第6章辅助装置液压辅助元件(滤油器、蓄能器、油箱、油管、密封装置)的作用和图形符号第7章液压基本回路调压回路、卸荷回路、减压回路、增压回路、调速回路、增速回路、速度换接回路、换向回路、多缸动作回路的工作原理、功能及回路中各元件的作用和相互关系。

第8章液压系统实例根据液压系统原理图和系统动作循环表,分析液压系统工作原理与性能特点的方法。

第9章气压基础及元件1.气源装置的组成原理及性能特点2.气缸结构原理及应用第10章气动基本回路及气动系统常用气动基本回路的组成及应用特点液压与气压传动课程考试题型一、判断题(每题3分,共30分)二、单项选择题(每题3分,共30分)三、计算选择题(8分)四、分析选择题(32分)模拟试题一判断题1.液压传动不易获得很大的力和转矩。

(×)2.液体的体积压缩系数越大,表明该液体抗压缩的能力越强。

(√)3.真空度是以绝对真空为基准来测量的压力。

液压与气动系统及维护习题答案

液压与气动系统及维护习题答案

第一章思考题与习题解答1-1 何谓液压传动?液压传动中的能量是如何转换的?答:利用液体的压力能来传递动力的的传动方式被称之为液压传动。

电机输入的机械能通过液压泵转换为液压能,通过液压缸又将液压能转换为机械能输出。

1-2 液压传动的两个重要概念是什么?答:一、负载是第一性的,压力是第二性的,压力的大小决定于负载。

二、速度大小决定于输入流量。

1-3液压传动系统的组成部分及各部分的作用是什么?答:(1)动力装置:动力装置是指能将原动机的机械能转换成为液压能的装置,它是液压系统的动力源。

(2)控制调节装置:其作用是用来控制和调节工作介质的流动方向、压力和流量,以保证执行元件和工作机构的工作要求。

(3)执行装置:是将液压能转换为机械能的装置,其作用是在工作介质的推动下输出力和速度(或转矩和转速),输出一定的功率以驱动工作机构做功。

(4)辅助装置:除以上装置外的其它元器件都被称为辅助装置,如油箱、过滤器、蓄能器、冷却器、管件、管接头以及各种信号转换器等。

它们是一些对完成主运动起辅助作用的元件,在系统中是必不可少的,对保证系统正常工作有着重要的作用。

(5)工作介质:工作介质指传动液体,在液压系统中通常使用液压油液作为工作介质。

1-4 液压传动的主要优缺点有哪些?答:优点:(1)与电动机相比,在同等体积下,液压装置能产生出更大的动力,也就是说,在同等功率下,液压装置的体积小、重量轻、结构紧凑,即:它具有大的功率密度或力密度,力密度在这里指工作压力。

(2)液压传动容易做到对速度的无级调节,而且调速范围大,并且对速度的调节还可以在工作过程中进行。

(3)液压传动工作平稳,换向冲击小,便于实现频繁换向。

(4)液压传动易于实现过载保护,能实现自润滑,使用寿命长。

(5)液压传动易于实现自动化,可以很方便地对液体的流动方向、压力和流量进行调节和控制,并能很容易地和电气、电子控制或气压传动控制结合起来,实现复杂的运动和操作。

(6)液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用。

液压与气动技术-气压传动技术

液压与气动技术-气压传动技术

第三节 气动执行元件
液 压
一、气缸

气 压

传膜
动 技

术气 缸
(a)单作用式
(b)双作用式
薄膜式气缸是一种利用膜片在压缩空气作用下
产生变形来推动活塞杆作直线运动的气缸。
薄膜式气缸与活塞式气缸相比较,具有结构紧
凑、简单、成本低、维修方便、寿命长和效率高
等优点。
第三节 气动执行元件
液 压
一、气缸
与 气缸的使用时应注意以下几点:


技 术
➢ 气马达
第三节 气动执行元件
液 压
一、气缸
与 气
1、气缸分类





第三节 气动执行元件
液 压
一、气缸

气 压

传液
动 技

术尼

普通气缸工作时,由于气体的压缩性,当外部载荷 变化较大时,会产生“爬行”或“自走”现象,例 气缸的工作不稳定。为了使气缸运动平稳,普遍采 用气液阻尼缸。
动 正常,各螺栓是否松动,压力表、气阀是否完
技 术
好,压缩机必须安装在来稳牢固的基础上。
压缩机的工作压力不允许超过额定排气压力, 以免超负荷运转而损坏压缩机和烧毁电动机。
一、典型气源系统组成
液 压
1. 空气压缩机(气压发生装置)

气 空气压缩机安全技术操作方法

传 动
不要用手去触摸压缩机气缸头、缸体、排气
术 在气压传动中使用最广泛的是叶片式
和活塞式马达。
第三节 气动执行元件
液 压
二、气马达

气 1、叶片式气马达

液压与气压传动 第4版 第9章 气动控制阀及基本回路

液压与气压传动 第4版 第9章 气动控制阀及基本回路
2021/11/4
梭阀结构及应用回路
原理动画
2021/11/4
原理动画
(3)双压阀
双压阀也相当于两个单向阀的组合。它有P1和P2 两个输入口和一个输出口A。只有当P1、P2同时有输 入时,A才有输出,否则A无输出。
2021/11/4
原理动画
双压阀应用回路
2021/11/4
原理动画
(4)快速排气阀
2021/11/4
1.单向型方向控制阀
(1)单向阀 在气动单向阀中,阀芯和阀座之间有一
层胶垫。下图 所示为单向阀的典型结构。
2梭阀
梭阀它有两个输入口P1、P2,一个输出
口A,阀芯在两个方向上起单向阀的作用。 当P1进气时,阀芯将P2切断,P1与A相通, A有输出。当P2进气时,阀芯将P1切断,P2 与A相通,A也有输出。如P1和P2都有进气 时,阀芯移向低压侧,使高压侧进气口与A 相通。如两侧压力相等,先加入压力一侧 与A相通,后加入一侧关闭。
先导式,其中先导式又分为内部先导式 和外部先导式两种。
2021/11/4
(1)直动型减压阀
右图为QTY型直动 型减压阀的结构图。
阀处于工作状态时, 压缩空气从左端输入, 经阀口11节流减压后 再从阀出口流出。
当推力与弹簧的作用 相互平衡后,阀口开度 稳定在某一值上,使减 压阀的出口减小,并保 持出口压力基本不变。
结构原理动画
2021/11/4
(2)先导型减压阀
由先导阀和主阀两部 分组成。当气流从左端 流入阀体后,一部分经 进气阀口9流向输出口, 另一部分经固定节流孔1 进入中气室5经喷嘴2、 挡板3、孔道反馈至下气 室6,在经阀杆7中心孔 及排气孔8排至大气。
2021/11/4

液压与气压传动知识点重点

液压与气压传动知识点重点

液压与气压传动知识点1、液压与气压工作原理:它首先通过能量转换装置(如液压泵,空气压缩机)将原动机(如电动机)的机械能转变为压力能,然后通过封闭管道,控制原件等,由另一能量转换装置(液压缸或者气缸,液压马达或气动马达)将液体(气体)的压力能转变为机械能,驱动负载,使执行机构得到所需要的动力,完成所需的运动。

2、液压与气压传动系统的组成:动力元件,执行元件,控制调节元件,辅助元件,工作介质。

3、黏性的意义:液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,即具有一定的内摩擦力,这种性质成为液体的黏性。

常用的黏度有 3 种:动力黏度,运动黏度,相对黏度。

4、液压油分为3 大类:石油型、合成型、乳化型。

5、液体压力有如下的特性:1、液体的压力沿着内法线方向作用于承压面。

2、静止液体内任意一点的压力在各个方向上都相等。

5、液体压力分为绝对压力和相对压力。

6、真空度:如果液体中某一点的绝对压力小于大气压力,这时,比大气压小的那部分数值叫做真空度。

7、帕斯卡原理:P198、理想液体:一般把既无黏性又不可压缩的液体称为理想液体。

9、恒定流动:液体流动时,若液体中任何一点处的压力、速度和密度等参数都不随时间而变化,则这种流动称为恒定流动(或定常流动、非时变流动)。

当液体整个作线形流动时,称为一维流动。

10、液流分层,层与层之间互不干扰,液体的这种流动状态称为层流。

液流完全紊乱,这时液体的流动状态称为紊流。

11、临界雷诺数P23雷诺数的物理意义:雷诺数是液流的惯性力对黏性力的无因次比。

当雷诺数较大时,液体的惯性力起主导作用,液体处于紊流状态;当雷诺数较小时,黏性力起主导作用,液体处于层流状态。

12、连续性方程是质量守恒定律在流体力学中的一种表达形式。

13、伯努利方程是能量守恒定律在流体力学中的一种表达形式。

14、动量方程是动量定理在流体力学中的具体应用。

15、沿程压力损失:液体在等径直管中流动时,因黏性摩擦而产生的压力损失称为沿程压力损失。

液压与气压传动的基础知识

液压与气压传动的基础知识

环保等优点。混合传动技术能够适应不同的应用场景,满足多样化的需
求,具有广阔的应用前景。
应用领域拓展
新能源领域
随着新能源技术的不断发展,液压与气压传动技术在新能源领域的应用逐渐增多。例如, 在风能、太阳能等领域,液压与气压传动技术可以用于实现能量转换和存储,提高新能源 的利用效率。
智能制造领域
智能制造是未来制造业的发展方向,液压与气压传动技术在智能制造领域的应用将更加广 泛。例如,在自动化生产线、机器人等领域,液动。
工程机械
挖掘机、装载机、 压路机等。
军事工业
火炮操纵系统、导 弹发射车等。
农业机械
拖拉机、收割机等。
汽车工业
刹车系统、转向系 统等。
其他
机床、塑料机、冶 金设备等。
03
气压传动基础知识
气压传动的定义
气压传动是指利用空气压力来传递动力的传动方式,也称 为气压传动系统。
气压传动系统主要由气源、气动执行元件、控制元件和气 动辅助元件等部分组成。
液压传动系统主要由动力元件、执行元件、控制元件和辅助 元件组成。
液压传动的原理
基于帕斯卡原理,即施加在密闭液体 上的压力可以等值地传递到液体内部 的任何位置,并通过液体压力能实现 能量转换和传递。
液压传动系统通过将液体压力能转换 为机械能,实现直线或旋转运动,广 泛应用于各种机械、设备和装置中。
液压传动的应用
航空航天领域
航空航天领域对传动系统的高效性、可靠性和安全性要求极高,液压与气压传动技术在该 领域的应用具有较大潜力。例如,在飞机起落架、航空发动机控制系统等领域,液压与气 压传动技术可以发挥重要作用。
面临的挑战和机遇
挑战
随着新技术的发展和应用领域的拓展,液压与气压传动技术面临着诸多挑战。例如,如 何提高系统的可靠性和稳定性、降低能耗和提高效率、实现智能化和自动化控制等。

液压与气压传动基础知识

液压与气压传动基础知识

15/49
气源装置
气源装置为气动系统提供满足一定质量要求的压缩空气, 气源装置为气动系统提供满足一定质量要求的压缩空气,是气动 系统的重要组成部分。 系统的重要组成部分。 气动系统对压缩空气的主要要求:具有一定压力和流量, 气动系统对压缩空气的主要要求:具有一定压力和流量,并具有 一定的净化程度。 一定的净化程度。 气源装置由以下四部分组成 气压发生装置——空气压缩机; 空气压缩机; 气压发生装置 空气压缩机 净化、贮存压缩空气的装置和设备; 净化、贮存压缩空气的装置和设备; 管道系统; 管道系统; 气动三大件。 气动三大件。
液压与气压传动技术简介
1/49
湖南工业大学
液压与气压传动的工作原理和特征
传动分类简介 液压与气压传动是以流体(液压油液或压縮 液压与气压传动是以流体( 空气) 空气)为工作介质进行能量传递和控制的一种 传动形式。(元件组成基本回路, 。(元件组成基本回路 传动形式。(元件组成基本回路,回路再组成 一定功能的传动系统) 一定功能的传动系统) 以液压千斤顶为例来简述液压传动的工作 液压千斤顶为例来简述液压传动的工作 原理(类比打气筒及日用洗涤用品压出装置)。 原理(类比打气筒及日用洗涤用品压出装置)。
6/49
典 型 液 压 图 形 符 号 图
湖南工业大学
系 统 原 理
液压与气压传动系统的组成
能源装置——将机械能转换为流体压力能的装置。液 将机械能转换为流体压力能的装置。 能源装置 将机械能转换为流体压力能的装置 压泵或空气压縮机。 压泵或空气压縮机。 执行元件——将流体的压力能转换为机械能的元件。 将流体的压力能转换为机械能的元件。 执行元件 将流体的压力能转换为机械能的元件 液压缸或气缸、液压马达或气马达。 液压缸或气缸、液压马达或气马达。 控制元件——控制系统压力、流量、方 向的元件以 控制系统压力、 控制元件 控制系统压力 流量、 及进行信号转换、 及进行信号转换、逻辑运算和放大等功能的信号控制 元件。如溢流阀、节流阀、方向阀等。 元件。如溢流阀、节流阀、方向阀等。 辅助元件——保证系统正常工作除上述三种元件外的 辅助元件 保证系统正常工作除上述三种元件外的 装置。如油箱、过滤器、蓄能器、油雾器、消声器、 装置。如油箱、过滤器、蓄能器、油雾器、消声器、 管件等。 管件等。 工作介质—传递能量和信号 液压油、压缩空气。) 传递能量和信号, (工作介质 传递能量和信号,液压油、压缩空气。)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
273 p ቤተ መጻሕፍቲ ባይዱ0 273 t 0.1013
得:
273 6 1 0.1013 1.293 7.89 273 40 0.1013
kg m
3
第二节
气体状态变化
• 理想气体—不计粘性的气体 •气体的状态常用一些物理量来描述,这种 用于描述气体状态的物理量称为状态参数: 体积V(比体积υ)、压力p、温度T •比体积υ=V/m
通常在Φ =(60-70)% 范围内,人体感到舒适。
气动技术中规定各种阀的相对湿度不得大于 90%
(4)含湿量

质量含湿量:每公斤质量的干空气中所混合的水蒸 汽的质量,用d 表示:
ms s d mg g
•空气中水蒸汽的含量是随温度而变的。当气温下降 时,水蒸汽的含量下降;气温升高时含量增加。 •若要减少进入气动设备中空气的水份,必须降低空 气的温度。
三、空气的密度
单位体积内空气的质量,用ρ表示:
m V
kg m
3
273 p 对干空气有: 0 273 t 0.1013
式中:m、V— 分别为气体的质量和体积; ρ — 某温度t ℃ 与压力p状态下干空气的密度; ρ0 — 基准状态下的气体密度, ρ0 =1.293 kg/m3 p — 绝对压力 273+ t — 绝对温度 MPa K
温度上升体积膨胀,温度下降体积缩小。
3、等温过程:
pV const T
(m一定)
条件:温度不变,温度T=const ,此时有:
p1V1 p2 V2 const
说明:在温度不变的条件下,气体状态变化时, 其压力 p 与体积V成反比。 此变化过程温度不变,系统内能无变化, 气体与外界的热量交换全部用来作功。 在气动系统中气缸工作、管道输送空气等均 可视为等温过程。
1 n
严格地讲,气体变化过程大多是多变过程,前面介 绍的四种变化过程是多变过程的特例,即:
p p const
n 1 1 n 2 2

p1 2 p2 1
1 n
n=0:等压过程 n=1:等温过程
p 0 p const
p const
一、理想气体的状态方程:
p RT
理想气体处于某一平衡状态时,压力、比体积与
温度三者之间的关系称为状态方程。
或:
pV mRT
p RT
式中: • p—绝对压力 Pa
pV mRT
V—气体体积 m3
• T—绝对温度 K
• R—气体常数
υ—比体积 m3/kg
N· m /(kg· K)
• 干空气:Rg=287.1
p const
k
1/ n 0 p p const n=∞ :等容过程
n=k:绝热过程
填空题:
1、不含水蒸气的空气为( ),含水蒸气的空气称为 ( ),所含水分的程度用( )和( )来表示。 2、理想气体是指( )。一定质量的理想气体在状态变化 的某一稳定瞬时,其压力、温度、体积应服从( )。一 定质量的气体和外界没有热量交换时的状态变化过程叫做 ( )。
• 湿空气:Rs=462.05
N· m /(kg· K)
N· m /(kg· K)
二、理想气体的状态变化过程 pV const (m一定) T 1、等容过程:
条件:体积不变,此时有:
p/T=const, p1 /T1 = p2 /T2 在体积不变的条件下,气体状态变化时,其压 力与绝对温度成正比。
在此过程中,输入系统的热量等于零,完全没有 热交换。
气动系统中快速充、排气过程可视为绝热过程。
5、多变过程
实际过程有可能是上述几个过程的组合。 不加任何限制条件的气体的状态变化过程称为多 变过程,其状态方程为:
p p const
n 1 1 n 2 2

n —多变指数;
p1 2 p2 1
四、粘性:
•空气的粘性:是空气质点相对运动时 产生阻力的性质。
•主要受温度变化的影响,且随温度的 升高而增大;压力变化的影响可忽略不 计。
五、湿空气

所含水份的程度用湿度和含湿量来表示。 湿度的表示方法有绝对湿度和相对湿度之分。
每立方米湿空气中所含水蒸汽的质量称为湿空气的 绝对湿度,常用χ表示
3、在气动系统中,气缸工作、管道输送空气等均视为 ( );气动系统的快速充气、排气过程可视为( )。
4、 绝热过程
当系统与外界无热量交换时,气体的状态变化过程称 为绝热变化过程,其状态方程为:
p V p2 V const
k 1 1 k 2

T1 V2 T2 V1
k 1
p1 p2
k 1 k
干空气:绝热指数 k=1.4 ; 饱和蒸气 k=1.3
气体对外不作功。但绝对温度随压力增加而增 加,提高了气体的内能。
2、 等压过程: pV const (m一定)
T
条件:压力不变,压力 p=const ,此时有:
V1 /T1 =V2 /T2
在压力不变的条件下,气体状态变化时,其体 积与绝对温度成正比。
此式表明:气体吸收或释放热量而发生状态变化。
第二篇
第九章
气压传动
气压传动基础知识
气压传动(气动技术):
以压缩空气为工作介质来传递动力和控制信 号的系统。 除了具有与液压传动一样,操作控制方便, 易于实现自动控制、中远程控制、过载保护等优 点外,还具有工作介质处理方便,无介质费用、 泄漏污染环境、介质变质及补充等优势。
但空气的压缩性极大的限制了气压传动传 递的功率,一般工作压力较低(0.3~1MPa), 总输出力不宜大于10~40kN,且工作速度稳定 性较差。 应用非常广泛,尤其是轻工、食品工业、 化工。
六、气体体积的易变特性:
空气的体积随压力变化而变化的性质称为压 缩性,空气的压缩性约为液压油的1万倍; 空气的体积随温度变化而变化的性质称为膨 胀性,空气的膨胀性约为水的73倍。 当v ≤50m/s 时,不必考虑压缩性。 当v ≥50m/s 时,应考虑压缩性。
例:压力为6个基准大气压(表压),温度为40 ℃,求 其密度。 解:由干空气密度计算式
第一节 空气的物理性质 第二节 气体状态方程
第一节
一、空气的组成
空气的物理性质
主要成分有氮气、氧气和其他气体,一般含有一定 量的水蒸气。
含水蒸气的空气称为湿空气,不含水蒸气的空气称 为干空气。
第一节
空气的物理性质
二、气体的基本状态参数 气体参数:温度T、体积V、压力p、热力学能、 焓、熵; 气体基本状态参数:温度T、体积V、压力p 空气的两种状态: 基准状态:温度为0°C,压力为1.013×105Pa的 干空气状态。ρ=1.293kg/m3。 标准状态:温度为20°C,相对湿度为65%,压 力为0.1MPa的干空气状态。ρ=1.185kg/m3。
(3)相对湿度:
在同温度和同压力下,绝对湿度和饱和绝对湿度 之比称为该温度下的相对湿度
ps 100% 100% b pb 则绝对湿度: b
当空气绝对干燥时,ps =0 ,则 Φ=0,
当空气达到饱和时, ps = pb ,则 Φ =100%,
湿空气的相对湿度在 0-100% 间变化。
(1)绝对湿度
ms s V
kg / m3
(2)饱和绝对湿度:

每立方米饱和湿空气中所含水蒸汽的质量称为饱和 湿空气的绝对湿度
mb pb b b V RsT
kg / m3
此时湿空气中水蒸汽含量达到了最大限度。
Rs=462.05 N﹒m /(kg· K)-水蒸气的气体常数 pb:饱和气体中水蒸气的分压力;
相关文档
最新文档