64岩石力学PPT课件
精品课程《岩石力学》ppt课件(全)
具体而言,研究岩石在荷载作用下的应力、变形和破坏 规律以及工程稳定性等问题。
上述定义是把“岩石”看成固体力学中的一种材料,然而
岩石材料不同于一般的人工制造的固体材料,它是
一种典型的“连续介质”,具有复杂的地质构造和赋
存条件的天然地质体。
.
11
三、岩石力学理论的发展简史
1. 初始阶段(19世纪末~20世纪初)
.
8
(2)60年代初意大利Vajont大坝水库高边坡的崩溃 意大利Vajont拱坝,坝高262m,
于1959年建成,是当时世界上 最高的拱坝。1963年10月9日 夜,由于大坝上游山体突然滑 坡,约2.5亿立方的山体瞬时涌 入水库,涌浪摧毁上游及下游 一个小镇与邻近几个村庄,造 成约2500人死亡,整个灾害的 持续时间仅仅5分钟。
.
3
一、引言
1. 人类活动与岩石工程(Rock Engineering)
岩石圈是人类赖以生存的主要载体,人类的大部分活动都 是在岩石圈上进行的:
远古
约4700年前 公元1600年
19世纪
石器,穴居 金字塔(146.5m) 火药采矿 铁路隧道技术
20世纪 大型水电工程
岩基、边坡,地下 洞室,隧道工程等
普罗托吉雅柯诺夫提出的自然平衡拱学说,即普氏理论.
围岩开挖后自然塌落成抛物线拱形,作用在支架上的压力等于 冒落拱内岩石的重量,仅是上覆岩石重量的一部分.
太沙基(K.Terzahi)理论 围岩塌落成矩形,而不是抛物线型.
优点与缺点
上述理论在一定历史时期和一定条件下还是发挥了一定作用的, 但是围岩的塌落并不是形成围岩压力的惟一来源,也不是所有 的地下空间都存在塌落拱.围岩和支护之间并不完全是荷载和 结构的关系问题,在很多情况下围岩和支护形成一个共同承载 系统,而且维持岩石工程的稳定最根本的还是要发挥围岩的作 用.
岩石力学性质精品PPT课件
时间影响因素
与实验室岩石力学研究不同,地质条件的岩石变形 时间很长,一个造山带变形要经历几百万年才完成。
应变速率的影响(έ=ε/t) έ降低,材料强度降低,向韧性方向转变 陨石的碰撞或地震是快速έ 阿尔卑斯山变形速率10-12/s-10-14/s左右
时间对岩石蠕变和松弛的影响
蠕变是在恒定应力作用下,应变随时间持 续增加的变形。
第五节 岩石断裂准则
岩石断裂准则
断裂是指由于外力作用在物体中产生的介质不连 续面。
❖ 断裂准则:在极限应力状态下各点极限应力分量所 应满足的条件,称为断裂条件或者准则。
❖ 莫尔包络线:就是材料破坏时的各种极限应力状态 应力圆的公切线。 判别条件:当一点的应力状态的应力圆与莫尔包络 线相切,这点就开始破裂。
库仑准则
库仑准则,又称最大剪应力准则,其表达式
为 max=(1-3)/2=0。
常温常压下一些岩石的强度极限
岩石
抗压强度 抗张强度 抗剪强度 (MPa) (MPa) (MPa)
花岗岩
148 (37 -379)
3-5
15-30
大理岩 石灰岩
102 (31 -262)
96 (6- 360)
3-9 3-6
பைடு நூலகம்
10-30 12-20
砂岩
74 (11 -252)
1-3
5-15
275
玄武岩 (200-
10
350)
页岩岩石变20形-8的0 应力-应变曲线2
岩石的抗压强度>抗剪强度>抗张强度
脆性材料:断裂前 的塑性变形量在百 分之五以下的材料。 韧性材料:断裂前 的塑性变形量在百 分之十以上的材料。
❖ 脆性:脆性材料在弹性范围内或弹性变形后 立即破裂,即在破裂前没有或有极小的塑性 变形,材料的这种性质称为脆性。
岩石力学第2章岩石的基本物理力学性质PPT课件
格里菲斯强度理论认为岩石的强度是由其内部微裂纹或弱面的能量释放率决定的。当这些 微裂纹或弱面受到外力作用时,它们会扩展并释放能量,当能量释放率达到一定值时,岩 石就会发生破裂。
岩石的破坏准则
最大应力准则
该准则认为当岩石受到的最大应力达到其单轴抗压强度时, 岩石就会发生破裂。该准则适用于脆性破坏和延性破坏。
表示岩石抵抗弹性变形的能力, 是衡量材料刚度的指标。
泊松比
表示岩石在单向受拉或受压时, 横向变形与纵向变形之比。
抗拉强度和抗压强度
抗拉强度
岩石在单向拉伸时所能承受的最大拉 应力。
抗压强度
岩石在单向压缩时所能承受的最大压 应力。
抗剪强度和摩擦角
抗剪强度
岩石在剪切力作用下所能承受的最大剪应力。
摩擦角
表示岩石在剪切力作用下,剪切面上的摩擦力与垂直剪切力之间的角度。
流变性质
蠕变
岩石在持续应力作用下发生的缓慢变形。
松弛
岩石在持续应变作用下,应力随时间逐渐减小的现象。
04
岩石的变形特性
弹性变形
02
01
03
弹性模量
表示岩石抵抗弹性变形的能力,是衡量岩石刚度的指 标。
泊松比
描述岩石横向变形的性质,与材料的弹性模量相关。
中区域形成并扩展导致的。
02
延性破坏
与脆性破坏不同,延性破坏是指岩石在受到外力作用时,会经历较大的
塑性变形,然后才发生破裂。这种破坏形式通常是由于岩石中的微裂纹
或弱面在应力作用下逐渐扩展和连接形成的。
03
疲劳破坏
疲劳破坏是指岩石在循环或反复加载过程中,由于应力水平的波动,导
致微裂纹的形成和扩展,最终导致岩石破裂。这种破坏形式通常发生在
《岩石力学》课件(完整版)-第三章岩石动力学基础
能量吸收是指岩石在冲 击或振动载荷作用下吸 收能量的能力,与岩石 的破碎和变形有关。
疲劳是指岩石在循环载 荷作用下发生损伤和破 坏的现象,对地下工程 和边坡工程的稳定性有 重要影响。
03
岩石动力学的基本理论
弹性力学基础
01
弹性力学基本概念
弹性力学是研究弹性物体在外力作用下的应力、应变和位移的学科。它
理论分析方法。这些方法可用于求解各种复杂弹性力学问题。
塑性力学基础
塑性力学基本概念
塑性力学是研究塑性物体在外力作用下的应力、应变和位移的学科。塑性物体在达到屈服 点后会发生不可逆的变形,其应力-应变关系不再满足胡克定律。
塑性力学的基本方程
包括屈服准则、流动法则、增量理论和边界条件等。这些方程描述了塑性物体内部的应力 、应变和位移之间的关系,以及物体与周围介质之间的相互作用。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
离散元法
离散元法是一种将连续介质离散化为一系列刚性或弹性 单元体的方法。
数据分析
对实验获取的大量数据进行处理和分 析,提取岩石的动力学特性,如阻尼 比、质量放大系数等。
结果解释
根据实验结果,解释岩石在动态载荷 作用下的破坏机制和演化过程,为工 程设计和安全评估提供依据。
实验研究的挑战与展望
挑战
岩石动力学实验技术难度大,需要克服实验条件苛刻、测量精度要求高等问题。 同时,岩石材料的非线性、各向异性等特性也给实验结果分析带来困难。
岩石的物理力学性质下岩石力学课件PPT
dilatancy)
。
1 2 3
Mar , 2007
17
第2章 岩石的物理力学性质
Mar , 2007
18
第2章 岩石的物理力学性质
5. 岩石的各向异性 岩石的全部或部分物理、力学性质随方向不同而表现出差异的现象
称为岩石的各向异性。
z
zx
ij =
x xy xz yx y yz
zx zy z
xy y yz
Mar , 2007
x
ij =
x xy xz yx y yz
zx zy z
19
第2章 岩石的物理力学性质
• 极端各向异性体的应力-应变关系
在物体内的任一点沿任何两个不同方向的弹性性质都互不相同,任何一个应力分量都会引起六个 应变分量。三向应力状态下,弹性矩阵为对称矩阵,36个弹性常数只有21个是独立的。
5
第2章 岩石的物理力学性质
弹性模量(modulus of elasticity):加载曲线直线段的斜率,加载曲线直线段大致与卸载曲线的割线相平 行。
E
变形模量(modulus of deformatieon):取决于总的变形量,即弹性变形与塑性变形之和,它是正应力与总
的正应变之比,它相应于割线OP的斜率。
由开尔文模型与马克斯威尔模型串联而组成,蠕变曲线上开始有瞬时变形,然后剪应变以指数递减的速率增长,最后趋于不变速率增长。
各向同性体的弹性参数中只有2个是独立的,即弹性模量 和泊松比 。
混凝土圆柱体三向
受压试验时,轴向
应力—应变曲线
Mar , 2007
Faculty of Civil Engineering, Chongqing University
岩石的主要物理性质和力学性质ppt课件
c
P A
端部效应
破坏形态
岩石的单轴抗拉强度σt
直接拉伸试验
t
P A
岩石的剪切强度τf:岩石抵抗剪切破坏的能力。
十、 影响岩石力学性质的因素
(1)矿物成分对岩石力学性质的影响 矿物硬度大,岩石的弹性越明显,强度越高。 如岩浆岩,橄榄石等矿物含量的增多,弹性越明显,
强度越高; 沉积岩中,砂岩的弹性及强度随石英含量的增加而
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
六、岩石的抗冻性
岩石的抗冻性是指岩石抵抗冻融破坏的性能,
是评价岩石抗风化稳定性的重要指标。
岩石的抗冻性用抗冻系数Cf表示,指岩石试样在 ±250C的温度期间内,反复降温、冻结、融解、升
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
岩石的主要物理性质
岩石由固体,水,空气等三相组成。 一、密度(ρ)和重度(γ): 单位体积的岩石的质量称为岩石的密度。单位体积的岩石的 重力称为岩石的重度。所谓单位体积就是包括孔隙体积在内的体 积。
二、比重(Δ)
岩石的比重就是指岩石固体的质量与同体积水 的质量之比值。岩石固体体积,就是指不包括孔隙 体积在内的体积。岩石的比重可在实验室进行测定, 其计算公式为:
Ws Vs w
式中:Δ——岩石的比重; Ws——干燥岩石的质量(g); Vs——岩石固体体积(cm3);
ΔW — 40C时水的密重。
W (g/cm3),γ=ρg(kN /m3)
V
岩石的密度可分为天然密度、干密度和饱和密度。相应地,岩 石的重度可分为天然重度、干重度和饱和重度。
《岩石力学性质》PPT课件
▪ 应力状态: σ1>σ2=σ3
精选ppt
26
▪ 三轴压缩试验加载示意图
▪ 真三轴
▪ σ1>σ2> σ3
▪ 假三轴
▪ σ1>σ2=σ3
精选ppt
27
▪ 3)假三轴试验装置图:
▪ 由于试件侧表面已被加压油缸的橡皮套包住,液压油不会 在试件表面造成摩擦力,因而侧向压力可以均匀施加到试 件中。其试验装置示意图如下。
线与σ轴夹角为内摩擦角,外切线及其延长线与τ
轴相交之截距即为C。
▪ 实践中采用第一种方法的人数多。
精选ppt
31
精选ppt
20
▪ 5) Hoek直剪仪试验装置
精选ppt
21
▪ 6)角模压剪试验及受力分析示意图
▪ 在压力P的作用下,剪切面上可分解为沿剪切面 的剪力Psinα/A和垂直剪切面的正应力Pcosα/A, 如图所示。
精选ppt
22
▪ 7)限制性剪切强度试验结果及其分析
▪ ①试验结果:剪切面上正应力越大,试件被剪破坏前所 能承受的剪应力也越大。
▪ a.直线形:τ轴的截距称为岩石的粘结力(或称内
聚力),记为C(MPa),与σ轴的夹角称为岩
石的内摩擦角,记为φ(度)。
▪ b.曲线形:
▪ ①一种方法是将包络线和τ轴的截距定为C,将包
络线与τ轴相交点的包络线外切线与σ轴夹角定为
内摩擦角。
▪ ②另一种方法建议根据实际应力状态在莫尔包络 线上找到相应点,在该点作包络线外切线,外切
▪ 非限制性剪切试验在剪切面上只有剪应力存在, 没有正应力存在;限制性剪切试验在剪切面上除 了存在剪应力外,还存在正应力。
岩石力学ppt课件
喷出岩常具有气孔构造、流纹构造和原生裂隙,透水性较大。此外,喷出岩多呈岩流状产 出,岩体厚度小,岩相变化大,对地基的均一性和整体稳定性影响较大。
4
第二章 岩石的物理性质及工程分类
所以:
x y xy z yz
xz zx yx zy
中,实际上独立的应力分量只有6个。
11
第4章 岩石的本构关系和强度准则
应力平衡微分方程
根据微分单元体x方向平衡,∑Fx=0,则
12
第4章 岩石的本构关系和强度准则
4.2 应变及应变状态分析 应变的概念 由于载荷作用或者温度变化等外界因素等影响,物体内各点在空间的位置将发 生变化,即产生位移。
岩石力学基础 复习指导
课程主要内容
31
岩石的结构和组织
2
岩石的物理性质及工程分类
3
岩石的力学性质
4
本构关系和强度准则
35
岩石的蠕变
6
地应力测量及计算
37
测井解释及井壁稳定
1
第1章 岩石的结构和组织特点
▪ 岩石的结构和分类 ▪ 岩石的微观结构 ▪ 岩石的宏观结构
成岩旋回图
2
第二章 岩石的物理性质及工程分类
2)沉积岩的性质 碎屑岩的工程地质性质一般较好,但其胶结物的成分和胶结类型影响显著。此外,碎
屑的成分、粒度、级配对工程性质也有一定的影响。 粘土岩和页岩的性质相近,抗压强度和抗剪强度低,受力后变形量大,浸水后易软化
和泥化。若含蒙脱石成分,还具有较大的膨胀性。这两种岩石对水工建筑物地基和建筑场 地边坡的稳定都极为不利,但其透水性小,可作为隔水层和防渗层。
岩石力学教案PPT课件
岩石的应力-应变关系
应力
指作用在岩石上的外力,包括压、 拉、剪等。
应变
指岩石在应力作用下发生的形变。
应力-应变曲线
描述岩石在受力过程中应力与应变 的关系曲线,通常呈现非线性的特 点。
岩石的破裂机制与强度准则
破裂机制
描述岩石在受力过程中如何达到破坏 状态的过程。
强度准则
用于预测岩石在不同应力状态下是否 会发生破坏的准则,如莫尔圆准则等 。
岩土体加固、滑坡治理等。
岩石力学的发展历程
19世纪初
20世纪80年代以来
岩石力学作为一门独立的学科开始形 成,最初的研究主要集中在岩石的强 度和变形特性方面。
数值计算和计算机技术的快速发展为岩 石力学提供了新的研究手段,推动了岩 石力学在理论和应用方面的深入研究。
20世纪50年代
随着工程建设的快速发展,岩石力学的 研究范围不断扩大,开始涉及到岩体的 稳定性分析、岩土工程设计等方面。
总结词
介绍岩石的变形和弹性模量,以及它们 对岩石力学性质的影响。
VS
详细描述
岩石的变形是指在外力作用下岩石发生的 形状变化,而弹性模量则表示岩石在受到 外力作用时抵抗变形的能力。变形和弹性 模量是衡量岩石力学性质的重要参数。一 般来说,变形较小、弹性模量较大的岩石 具有更好的承载能力和稳定性。
03 岩石的力学性质
岩石的强度准则是指岩石在 不同受力状态下的破坏准则 ,如库仑-纳维准则、莫尔库仑准则等。
能量守恒定律是自然界的基 本定律之一,它指出能量不 能凭空产生也不能凭空消失 ,只能从一种形式转化为另 一种形式。在岩石力学中, 能量守恒定律可以用来分析 岩石的破裂和变形过程。
05 岩石力学实验与案例分析
《岩石力学》(完整版)PPT课件
平行层面波速/垂直岩层波速=各向异性系数C C=1.08-2.28;多数:C=1.67 相当一部分:c=1.10
.
43
表3-6
.
44
•交通方面 :北京道路面积4.4m2/人;东京11.3m2/ 人;伦敦21.3m2/人。
.
4
1.3 岩体力学的研究方法
研究方法:实验、理论分析与工程应用相结合
实验 理论
室内
岩块(拉、压、剪…) 模拟 收敛(表面位移)
野外 位移 应力
应变 绝对位移、相对位移(内部)
压力 连介
非连介
有限元
数值方法 离散元
VP0.3 51.88
.
34
.
35
二、岩体波速与岩体中裂隙或夹层的关系
弹性波在岩体中传播时,遇到裂隙,则视
充填物而异。若裂隙中充填物为空气,则弹 性波不能通过,而是绕过裂隙断点传播。在 裂隙充水的情况下,声能有5%可以通过, 若充填物为其他液体或固体物质,则弹性波 可部分或完全通过。弹性波跨越裂隙宽度的 能力与弹性波的频率和振幅有关.
.
29
.
30
根据实验结果整理的岩体动弹性模量见表(3-2)
.
31
动弹性模量与静弹性模量的比值
• 一般来说,岩体越坚硬越完整,则差 值越小,否则,差值就越大。
• 根据对比资料的统计,动弹性模量比 静弹性模量高百分之几至几十倍,如 图3-4所示。
• 从动弹性模量的数字来看,多集中 在 1 51305 0130MP之a间。
.
12
(二)渗透性
在一定的水压作用下,水穿透岩石的能力。反映 了岩石中裂隙向相互连通的程度,大多渗透性可用达 西(Darcy)定律描述:
《岩石力学教案》课件
《岩石力学教案》PPT课件第一章:岩石力学概述1.1 岩石力学的定义岩石力学的定义和研究对象岩石力学的应用领域1.2 岩石的物理和力学性质岩石的物理性质岩石的力学性质1.3 岩石力学的研究方法实验研究理论分析和数值模拟第二章:岩石的力学行为2.1 岩石的弹性行为弹性模量和泊松比弹性应变和应力2.2 岩石的塑性行为塑性应变和应力岩石的屈服和破坏2.3 岩石的断裂行为断裂韧性和断裂强度断裂准则第三章:岩石的变形和强度3.1 岩石的变形线应变和切应变弹性变形和塑性变形3.2 岩石的强度压缩强度和拉伸强度剪切强度和抗弯强度3.3 岩石的流变行为粘弹性理论和流变模型岩石的长期强度和蠕变特性第四章:岩石力学实验4.1 岩石力学实验方法实验设备和原理实验步骤和数据采集4.2 岩石力学实验案例压缩实验剪切实验弯曲实验4.3 实验结果分析和讨论实验数据的处理和分析实验结果的可靠性和精度第五章:岩石力学在工程中的应用5.1 岩石工程中的岩石力学问题岩体支护和加固设计5.2 岩土工程中的岩石力学应用岩土工程的稳定性分析岩土工程的支护和加固技术5.3 采矿工程中的岩石力学应用矿山压力和岩层控制矿山支护和通风技术第六章:岩石力学数值模拟6.1 数值模拟方法概述有限元方法离散元方法有限差分方法6.2 岩石力学数值模型连续介质模型离散介质模型6.3 数值模拟案例分析岩体稳定性分析岩石破裂过程模拟第七章:岩石力学在地质工程中的应用7.1 地质工程中的岩石力学问题地质灾害防治7.2 地质工程中的岩石力学应用隧道工程基坑工程7.3 地球物理勘探中的岩石力学地震勘探地球物理测井第八章:岩石力学在土木工程中的应用8.1 土木工程中的岩石力学问题大坝和水库岩体稳定性道路和桥梁基础稳定性8.2 土木工程中的岩石力学应用岩体支护和加固岩体锚固技术8.3 地质灾害防治中的岩石力学滑坡防治岩体崩塌防治第九章:岩石力学在采矿工程中的应用9.1 采矿工程中的岩石力学问题矿山压力和岩层控制矿山支护和通风技术9.2 采矿工程中的岩石力学应用地下开采技术露天开采技术9.3 矿山安全与环境保护矿山安全评价矿山环境保护措施第十章:岩石力学的未来发展趋势10.1 岩石力学研究的新理论连续介质力学的发展非连续介质力学的研究10.2 岩石力学研究的新技术先进的测试技术数字图像分析技术10.3 岩石力学在可持续发展中的作用绿色岩石力学可持续岩石工程设计重点和难点解析重点环节1:岩石的物理和力学性质岩石的物理性质包括密度、孔隙度、渗透率等,这些性质对岩石的力学行为有重要影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Gk— 承台及承台上土自重标准值(kN); Ra — 单桩竖向承载力设计值(kN)。
偏心受压:n(1.1~1.2)Fk Gk Ra
试算至合适为止。
2 桩的中心距
见书表8-20,一般为(3~4)d 灌注桩扩底端最小中心距:
有柱对承台冲切和桩对承台冲切, 见图,其受冲切承载力应满足下式要求:
FL0.90.5ftUmh0
式中: — 冲跨比,a0/h0,满足0.3~1.0, 桩对承台冲切时,=1.0;
ft — 承台混凝土轴心抗拉强度设计 值(kPa);
Um — 冲切破坏锥体h0/2处的周长(m);
h0 — 承台冲切锥体的有效高度(m); FL — 作用于冲切锥体上的冲切力设计值(kN); a0 — 冲跨(m),即柱边到桩边的水平距离。
据结构类型、楼层数目、荷载 性质、地基条件和施工能力确定。
例:层 数 预制桩(mm) 灌注桩(mm)
<10
400
500
20~30
>500
1000~1200
地基条件:考虑持力层情况。
桩长由桩端持力层定,桩端应 进入坚实土(岩)层一定深度,规定:
粘性土和砂土:h>(2~3)d(桩径) 碎石土:h>d 嵌岩端承桩:hmin>0.5m
中心荷载: N 0FnGR
偏心荷载:
N m mia n x0Fn GM xy ym i2 aM x yx xm i2 ax 1.2R
2)《建筑地基基础设计规范》
中心荷载:
N
Fk 0
Gk n
R
偏心荷载:
N m m ianx0 F k n G kM xy y k im 2 aM x yx x k im 2 a 1x .2R k
例题8-5:已知F=3900kN, Fk=3120kN,M=400kN·m, Mk=320kN·m,T=50kN, Tk=,40kN,地基土层分布及物 理力学性质试验结果见下表,采用钢筋砼预制桩,桩截面
尺寸300mm× 300mm,桩长10m,单桩现场静载荷试验结 果P-s曲线如图8.29所示。设计此工程的桩基础。
式中 Qi —第i根桩的桩顶外力设计值(kN),一 般宜扣除桩基承台自重及承台上的 土重;
Mx 、 My— 垂直y轴x轴方向计算截面处的弯矩 设计值(kN·m);
xi 、 yi— 垂直y轴x轴方向自桩轴线到相应计算 截面的距离(m)。
3 承台厚度及强度计算
先按冲切计算,后按剪切复核。按 《混凝土结构设计规范》(GB50010- 2002)进行。
≥C20
≥d/2 (3~4)d
大于500mm 大于300
mm d
2 承台的内力计算 多桩矩形承台
多桩矩形承台计算截面可取在柱 边和承台高度变化处,如下图所示 ,计算截面的设计弯矩可按下式确 定:
Q FGR n
Mx My
Qi Qi
yi xi
Qi F nGMxyyi2i
Myyi yi2
H>5d (如图)
h
硬 层
H
承台埋深同浅基,d>0.5m; 要满足结构要求,方便施工。
6.4.2 单桩竖向承载力确定
《建筑桩基技术规范》
不考虑群桩效应与承台效应时,按2.3节单 桩竖向承载力确定方法进行。
考虑群桩效应与承台效应时,按复合基桩 的竖向承载力确定方法进行。
《建筑地基基础设计规范》
按2.3节单桩竖向承载力确定方法进行。考 虑群桩效应与承台效应时,进行地基承载力验 算(假想实体深基础)。
2、地基承载力验算 假想实体深基础。
中心荷载:
P FGf A
偏心荷载: Pm mia nxFA GW MxxW Myy 1.2f
3、桩基沉降验算 部分桩基需进行。
6.4.5 承台设计
1 构造要求
如图
混凝土等级大于C15; 保护层厚大于50mm; 配筋按计算定(见下)
b>500mm
50~100mm
6.4.3 确定桩数及布置桩位
1 桩的根数n
《建筑桩基技术规范》 轴心受压: n F G R 式中:F — 作用在桩基上的竖向力设计 值(kN);
G — 承台及承台上土的重力(kN); R — 单桩竖向承载力设计值(kN)。
偏心受压:n(1.1~1.2)FG R
试算至合适为止。
《建筑地基基础设资料(上部结构、工程地质、施 工方面、当地经验、场地与环境条件等)。
桩基础设计的内容与步骤:
定桩型、桩长和桩的截面尺寸,初选 承台底面标高; 定单桩承载力R; 定桩数及桩位布置; 承台设计; 群桩承载力及其验算; 桩基中各桩的受力验算。
6.4.1 桩型、桩长和截面尺寸的选择
220
例题 某建筑场地地质情况如图8-29 所示。已知柱截面尺寸为600600mm2,作 用在基础顶面的竖向荷截面设计值 F=2800kN,弯矩设计值M=600kNm,水平 力 设 计 值 H=65kN , 基 础 顶 面 离 设 计 地 面 0.5m,拟采用300300mm2钢筋混凝土预制 桩,试设计该桩基础。
钻、挖孔灌注桩 1.5D或D+1m(当D>2m) 沉管夯扩灌注桩 2D
3 桩位的布置 方形(或矩形)、三角形、梅花形、单排、双排。
原则:尽可能使上部结构的 中心与桩群横截面的形心重合或 接近。
6.4.4 桩基础验算
1单桩承载力验算 2地基承载力验算 3桩基沉降验算
1、单桩承载力验算 1)《建筑桩基技术规范》
桩基承台梁斜截面的抗剪承载力,按下式计算: 0.2
V1.5 fcbh0
式中:V — 斜截面的最大剪力设计值(kN); fc — 混凝土轴心抗压强度设计值(kPa); h0 — 承台计算截面处的有效高度(m);
b — 承台验算截面的宽度(m),可取验 算截面上、下边的平均值;
λ— 计算截面的剪跨比,λ=ap/h0;ap为柱 (墙)边或承台台阶边至最近一排桩 桩边的距离。当λ<1.4时,取λ=1.4; 当λ>3时,取λ =3。
土层 土的 层厚 W/ γ e Ip IL Sr C φ Es Fak
编号 名称 (m) %
/kpa
/Mpa /kpa
人工
1 填土 2.0
16.0
2
灰色 粘土 8.5 38.2 18.9 1.0 19.8 1.0 0.96 12 18.6 4.6
115
3
粉质 粘土 6.8 26.7 19.6 0.78 15.0 0.6 0.98 18 28.5 7.0