二次泵系统与一次泵变流量系统优缺点、设计要点及控制逻辑(行业材料)

二次泵系统与一次泵变流量系统优缺点、设计要点及控制逻辑(行业材料)
二次泵系统与一次泵变流量系统优缺点、设计要点及控制逻辑(行业材料)

一次泵变流量系统(VPF)

1、控制方式

冰机控制

负荷测定:蒸发器的流量和温差

冷量调节:

与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制压缩机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根据温度误差(与设定值的偏差) 和变化速度求出所需的加载/卸载量,从而将冷水温度控制在设定的范围内。导叶电机根据4~20mA 的电流输入信号,每0. 3 %地增加或减小导叶的开启度,这样的调节足以保证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在±0. 3 ℃以内。见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容量不变。见表1。

在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。

“ —→”代表系统控制 “ —→”代表控制系统实施操作后有可能引起的现象如图3 所示,系统控制和实施控制操作 后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。

例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继续关小(或导叶已关到最小) ,则导叶维持该状态运行,出水温度将进一步下降,当下降到低于出水温度设定点3 ℃以下时,则机组由控制系统控制进行安全关机。或进入再循环运行模式控制。

冰机加减机:

加机(4种方式?):

1. 冷冻水系统供水温度T S1高于系统设定温度T SS 并持续一段时间

2. 压缩机运行电流百分比(适用于出水温度精度要求高的场合,需要注意机组出力和运行电流不符合的情况)

3.计算负载

4.如运转中主机已达最大流量,则须加开一台主机(发生机率不高)。 减机:

1.依压缩机电流百分比(1

运行机组台数%RLA(运行机组)

%设定-∑≥)

2. flow*△T

3.系统流量

加减机逻辑:冷冻站管理器将监测供回水总管的温度,同时监测冷机的负荷。

当水系统的计算冷负荷达到运行冷机额定制冷量的80%(可调),并持续20分钟(可调),则冷冻站管理器将增开站房内下一个可用的运行时间最短的制冷单元。

当水系统的冷负荷低于运行冷机的总名义额定制冷量的20%,并持续20分钟(可调),冷冻站管理器将根据启动顺序或者运行时间,选择关闭适当的制冷单元。

现有配置会监视系统内末端机电设备的运行、故障等状态,从而对制冷单元的启用选择和制冷单元之间故障切换有实时准确的判断。

水泵控制

水泵控制依据:压差为主(用户侧压差控制,最好是最不利处用户,各回路都是并联,有区别吗),温差为辅的空调冷冻水控制。(应该是压差控制或温差控制?)

通过安装在冷冻水管供回水压差传感器测量供回水之间的压差,与设定压差比较,采用PID 运算策略,调节冷冻水泵转速满足系统流量:

水泵加减台数方案:

目前,确定泵组运行台数的一般原则为台数最少原则,即单台泵可以满足使用需求,则不使用多台泵;在多台泵并联的泵组系统中,两台泵可以满足使用需求,则不使用三台泵,以此类推。传统的加减载模式为当运行中的泵组均升至最大频率时,则将泵的数量加载一台;运行中的泵组均降至(设定)最小频率时,则将泵的数量减载一台。在加载或减载泵时,加载泵的频率由零开始逐渐增加,其他泵的频率由最大频率逐渐减小,直至所有泵的频率达到最优运行频率为止;减载泵时,剩余泵的频率由最小频率逐渐上升,直至所有泵的频率达到最优运行频率为止。

在实际应用中,即使有的并联泵组运行台数的确定不遵从台数最少原则,也多与其它相关设备开启的台数相关联。比如中央空调冷冻水系统,开启冷水机组的台数与开启水泵的台数相同,这种由机组数决定水泵数的被动模式不能保证泵组的效率最高,因此不是最优方法。现有技术中变频泵组台数的确定方法一般效率低,耗能高,无法满足目前节能减排的需求。另外,传统模式下的变频泵组在加载和减载时,与正常变速控制逻辑(即泵组正常工作下满足压差、流量或温度等需求的控制逻辑)衔接困难,泵组频率的震荡幅度大,工作点的确定耗时长,一般需要5分钟甚至更长时间,严重影响泵组的使用性能、可靠性以及寿命,同时降低泵组的工作效率。

旁通阀控制

回水总管流量控制或冰机前后压差控制

2、一次泵变流量系统应用中需注意的问题:

2.1、冷水机组的流量变化范围

为防止蒸发器结冰、水流由湍流变为层流、水流对铜管的冲蚀,一次水流量必须在一定范围内。因此需要选择最小流量尽可能低的冷水机组。蒸发器最小流量由蒸发器的类型、回程以及管束尺寸决定。通常机组效率越高,机组蒸发器流量变化的范围就越窄。目前离心机的最小流量一般都能达到设计流量的30%左右。

冷水机组最小允许水流量:一般要小于设计流量的50%。(目前离心机最小允许流量可以达到设计流量的30%,本项目离心机是多少?本项目没有相关参数,据了解约克和特灵的最小允许流量可以达到设计流量的30%)

2.2、冷水机组的允许冷水流量变化率

由于蒸发器中水流量的较快变化能引起控制不稳定和压缩机的回液与停机,应尽量选择可允许流量变化率值高的机组。在一般的一次泵变流量系统中,允许流量变化率应取25%-30%,这意味着加载一台冷水机组后(假定流量变化50%),大约1.5min系统就可以稳定运行。

冷水机组能承受的水流量变化率,即每分钟的水流的改变量,% full flow/min:一般推荐25~30%。(目前各生产厂商推荐的流量变化率差异较大,每分钟2%-30%不等,本项目离心机是多少?本项目没有相关参数,据了解约克和特灵的最大流量变化率可以达到50%)

2.3、注意水系统流量的测量与旁通控制

供回水干管上加设一旁通调节阀,该阀是保证冷水机组蒸发器侧的流量不低于其最小流量要求,确保冷水机组的正常运行。阀的调节是依据检测的流量信号而进行,因而对流量的检测必须准确。一般选择测量精度较高的电磁流量计为宜,同时应注意定期标定、校正;此外,阀的调节需快速,为满足流量与阀门的开度成线性关系以及考虑到阀门的实际流量特性,选择等百分比特性的调节阀为宜。

2.4、注意系统周转时间。

一般情况下冷水机组厂家会提供一系统周转时间,设计时应对整个水系统周转时间进行计算,校核是否大于厂家所给的值。若系统周转时间长,说明该系统利于机组控制的稳定,否则.需采取改善措施。

2.5、精确的控制系统

3、系统优缺点

特点:

1.与二次泵系统关键区别是旁通管的作用改变(二次:调节供回水压差;一次:保证机组的最小流量)

2.冷冻水流量的控制和冷量的控制是分开独立的

3.流量计和控制系统是必不可少的

优点:

1节能

2降低初投资

3减少机房面积

缺点与问题

(设计与运行中的问题):

1系统实施、调试增加难度

2蒸发器水流量突然变化

加机的时候容易出现问题

3使用同型号同压力降的机组时,系统运行会比较好

4需要更加复杂的控制系统

5需要同时控制机组的负荷调节和水量调节阀

6更加复杂的旁通控制

7冷水机组分级启停控制复杂

8可能出现的故障

9專用控制器。(配合節能軟體)

10需精確的PID控制閥。

11需要更精準的控制系統及調節冰水主機、控制閥及pump順序控制。12更長的試車時間。

13完整的教育訓練。

一次定流量二次变流量系统1、控制方式

二次泵系统的负荷调节

冰机控制

冷量调节:同上(出水温度是检测一次侧还是二次侧?)用于单机的冷量调节应该是一次

冰机加减机(台数控制,一般说的加减载也是是台数加减?):

1流量调节(常采用):

2负荷调节(控制精度较高场合):

3二次侧供水温度

供水温度,或旁通水流方向

当旁通水流量支援供水时,也就是旁通管内的水流方向是从回水侧流向供水侧,加机;或,当二次侧供水温度大于设定值时,表明投入的主机数量不够,加机

旁通水流方向和水流量

当旁通管内的水流是从供水侧流向回水侧,并且旁通水流量达到一台主机水流量的110%,减机;

一次泵控制方式

流量调节(常采用):

负荷调节(控制精度较高场合):

二次水泵控制

控制方式:压差控制。

设定一个供回水压力波动范围,当负荷变化引起管网流量改变时,供回水压力随之波动,当超过设定上限值且水泵频率达到时减少泵的运行台数,当低于设定下限值时增加泵的运行台数。

旁通管

无阀,一般有流量计,温度压力显示等

低温差综合症

解决措施:(1)确保空气冷却器(盘管)具有足够的换热能力,使空气冷却器(盘管)的水温差最大,避免采用大流量小温差的方法获得换热能力。(2)系统设计合理,系统负荷设计准确,选择合理的末端设备电动控制阀门。(3)在一次泵定流量系统中适当增大一次泵的容量。(4)在二次泵变流量系统的一次泵上安装变频器或在平衡管上增加止回阀。

“低温差综合症”是二次泵变流量系统和一次泵定流量水系统中最常见、也是最容易引起控制失调的问题。它的主要症状是:

(1)系统的供回水;fit差小,导致负荷侧流量高于设计值。

(2)冷水机组加、减机失调,机组的运行效率降低;

(3)系统供水和回水混合,导致供水温度升高、冷库末端去湿能力降低,房间的温、湿度偏高。

3、系统优缺点

特点:

1.旁通管的作用(二次:调节供回水压差;一次:保证机组的最小流量)

2.流量需求和机组冷量对应

优点:

1.因系统分二回路,控制单纯(各别控制)。

2.试车及开停主机容易。

3.一次冰水流量稳定。

4.二次冰水pump因以变频控制可省能源。

缺点与问题

1.初设成本较高。(多送水pump)

2.占地面积大。

3.低温差综合症(逆向混水)

冰机变频的适用情况

对于单台冰机制冷的情况,变频有明显节能意义。

对于两台以上冰机制冷的情况,变频的节能意义不大(注意:变频与冷量调节是两回事(类似于汽车档位与油门的情况?)。冷量调节是通过调节压缩机导叶开度来实现。而变频的作用是1提高效率2防止喘振。),是因为机组的效率一般在50%~75%负荷时最大,当系统负荷小于50%时,比如30%,开启一台冰机,则冰机的负荷在60%,效率已经很高,不需要再变频调节。

泵流量控制方法(经典)

离心泵流量控制方法探讨 前言 离心泵是目前使用最为广泛的泵产品,广泛使用在石油天然气、石化、化工、钢铁、电力、食品饮料、制药及水处理行业。如何经济有效的控制泵输出流量曾经引发过大讨论,曾一度流行全部使用变频调速来控制输出流量,取消所有控制阀控制流量的型式,单从目前来看市场上有4种广泛使用的方法:出口阀开度调节、旁路阀调节、调整叶轮直径、调速控制。现在我们来逐一分析讨论各种方法的特点。 离心泵流量常用控制方法 方法一:出口阀开度调节 这种方法中泵与出口管路调节阀串联,它的实际效果如同采用了新的泵系统,泵的最大输出压头没有改变,但是流量曲线有所衰减。 方法二:旁路阀调节 这种方法中阀门和泵并联,它的实际效果如同采用了新的泵系统,泵的最大输出压头发生改变,同时流量曲线特性也发生变化,流量曲线更接近线形。 方法三:调整叶轮直径 这种方法不使用任何外部组件,流量特性曲线随直径变化而变化。 方法四:调速控制 叶轮转速变化直接改变泵的流量曲线,曲线的特性不发生变化,转速降低时,曲线变的扁平,压头和最大流量均减小。 泵系统的整体效率 出口阀调节与旁路调节方法均增加了管路压力损失,泵系统效率都大幅减小。叶轮直径调整对整个泵系统效率影响较小,调速控制方法基本不影响系统效率,只要转速不低于正常转速的50%。 能耗水平 假定通过上述四种办法将泵的输出流量从60m3/h调整到50m3/h,输出为60m3/h时的功率消耗为100%(此时压头为70m),那么几种控制流量的办法对泵消耗的功率影响如何? (1)出口阀开度调节,能量消耗为94%,流量较低时消耗功率较大。 (2)旁路调节,旁路阀将泵的压头减小到55M,这只能通过增加泵的流量来实现,结果能耗增加了10%。 (3)调整叶轮直径,缩小叶轮直径后泵的输出流量和压力均降低,能耗缩减到67%。 (4)调速控制,转速降低,泵的流量和压头均减小,能耗缩减到65%。 总结 下表中总结出了各种流量调节方法,每种方法各有优缺点,应根据实际情况选用。 流量调节方法连续调节泵的流量特性曲线变化泵系统的效率变化流量减小20%时,泵的功率消耗出口阀开度调节可以最大流量减小,总压头不变,流量特性略微变化明显降低94% 旁路阀调节可以总压头减小,曲线特性发生变化明显降低110% 调整叶轮直径不可以最大流量和压头均减小,流量特性不变轻微降低67% 调速控制可以最大流量和压头均减小,流量特性不变轻微降低65%

二次泵系统与一次泵变流量系统优缺点、设计要点及控制逻辑

一次泵变流量系统(VPF) 1、控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节: 与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制压缩 机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根据温度误差(与设定值的偏差) 和变化速度求出所需的加载/卸载量,从而将冷水温度控制在设定的范围内。导叶电机根据4~20mA 的电流输入信号,每0. 3 %地增加或减小导叶的开启度,这样的调节足以保 证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在±0. 3 ℃以内。见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容量不变。见表1。 在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。

“—→”代表系统控制 “—→”代表控制系统实施操作后有可能引起的现象如图3 所示,系统控制和实施控制操作 后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继续关小(或导叶已关到最小) ,则导叶维持该状态运行,出水温度将进一步下降,当下降到低于出水温度设定点3 ℃以下时,则机组由控制系统控制进行安全关机。或进入再循环运行模式控制。 冰机加减机: 加机(4种方式?): 1. 冷冻水系统供水温度T S1高于系统设定温度T SS 并持续一段时间 2.压缩机运行电流百分比(适用于出水温度精度要求高的场合,需要注意机组出力和运行电流不符合的情况) 3.计算负载 4.如运转中主机已达最大流量,则须加开一台主机(发生机率不高)。 减机: 1.依压缩机电流百分比(1 运行机组台数%RLA(运行机组)%设定-∑≥ ) 2. flow*△T 3.系统流量

二次泵系统与一次泵变流量系统优缺点设计要点及控制逻辑

一次泵变流量系统(VPF) 1、 控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节: 与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制压缩机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根据温度误差(与设定值的偏差) 和变化速度求出所需的加载/卸载量,从而将冷水温度控制在设定的范围内。导叶电机根据4~20mA 的电流输入信号,每0. 3 %地增加或减小导叶的开启度,这样的调节足以保证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在±0. 3 ℃以内。见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容量不变。见表1。 在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。 “ —→”代表系统控制 “ —→”代表控制系统实施操作后有可能引起的现象如图3 所示,系统控制和实施控制操作 后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继续关小(或导叶已关到最小) ,则导叶维持该状态运行,出水温度将进一步下降,当下降到低于出水温度设定点3 ℃以下时,则机组由控制系统控制进行安全关机。或进入再循环运行模式控制。 冰机加减机: 加机(4种方式?): 1. 冷冻水系统供水温度T S1高于系统设定温度T SS 并持续一段时间 2. 压缩机运行电流百分比(适用于出水温度精度要求高的场合,需要注意机组出力和运行电流不符合的情况) 3.计算负载 4.如运转中主机已达最大流量,则须加开一台主机(发生机率不高)。 减机: 1.依压缩机电流百分比(1 运行机组台数%RLA(运行机组)%设定-∑≥ ) 2. flow*△T 3.系统流量

离心泵的使用与维护基础知识

离心泵的使用与维护基础知识 目录 一离心泵的工作原理及相关参数 二离心泵的选型原则 三离心泵的正确使用 四离心泵的故障判断与排除 一离心泵的工作原理及相关参数 离心泵是一种液体输送机械,用于人们在日常生活中输送各种液体。其基本结构是在一个蜗壳形状的泵壳内装有一个叶轮,叶轮在原动机(电动机、柴油机、汽轮机等)的带动下高速旋转,泵壳内的液体在离心力的作用下甩向泵壳的内壁产生压强通过设于泵壳径向的出口排出进入管路。由于泵壳内的液体被排出而形成真空,通过入口源源不断吸入液体而完成液体输送的过程。这一过程将动能转换成势能(静压能)使管路内的液体产生压强而具有流动的能力。 这一功能转换的过程中,原动机输入的能量除一部分用于克服机械的摩擦阻力和液体与叶轮,泵壳等的摩擦阻力外全部用于液体的输送,离心泵的性能参数主要有以下几项。 (一)流量Q 离心泵的工作目的是进行液体的输送,流量是离心泵工作能力的主要指标。是在单位时间内离心泵所输送的液体量。单位通常以升/分钟(l /min)、立方米/小时(m3/h)来表示。 流量的大小与离心泵的结构尺寸和叶轮转速有关。离心泵的体

积越大流量也越大。 (二 ) 扬程H 扬程是离心泵叶轮对液体做功将液体输送到一定高度的指标。单位通常以米(M)来表示。 由于离心泵出厂指标是用常温下的水来标定的,所以扬程的单位就是米水柱,换算成压强单位即为兆帕(MPa)。 10米水柱=0.1兆帕 扬程的大小与离心泵的结构和叶轮转速有关,和离心泵的体积大小无关。 (三)功率N 功率是表示离心泵工作时所需要的能量大小的指标。一般情况下其单位用千瓦(KW)或马力(HP)来表示。 1马力=0.735千瓦 1千瓦=1.36马力 对于一台离心泵而言,流量越大功率消耗越大,而扬程的变化影响较小。 (四)转速n 转速是指叶轮在工作时的转动速度,其单位为转/分钟(rpm)。

光伏水泵与方案

一、太阳能光伏交流水泵系统简介 交流光伏水泵系统是接将太阳电池组件发出的直流电输入水泵逆变器进而 驱动专用通用的交流水泵抽水的系统。 1.1 交流光伏水泵系统组成 交流光伏水泵系统由太阳电池组件、水泵逆变器以及通用交流水泵组成,其示意图如下图所示。 光伏水泵逆变器三相异步交流水泵 交流光伏水泵系统组成示意图 1.2 交流光伏水泵优缺点 优点: 适用性强:交流系列水泵可以抽污水也可以抽清水,耐酸性也强; 易于选型配套:交流系列水泵是通用标准型产品、容易选型、配套; 可靠性好:交流水泵过载能力强、使用寿命长; 可控性好:可以采用现在流行的变频技术进行调速,更好的保护水泵和 最大程度利用太阳电池组件抽水。 缺点: 效率较直流水泵系统低:因为它经过一次DC-AC的转换,不可避免的存 在一些损耗;

二、主要设备介绍 2.1 设备介绍 1)光伏水泵逆变器 产品特点: 本公司自主研发、外协生产,经多次试验运行稳定可靠。 VI最大功率点跟踪(MPPT)算法,响应速度快,运行稳定性好,解决了 传统MPPT方法在日照强度快速变化时跟踪效果差、运行不稳定甚至造成水锤危害的问题。 采用新型变频技术,保证水泵在日照较差的情况下也可工作,最大限度 利用太阳电池阵列功率。 全数字式控制,具备全自动运行、数据存储以及完善的保护功能,完全 可以做到无人值守。 基于开发环保型和经济型光伏产品的设计理念,以蓄水替代蓄电,无蓄 电池装置,直接驱动水泵扬水,装置的可靠性高,同时大幅降低的建设 和维护成本。 主电路采用智能功率模块,可靠性高,转换效率达96%。 可选配上下水位检测与控制电路 产品图片: JNPB-3700光伏水泵逆变器图片

离心泵操作维护规程

反冲洗离心泵操作维护规程 一、操作规程 1、现场手动操作 1.1打开相应设备控制箱,确保已打开出、入口阀门; 1.2将旋钮拨到“手动”档位; 1.3按动绿色按钮启动设备(能听见接触器吸合的声音); 1.4按动红色按钮停止设备。 2、中控操作 2.1确保相应设备控制箱按钮拨到“自动”档位; 2.2用鼠标点开相应设备图形; 2.3选择“开启”后,点击“执行”按钮,设备开始运行(运行状态下图形为绿色,停止状态下图形为蓝色)。 二、注意事项 1、严禁频繁启动离心泵,干运行时间不许超过30秒。 2、故障报警时,操作人员应立即切断电源并向有关人员反映情况。 3、在任何检修、保养工作开始之前应切断主开关电源,还应确保别人无法启动。 4、冬季开启设备,观察是否有凝固现象,是否区分夏季用油或冬季用油。 5、观查设备运转是否流畅,要注意电机的温升、密封、噪声、振动等是否正常,作好记录。 6、检查轴承工作情况及润滑油的多少和质量,轴承温升不得大于35℃,最高温度不应超过70℃,油箱最高油温不得超过60℃。 三、维护保养 1、定期检查油杯和泻脂塞(电机); 2、水泵润滑脂有效期为正常使用1年或累计运行2000小时; 3、电机轴承润滑周期4000小时、油脂类型chevronSR1-2; 4、必须随时用洁净的液体来润滑填料。 送水泵房离心泵操作维护规程

一、操作规程 1、现场手动操作 1.1打开相应设备控制箱,确保已打开出、入口阀门; 1.2将旋钮拨到“手动”档位; 1.3按动绿色按钮启动设备(能听见接触器吸合的声音); 1.4按动红色按钮停止设备。 2、中控操作 2.1确保相应设备控制箱按钮拨到“自动”档位; 2.2用鼠标点开相应设备图形; 2.3选择“开启”后,点击“执行”按钮,设备开始运行(运行状态下图形为绿色,停止状态下图形为蓝色)。 二、注意事项 1、严禁频繁启动离心泵,干运行时间不许超过30秒。 2、故障报警时,操作人员应立即切断电源并向有关人员反映情况。 3、在任何检修、保养工作开始之前应切断主开关电源,还应确保别人无法启动。 4、冬季开启设备,观察是否有凝固现象,是否区分夏季用油或冬季用油。 5、观查设备运转是否流畅,要注意电机的温升、密封、噪声、振动等是否正常,作好记录。 6、检查轴承工作情况及润滑油的多少和质量,轴承温升不得大于35℃,最高温度不应超过70℃,油箱最高油温不得超过60℃。 三、维护保养 1、定期检查油杯和泻脂塞(电机); 2、水泵润滑脂有效期为正常使用1年或累计运行2000小时; 3、电机轴承润滑周期4000小时、油脂类型chevronSR1-2; 4、必须随时用洁净的液体来润滑填料。

光伏发电期末大作业光伏水泵系统组成及工作原理

光伏发电原理与应用 期末大作业 姓名:崔亮 班级:0312406 学号:031240610 指导教师:李绍武

题目1. 光伏水泵系统组成及工作原理 1.系统组成及工作原理 1.1光伏水泵系统的结构图 由图1可知,系统利用太阳电池阵列将太阳能直接转变成电能。经过DC/DC升压,和具有TMPPT功能的变频器后输出三相交流电压驱动交流异步电机和水泵负载,完成向水塔储水功能。其中主要包括4部分:太阳电池阵列;具有TMPPT功能的变频器;水泵负载;储水装置。 1.2变频器主电路及硬件构成 本系统所采用的主电路及硬件控制框图如图2所示。主电路DC/DC部分采用性能优越的推挽正激式电路进行升压;DC/AC部分采用三相桥式逆变电路。主功率器件采用ASIPM(一体化智能功率模块)PS12036,系统控制核心由16位数字信号控制器dsPIC30F2010构成。外围控制电路包括阵列母线电压检测和水位打干检测电路。系统首先通过初始设置的工作方式和PI参数工作,然后由MPPT子程序实时搜索出的电压值作为内环CVT的给定,通过PI调节得到工作频率值,计算出PWM信号的占空比,实现光伏阵列的真正最大功率跟踪(TMPPT),并保持异步电机的V/f比为恒值。系统将MPPT和逆变器相结合,利用ASIPM模块自带的故障检测功能进行检测和保护,结构简单,控制方便。

1.2.1 DC/DC升压电路简述 1.2.1.1主电路选择 对于中小功率的光伏水泵来说,光伏阵列电压大都是低压(24v、36v、48V),对于升压主电路的选择,人们一般选择推挽电路,因为推挽电路变压器原边工作电压就是直流侧输入电压,同时驱动不需隔离,因此比较适合输入电压较低的场合。但是偏磁问题是制约其应用的一大不利因素,功率管的参数差异和变压器的绕制工艺都有可能使推挽电路工作在一种不稳定状态。基于诸多因素的考虑,本系统采用了结构新颖的推挽正激电路,此电路拓扑不仅克服了偏磁问题,而且闭环控制也比较容易(二阶系统)。 1.2.l.2推挽正激电路简单分析 推挽正激电路如图2所示,由功率管S1及S2,电容C8和变压器T组成,变压器T原边绕组N1及N2具有相同的匝数,同名端如图2所示。当S1及S2同时关断的时候,电容C8两端电压下正上负,且等于阵列电压,当S1开通,S1、N2和光伏阵列构成回路,N2上正下负,同时C8、N1和S1构成回路,C8放电,N1下正上负,此时的工作相当于两个正激变换器的并联。同理,当S2开通S1关断时,也相当于两个正激变换器的并联。经过理论分析,推挽正激电路是一个二阶系统,因此闭环控制简单,同时输出滤波电感和电容大大减小。 1.2.2 dsPIC30F2010简单介绍 Microchip公司通过在16位单片机内巧妙地添加DSP功能,使Microchip的dsPIC30F数字信号控制器(DSC)同时具有单片机(MCU)的控制功能以及数字信号处理器(DSP)的计算能力和数据吞吐能力。因为它具有的DSP功能,同时具有单片机的体积和价格,所以本系统采用此芯片作为控制器。此芯片主要适用于电机控制,如直流无刷电机、单相和三相感应电机及开关磁阻电机;同时也适用于不间断电源(UPS)、逆变器、开关电源和功率因数校正等。 dsPIC30F2010管脚示意如图3所示。

离心水泵流量控制的方法

离心泵是目前使用最为广泛的泵产品,广泛使用在石油天然气、石化、化工、钢铁、电力、食品饮料、制药及水处理行业。如何经济有效的控制泵输出流量曾经引发过大讨论,曾一度流行全部使用变频调速来控制输出流量,取消所有控制阀控制流量的型式,单从目前来看市场上有4种广泛使用的方法:出口阀开度调节、旁路阀调节、调整叶轮直径、调速控制。现在我们来逐一分析讨论各种方法的特点。离心水泵流量常用控制方法: 1、出口阀开度调节 这种方法中泵与出口管路调节阀串联,它的实际效果如同采用了新的泵系统,泵的最大输出压头没有改变,但是流量曲线有所衰减。 2、旁路阀调节 这种方法中阀门和泵并联,它的实际效果如同采用了新的泵系统,泵的最大输出压头发生改变,同时流量曲线特性也发生变化,流量曲线更接近线形。 3、调整叶轮直径 这种方法不使用任何外部组件,流量特性曲线随直径变化而变化。 4、调速控制 叶轮转速变化直接改变泵的流量曲线,曲线的特性不发生变化,转速降低时,曲线变的扁平,压头和最大流量均减小。 1)泵系统的整体效率 出口阀调节与旁路调节方法均增加了管路压力损失,泵系统效率

都大幅减小。叶轮直径调整对整个泵系统效率影响较小,调速控制方法基本不影响系统效率,只要转速不低于正常转速的50%。 2)能耗水平 假定通过上述四种办法将泵的输出流量从60m3/h调整到50m3/h,输出为60m3/h时的功率消耗为100%(此时压头为70m),那么几种控制流量的办法对泵消耗的功率影响如何? (1)出口阀开度调节,能量消耗为94%,流量较低时消耗功率较大。(2)旁路调节,旁路阀将泵的压头减小到55M,这只能通过增加泵的流量来实现,结果能耗增加了10%。 (3)调整叶轮直径,缩小叶轮直径后泵的输出流量和压力均降低,能耗缩减到67%。 (4)调速控制,转速降低,泵的流量和压头均减小,能耗缩减到65%。离心水泵流量控制方法总结: 下表中总结出了各种流量调节方法,每种方法各有优缺点,应根据实际情况选用:

一次泵变流量系统

随着设计水平及机械加工水平的进步,冷水机组的效率越来越。这使得冷水机房的能耗结构发生了较大的变化。水泵的能耗比例已经成为一个比较重要部分,所以如何在水泵的节能措施上去的取得进展已成为一项重要课题。 通常来说,空调系统是按照满负荷设计的,当负荷变化时,虽然冷水机组可以根据负荷调节相应的冷量输出,但是常规冷水系统在在冷水机组的蒸发器侧的流量配置是固定的,定流量的冷冻水泵能耗没有跟随主机的部分负荷运行而变化水量。也没跟着冷水机组减载。近年来在电子及自控技术的辅助下,冷水机组的制造技术得到有效提高,尤其是机组对负荷变化的响应时间大大缩短。先进的冷水机组可以在极大的范围内变流量运行;同时,与通过供水温度来控制机组负荷一样,变蒸发侧水流量控制机组负荷运行,同样能够保证出水温度在允许的偏差范围内正常运行。因此,当负荷变化时,可以使冷水机组的蒸发器侧流量随用户的需求而变化,从而节约蒸发器侧水泵的能耗,同时可使用流量保护措施使机组在流量允许的范围内运行。 在管路系统固定不变的前提下,变频水泵的效率特性和水系统的阻力特性接近,理论上水泵的能耗与流量成3次方的关系,系统的阻力随着部分负荷时流量的下降而下降[(水量1/水量2)2=水阻1/水阻2]。如果蒸发侧的流量允许随着负荷的变化而变化,那么蒸发侧的水泵就无需全年保持夏季设计日的满载流量,在部分负荷运行时段,水泵如冷水机组一样,部分负荷时流量减小,与此同时水泵的能耗大幅降低从而达到节能的目的。 目前,较通行的水系统设计通常有两种方式:1.一次泵定流量系统2.二次泵变流量系统。相对于这两 一次泵变流量系统中选择可变流量运行的冷水机组,当机组运行时,蒸发器的供回水温差基本恒定,蒸发侧流量随负荷侧流量的变化而改变,从而达到“按需供应”,并使得降低水泵在部分负荷时的供水量成为可能,最终降低系统运行能耗。末端冷量由冷冻水量调配,冷水机组生产的冷量由流经蒸发器的水流量和相对固定的温差决定。其系统形式类似于一次泵定流量系统,增加了一套自控系统,同时定流量水泵变

离心泵运转时的操作及维护(最新版)

离心泵运转时的操作及维护 (最新版) Safety technology is guided by safety technology, based on personnel protection, and an orderly combined safety protection service guarantee system. ( 安全技术) 单位:_______________________ 部门:_______________________ 日期:_______________________ 本文档文字可以自由修改

离心泵运转时的操作及维护(最新版) 离心泵在正常运转时,司泵员要对以下内容认真巡检: 1)检查机泵出口压力,流量,电流等,不超负荷运转,并准确记录电流,压力等参数。 2)听声音,分辨机泵,电机的运转声音,判断有无异常。 3)检查机泵,电机及泵座的振动情况,如振动严重,换泵检查。 4)检查电机外壳温度,机泵的轴承箱温度,轴承箱温度不超过65度,电机温度不超过95度。 5)保证正常的润滑油油质情况及润滑油箱的液位情况。润滑油箱液位,有刻度时以刻度为准;有看窗(油标)而无刻度线,油位应保持在1/3~1/2之间,在正常油位时,润滑油泄漏不大于5滴/分,压力注油,以机器说明为准。

6)检查机泵密封及各法兰,丝堵,冷却水,封油接头是否泄漏。 7)检查备用泵的备用情况,每天要盘车一次。 可在本位置填写公司名或地址 YOU CAN FILL IN THE COMPANY NAME OR ADDRESS IN THIS POSITION

太阳能水泵的系统组成及工作原理

系统组成及工作原理 1.1 光伏水泵系统的结构图 由图1可知,系统利用太阳电池阵列将太阳能直接转变成电能。经过DC/DC升压,和具有TMPPT功能的变频器后输出三相交流电压驱动交流异步电机和水泵负载,完成向水塔储水功能。其中主要包括4部分:太阳电池阵列;具有TMPPT功能的变频器;水泵负载;储水装置。 1.2 变频器主电路及硬件构成 本系统所采用的主电路及硬件控制框图如图2所示。主电路DC/DC部分采用性能优越的推挽正激式电路进行升压;DC/AC部分采用三相桥式逆变电路。主功率器件采用ASIPM(一体化智能功率模块)PS12036,系统控制核心由16位数字信号控制器dsPIC30F2010构成。外围控制电路包括阵列母线电压检测和水位打干检测电路。系统首先通过初始设置的工作方式和PI参数工作,然后由MPPT子程序实时搜索出的电压值作为内环CVT的给定,通过PI 调节得到工作频率值,计算出PWM信号的占空比,实现光伏阵列的真正最大功率跟踪(TMPPT),并保持异步电机的V/f比为恒值。系统将MPPT和逆变器相结合,利用ASIPM模块自带的故障检测功能进行检测和保护,结构简单,控制方便。 1.2.1 DC/DC升压电路简述 1.2.1.1主电路选择 对于中小功率的光伏水泵来说,光伏阵列电压大都是低压(24v、36v、48V),对于升压主电路的选择,人们一般选择推挽电路,因为推挽电路变压器原边工作电压就是直流侧输入电压,同时驱动不需隔离,因此比较适合输入电压较低的场合。但是偏磁问题是制约其应用的一大不利因素,功率管的参数差异和变压器的绕制工艺都有可能使推挽电路工作在一种不稳定状态。基于诸多因素的考虑,本系统采用了结构新颖的推挽正激电路,此电路拓扑不仅克服了偏磁问题,而且闭环控制也比较容易(二阶系统)。 1.2.l.2推挽正激电路简单分析 推挽正激电路如图2所示,由功率管S1及S2,电容C8和变压器T组成,变压器T原边绕组N1及N2具有相同的匝数,同名端如图2所示。当S1及S2同时关断的时候,电容C8两端电压下正上负,且等于阵列电压,当S1开通,S1、N2和光伏阵列构成回路,N2上正下负,同时C8、N1和S1构成回路,C8放电,N1下正上负,此时的工作相当于两个正激变换器的并联。同理,当S2开通S1关断时,也相当于两个正激变换器的并联。经过理论分析,推挽正激电路是一个二阶系统,因此闭环控制简单,同时输出滤波电感和电容大大减小。

泵流量控制方法(经典)

离心泵流量控制方法探讨 泵的流量调节方法一览表 本文详细介绍了泵(离心泵、往复泵)的流量调节方法,如改变泵的装置特性曲线(如可以进行出口阀调节、旁路调节、转速调节、切割叶轮外径、更换叶轮、堵死几个叶轮流道等)、改变泵的特性曲线,并对每种调节方法进行了阐述及对其使用的特点进行了分析。

具体的泵的流量调节方法见下表1——1。 表1——1 泵的流量调节方法

请问泵的流量是怎么调节的 请问高速泵的流量是怎么调节的我发现泵的额定流量比如为10m3,最小稳定流量为2m3,比如我现在后面装置需要6m3的量,这个时候是通过出口阀门调节呢还是打10m3走4m3的旁路阿谢谢各位!! 还有些疑问:1、旁路怎么防止泵产生憋压不是很明白---我现在设置的是泵流量达到泵厂家要求的最小稳定流量的时候旁路阀门才打开,平时是关着的! 2、现在一家国外的泵厂家返回的资料是这样子的,我要求的是2.61m3,可是他给我的泵却是4.5M3的,而他的最小稳定流量竟然在2.3m3,那我平常不是只能在最小流量线附近操作了这样子对高速泵肯定不好,现在泵厂家要求平常一直开旁路,让我很郁闷 3、我想的是一旦泵流量到达最小稳定流量,泵就有两个去向,可是我怎么知道这两条线的各自流量,因为我要保证我后续设备的物料量啊,不能全被打回流阿!! 4、还有就是泵出口关闭压力怎么确定阿? 5、我们计算泵的 H的时候,给出了 HA,厂家给的 HR,指的是水那转化成介质是不是也应该乘密度? 请各位说的仔细一点,我对这个不是很清楚呢 ]lexuan_0211 发表于 2008-6-13 13:44 一般来说,通过阀门调节能够达到效果。 lz需要的量在此泵的流量范围内,没有问题。llttjj2850 发表于 2008-6-13 13:45 通过出口调节阀来控制流量,走旁路只是改变管径,并没有改变流量,只是增加了管道阻力和流速。 如果有变频器可以调节频率,也可调节流量。rongyang504 发表于 2008-6-13 14:05 我的泵不是变频的,变频的用的很平常吗我觉得变频的机泵一般用在重要的地方!

离心泵操作及维护保养规程

离心泵操作及维护保养规程 1操作前准备事项 3.1 检查各联接螺栓有无松动情况. 3.2 检查轴承箱内是否按规定添加润滑油。 3.3 手动盘车,检查泵轴旋转是否灵活,轴密封填料松紧或机械密封安装是否正确.泵体及 叶轮有无卡碰现象. 3.4 检查泵进出口阀门是否灵活可靠及出口压力表是否可靠. 3.5 检查泵-电机联轴器是否符合规定,点动观察泵转向是否正确。 2 开车程序 2.1 以上检查确认无误后方可开车运行,不允许在无介质的情况下进行空车运转,点动电机 察看泵转动方向是否正确. 2.2 关好出水管的闸阀和出口压力表及进口压力表. 2.3 开动电机,当泵正常运转后,打开进口压力表和出口压力表.视其显示知当压力后,逐渐 打开闸阀,同时检查电机负荷情况. 2.4 控制流量和扬程在泵标牌上注明的范围内,以保证泵在最高效率点附近动转. 3 设备运行检查 3.1 应检查各联接螺栓有无松动,各联接管路有无泄漏情况. 3.2 应注意轴承箱是否缺油,轴承温升不得超过环境温度35度,最高温度不得超过80度.

3.3 应注意填料或机械密封处是否泄漏. 3.4 应注意观察泵运行过程中转动是否平稳. 联轴节弹性块是否磨损或失效。 3.5 应注意泵出口的压力表变化是否异常。 4 停车程序 4.1 若无特殊情况,停车时须经过工艺人员同意方可停车或更换备台。维护人员须等档台 工按照停车顺序停车,并卸掉泵内的压力后。方可进行维修操作。操作时应挂临时检 修牌以作警示。 4.2 停机( 若介质为水,冬季停车后室外泵须将水放掉以防冻裂泵壳) A 关闭进口闸阀. B 关闭出口闸阀. C 送闭进出口压力表. 5 定期维护保养制 5.1 定期检查各联接螺栓有无松动。 5.2 定期检查轴承箱是否缺油并添加或更换润滑油. 5.3 经常调整填料压盖或更换机械密封.保证无滴跑冒漏.降你生产消耗. 5.4 经常检查泵的出口压力变化及泵的运行平稳性并判断叶轮、轴承及联轴器的运转情况. 5.5 按照上级统一部署,在规定的时间里对离心泵进行检修工作 5.6 应经常保持设备卫生的清洁.

光伏水泵系统

太阳能光电工程学院 《光伏综合实践》 课程设计报告书 题目:光伏水泵系统 姓名: 专业: 准考证号: 设计成绩: 指导教师: 摘要 有人把太阳能水泵比作是农家的“及时雨”,这并不夸张。因为每当酷暑热

浪席卷大地之时,正是它大显身手之际。它能为濒于干枯的禾苗,及时送来甘露。光伏水泵亦称太阳能水泵,主要由光伏扬水逆变器和水泵组成。具体应用时,再根据不同扬程和日用水量的需求配以相应功率的太阳能电池阵列,统称为光伏扬水系统。目前, 太阳能泵主要有两种类型。一种是光热水泵即把太阳能转换为热能例如热管技术, 使水或氟里昂变成压力蒸汽, 并使其做功, 例如美国的OASTS泵与MONDESH泵, 靠水蒸汽利用双隔膜泵来抽水。而德国的太阳能泵则是利用氟里昂作为介质推动类似蒸气机的装置来抽水。这类水泵的缺点是效率低,且对环境有污染。另一种便是光伏水泵, 它具有无污染、全自动、运行成本低等优点。本文主要阐述了光伏水泵的系统组成,以及各个组件在系统中的作用。 关键词系统组成水泵作用 目录

绪言 (2) 1. 光伏水泵系统 (3) 1.1概述 (3) 1.1系统的基本构成 (4) 1.2光伏阵列 (5) 1.3控制器 (5) 1.4最大功率点跟踪器 (6) 1.5变频逆变器 (7) 1.6电机和水泵 (8) 2.光伏水泵的技术特点 (9) 2.1要求平均效率有最大值 (9) 2.2关死点功率越小越好 (9) 2.3要求平均流最有最大值 (9) 3.应用前景 (9) 参考文献 (11) 绪言 光伏水泵系统的基本工作原理是利用太阳能电池将太阳能直接转化为电能,

然后通过控制器驱动电机带动光伏水泵运行。光伏水泵系统可广泛用于无电地区的人畜用水、农业灌溉以及边防、海岛哨所等高度分散点的用水。目前, 太阳能泵主要有两种类型。一种是光热水泵以, 即把太阳能转换为热能例如热管技术, 使水或氟里昂变成压力蒸汽, 并使其做功, 例如美国的OASTS泵与MONDESH泵, 靠水蒸汽利用双隔膜泵来抽水。而德国的太阳能泵则是利用氟里昂作为介质推动类似蒸气机的装置来抽水。这类水泵的缺点是效率低,且对环境有污染。另一种便是光伏水泵, 它具有无污染、全自动、运行成本低等优点。近年来, 光伏水泵系统的数量迅速增长,特别是非洲、南美、澳洲及亚洲各国。世界银行和联合国共同推荐光伏水泵系统作为解决边远地区人畜饮水、农田灌溉的首选技术。我国光伏水泵系统技术经过“八五”、“九五”科技攻关, 取得了长足进步, 但仍然没有对光伏水泵系统中的关键装置—光伏水泵进行专门的研究。 1. 光伏水泵系统 1.1概述 “光伏水泵系统”亦称“太阳能光电水泵系统”,其基本原理是利用太阳电池将太阳能直接转换为电能,然后驱动各类电动机带动水泵从深井、江、河、湖、

离心泵的控制方案

一、 离心泵的控制方案 1、离心泵工作原理 离心泵是通过离心力的原理工作的。离心泵工作原理是在泵内充满液体的情况下,叶轮旋转产生离心力,叶轮槽道中的液体在离心力的作用下被甩向外围而流进泵壳,于是叶轮中心压力降低,这个压力低于进水池液面的压力,液体就在这个压力的作用下有吸入池进入叶轮,这样泵就可以不断的吸入压出,完成液体的输送。 2、离心泵的主要参数 离心泵的主要参数包括:流量、扬程、功率、效率、转速和汽蚀余量等。 3、泵的类型 ①叶片式泵:它对介质的输送是靠有叶片的叶轮高速旋转而完成的。 ②容积式泵:它对介质的输送是靠泵体工作室容积的周期性变化而完成的。 ③其他类型泵:只改变输送介质的位能和利用输送介质本身能量的泵。 4、离心泵特性 由于离心泵的叶轮和机壳之间存在空隙,泵的出口阀全闭,液体在泵体内循环,泵的排量为零,压头最大;随着出口阀的逐步开启,排出量随之增大,出口压力将慢慢下降。 泵的压头H ,排量Q 和转速n 之间的函数关系:、 排出量Q → ↑ 压头 n 1 n 2 n 3 n 4 a a’

H =R 1n 2 – R 2Q 2 5、管路特性 HL=hp+hL+hf +hv 4项阻力: 1)管路两端的静压差引起的压头hp ; 2)管路两端的静压柱高度hL ; 3)管路中的摩擦损失压头hf ; 4)控制阀两端节流损失压头hv ; 当系统达到稳定工作状态时,泵的压头H 必然等于HL ,这是建立平衡得条件。左图中泵的 特性曲线与管路特性曲线的交点C ,即是泵的平衡工作点。 工作点C 的流量应符合工艺预定的要求,可以通过改变hv 或其它手段来满足这一要求,这是离心泵的压力(流量)的控制方案的主要依据。 6、离心泵的控制方案 1)直接节流法 排出量Q → ↑ 压头

光伏水泵系统

光伏水泵系统 具有MPPT控制策略的光伏水泵系统(stand-alone photovoltaic pumping system with MPPP)的主要目标是在不同的光照和温度条件下,最大限度的提高系统的输出功率,仁解决光伏阵列与异步电机水泵这两个具有非线性性质电源和负载之间的配合问题,采用了一种简化的MPPT控制策略使整个系统上作在高输出功率点附近。本节中介绍了系统的电路构成、控制器结构以及控制策略实现力一式。其中,控制器的核心芯片为MC68HC908G32微处理器。 1.光伏水泵系统构成 从电路角度来看,该光伏水泵系统的基本结构可以分为四部分:光伏阵列、最大功率点跟踪器、电力电子逆变器和电机水泵。其中,光伏阵列是由众多的光伏电池串并联构成,其作用是直接将太阳能转换为直流形式的电能。该系统中采用的是单晶硅光伏电池,其伏安特性必须加以调节和控制才能被优化使用:最大功率点跟踪器是整个系统的核心,它的作用就是使整个系统始终上作在最佳工作点上,在不同太阳光照条件下,使太阳能尽量多的转化为电能,使电源和负载之间能达到和谐、高效和稳定的工作状态;电力电子逆变器是最大功率点跟踪器的功率执行单元,它根据最大功率点跟踪器的控制信号,发出不同频率的PWM电压波形,带动电机水泵工作,同时又具有相应的保护功能;电机水泵是该系统的最终执行单元,完成稳定、可靠的出水。该系统中的电机水泵是根据用户对扬程和出水量的要求,兼顾光伏阵列的电压和功率等级的要求而设计的。其中,异步电机是根据变频调速条件下而设计的高效异步电机,在前面第7章有详细的描述。具有MPPT功能的光伏水泵系统控制器是此系统中的重要环节,通常它是指最大功率点跟踪器和电力电了逆变器的总和。 2.光伏水泵系统主电路结构 (1)光伏水泵系统的主要参数和功能 2001年6月,在新疆和田地区奥村成功地安装5kw,.光伏水泵系统.根据对当地的地理、水文和人口分布情况的考查.该系统的卞要性能指标。 根据该系统的主要性能参数指标的设定,设计和选取合适的光伏阵列、电力电子 逆变器以及电机水泵。 (2)光伏阵列电路设计 在光伏水泵系统中,光伏阵列电路的设计很重要,因为光伏电池的很多特性制约了系统其他部分的设计,如它的温度和伏安特性是整个系统设计中始终要考虑的重要环节。同时,光伏电池电路的设计也受系统其他部分的制约,如相关控制器件的参数和逆变器容量等。光伏阵列电路的设计包括:光伏电池型号的选择(额定参数的选择),整个光伏阵列的功率和电压等级设计.光伏阵列连接组合电路设计。 该系统采用单晶硅光伏电池,光伏阵列的设计流程可以简单描述如下: ①根据项目的性能要求,包括水泵扬程、出水策和输出时间的要求,估算出水泵的每天平均输出功率。 ②根据光伏水泵系统的“机泵系统效率”和水泵平均功率.计算出光伏阵列的输出功率等纷 ③根据系统的光伏阵列输出电压等级要求和所选单个光伏电池的电几等级。确定光伏阵列的串联关系。 ④根据光伏阵列功率、电压等级和串联关系.得到光伏阵列的串并联优化方案吃该光伏水泵系统的光伏阵例。 3.光伏水泵系统控制器与控制策略

一次泵变流量水系统控制策略的研究

一次泵变流量水系统控制策略的研究 随着我国经济的高速发展,建筑能耗占社会总能耗的比例越来越大,已由2007年的24.5%增加到2012年的32%,而大型公共建筑能耗占建筑总能耗的22%,中央空调系统的耗电量占大型公共建筑总耗电量的50~60%,中央空调系统必将成为建筑节能的重点。作为目前最有效的节能措施之一,中央空调一次泵变流量水系统的研究和应用逐渐受到人们的重视。但是在实际运行过程中,变频水泵往往不能按照设计要求进行变频,达不到理想的节能效果。 本文针对一次泵变流量水系统的控制方式及控制策略进行研究,主要包括以下内容:本文阐述了一次泵变流量水系统的一些基本理论和常用的控制方式,提出了一次泵变流量水系统设计及应用中的几个关键技术问题。对一次泵变流量水系统在不同控制方式下的水力工况进行了比较分析,探讨了不同控制方式的适用条件及节能效果。几种控制方式节能效果为:定温差>变压差控制>定末端压差>定干管压差。 另外针对目前实际工程中存在的问题进行了分析,为设计人员提供参考。然后以重庆某办公楼为研究对象,对其地源热泵机组及冷冻水泵进行测试。通过数据分析,发现水系统存在“大流量小温差”的问题,且冷冻水泵也没有按照设计进行变流量运行。 造成此问题的主要原因为其控制策略没有起到实际的调节作用。接着根据水系统测试的分析情况,对该办公楼的控制策略提出了两点改进建议:针对采用的定末端压差控制法提出了阀位控制加温度控制的改进建议,通过对控制原理的详细分析指出该控制法具有节能效果好且控制稳定等优点,并给出了具体的调节策略,针对办公楼末端风机盘管过多的问题提出了等效阀门开度的计算方法并以

光伏水泵方案总结

、太阳能光伏交流水泵系统简介 交流光伏水泵系统是接将太阳电池组件发出的直流电输入水泵逆变器进而驱动专用通用的交流水泵抽水的系统。 1.1交流光伏水泵系统组成 交流光伏水泵系统由太阳电池组件、水泵逆变器以及通用交流水泵组成,其示意图如下图所示。 交流光伏水泵系统组成示意图 1.2交流光伏水泵优缺点 优点: 适用性强:交流系列水泵可以抽污水也可以抽清水,耐酸性也强; 易于选型配套:交流系列水泵是通用标准型产品、容易选型、配套; 可靠性好:交流水泵过载能力强、使用寿命长; 可控性好:可以采用现在流行的变频技术进行调速,更好的保护水泵和最大程度 利用太阳电池组件抽水。 缺点:

效率较直流水泵系统低:因为它经过一次DC-AC的转换,不可避免的存在一些损耗;

二、主要设备介绍 2.1设备介绍 1)光伏水泵逆变器 产品特点: 本公司自主研发、外协生产,经多次试验运行稳定可靠。 VI最大功率点跟踪(MPPT算法,响应速度快,运行稳定性好,解决了传统MPP彷法在日照强度快速变化时跟踪效果差、运行不稳定甚至造成水锤危害的问题。 采用新型变频技术,保证水泵在日照较差的情况下也可工作,最大限度利用太阳电池阵列功率。 全数字式控制,具备全自动运行、数据存储以及完善的保护功能,完全可以做到无人值守。 基于开发环保型和经济型光伏产品的设计理念,以蓄水替代蓄电,无蓄电池装置,直接驱动水泵扬水,装置的可靠性高,同时大幅降低的建设和维护成本。 主电路采用智能功率模块,可靠性高,转换效率达96%

可选配上下水位检测与控制电路 产品图片: JNPB-3700光伏水泵逆变器图片技术参数: 我公司自主研发的光伏水泵逆变器技术参数见下表:

次泵系统与一次泵变流量系统优缺点设计要点及控制逻辑

一次泵变流量系统(VPF ) 1、 控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节: 与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制 压缩机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节 制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。 这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根 据温度误差(与设定值的偏差)和变化速度求出所需的加载/卸载量,从而将冷水温度控 制在设定的范围内。导叶电机根据4?20mA 的电流输入信号,每%地增加或减小导叶的 开启度,这样的调节足以保证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开 启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在土C 以内。 见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容 量不变。见表1。 在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。 “一-”代表系统控制 “一-”代表控制系统实施操作后有可能引起的现象如图 3所示,系统控制和实施控制操 作 后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小 来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断 下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进 行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷 运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继 续关小(或导叶已关到最小),则导叶维持该状态运行,出水温度将进一步下降,当下降到 低于出水温度设定点3C 以下时,则机组由控制系统控制进行安全关机。或进入再循环运 行模式控制。 冰机加减机: 加机(4种方式?): 1?冷冻水系统供水温度T si 高于系统设定温度T ss 并持续一段时间 2?压缩机运行电流百分比(适用于出水温度精度要求高的场合,需要注意机组出力和运 行电流不符合的情况) 3?计算负载 4.如运转中主机已达最大流量,则须加开一台主机 (发生机率不高)。 减机: * △ T 3.系统流量 加减机逻辑:冷冻站管理器将监测供回水总管的温度,同时监测冷机的负荷。 当水系统的计算冷负荷达到运行冷机额定制冷量的 80%(可调),并持续 20 分钟(可 调),则冷冻站管理器将增开站房内下一个可用的运行时间最短的制冷单元。 当水系统的冷负荷低于运行冷机的总名义额定制冷量的 20%,并持续 20 分钟(可调), 1.依压缩机电流百分比(%没定 %RLA 运行机组)) 运行机组台数 1

相关文档
最新文档