石墨烯基橡胶复合材料的制备与性能

合集下载

改性石墨烯粘土天然橡胶纳米复合材料的结构与性能

改性石墨烯粘土天然橡胶纳米复合材料的结构与性能

改性石墨烯/粘土/天然橡胶纳米复合材料的结构与性能张涛,王文良,鲁璐璐,杨阳,张闻轩(太原工业学院材料工程系,山西太原030008)摘要:大量研究表明,纳米填料的表面效应、大的比表面积以及纳米粒子本身对基体的强界面效应对橡胶纳米复合材料性能的提升具有极大的帮助。

本研究以天然橡胶(NR)为基体材料,采用乳液法制备石墨烯/粘土/NR纳米复合材料’讨论了石墨烯、粘土的用量对复合材料的物理机械性能的影响’结果表明,当粘土用量为3.0pho时,随着石墨烯添加量的增加,石墨烯/粘土/NR纳米复合材料的力学性能和耐磨性先升高,然后略有下降’当石墨烯添加量为1-0pho时,复合材料的拉伸强度提高了33.3%,而阿克隆磨耗体积下降了225%。

关键词:石墨烯;天然胶乳;复合材料;力学性能;阿克隆磨耗中图分类号:TB33文献标识码:A文章编号:1008-021X(X0X1)05-0025-04Structrrr and Properties of ModiCed Graphene/Clay/NR NanocompositesZhang Tao,Wang Wenliang,Lu Lulu,Yang Yang,Zhang Wenxuan(Department of Material Engineering,Taiyuan Institute of Technology,Taiyuan030008,China)Abstract:A larye number of studies have shown that the surface effect of nano-fillers,larye specific surface area and strong interface effect of nano-particles themselves on the matrix have a great help te ioprove the performance of rubber nano-composites.In this paper,natural rubber(NR)was used as the matrix material and graphene/clay/NR nanocompos—es were prepared by emulsion method.The e/ects of the amount of graphene and clay on the physical and mechanical properties of the composites were discussed.The results showed that the mechanical properties and wear resistance of graphene/clay/NR nanocomposieesweoe ioseeyincoeased and ehen seigheeydecoeased wieh eheincoeaseoQgoapheneconeenewhen eheceayconeeneis 3.0phr.And the tensile strength of the composites was increased by335%,the wear volume of Akron was decreased by22.7% when the amount of graphene is1.0phr.Key words:graphene;natural latex;composites;mechanical properties;akron abrasion有关石墨烯的研究虽然进行了60多年,但是直到21世纪初期英国物理学家Giov和Novos/o才第一次通过机械剥离的方法得到了石墨烯(GE)[1-5]。

石墨烯橡胶基复合材料概论

石墨烯橡胶基复合材料概论

石墨烯橡胶基复合材料概论橡胶材料应用到国民经济的各个领域,也是高科技领域不可缺少、不可替代的关键材料之一。

其中天然橡胶开发利用已经有100多年历史,20世纪30年代采用双烯类单体合成出丁钠、丁锂橡胶,引入氯原子合成出具有阻燃、耐日光老化功能的氯丁橡胶,引入氰基的丁腈橡胶能改善耐油性,在分子侧链引入高键能氟原子的氟橡胶极大提高了材料的耐热性和耐老化特性,随着化学工业的不断发展,硅橡胶、三元乙丙橡胶、丙烯酸酯橡胶、丁苯橡胶等生胶与橡胶材料被开发出来。

随着应用需求的发展和橡胶制品应用的多样化,其中典型的例如航空材料领域,需要橡胶制品具有优异的各项综合性能,也对橡胶制品提出了更高的功能性需求。

橡胶材料的生胶在强度和弹性方面都比较低,不具备使用价值,只有加入补强填料、防老剂等加工助剂并经过加工后才拥有使用功能。

炭黑(CB)作为通用的碳基补强材料与白炭黑(SiO)一起广泛应用于各类橡胶胶料补强中。

石墨烯2是最新发展的新型碳基材料,具有优异的物理性能,引起了学术界和工业界的高度关注。

表4-1给出了石墨烯、碳纳米管、钢铁、塑料、纤维和橡胶的性能对比数据。

石墨烯,作为一种性能出色的橡胶纳米填料,与其衍生物一同被广泛应用于各类石墨烯/橡胶复合材料研究中。

在满足功能性要求的基础上,相关研究主要在以下两个方面提升石墨烯/橡胶复合材料性能:(1)提高石墨烯及其衍生物在橡胶基体中的分散程度;(2)增强石墨烯及其衍生物结构与橡胶基体之间的界面相互作用。

表4-1 石墨烯,碳纳米管,纳米尺寸钢和聚合物的部分性能了大量的研究成果,在材料、工艺、检测手段等方面也开辟了很多新的研究方向。

其发展历程、历史定位与发展基础已被为数众多的综述所记录。

本章将从石墨烯/橡胶复合材料应用的橡胶基体及典型应用出发,综述其制备及功能改性、结构、性能、相关测试方法及其应用方面的研究进展。

石墨烯复合材料的制备、表征及性能

石墨烯复合材料的制备、表征及性能

石墨烯复合材料的制备、表征及性能郝丽娜【摘要】石墨烯属于一种二维晶体结构,它是由碳原子紧密堆积而成,其中有富勤烯、石墨以及碳纳米管等基本单元,这些都是碳的同位异形体.石墨烯在力学领域、电学领域、热学领域以及光学领域等都发挥出其优越的性能,因此,这一复合材料在当今已经成为了科学领域和物理学领域之中研究的焦点.对石墨烯复合材料的制备、表征以及性能进行分析,希望可以对石墨烯的应用与研究起到一定的帮助.%Graphene belongs to a two-dimensional crystal structure,which is formed by the close packing of carbon atoms.There are basic units such as rich olefins,graphite and carbon nanotubes,which are allomorphs of carbon.Graphene has exerted its superior performance in various fields such as mechanics,electricity,heat,and optics.Therefore,this composite material has become the focus of research in the fields of science and physics.This paper is to analyze the preparation,characterization and performance of graphene composites,and hope to help the applicationand research of graphene.【期刊名称】《化工设计通讯》【年(卷),期】2019(045)009【总页数】2页(P128-129)【关键词】石墨烯复合材料;制备;表征;性能【作者】郝丽娜【作者单位】齐齐哈尔工程学院,黑龙江齐齐哈尔 161005【正文语种】中文【中图分类】TB332 ;TM53因为石墨烯所具有的二维晶体结构是比较特殊的,所以其纵横比很高、电子迁移率也很高,这就使得石墨烯在储能领域之中的应用前景十分广泛。

石墨烯PVDF复合材料的制备及其性能探讨

石墨烯PVDF复合材料的制备及其性能探讨

2020年第19卷第12期石墨烯/PVDF复合材料的制备及其性能探讨□狄莹莹【内容摘要】通过熔融模压法制备以聚偏氟乙烯(PVDF)树脂和石墨烯为基体和填料的PVDF/石墨烯复合材料,具有较好的热、电性能。

通过改变石墨烯含量和添加助剂,研究其对复合材料电性能、热性能的影响。

对不同条件下制备得到的样品进行性能测试和表征后,对比数据结果和微观照片可知,电性能参数(介电常数和体积电阻率)与导热系数均与石墨烯含量成正比,且参数变化有突变现象;添加助剂能有效促进石墨烯在PVDF基体中的均匀分散,合适的助剂体系能显著提高复合材料的性能。

【关键词】熔融模压法;聚偏氟乙烯;助剂;石墨烯;复合材料;材料性能【基金项目】本文为陕西省教育厅专项科研计划项目(编号:19JK0075)研究成果。

【作者简介】狄莹莹(1985 ),陕西工业职业技术学院财经与旅游学院讲师;研究方向:高分子材料在电性能和热性能方面,聚偏氟乙烯(PVDF)比其它聚合物材料更为优异,因此常选用PVDF作为制备导热、导电、介电性能优异的复合材料的基体树脂。

近年来不断引起大众关注的石墨烯是一种新型二维纳米材料,具有优异的热性能和电性能。

以石墨烯为填料的复合材料相关的研究近年来不断取得进展,如通过化学改性法处理石墨烯,改善了其易发生团聚的特性,使其能更好地在聚合物基体中均匀分散。

不同于传统的填料材料,石墨烯独特的纳米结构能满足PVDF对填料填充量的需求,提高材料的性能。

目前实验室制备PVDF/石墨烯复合材料主要采用溶液共混工艺和原位聚合法,该制备方法的工业应用受到溶剂的使用量、成本、环境污染等问题的阻碍。

本文采用熔融模压法制备石墨烯/ PVDF复合材料,研究制备配方中助剂和石墨烯含量的变化对制备得到的石墨烯/PVDF复合材料热、电性能的影响,以促进制备该类复合材料的技术发展并推广,提升其科研和市场价值。

一、实验部分(一)主要原料与试剂。

1.基体。

聚偏氟乙烯(PVDF,301F),购自美国苏威公司。

石墨烯复合材料的制备、性能与应用

石墨烯复合材料的制备、性能与应用

石墨烯复合材料的制备、性能与应用摘要:纳米科学技术是当今社会科学中一个重要的研究话题。

它是现代科学技术的重要内容,也是未来技术的主流。

是基础研究与应用探索紧密联系的新兴高尖端科学技术。

石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点。

由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域。

综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景。

关键词;复合材料纳米材料石墨烯正文;一,石墨烯复合材料的制备石墨烯是2004年才被发现的一种新型二维平面复合材料,其特殊的单原子层决定了它具有丰富而新奇的物理性质。

研究表明,石墨烯具有优良的电学性质,力学性能及可加工性。

石墨烯复合材料的制备是石墨烯研究领域的一个重要的课题,如何简单,快速,绿色地制备其复合材料,而又采用化学分散法大量制备氧化石墨烯,并采用直接共混法制备氧化石墨烯/酚醛树脂纳米复合材料。

通过AFM、SEM、FT-IR、TG等对其进行表征,结果表明,氧化石墨烯完全剥离,并在基体中分散均匀,而且两者界面相容性好,提高了复合材料的热稳定性。

通过高温热处理使复合材料薄膜在兼顾形貌的同时实现导电,当氧化石墨烯含量为2%(质量分数)时,其导电率为96.23S/cm。

采用原位乳液聚合和化学还原法制备了石墨烯和聚丙乙烯的复合材料。

研究表明PS微球通过公家方式连接到石墨烯的表面。

通过PS微球修饰后的石墨烯在氯仿中变现良好的分散性。

制备的复合材料具有优良的导电性,同时PS的玻璃化温度的热稳定性得到了提高。

本研究所提出的方法具有环境友好高效的特点,渴望被采用到其他聚合物和化合物来修饰石墨烯。

微晶石墨烯高分子复合材料制备及性能分析

微晶石墨烯高分子复合材料制备及性能分析

微晶石墨烯高分子复合材料制备及性能分析摘要:天然橡胶是高分子材料中最常见的材料之一,其氧指数仅为17,具有较强的易燃特性,且燃烧时会释放数量众多的黑烟,完善其阻燃性是维持天然橡胶长期使用的重要保证。

无机阻燃填料一般要具备极大的填充量才能符合日常阻燃需求,经济适用性较差。

在聚合物内添加微量有机蒙脱土,不但可以完善聚合物基体力学性能、气体阻隔性与耐溶解性,在材料的耐热与阻燃方面也得到极大提升,拥有很强的阻燃性与燃烧自熄性,改进了传统卤素阻燃剂不足,达到清洁生产与环境友好目的。

关键词:微晶石墨烯;高分子;复合材料制备;性能分析引言这种复合物由分散在气质和气质中的本体组合物组成。

不同的材料可以让对方弥补对方的不足,进一步凸显优势。

复合材料的组合性能比单个原始材料好得多,复合材料是可以设计的,可以根据国防、交通、医疗等各个领域的要求设计各种复合材料组合,满足各种应用领域的要求。

高分子材料的天然聚合物可以用于复合材料的研究,天然高分子材料属于可再生材料,可以生物降解,因此可以广泛应用。

目前工业上经常选择纤维素、淀粉等作为高分子材料。

微晶石墨烯是目前广泛使用的强化相材料,不仅提高了源材料的拉伸性能,而且具有一定的导电性。

一、石墨烯的优势1.1石墨烯是所有碳同素异形体的基本单元,分析石墨烯具有代表性当积累石墨烯规则时,形成多层或多层石墨烯纳米线。

不同炭黑含量由石墨烯的随机堆积而成。

石墨烯层被包裹在一起形成碳纳米管。

因此,石墨烯具有不同碳同位素形式的一些固有特性。

其次,石墨烯的研究也可为其他碳物质的研究提供参考。

1.2石墨烯表面性能优异研究表明,填充物/橡胶界面相互作用对橡胶性能起着决定性作用,填充物表面良好的性能促进了界面相互作用。

对不同几何形状的碳纳米填充材料表面进行了比较,结果表明石墨烯的表面积和表面褶皱性能较高,可以吸收更多摩擦产生的能量。

因此,石墨烯的强化效果更加明显。

二、微晶石墨烯高分子复合材料制备2.1液相剥离法液相剥离法是一种先将石墨分散在有机溶剂中,然后用超声波[23.241]制得单层或多层石墨烯的方法。

石墨烯橡胶基复合材料的制备方法

石墨烯橡胶基复合材料的制备方法

石墨烯橡胶基复合材料的制备方法目前石墨烯/橡胶导电复合材料的制备方法主要包括溶液共混法、胶乳共混法、机械混炼法等。

一、溶液共混法溶液混合法是实验室制备聚合物基纳米复合材料常用的方法。

具体步骤是将石墨烯片层或者是石墨烯衍生物的胶体悬浮液与目标聚合物基体混合在一起;聚合物可以单独溶解在溶剂中,也可以溶解在石墨烯片的悬浮液中。

接着将目标聚合物的不良溶剂加入该悬浮混合液中,结果包裹着填料的聚合物的分子链会发生沉降作用,而后沉降复合物经过提纯和干燥及进一步的处理就可以进行相关实验或应用。

此外,也可以将石墨烯/聚合物复合溶液中的溶剂直接挥发掉,但是研究表明,该种方法中由于溶剂挥发速率较慢,可能会发生石墨烯聚集现象,最终降低复合材料的性能。

Ashwin等报道了通过溶液涂覆法制备石墨烯/橡胶纳米复合材料。

具体工艺是将TrGO与NBR溶于二甲苯形成均匀的浆状物,然后将该溶液涂覆于铝板上,形成2~3mm厚的橡胶混合物,最后在空气中固化24h得到石墨烯/橡胶复合材料。

图4-1 石墨烯/橡胶复合材料的SEM图像采用溶液共混法制备石墨烯/橡胶复合材料时,石墨烯能够理想地被剥离并均匀分散于橡胶基体中,但该方法也有很多局限性,如石墨烯及其衍生物一般很难与橡胶基体同时分散于共同的溶剂中,如三氯甲烷、甲苯等,因此需要对其进行改性处理,但是化学改性又会影响石墨烯的导电性;此外,大量使用有机溶剂造成环境污染且成本大,与目前的环保趋势不符;橡胶硫化配合剂也很难通过溶液共混加入;另外,有研究表明,溶剂小分子极易进入并紧密吸附到石墨烯片层间,很难将其完全脱除,这为通过溶液共混法制备高性能复合材料带来了困难。

胶乳共混法可以避免这些缺点。

二、胶乳共混法胶乳共混法是首先将石墨烯或者GO分散在水相中,接着再与橡胶胶乳混合,搅拌均匀后进行破乳、干燥、硫化得到石墨烯/橡胶复合材料。

该方法无溶剂引入、污染小,工艺相对简单。

Li等通过在天然橡胶乳液中原位还原氧化石墨烯制备了石墨烯(GR)填充改性天然橡胶(NR),工艺路线见图4-2。

绿色轮胎用功能化石墨烯天然橡胶复合材料的制备与性能研究

绿色轮胎用功能化石墨烯天然橡胶复合材料的制备与性能研究

橡 胶 工 业CHINA RUBBER INDUSTRY258第68卷第4期Vol.68 No.42021年4月A p r.2021绿色轮胎用功能化石墨烯/天然橡胶复合材料的制备与性能研究张利召,刘亚青,赵贵哲,张志毅*(中北大学 纳米功能复合材料山西省重点实验室,山西 太原 030051)摘要:氧化石墨烯(GO )先用促进剂CBS 改性,再用水合肼还原制备水合肼和促进剂CBS 共改性GO (H -C -GO ),研究绿色轮胎用功能化石墨烯/天然橡胶(NR )复合材料的性能。

结果表明:水合肼和促进剂CBS 共改性的H -C -GO 的团聚显著减少且与橡胶之间的相容性较好;H -C -GO /NR 复合材料具有比GO /NR 复合材料或水合肼还原GO /NR 复合材料更高的拉伸强度、更好的抗湿滑性能和更低的滚动阻力。

关键词:改性氧化石墨烯;功能化;天然橡胶;复合材料;绿色轮胎;拉伸强度;抗湿滑性能;滚动阻力中图分类号:TQ331.2;TQ330.38+3 文章编号:1000-890X (2021)04-0258-05文献标志码:A DOI :10.12136/j.issn.1000-890X.2021.04.0258石墨烯片是单原子厚度的二维碳材料,由于其超大的比表面积、非凡的电子传输性和力学性能而备受关注。

然而,为实际应用大规模生产单个石墨烯片一直是重大挑战。

迄今为止,已经开发了几种方法,包括化学气相沉积、石墨液相剥离以及将溶液中的氧化石墨烯(GO )化学还原制备单个石墨烯片[1-2]。

水合肼由于还原效率高而被广泛应用在GO 还原为单个石墨烯片的生产中。

然而,水合肼具有极强的爆炸性和毒性,在实际生产中应减小用量或避免使用。

目前,寻找同样有效但无毒且安全的还原剂以将GO 还原为石墨烯 片[3-4]成为该领域的研究重点。

众所周知,许多胺衍生物是弹性体复合材料不可或缺的添加剂,一般作为老化剂或促进剂使用[5-6]。

ZnO-石墨烯复合材料的制备及其光催化降解性能研究

ZnO-石墨烯复合材料的制备及其光催化降解性能研究

05140功滋讨科2021年第5期(52)卷文章编号:1001-9731(2021)05-05140-05ZnO-石墨烯复合材料的制备及其光催化降解性能研究李林枝(吕梁学院化学化工系,山西吕梁033000)摘要:采用溶剂热法,制备了一系列不同还原氧化石墨烯(RGO)含量(0,2%,4%,6%和8%(质量分数))的ZnO-石墨烯复合材料。

通过XRD.SEM.PL等方法对复合材料样品进行了表征。

结果表明,所有掺杂RGO的复合材料样品均没有改变ZnO的结构;纯ZnO样品为圆球状颗粒,晶粒尺寸约为40nm,掺入RGO后,样品的晶粒尺寸出现了不均匀现象,并且随着RGO含量的增加,复合材料样品的团聚逐渐加大;所有复合材料的发射峰都在373nm附近,随着RGO掺量的增加,复合材料的本征发射峰的强度呈现先降低后升高的趋势;RGO的引入可以提高复合材料在可见光区域的吸收,并且吸收峰有轻微红移的趋势;随着RGO掺量的增加,复合材料的光催化性能呈现出先升高后降低的趋势,当RGO含量为6%(质量分数)时,复合材料的光催化性能最佳,降解率和反应速率常数分别达到71.97%,0.017mirT1。

关键词:ZnO;石墨烯;复合材料;光催化;吸收光谱中图分类号:))613.71;TQ426.6文献标识码:A DOI:10.3969/.issn.100-9731.2021.05.0210引言随着工业社会的进步,环境污染已经成为了制约我国发展的主要问题,目前废水处理是影响最为广泛的问题,对于废水处理,常用的手段就是光催化[4]。

光催化是指半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解。

金属氧化物常常被作为光催化剂,在众多光催化剂中,ZnO 凭借其宽禁带(3.3〜3.4eV)、较高的激子结合能和优异的常温发光性能等成为了光催化降解水污染的核心研究方向[-10]。

但同时ZnO在催化中也存在一些缺点,例如:ZnO仅对紫外光(<400mm)有较强吸收,对可见光区域的吸收利用率较低、Zn()的电子-空穴复合概率较高,复合速率较快:1115],这些问题都严重制约了ZnO在光催化中的应用。

《CeO2-ZnO-石墨烯复合材料制备及其光催化性能》

《CeO2-ZnO-石墨烯复合材料制备及其光催化性能》

《CeO2-ZnO-石墨烯复合材料制备及其光催化性能》CeO2-ZnO-石墨烯复合材料制备及其光催化性能一、引言随着环境污染和能源短缺问题的日益严重,光催化技术作为一种新型的环保技术,已引起了广泛的关注。

其中,CeO2/ZnO 复合材料因具有较高的光催化活性和良好的稳定性,被广泛应用于废水处理、空气净化等领域。

而石墨烯作为一种具有优异导电性能和巨大比表面积的二维材料,其与CeO2/ZnO复合可进一步增强光催化性能。

本文将详细介绍CeO2/ZnO/石墨烯复合材料的制备过程及其光催化性能。

二、材料制备1. 原料准备本实验所需原料包括氧化铈(CeO2)、氧化锌(ZnO)、石墨烯、去离子水等。

其中,CeO2和ZnO均购买自国内知名厂商,石墨烯通过化学剥离法制备得到。

2. 制备方法采用共沉淀法与水热法相结合的方法制备CeO2/ZnO/石墨烯复合材料。

首先,将一定量的Ce(NO3)3和Zn(NO3)2溶于去离子水中,加入适量的石墨烯分散液,搅拌至完全溶解。

然后,加入沉淀剂,使Ce3+和Zn2+与沉淀剂发生共沉淀反应,形成CeO2/ZnO沉淀物。

接着,将得到的沉淀物与石墨烯分散液混合,在一定的温度和压力下进行水热反应,得到CeO2/ZnO/石墨烯复合材料。

三、性能表征1. 结构分析通过X射线衍射(XRD)对制备的CeO2/ZnO/石墨烯复合材料进行结构分析。

结果表明,复合材料中CeO2和ZnO的晶型良好,且与石墨烯成功复合。

2. 形貌分析利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对复合材料的形貌进行观察。

结果表明,复合材料中的CeO2和ZnO纳米颗粒均匀分布在石墨烯片层上,形成三维结构。

3. 光催化性能测试以甲基橙溶液为光催化目标物,通过模拟太阳光照射下的光催化实验来评价复合材料的光催化性能。

结果表明,在可见光照射下,CeO2/ZnO/石墨烯复合材料对甲基橙溶液的降解率明显高于纯CeO2和纯ZnO。

石墨烯改性硅橡胶功能复合材料的制备及应用

石墨烯改性硅橡胶功能复合材料的制备及应用

185石墨烯改性硅橡胶功能复合材料的制备及应用母林鹏1,2,王 娜1,2,苏 杰1,2,何周坤2*,兰小蓉3,4*(1.成都大学 机械工程学院,四川 成都 610106;2.成都大学高等研究院 成都大学复合材料和表界面工程研究中心, 四川 成都 610106;3.西南医科大学附属口腔医院 口颌面修复重建和再生泸州市重点实验室,四川 泸州 646000;4.西南医科大学口腔医学研究所,四川 泸州 646000)摘要:综合性能优异的石墨烯改性硅橡胶复合材料在航天航空、电子电器以及医药卫生等领域展现出广泛的应用前景。

总结石墨烯改性硅橡胶复合材料的主要制备方法及其优缺点,重点介绍具有特殊润湿性、导热性能和导电性能的石墨烯改性硅橡胶功能复合材料的研究进展。

提高石墨烯的功能改性效率及石墨烯在复合材料中的含量和均匀分散性、实现复合材料的多功能化等是未来研究的难点和重点。

关键词:石墨烯;硅橡胶;复合材料;表面润湿性;功能化中图分类号:TQ333.93;G316 文章编号:2095-5448(2024)04-0185-07文献标志码:A DOI :10.12137/j.issn.2095-5448.2024.04.0185橡胶材料是工业和高科技领域不可或缺的关键材料之一,在轮胎、化学防护装备、航空航天等领域应用广泛[1]。

硅橡胶作为工业生产的重要材料之一,受到了广泛的关注。

硅橡胶种类丰富,按照硫化方式可分为室温硫化硅橡胶和高温硫化硅橡胶[2];按照侧基类型可分为二甲基硅橡胶[3]、甲基乙烯基硅橡胶[4]、甲基乙烯基苯基硅橡胶[5]、氟基硅橡胶[6]和腈基硅橡胶[7]等。

硅橡胶是一种宽温域特种橡胶,未经改性的通用型硅橡胶能在-70~250 ℃的温度范围下使用,一些特种硅橡胶的工作温度范围能达到-140~350 ℃[8]。

硅橡胶还具有优异的耐辐照、抗紫外光、耐臭氧老化、耐燃、耐油、耐化学腐蚀等独有特性,以及良好的弹性和加工性能等,因此硅橡胶在航天航空、武器装备、轨道交通和建筑建材等领域均有广泛的应用。

石墨烯基复合材料的制备与性能研究

石墨烯基复合材料的制备与性能研究

石墨烯基复合材料的制备与性能研究石墨烯是一种单层碳原子排列成的二维晶体,具有极高的强度、导电性和导热性。

在过去的几年里,石墨烯在材料科学领域引起了广泛的关注。

为了进一步发展石墨烯的应用,研究人员开始将石墨烯与其他材料相结合,形成石墨烯基复合材料。

这些复合材料具有优异的性能和多样化的应用前景。

本文将探讨石墨烯基复合材料的制备方法以及其性能研究。

一、石墨烯基复合材料的制备方法1. 化学气相沉积法(CVD)化学气相沉积法是一种常用的制备大面积石墨烯的方法。

该方法通过在金属衬底上加热挥发的碳源,使其在高温下与金属表面反应生成石墨烯。

石墨烯的生长在具有合适结晶特性的金属表面上进行,如铜、镍等。

CVD法制备的石墨烯可以获得高质量、大尺寸的单层石墨烯。

2. 液相剥离法液相剥离法是一种以石墨为原料制备石墨烯的方法。

通过在石墨表面涂覆一层粘性聚合物,然后利用粘性聚合物与石墨之间的相互作用力,将石墨从衬底上剥离,最终得到石墨烯。

这种方法能够制备出大面积的石墨烯,并且使用简便、成本较低。

3. 氧化石墨烯还原法氧化石墨烯还原法是一种制备石墨烯的简单方法。

首先将石墨烯氧化生成氧化石墨烯,然后通过还原处理,还原为石墨烯。

该方法可以在实验室条件下进行,操作简单方便。

然而,由于氧化石墨烯的导电性较差,所得石墨烯的质量较低。

二、石墨烯基复合材料的性能研究1. 机械性能石墨烯具有出色的机械性能,其强度和刚度超过大多数材料。

石墨烯基复合材料的机械性能主要取决于基体材料和石墨烯的界面相互作用。

研究表明,合适添加石墨烯可以显著提升材料的强度和硬度。

2. 电学性能石墨烯具有优异的电学性能,可以用作电极材料、导电填料等。

石墨烯基复合材料在导电性能方面表现出色,可以用于制备柔性电子器件、传感器等。

3. 热学性能由于石墨烯的热导率高达3000-5000 W/(m·K),石墨烯基复合材料在热学性能方面具有巨大的潜力。

石墨烯能够显著提高基体材料的热导率,因此可以应用于散热材料、热界面材料等领域。

石墨烯及其复合材料的制备、性质及应用研究共3篇

石墨烯及其复合材料的制备、性质及应用研究共3篇

石墨烯及其复合材料的制备、性质及应用研究共3篇石墨烯及其复合材料的制备、性质及应用研究1石墨烯及其复合材料的制备、性质及应用研究石墨烯是一种由碳原子构成的单层蜂窝状结构材料,具有独特的电学、光学、热学和机械性质。

自2004年它被首次发现以来,它的研究成果一直是纳米科学和材料科学最活跃的领域之一。

石墨烯具有很高的载流子迁移率、良好的机械强度和高比表面积,因此在传感器、电子器件、能量存储装置、超级电容器、太阳能电池、催化剂和生物医学传感器等领域具有广泛的应用。

本文旨在介绍石墨烯及其复合材料的制备方法、性质及其应用研究进展。

石墨烯的制备有许多方法,包括机械剥离、化学气相沉积、物理气相沉积、化学还原、流体力学剥离和微波辐射法等。

其中,机械剥离法是第一个制备单层石墨烯的方法,虽然成本低、易于实现,但需要大量时间和劳动力,并存在控制问题。

化学还原法则采用氧化石墨的还原,得到具有一定缺陷的石墨烯,且杂质易残留影响性质。

化学气相沉积法制备石墨烯具有高晶格载流子迁移率、具有极高的缺陷密度的石墨烯,但过程复杂,成本高。

物理气相沉积法适合生产无缺陷石墨烯,但难以控制多层石墨烯形成、且温度高,影响成品质量。

流体力学剥离法利用石墨烯的自身表面张力减小形成薄膜,但制备过程仍需要控制单层厚度。

微波辐射法是最新的石墨烯制备方法,采用微波对石墨进行瞬间加热、膨胀、冷却制备大面积石墨烯,具有制备速度快、质量好、颗粒易于控制等优点。

石墨烯的独特性质使其在许多应用中具有广阔的前景。

首先,在电子领域,石墨烯可以用来制造微电子器件、包括场效应晶体管、半导体和光电器件等。

FET型石墨烯晶体管基于石墨烯中载流子迁移率的高值,值得在短时间获得了重大的研究进展;二维电子系统(2DEG)可以用于制造高速逻辑电路和高灵敏感受器。

其次,在传感器领域,石墨烯表现出高度灵敏性,可以用于制造各种传感器,如光学传感器、生物传感器等。

此外,石墨烯还可以用于制造锂离子电池、超级电容器、声波马达等能量存储装置中。

石墨烯改性天然橡胶复合材料的性能

石墨烯改性天然橡胶复合材料的性能
相比ꎬ其拉伸强度提高了 30 94% ꎬ扯断伸长率提高了 14 28% ꎬ磨耗提高了 16 64% ꎮ KH 590 - GO / NR
复合材料的相容性和分散性最好ꎮ
关键词:天然橡胶ꎻ石墨烯ꎻ硅烷偶联剂ꎻ物理机械性能ꎻ耐热老化性能ꎻ耐磨性能ꎻ热稳定性能ꎻ微观
形貌
中图分类号:TQ 332. 5 文献标志码:B 文章编号:1000 - 1255(2019)06 - 0445 - 06
导出ꎬ防止热量在 NR 中聚集ꎬ避免 NR 出现热老
化现象 [4 - 5] ꎮ 因此ꎬ本工作用 GO 改善了 NR 的热
老化性能ꎬ制备了 GO / NR 复合材料ꎮ

1 实验部分
1 1 原材料
NRꎬ海南 NR 集团公司产品ꎮ GOꎬ自制ꎮ 白
炭黑ꎬ牌号 SJ - Z 95ꎬ工业级ꎬ山东省潍坊市三佳
充分搅拌直至均匀ꎬ烘干待用ꎮ 将 NR 在上海齐
才液压机械有限公司生产的 SK - 160 B 型双辊开
炼机上于辊温 45 ℃ 、辊距 0 8 mm 下塑炼20 minꎬ

收稿日期:2019 - 02 - 25ꎻ修订日期:2019 - 07 - 29ꎮ
作者简介:周大旺(1997—) ꎬ男ꎬ黑龙江哈尔滨人ꎬ学士ꎮ 主
GB / T 531—1999ꎬ 采 用 上 海 六 菱 仪 器 厂 生 产 的
LX - A型橡胶硬度计测试材料的邵尔 A 硬度ꎻ按
照 GB / T 9867—1988ꎬ采用高铁检测仪器有限公
司生产的 GT - 7012 - D
械性能和耐热性最好ꎮ 这是因为热老化前 GO 加
化工有限公司产品ꎮ 硫黄ꎬ工业级ꎬ中国兄弟化工
厂集团公司产品ꎮ 促进剂 Mꎬ工业级ꎬ河南省开仑

石墨烯基复合材料的制备及性能分析

石墨烯基复合材料的制备及性能分析

石墨烯基复合材料的制备及性能分析石墨烯是一种新型的碳材料,由于其独特的结构和优异的性能,被广泛应用于材料科学领域。

石墨烯基复合材料作为一种将石墨烯与其他材料复合而成的新材料,具有石墨烯的优势和复合材料的多功能性,因此在材料制备和性能分析方面备受关注。

一、石墨烯基复合材料的制备方法目前,制备石墨烯基复合材料的方法主要包括机械混合法、溶液处理法和化学气相沉积法等。

机械混合法是最简单的制备方法,将石墨烯和其他材料进行物理混合。

这种方法操作简单,成本低廉,但是石墨烯与其他材料的界面结合较弱,对复合材料性能的提升有限。

溶液处理法是通过将石墨烯分散于溶液中,与其他材料形成复合体。

这种方法不仅能够提高石墨烯与其他材料的界面结合,还可以调控复合体的结构和性能。

然而,溶液处理法对石墨烯的分散性要求较高,操作复杂。

化学气相沉积法是一种高温气相合成法,通过在金属基底上沉积石墨烯。

这种方法制备的石墨烯基复合材料具有较高的结晶质量和界面结合强度,但是设备要求高、制备时间长。

二、石墨烯基复合材料的性能分析石墨烯基复合材料的性能主要包括力学性能、导电性能和热学性能等。

力学性能是衡量材料抗拉、抗压、抗弯等力学性能的指标。

石墨烯具有极高的强度和刚度,因此能够大幅提升复合材料的力学性能。

石墨烯基复合材料的强度和刚度通常随着石墨烯含量的增加而增加,但是当石墨烯含量过高时,由于石墨烯的堆叠导致复合材料的脆性增加。

导电性是衡量材料传导电流的性能指标。

石墨烯是一种具有优异导电性的材料,其导电性能主要取决于石墨烯的层数和形态。

石墨烯基复合材料通常具有较好的导电性能,且导电性能能够随着石墨烯含量的增加而增加。

热学性能是衡量材料导热性能的指标。

石墨烯具有很高的导热性能,因此能够显著提高复合材料的导热性能。

石墨烯基复合材料的导热性能通常随着石墨烯含量的增加而增加,但是石墨烯的堆叠也会对导热性能产生一定的影响。

除了上述性能分析,石墨烯基复合材料还具有其他一些特殊的性能。

石墨烯橡胶复合材料的性能

石墨烯橡胶复合材料的性能

石墨烯橡胶复合材料的性能一、机械性能石墨烯拉伸强度高达130GPa、杨氏模量约为1.01TPa,为目前最硬、强度最高的材料;此外,它还拥有超高的比表面积(约为2630m2/g),比传统石墨高100~500倍,石墨烯的径厚比约为400,比炭黑的高40~80倍,添加少量石墨烯就能明显提升橡胶复合材料性能,这对于石墨烯改性纳米复合材料的应用大有裨益。

Araby等将结构完整的、厚度为3.56nm的石墨烯片通过机械共混法混入EPDM 橡胶中制备出了纳米复合材料。

当GNPs填量为26.7%(体积分数)时,复合材料的杨氏模量、拉伸强度和撕裂强度分别增大了710%、404%和270%。

Gan等利用溶液混合法制备了硅橡胶(SR)/氧化石墨烯纳米复合材料。

结果表明:GO片能够均匀地分散在SR基体中,同时纳米复合材料的热性能和机械性能得到增大。

同时还发现,将不同乙烯基浓度的SR共混使用制备的GO填充纳米复合材料的机械性能均比单一乙烯基浓度的SR纳米复合材料高。

二、疲劳性能橡胶制品在轮胎、高速机车、航空航天等领域服役时,常处于周期动态负载状态,而制品疲劳寿命很大程度上取决于橡胶材料的疲劳断裂性能。

因此,为了保证橡胶制品使用时的安全性、可靠性和长寿命,改善橡胶材料的动态疲劳特性具有重要的意义。

Mahmoud等研究了GNPs对NBR橡胶“循环疲劳—滞后”性能影响。

累计损伤可用耗散的能量LDE(Loading path Disspated Energy)来表示,LDE随周期性应力—应变循环次数的变化情况见图4-6。

研究表明,随着GNPs填量增多,体系中GNPs总表面积增大,GNPs与橡胶基体之间的摩擦作用更强,结果循环过程中复合材料的能量耗散增多,滞后效应更明显,损伤速率加快;且随着循环次数增多,GNPs的结构发生破坏;在经历初次十个疲劳循环后,纳米复合材料的LDE 速率增大到了临界值,此后随着循环次数增大,累积损伤速率变化很小,纳米复合材料的损伤耗散能量降低。

石墨烯通用橡胶复合材料

石墨烯通用橡胶复合材料

石墨烯通用橡胶复合材料通用橡胶是指一批在国民经济领域最早获得应用的弹性材料。

它具有较长的生产历史,是橡胶工业的主体,使用面广、生产量大。

本文主要涉及的通用橡胶基体材料主要有天然橡胶(含环氧化天然橡胶)、丁苯橡胶、丁基橡胶、乙丙橡胶、丁腈橡胶、羧基丁腈橡胶。

一、石墨烯/天然橡胶复合材料(GNR)天然橡胶作为一种综合性能优越的可再生天然资源,其具有高弹性、高强度、高伸长率和耐磨性等特点,广泛地应用于航天、国防军工、飞机轮胎、医用弹性体等领域,在我国国民经济建设中占有非常重要的地位。

复合材料的界面性能决定着聚合物/无机填料纳米复合材料的性能。

She等将环氧官能团以及羟基官能团引入天然橡胶分子链中,目的是与氧化石墨烯表面的氧官能团建立氢键作用,以增强GO和橡胶之间的界面作用。

SEM结构表明环氧化天然橡胶乳胶颗粒通过氢键作用聚集在GO片的表面,这种自组装结构抑制了GO片的堆叠和团聚,使得GO均匀分散在天然橡胶中。

相比于纯的ENR,加有0.7%(质量分数)GO的ENR纳米复合材料,拉伸强度增大了87%,200%定伸强度增大了8.7倍。

Bulent等研究了功能化石墨烯片(FGSs)对天然橡胶的机械性能和应变诱导结晶的影响。

所用的FGSs厚度为1.5nm,长度尺寸为数百纳米。

相比于炭黑填充NR,FGS填充NR的起始结晶应变值更低,纯天然橡胶发生结晶时应变值为2.25,而混入质量分数为1%和4%的FGS后,纳米复合材料发生应变诱导结晶时的值分别为1.25和0.75。

相比之下,炭黑(质量分数为16%)添入天然橡胶中并没有显著地改变结晶的临界应变。

小角XRD表明FGS沿拉伸方向发生取向排列,而CB并没有取向或者表现出各向异性。

此外,Yan等还研究了应变诱导结晶对还原石墨烯增强天然橡胶纳米复合材料疲劳裂纹扩展的影响。

结果表明,石墨烯在低应变下会加速NR的裂纹扩展,而在高应变下则阻碍裂纹扩展。

这种行为可能是应变诱导结晶与裂纹尖端空穴化作用相互竞争的结果。

石墨烯复合材料的力学性能研究

石墨烯复合材料的力学性能研究

石墨烯复合材料的力学性能研究石墨烯是一种由碳原子构成的单层二维晶体材料,具有出色的力学性能。

它是继金刚石和石墨之后第三种稳定的碳晶体结构,在力学强度和刚度方面表现出与钢铁相当的特性。

石墨烯的力学性能研究一直是材料科学的热点,对于开发高强度、高韧性和轻质材料具有重要意义。

石墨烯复合材料是指将石墨烯与其他材料结合形成复合材料。

石墨烯作为增韧材料被添加到复合材料中,可以显著提高材料的力学性能和承载能力。

该复合材料常被用于制备高强度、轻质结构材料和多功能材料。

研究表明,将石墨烯添加到聚合物基体中可以显著提高材料的力学性能。

首先,石墨烯的高强度和高韧性能使得复合材料具有更好的抗拉和屈服强度。

其次,石墨烯具有优异的导热性能,能够更好地分散和传导热量,从而提高材料的耐热性和稳定性。

此外,石墨烯还能改善材料的导电性能,使其更具综合功能。

然而,石墨烯复合材料的力学性能研究仍存在一些挑战。

首先,石墨烯的有效分散和定向排列是制备高性能复合材料的关键。

目前,石墨烯的分散技术已经取得了一定的进展,但仍需要进一步改进。

其次,石墨烯在复合材料中的界面相互作用对材料的性能起着重要作用。

如何实现优化的界面相互作用,仍需要深入研究。

在实际应用中,石墨烯复合材料已经显示出巨大的潜力。

例如,石墨烯增强的聚合物纤维可以用于制备高性能的防弹材料和航天器结构材料。

石墨烯复合材料在能源存储和传输领域也有广泛的应用。

石墨烯增强的锂离子电池正极材料,具有更高的能量密度和更长的循环寿命。

此外,石墨烯复合材料还可以用于制备高效的光电器件和催化剂。

总之,石墨烯复合材料的力学性能研究是一个具有挑战性和前瞻性的课题。

通过深入研究石墨烯的力学性能和界面相互作用,可以实现复合材料的优化设计和制备。

石墨烯复合材料在航空航天、汽车制造、能源领域等多个领域具有广阔的应用前景。

未来的研究应进一步探索石墨烯复合材料的力学行为、改善材料的工艺性能,并提高材料的可扩展性和可持续性。

石墨烯基复合材料制备与性能研究

石墨烯基复合材料制备与性能研究

石墨烯基复合材料制备与性能研究石墨烯是由一个碳原子单层构成的二维材料,具有优异的力学、电学、光学、热学和生物学等性能,是目前发现的最薄和最强的材料之一。

因此,石墨烯被广泛应用于电池、超级电容器、生物传感器、透明导电膜等领域,但石墨烯自身的应力和高成本限制了其更广泛的应用。

为了克服这些障碍,人们着手研究石墨烯基复合材料。

1. 石墨烯基复合材料的制备方法从文献中我们可以发现,制备石墨烯基复合材料的方法非常多,但可将其归结为以下几类:(1) 溶液法:其制备流程通常涉及将石墨烯加入有机溶剂中形成石墨烯溶液,然后加入所需的复合物质、表面活性剂、还原剂等,并经过加热、搅拌、干燥等处理最终得到复合材料。

(2) 机械混合法:可将石墨烯和填料一起混合,通过高效混合机进行均匀混合后,经过成型、加热固化等处理,形成复合材料。

(3) 化学气相沉积法:通常需要通过化学气相沉积方法在基底上制备出石墨烯,再通过化学气相沉积方法,向体内注入金属或无机复合材料,通过快速冷却使其形成复合材料。

2. 石墨烯基复合材料的性能研究石墨烯作为基材,通过复合改性可以克服石墨烯自身应力和高成本等缺点,提高材料的力学、电学、光学、热学等性能。

在不同领域的应用中,需要对其性能进行深入的研究。

(1) 电学性能石墨烯基复合材料的电学性能的研究已成为了近年来的重点和热点。

石墨烯本身具有非常好的电导率和透明度,而在复合材料中加入其他材料可以影响电子输运和电荷转移,从而改善其电学特性。

由于石墨烯自身具有的高电导率和高比表面积,使其与其他电极材料进行复合能够提高电池的储能密度、延长电池寿命。

(2) 光学性能石墨烯具有卓越的光学性能,具有很高的透明度、折射率和吸收率。

当石墨烯和其他材料进行复合时,在外部光的作用下,可产生显著的光学效应,如表面等离子共振、光学透镜、光学波导等。

这些石墨烯复合材料的光学效应将对可穿戴设备、生物医学、能源等领域的新型材料和器件产生重要的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
88632425,E-mail:zhaoxy66@126.com
第 6期
闫思梦等:石墨烯基橡胶复合材料的制备与性能
1475
大多数传统的抗氧化剂分子量较低,并且容易迁移 到橡胶材料的表面,导致抗氧化效率出现明显的下 降[8]。为了克服这些缺点,可以通过将低分子量的 抗氧化剂接枝到有机聚合物链和无机填料上,制备 一种抗迁移性抗氧化剂。其中,以石墨烯为基体的 抗氧化剂具有良好的效果。
3.HebeiAeronauticalLightweightCompositeEngineeringLaboratory,Shijiazhuang050018,China)
Abstract:Theresearchprogressofgraphenebasedrubbercompositesathomeandabroadinrecentyears isreviewed,includinggraphene/naturalrubbercomposites,graphene/NBR composites,graphene/styrene butadienerubbercomposites,graphene/siliconerubbercomposites,graphene/butylrubbercompositesand graphene/isoamylrubbercomposites.Atthesametime,theproblemsencounteredinthepreparationand applicationofgraphenebasedrubbercompositesareanalyzedandsummarized.Thedevelopmentofgreen andlowcostpreparationandpurificationtechnologyforhighqualitygrapheneandimprovingtheeffective dispersioneffectofgrapheneinrubberwillbethekeytechnicalproblem tobesolvedinthefuture. Keywords:rubber;graphene;graphenerubbercomposite;composites
收稿日期:20180806 修改稿日期:20180821 基金项目:河北省科技支撑计划项目(18211232D) 作者简介:闫思梦(1993-),女,河北石家庄人,河北科技大学在读硕士,师从赵雄燕教授,研究方向为石墨烯基橡胶复合
材料的制备及性能研究。电话:15512172203,E-mail:2564027774@qq.com 通讯联 系 人:赵 雄 燕,男,河 北 丰 润 人,教 授,博 士,从 事 高 性 能 高 分 子 材 料 及 精 细 化 工 材 料 的 研 究。电 话:0311-
摘 要:综述了近年国内外石墨烯基橡胶复合材料的研究进展,主要包括石墨烯 /天然橡胶复合材料、石墨烯 /丁腈 橡胶复合材料、石墨烯 /丁苯橡胶复合材料、石墨烯 /硅橡胶复合材料、石墨烯 /丁基橡胶复合材料和石墨烯 /异戊橡 胶复合材料。同时对石墨烯基橡胶复合材料在制备和应用过程中遇到的难题进行了分析和总结。开发高质量石 墨烯的绿色环保低成本制备和提纯技术以及提高石墨烯在橡胶中的有效分散效果将是今后该领域亟待解决的关 键技术问题。 关键词:橡胶;石墨烯;石墨烯橡胶复合材料;复合材料 中图分类号:TQ330.7 文献标识码:A 文章编号:1671-3206(2019)06-1474-05
第 48卷第 6期 2019年 6月
应 用 化 工 AppliedChemicalIndustry
Vol.48No.6 Jun.2019
石墨烯基橡胶复合材料的制备与性能
闫思梦1,王鑫1,郄旭东2,张晓斌2,赵雄燕1,3
(1.河北科技大学 材料科学与工程学院,河北 石家庄 050018;2.石家庄贝克密封科技股份有限公司, 河北 石家庄 050000;3.河北省航空轻质复合材料工程实验室,河北 石家庄 050018)
1 石墨烯基橡胶复合材料制备与性能
1.1 石墨烯 /天然橡胶复合材料 天然橡胶 (NR)因其优异的柔韧性、强度和电
绝缘性而广泛应用于各种领域中。然而,由于不饱 和双键和活性烯丙基氢的存在,在储存和使用过程 中 NR不可避免地会经历聚合物链断裂、含氧基团 的形成等反应,严重地破坏 NR的物理和机械性能, 甚至使 NR失去使用价值[45]。因此,对于 NR及其 产品来说,抑制或减缓老化过程,延长使用寿命是非 常重要的。通常,最有效的方法是将商业抗氧化剂 包括芳香胺和受阻酚添加到橡胶材料中[67]。但是
石墨烯作为一种性能优异的新型材料,从发现、 科学研究 到 产 业 化 应 用 发 展 极 为 迅 速[12],特 别 是 其作为填料在制备高性能橡胶复合材料领域的应用 更是日新月异。与传统的橡胶填料如炭黑、白炭黑 和滑石粉等相比,石墨烯可以在较低添加量的条件 下,使橡胶的抗静电性、导电性、气体阻隔性、抗冲击 性和承载 性 等 性 能 大 幅 提 升[3]。 本 文 较 系 统 地 综 述了近年石墨烯基橡胶复合材料的研究进展,特别 重点介绍了石墨烯基橡胶复合材料的结构与性能的 关系。并对复合材料制备过程中存在的问题进行了 分析与总结。
Preparationandpropertiesofgraphenebasedrubbercomposites
YANSimeng1,WANGXin1,QIEXudong2,ZHANGXiaobin2,ZHAOXiongyan1,3
(1.ColleΒιβλιοθήκη eofMaterialScienceandEngineering,HebeiUniversityofScienceandTechnology, Shijiazhuang050018,China;2.ShijiazhuangBeikeSealingTechnologyCo.,Ltd.,Shijiazhuang050000,China;
相关文档
最新文档