三角和反三角函数图像

合集下载

反三角函数

反三角函数

4
反三角函数性质应用
Ex:求下列函数的定义域、值域和单调区间
1 y 2 a rcsin
1 x2
2
;
D = , 3 , ,A = , 0 , 1 0 1 , , 3 ,

2 y a rcta n ( x 3 x )
Ex:求函数 y (arccos x )
2
5 arccos x 在
1 2 ,1
上的最值.
注:换元转化成二次函数求最值, 注意相应范围变化
4 2 10 y m ax 0, y m in 9 3
Ex:求满足条件arcsin x arcsin (1 x )的实数 x
这组等式与 奇偶性相呼 a rcco s x , x 1, 1 应
1
利用性质
f(f
1
( x )) x , f
( f ( x )) x
又可推出下列等式:
a rcsin sin x x , x , 2 2 co s(a rcco s x ) x , x 1, 1 a rcco s co s x x , x 0 , ta n (a rcta n x ) x , x R 要注意主值区间,即等 a rcta n t a n x x , x , 2 2 式中x的规定范围。
sin (a rcsin x ) x , x 1, 1
用反三角的形式表示角
例:已知
sin x 2 3 , x , 5 2
用反正弦形式表示x.
a r c s in

最全反三角函数概念图像完整版.doc

最全反三角函数概念图像完整版.doc

反三角函数图像与特征反正弦曲线图像与特征反余弦曲线图像与特征拐点(同曲线对称中心):,该点切线斜率为1 拐点(同曲线对称中心):,该点切线斜率为-1反正切曲线图像与特征反余切曲线图像与特征拐点(同曲线对称中心):,该点切线斜率为1 拐点:,该点切线斜率为-1渐近线:渐近线:名称反正割曲线反余割曲线方程图像顶点渐近线反三角函数的定义域与主值范围函数主值记号定义域主值范围反正弦若,则反余弦若,则反正切若,则反余切若,则反正割若,则反余割若,则一般反三角函数与主值的关系为式中n为任意数数学术语将y作为的主值限在y=x对称。

其,π/2]arcsin x x的角,该角的范围在[-π/2,π/2]在[0,π]上的反函数,叫做反余弦函数。

arccosx的角,该角的范围在[0,π]区间内。

【图中蓝线】⑶在(-π/2,π/2)上的反函数,叫做反正切函数。

arctan x表示一x的角,该角的范围在(-π/2,π/2)区间内。

【图中绿线】注释:【图的画法根据反函数的性质即:反函数图像关于y=x对称】反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用红色线条;y=arccos(x),定义域[-1,1] ,值域[0,π],图象用蓝色线条;y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;y=arccot(x),定义域(-∞,+∞),值域(0,π),图象无;sin(arcsin x)=x,定义域[-1,1],值域[-1,1] arcsin(-x)=-arcsinx 证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得其他几个用类似方法可得cos(arccos x)=x,arccos(-x)=π-arccos x tan(arctan x)=x,arctan(-x)=-arctanx反三角函数其他公式:arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arccot(-x)=π-arccotx arcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x arcsin x = x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k-1)/(2k!!*(2k+1))+……(|x|<1) !!表示双阶乘arccos x = π -(x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……)(|x|<1) arctan x = x - x^3/3 + x^5/5 -……举例当x∈[-π/2,π/2] 有arcsin(sinx)=x x∈[0,π],arccos(cosx)=x x∈(-π/2,π/2),arctan(tanx)=x x∈(0,π),arccot(cotx)=x x>0,arctanx=π/2-arctan1/x,arccotx类似若(arctanx+arctany)∈(-π/2,π/2),则arctanx+arctany=arctan((x+y)/(1-xy)) 例如,arcsinχ表示角α,满足α∈[-π/2,π/2]且sinα=χ;arccos(-4/5)表示角β,满足β∈[0,π]且cosβ=-4/5;arctan2表示角φ,满足φ∈(-π/2,π/2)且tanφ=2基本知识:1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系;2.掌握反三角函数的定义域和值域,y=arcsinx, x∈[-1, 1], y∈[-,], y=arccosx, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围;3.符号arcsinx 可以理解为[-,]上的一个角或弧,也可以理解为区间[-,]上的一个实数;同样符号arccosx可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数;4.y=arcsinx等价于siny=x, y∈[-,], y=arccosx等价于cosy=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据;5.注意恒等式sin(arcsinx)=x, x∈[-1, 1] , cos(arccosx)=x, x∈[-1, 1], arcsin(sinx)=x, x∈[-,], arccos(cosx)=x, x∈[0, π]的运用的条件;6.掌握反三角函数的奇偶性、增减性的判断,大多数情况下,可以与相应的三角函数的图象及性质结合起来理解和应用;7.注意恒等式arcsinx+arccosx=, arctgx+arcctgx=的应用。

(word完整版)经典三角函数公式及其图像大全,推荐文档

(word完整版)经典三角函数公式及其图像大全,推荐文档

经典三角函数公式及其图像大全三角函数是中学课程里,非常重要的一部分,应将其作为学习的一个重点。

⒈L 弧长=αR=nπR 180 S 扇=21L R=21R 2α=3602R n ⋅π2.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin=AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C BA c sin 2sin sin 2=pr =))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)3.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径)4.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cosc 2=a 2+b2-2ab C cos bca cb A 2cos 222-+=⒌同角关系:⑴商的关系:①θtg =xy =θθcos sin =θθsec sin ⋅ ②θθθθθcsc cos sin cos ⋅===y x ctg ③θθθtg ry⋅==cos sin ④θθθθcsc cos 1sec ⋅===tg x r ⑤θθθctg rx⋅==sin cos ⑥θθθθsec sin 1csc ⋅===ctg y r ⑵倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22ϕθθθ++=+b a b a(其中辅助角ϕ与点(a,b )在同一象限,且ab tg =ϕ)⒍函数y=++⋅)sin(ϕωx A k 的图象及性质:(0,0>>A ω) 振幅A ,周期T =ωπ2, 频率f =T1, 相位ϕω+⋅x ,初相ϕ⒎五点作图法:令ϕω+x 依次为ππππ2,23,,20 求出x 与y ,依点()y x ,作图 ⒏诱导公试 三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限⒐和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos(μ=± ③βαβαβαtg tg tg tg tg ⋅±=±μ1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±μ⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=++1)( 其中当A+B+C=π时,有:i).tgC tgB tgA tgC tgB tgA ⋅⋅=++ ii).1222222=++Ctg B tg C tg A tg B tg A tg ⒑二倍角公式:(含万能公式) ①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=⒒三倍角公式:①)60sin()60sin(sin 4sin 4sin 33sin 3θθθθθθ+︒-︒=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+︒-︒=+-=③)60()60(313323θθθθθθθ+⋅-⋅=--=tg tg tg tg tg tg tg ⒓半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg⒔积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin⒕和差化积公式: ①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- ⒖反三角函数: ⒗最简单的三角方程ax =cos1=a {}Z k a k x x ∈+=,arccos 2|π1<a{}Z k a k x x ∈±=,arccos 2|π a tgx = {}Z k arctga k x x ∈+=,|π a ctgx ={}Z k arcctga k x x ∈+=,|π三角、反三角函数图像六个三角函数值在每个象限的符号:sinα·cscα cosα·secα tanα·cotα三角函数的图像和性质:1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyxy=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx函数y=sinx y=cosx y=tanxy=cotx定义域R R{x|x∈R且x≠kπ+2π,k∈Z}{x|x∈R且x≠kπ,k∈Z}值域[-1,1]x=2kπ+2π时y max=1x=2kπ-2π时y min=-1[-1,1]x=2kπ时y max=1x=2kπ+π时y min=-1R无最大值无最小值R无最大值无最小值周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数单调性在[2kπ-2π,2kπ+2π]上都是增函数;在[2kπ+2π,2kπ+32π]上都是减函数(k∈Z)在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k∈Z)在(kπ-2π,kπ+2π)内都是增函数(k∈Z)在(kπ,kπ+π)内都是减函数(k∈Z).反三角函数:arcsinx arccosx名称反正弦函数反余弦函数反正切函数反余切函数。

三角函数与反三角函数的图像与性质

三角函数与反三角函数的图像与性质

三角函数与反三角函数的图像与性质一、三角函数的图像和性质
R R
-1,1-1,1
x = + 2 k 时, y= 1,k Z x = -+ 2k时, y最小= -1,k Z x = 2k 时, y= 1,k Z x = + 2 k 时, y = - 1,k Z
在每个[-+2k,+2k]上递增在每个[+ 2k, 3+ 2k]上递减k Z 在每个[-+ 2k, 2k]上递增在每个[2k, + 2k]上递减
k Z
是周期函数,2为最小正周期是周期函数,2为最小正周期
对称中心(k, 0) ,对称轴:x = +k,(k Z)对称中心(+ k, 0) ,对称轴: x = k,(k Z)
{x| x R且x +k,k Z}{x| x R且x+k,k Z} R R
在每个(-+k,+k)上递增
k Z 在每个(k,+ k)上递减
k Z
是周期函数,为最小正周期是周期函数,为最小正周期对称中心(k2,0)对称中心(k2,0)
二、反三角函数的图像与性质
反正弦函数y= arcsin x
是y=sin x,x-2,2的反函数反余弦函数y= arccos x 是y = cos x,x0,的反函数
-1,1-1,1
0,
对称中心(0,)
2. 反正切与反余切函数的图像与性质
反正切函数y= arctan x
是y = tan x,x(-,) 的反函数
22反余切函数y= arccot x
是y = cot x,x(0,)的反函数
(-,+,)(-,+,)
(0,)
在(-,+,)上递增在(-,+,)上递减
对称中心(0,)。

三角函数和反三角函数详解

三角函数和反三角函数详解

[三角函数的定义和符号变化][三角函数的图形与特征]标准正弦曲线周期:π2=T与x 轴交点(同拐点):,2,1,0),0,(±±=k k B k π极值点(极大点或极小点):,2,1,0,)1(,)21(±±=⎪⎭⎫⎝⎛-+k k A k k π余弦曲线周期:π2=T与x 轴交点(同拐点):,2,1,0,0,)21(±±=⎪⎭⎫⎝⎛+k k B k π极值点:,2,1,0),)1(,(±±=-k k A kk π 一般正弦曲线)sin(0ϕω+=x A y 周期:ωπ2=T式中A >0为振幅,ω为角频率,0ϕ为初相 与x 轴交点(同拐点):,2,1,0,0,0±±=⎪⎭⎫⎝⎛-k k B k ωϕπ 极值点:,)1(,)21(0⎪⎪⎪⎪⎭⎫ ⎝⎛--+A k A k k ωϕπ ,2,1,0±±=k同时,)cos(1ϕω+=x A y 也属于一般正弦曲线(设210πϕϕ+=,可化为))2sin(1πϕω++x A ,它是将标准正弦曲线在y 轴方向上伸长A 倍,在x 轴方向上压缩ω倍,并向左平移ωϕ0一段距离而得到.正切曲线 y =tan x周期:π=T与x 轴交点(同拐点): ,2,1,0),0,(±±=k k A k π, 该点切线斜率为1.渐近线:π)21(+=k x 余切曲线:周期:π=T与x 轴交点(同拐点):,2,1,0,0,)21(±±=⎪⎭⎫⎝⎛+k k A k π,该点切线斜率为-1.渐近线:πk x = 正割曲线周 期:π2=T 极大点:)1,)12((-+πk A k 极小点:,2,1,0),1,2(±±=k k B k π渐近线:π)21(+=k x 余割曲线周 期:π2=T极大点:⎪⎭⎫ ⎝⎛-+1,)232(πk A k 极小点:⎪⎭⎫⎝⎛+1,)212(πk B k,2,1,0±±=k渐近线:πk x =3. 特殊角的三角函数值表中02 π表示02 πϕ→,(即左、右极限).一个锐角的余角的三角函数值等于这个角的余三角函数值,例如︒=︒15sin 75cos ,︒=︒18cot 72tan ,︒=︒5.22sec 5.67csc .4. 三角函数的基本关系和公式 [诱导公式]三角函数的诱导公式表表中n 为整数. [基本关系]sin cos 221αα+=αααcos sin tan =αααsin cos cot =1cot tan =⋅αα sin csc αα⋅=1cos sec αα⋅=11tan sec 22=-αα 1cot csc 22=-αα三角函数的相互关系表例如,若sin α=x ,则cos α=±-12x[加法公式]αββαβαβαβαβαβαβαβαβαβαβαcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin(±=±±=±=±±=±[和差与积互化公式]βαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαsin cos )cos(cot tan sin sin )sin(cot cot cos cos )sin(tan tan 2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos2sin sin 2cos2sin2sin sin ±=±±±=±±=±-+-=--+=+-+=--+=+sin sin [cos()cos()]cos cos [cos()cos()]sin cos [sin()sin()]αβαβαβαβαβαβαβαβαβ=-+--=++-=++-121212[倍角公式]αααααααααααααααααααααααααtan cot tan cot tan 1sec 2sec cot 21cot 2cot tan 1tan 22tan tan 1tan 1sin 211cos 2sin cos 2cos tan 1tan 2cos sin 22sin 22222222222-+=-=-=-=+-=-=-=-=+== 1cot 3cot 3cot 3cot tan 31tan tan 33tan cos 3cos 43cos sin 3sin 43sin )cot (tan 21csc sec 212csc 232333--=--=-=+-=+==ααααααααααααααααααα[半角公式]下列公式中根号所取符号与等号左边的符号一致.1sec sec 22csc 1sec sec 22sec cos 1sin sin cos 1cos 1cos 12cot cos 1sin sin cos 1cos 1cos 12tan 2cos 12cos 2cos 12sin -±=+±=-=+=-+±=+=-=+-±=+±=-±=αααααααααααααααααααααααα[降幂公式]sin (cos )sin (sin sin )sin (cos cos )sin ()cos()sin()sin()2342212012212210121214331834241212212121221αααααααααααα=-=-=-+=--+⎡⎣⎢⎤⎦⎥=--+-+=-+++=∑∑nn n k n k k n n n n nn k n kk nC n k C C n kcos (cos )cos (cos cos )cos (cos cos )cos cos()coscos()2342212012212211212143318342412221212221αααααααααααα=+=+=++=-+⎡⎣⎢⎤⎦⎥=-+-=-++=∑∑nn n k k n n n n nn k k nC n k C Cn k以上式中的n 为正整数.5. 反三角函数定义[反三角函数的定义域与主值范围]一般反三角函数与主值的关系为x n x xn x xn x n tan arc tan Arc arccos 2Arccos arcsin )1(sin Arc +=±=-+=πππ式中n 为任意整数.[反三角函数的图形与特征]反正弦曲线 反余弦曲线拐点(同曲线对称中心): 拐点(同曲线对称中心):)0,0(O ,该点切线斜率为1 )2,0(πA ,该点切线斜率为-1反正切曲线 反余切曲线拐点(同曲线对称中心): 拐点:)0,0(O ,该点切线斜率为1)2,0(πA ,该点切线斜率为-1 渐进线:2π±=y曲线对称中心:)2,0(πA 渐近线:π==y y ,0反正割曲线 反余割曲线顶点:),1(),0,1(π-B A 顶点:)2,1(),2,1(ππ--B A渐近线:2π=y渐近线:0=y6. 反三角函数的相互关系与基本公式[反三角函数的相互关系]带有*号者只当x为正值时适用. [反三角函数基本公式]7. 三角形基本定理[正弦定理]a Ab B cC R sin sin sin ===2式中R 为∆ABC 的外接圆半径(图1.3). [余弦定理]a b c bc A b c a ca B c a b ab C 222222222222=+-=+-=+-cos cos cos[勾股定理]在直角三角形(C 为直角)中,勾方加股方等于弦方(图1.4),即a b c 222+=勾股定理也称商高定理,外国书刊中称毕达哥拉斯定理.8. 斜三角形解法。

三角函数与反三角函数公式与图像

三角函数与反三角函数公式与图像

三角函数与反三角函数三角函数表三角函数诱导公式公式1ααπsin )2sin =+k ( ααπcos )2cos =+k (ααπtan )2tan =+( ααπcot 2k cot =+)(公式2ααπ-sin sin =+)( ααπ-cos cos =+)(ααπtan tan =+)( ααπcot cot =+)(公式3ααsin -)-sin(= ααcos -cos =)(αα-tan -tan =)( αα-cot -cot =)( 公式4ααπsin -sin =)( ααπ-cos -cos =)(ααπtan )(tan -=- ααπ-cot -cot =)(公式5ααπ-sin -2sin =)( ααπcos -2cos =)(ααπtan )2(tan -=- ααπ-cot 2(cot =-)公式6ααπcos 2sin =+)( ααπ-sin 2cos =+)( ααπcot )2(tan -=+ααπ-tan 2cot =+)( ααπcos -2sin =)(ααπsin -2cos =)( ααπcot )2(tan =-ααπtan -2cot =)(推算公式ααπ-cos 23sin =+)( ααπsin 23cos =+)(ααπcot )23(tan -=+ ααπ-tan 23cot =+)(ααπcos )23sin -=-( ααπ-sin -23cos =)(ααπcot )23(tan =- ααπtan )23cot =-(三角函数公式一 基本关系式1cos sin 22=+α 1cot tan =⋅αααααcos sin tan = αααsin cos cot = 二 两角和差公式ααβαβαsin cos cos sin sin ⋅+⋅=+)(βαβαβαsin cos -cos sin -sin ⋅⋅=)(βαβαβαsin sin -cos cos cos ⋅⋅=+)(βαβαβαsin sin cos cos -cos ⋅+⋅=)(βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan -tan )-tan(⋅+=三 二倍角的正弦,余弦和正切公式αααcos sin 22sin ⋅=ααααα2222sin 2-11-cos 2sin -cos cos2===ααα2tan 1tan 22tan -=四 半角正弦,余弦和正切公式)(ααcos -1212sin 2= )(ααcos 1212cos 2+=αααcos 1cos 12tan 2+-=αααααsin cos 1cos 1sin 2tan -=+=五 三倍角正弦,余弦和正切公式ααα3sin 4-sin 33sin =αααcos 3-cos 43cos 3=ααα233tan 31tan tan 3tan --=六 万能公式2tan 12tan 2sin 2ααα+=2tan12tan-1cos 22ααα+=2tan12tan 2tan 2ααα-=七 辅助角公式)sin(cos sin 22ϕααα++=+b a b a )cos(22ϕα-+=b a其中:bab a b b a a =+=+=ϕϕϕtan cos sin 2222八 三角函数和差化积公式)()(2-cos 2sin 2sin sin βαβαβα⋅+=+)()(2-sin 2cos 2sin -sin βαβαβα⋅+=)()(2-cos 2cos 2cos cos βαβαβα⋅+=+)()(2-sin 2sin 2-cos -cos βαβαβα⋅+=九 三角函数积化和差公式[])()(βαβαβα-sin sin 21cos sin ++=⋅ [])()(βαβαβα-sin -sin 21sin cos +=⋅ [])()(βαβαβα-cos cos 21cos cos ++=⋅ [])()(βαβαβα-cos -cos 21-sin sin +=⋅反三角函数公式下α可取αα-arcsin -arcsin =)( απαarccos --arccos =)(ααarctan )(arctan -=- απαarccot )-arccot -=(2arccot arctan arccos arcsin παααα=+=+αα=)(arcsin sin αα=)(arccos cosαα=)(arctan tan αα=)(arccot cotαα=)(sin arcsin ),(22-ππα∈αα=)(cos arccos ),(πα0∈αα=)(tan arctan ),(22-ππα∈αα=)(cot arccot ),(πα0∈αα1arctan arctan = 0>ααα1arccotarccot =0>α)1(arctan arctan arctan αββαβα-+=+ 其中)2,2(arctan arctan ππβα-∈+三角函数图像一 正弦函数x x f sin )(=定义域:R x ∈ 值域:]1,1[)(-∈x f二 余弦函数x x f cos )(=定义域:R x ∈ 值域:]1,1[)(-∈x f三 正切函数x x f tan )(=定义域:Z k k x R x ∈+≠∈,2ππ且 值域:R x f ∈)(四 余切函数x x f cot )(=定义域:Z k k x R x ∈≠∈,π且 值域:R x f ∈)(反三角函数图像一 反正弦函数x x f arcsin )(=定义域:]1,1[-∈x 值域:]2,2[)(ππ-∈x f二 反余弦函数x x f arccos )(=定义域:]1,1[-∈x 值域:],0[)(π∈x f11 三 反正弦函数 x x f arctan )(=定义域:R x ∈ 值域:)2,2()(ππ-∈x f四 反余切函数 x x f arccot )(=定义域:R x ∈ 值域:),0()(π∈x f。

三角、反三角函数图像的解析

三角、反三角函数图像的解析

三角、反三角函数整理Sin a , CSC a三角函数的图像和性质:三角函数值在每个象限的符号:COS a° Sec a tan a , cot a* y=ta nx1!y111t/IJ/3JI{i■o万2A耳JF{1I函数y=s inx y=cosx y=ta nx y=cotxy=sec x y=cscx疋义域R R{x | x € R 且JIx 丰 k nJ ,k € Z}{x | x € R 且x 丰 k n€,IZ }{x| x 工kn + n/2(k € Z)}{x|x 工k n ,k € Z}值域[-1, 1:JIx=2k n +2时y max=1JIx=2k n 一2时y min =-1[-1,1 ]x=2k n时y max = 1 x=2k n+ 时y min =-1R无最大值无最小值R无最大值无最小值y > 1 或yw -1{y|y > 1 或y w -1}周期性周期为2n周期为2n周期为n周期为nT=2 n 2 n奇偶性奇函数偶函数奇函数奇函数偶函数奇函数单调性在Jl[2k n——22,2JIk n+一 :上2都是增函数;在JI[2k n + —22,2k n+ n]3 上都是减函数(k €在]2k n- n, 2k n上都是增函数;在:2k n,2k n +]n上都是减函数(k € Z)在(k n 一,2Ttk n+亍)内都是增函数(k € Z)在(k n, k n + n)内都是减函数(k € Z)一般不讨论一般不讨论角函数的诱导公式(六公式)公式一:设a为任意角,终边相同的角的同一三角函数的值相等:sin( a +k*2 n )=sin a k 为整数)COS(a +k*2 n )=cos a k 为整数)tan( a +k*2 n )=tan (a 为整数)公式二设a为任意角,n + a的三角函数值与a的三角函数值之间的关系sin[(2k+1) n +a-S=n aCOS[(2k+1) n +a 抬OS atan[(2k+1) n + a ]=tan aCOt[(2 k+1) n + a ]=COt a公式三任意角a与-a的三角函数值之间的关系:sin(2k- a )=sin acos(2k- a )=COs atan(2k- a )=tan aCOt(2k- a )=COt a公式四利用公式二和公式三可以得到n- a与a的三角函数值之间的关系sin[ (2k+1) na ]=sin aCOS[(2k+1) n a ]=COS atan[ (2k+1) na ]=tan aCOt[(2k+1) na ]=COt a公式五:利用公式一和公式三可以得到2n- a与a的三角函数值之间的关系:sin(2k n a )=sin aC0S(2k n- a )=COS atan(2k n a )=tan aC0t(2k n a )=C0t a公式六:n /2 ±4a a的三角函数值之间的关系:Sin( n /2+ a )=C0S acos( n /2+ a -sin atan( n /2+ a -Cot aC0t( n /2+ a-)=n asin( n 2 )=C0S aC0S( n /2 a )=Sin atan( n /2a )=C0t aC0t( n /2a )=tan a诱导公式记背诀窍:奇变偶不变,符号看象限。

经典三角函数公式及其图像大全

经典三角函数公式及其图像大全
.反三角函数:
arcsinxarccosx
arctanxarccotx
名称
反正弦函数
反余弦函数
反正切函数
反余切函数
定义
y=sinx(x∈〔- , 〕的反函数,叫做反正弦函数,记作x=arsiny
y=cosx(x∈〔0,π〕)的反函数,叫做反余弦函数,记作x=arccosy
y=tanx(x∈(- , )的反函数,叫做反正切函数,记作x=arctany
2.S⊿= a = ab = bc = ac = =2R
= = = =pr=
(其中 ,r为三角形内切圆半径)
3.正弦定理: = = =2R(R为三角形外接圆半径)
4.余弦定理:a =b +c -2bc b =a +c -2ac c =a +b -2ab
⒌同角关系:
商的关系: = = =
倒数关系:
平方关系:
周期为π
周期为π
奇偶性
奇函数
偶函数
奇函数
奇函数
单调性
在[2kπ- ,2kπ+ ]上都是增函数;在[2kπ+ ,2kπ+ π]上都是减函数(k∈Z)
在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k∈Z)
在(kπ- ,kπ+ )内都是增函数(k∈Z)
在(kπ,kπ+π)内都是减函数(k∈Z)
arccot(-x)=π-arccotx
周期性
都不是同期函数
恒等式
sin(arcsinx)=x(x∈[-1,1])arcsin(sinx)=x(x∈[- , ])
cos(arccosx)=x(x∈[-1,1]) arccos(cosx)=x(x∈[0,π])

三角函数、反三角函数

三角函数、反三角函数

定义直角三角形三角函数定义在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。

对∠BAC而言,对边(opposite)a=BC、斜边(hypotenuse)c=AB、邻边(adjacent)b=AC,则存在以下关系:基本函数英文缩写表达式语言描述正弦函数sine sin a/c ∠A的对边比斜边余弦函数cosine cos b/c ∠A的邻边比斜边正切函数tangent tan a/b ∠A的对边比邻边余切函数cotangent cot b/a ∠A的邻边比对边正割函数secant sec c/b ∠A的斜边比邻边余割函数cosecant csc c/a ∠A的斜边比对边注:正切函数、余切函数曾被写作tg、ctg,现已不用这种写法。

secx=1/cosx、cscx=1/sinx变化规律正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小),余切值随着角度的增大(或减小)而减小(或增大);正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。

特殊角在三角函数中,有一些特殊角,例如30°、45°、60°,这些角的三角函数值为简单单项式,计算中可以直接求出具体的值。

这些函数的值参见下表格:角度0°15°30°45°60°90°120°135°150°180°270°弧度sin值cos值tan 值不存在不存在cot 值不存在不存在几何性质函数图象函数对称轴对称中心图象无(kπ/2+π/2,0)正切三角函数图像无最小正周期如果一个函数f (x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f (x )的最小正周期(minimal positive period ).例如,正弦函数的最小正周期是2π.对于正弦函数y=sinx, 自变量x 只要并且至少增加到x+2π时,函数值才能重复取得正弦函数和余弦函数的最小正周期是2π。

反三角函数的图像

反三角函数的图像

反三角函数的图像六个三角函数值在每个象限的符号:sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质:1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy xy=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx函数 y=sinx y=cosx y=tanx y=cotx定义域R R{x |x ∈R 且{x |x ∈R 且x≠kπ,k ∈Z }x≠kπ+2π,k∈Z }值域 [-1,1]x=2kπ+2π时y max =1x=2kπ-2π 时y min =-1[-1,1] x=2kπ时y max =1x=2kπ+π时y min =-1R无最大值无最小值R无最大值无最小值周期性周期为2π 周期为2π 周期为π 周期为π 奇偶性奇函数 偶函数奇函数奇函数 单调性 在[2k π-2π,2k π+2π ]上都是增函数;在[2k π+2π ,2k π+32π]上都是减函数(k ∈Z)在[2k π-π,2k π]上都是增函数;在[2k π,2k π+π]上都是减函数(k ∈Z)在(k π-2π,k π+2π)内都是增函数(k ∈Z)在(k π,k π+π)内都是减函数(k ∈Z).反三角函数:arcsinx arccosxarctanx arccotx名称反正弦函数反余弦函数反正切函数反余切函数定义y=sinx(x∈〔-2π,2π〕的反函数,叫做反正弦函数,记作x=arsinyy=cosx(x∈〔0,π〕)的反函数,叫做反余弦函数,记作x=arccosyy=tanx(x∈(-2π,2π)的反函数,叫做反正切函数,记作x=arctanyy=cotx(x∈(0,π))的反函数,叫做反余切函数,记作x=arccoty理解arcsinx表示属于[-2π,2π]且正弦值等于x的角arccosx表示属于[0,π],且余弦值等于x的角arctanx表示属于(-2π,2π),且正切值等于x的角arccotx表示属于(0,π)且余切值等于x的角性质定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞)值域[-2π,2π][0,π](-2π,2π) (0,π)单调性在〔-1,1〕上是增函数在[-1,1]上是减函数在(-∞,+∞)上是增数在(-∞,+∞)上是减函数奇偶性arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotx 周期性都不是同期函数恒等式sin(arcsinx)=x(x∈[-1,1])arcsin(sinx)=x(x∈[-2π,2π])cos(arccosx)=x(x∈[-1,1])arccos(cosx)=x(x∈[0,π])tan(arctanx)=x(x∈R)arctan(tanx)=x(x∈(-2π,2π))cot(arccotx)=x(x∈R)arccot(cotx)=x(x∈(0,π))互余恒等式arcsinx+arccosx=2π(x∈[-1,1]) arctanx+arccotx=2π(X∈R)同角三角函数的基本关系倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin² α+cos² α=1 tan α *cot α=1一个特殊公式(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1=1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin(3a) =sin(a+2a) =sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin^3a cos3a =cos(2a+a)=cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosasin3a=3sina-4sin^3a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)^2] =4cosa(cos²a-cos²30°) =4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)n倍角公式sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n)。

三角函数、反三角函数剖析

三角函数、反三角函数剖析

定义直角三角形三角函数定义在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。

对∠BAC而言,对边(opposite)a=BC、斜边(hypotenuse)c=AB、邻边(adjacent)b=AC,则存在以下关系:基本函数英文缩写表达式语言描述正弦函数sine sin a/c ∠A的对边比斜边余弦函数cosine cos b/c ∠A的邻边比斜边正切函数tangent tan a/b ∠A的对边比邻边余切函数cotangent cot b/a ∠A的邻边比对边正割函数secant sec c/b ∠A的斜边比邻边余割函数cosecant csc c/a ∠A的斜边比对边注:正切函数、余切函数曾被写作tg、ctg,现已不用这种写法。

secx=1/cosx、cscx=1/sinx变化规律正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小),余切值随着角度的增大(或减小)而减小(或增大);正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。

特殊角在三角函数中,有一些特殊角,例如30°、45°、60°,这些角的三角函数值为简单单项式,计算中可以直接求出具体的值。

这些函数的值参见下表格:角度0°15°30°45°60°90°120°135°150°180°270°弧度sin值cos值tan值不存在不存在cot值不存在不存在几何性质函数图象函数对称轴对称中心图象无(kπ/2+π/2,0)正切三角函数图像无最小正周期如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f (x)的最小正周期(minimal positive period).例如,正弦函数的最小正周期是2π.对于正弦函数y=sinx, 自变量x只要并且至少增加到x+2π时,函数值才能重复取得正弦函数和余弦函数的最小正周期是2π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=cosx(x∈〔0,π〕)的反函数,叫做反余弦函数,记作x=arccosy
y=tanx(x∈(- , )的反函数,叫做反正切函数,记作x=arctany
y=cotx(x∈(0,π))的反函数,叫做反余切函数,记作x=arccoty
理解
arcsinx表示属于[- , ]
且正弦值等于x的角
arccosx表示属于[0,π],且余弦值等于x的角
三角、反三角函数图像
六个三角函数值在每个象限的符号:
sinα·cscα cosα·secα tanα·cotα
三角函数的图像和性质:
函数
y=sinx
y=cosx
y=tanx
y=cotx
定义域
R
R
{x|x∈R且x≠kπ+ ,k∈Z}
{x|x∈R且x≠kπ,k∈Z}
值域
[-1,1]x=2kπ+ 时ymax=1
tan(arctanx)=x(x∈R)
arctan(tanx)=x(x∈(- , ))
cot(arccotx)=x(x∈R)
arccot(cotx)=x(x∈(0,π))
互余恒等式
arcsinx+arccosx= (x∈[-1,1])
arctanx+arccotx= (X∈R)
arctanx表示属于(- , ),且正切值等于x的角
arccotx表示属于(0,π)且余切值等于x的角
性质
定义域Βιβλιοθήκη [-1,1][-1,1](-∞,+∞)
(-∞,+∞)
值域
[- , ]
[0,π]
(- , )
(0,π)
单调性
在〔-1,1〕上是增函数
在[-1,1]上是减函数
在(-∞,+∞)上是增数
在(-∞,+∞)上是减函数
在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k∈Z)
在(kπ- ,kπ+ )内都是增函数(k∈Z)
在(kπ,kπ+π)内都是减函数(k∈Z)
arcsinxarccosx
arctanxarccotx
名称
反正弦函数
反余弦函数
反正切函数
反余切函数
定义
y=sinx(x∈〔- , 〕)的反函数,叫做反正弦函数,记作x=arsiny
奇偶性
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
周期性
都不是周期函数
恒等式
sin(arcsinx)=x(x∈[-1,1])
arcsin(sinx)=x(x∈[- , ])
cos(arccosx)=x(x∈[-1,1]) arccos(cosx)=x(x∈[0,π])
x=2kπ- 时ymin=-1
[-1,1]
x=2kπ时ymax=1
x=2kπ+π时ymin=-1
R
无最大值
无最小值
R
无最大值
无最小值
周期性
周期为2π
周期为2π
周期为π
周期为π
奇偶性
奇函数
偶函数
奇函数
奇函数
单调性
在[2kπ- ,2kπ+ ]上都是增函数;在[2kπ+ ,2kπ+ π]上都是减函数(k∈Z)
相关文档
最新文档