正余弦定理高考专题
2025高考数学一轮复习-正弦定理与余弦定理【课件】
cos B=____2_a_c____; a2+b2-c2
cos C=_____2_a_b_____
④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A
解斜
①已知三边,求各角;
三角 ①已知两角和任一边,求另一角和其他两条边;
②已知两边和它们的夹
形的 ②已知两边和其中一边的对角,求另一边和其他两角 角,求第三边和其他两
第四章 三角函数与解三角形
第22讲 解三角形
激活思维
1.在△ABC中,已知a=7,b=5,c=3,则角A的大小为
(
A)
A.120°
B.90°
【解析C】.由60余°弦定理知 cos A=b2+2cb2c-a2D=.-4125,°所以 A=120°.
2.在△ABC 中,设 b=5,c=5 3,A=30°,则 a=
问题
个角
2.三角形常用面积公式
(1) S=12a·ha(ha 表示边 a 上的高); (2) S=12ab sin C=12ac sin B=12bc sin A.
3.在△ABC中,已知a,b和A时,解的情况
A为锐角
A为钝角或直角
图形
关系式 解的个数
a=b sin A __一__解____
b sin A<a<b ___两__解___
6+ 2
则由正弦定理sinb B=sinc C,得 c=bssininBC=2ssiinn6705°°=2×
4 3
=
2+
6 3.
2
6
3 A=4,B=π,b= 3,则 a=5______,c=____5________.
53
【解析】由 cos A=45,可知 A 为锐角,所以 sin A= 1-cos2A=35.由正弦定理,得 a=
正、余弦定理的应用-高考数学复习
×2×( 3 +1)×
3
1
1
1
= ×2× AD × + ×(
2
2
2
2
×( 3 +1)= AD +
3+1
AD ,解得 AD =2.
2
1
3 +1)× AD × ,即
2
3
2
6
法二:在△ ABC 中,由正弦定理得
=
,即
=
,得
sin
sin∠
sin
sin60°
sin C =
2
.
2
又知0°< C <120°,∴ C =45°,∴ B =75°.
2 7×2
14
∴ sin B = 1
∴tan
− 2 =
sin
3
B=
= .
cos
5
1−
25
21
=
,
28
14
(2)若 b 2+ c 2=8,求 b , c .
[解](2)如图所示,延长 AD 至 E ,使 DE = AD ,连接 BE , CE ,
易得四边形 ABEC 为平行四边形,∴ AB = CE , AC = BE .
即( 6 )2=22+ AC 2-2×2× AC × cos 60°,即 AC 2-2 AC -2=
0,解得 AC =1+ 3 或 AC =1- 3 (舍).由于 AD 平分∠ BAC ,且∠ BAC
1
=60°,∴∠ BAD =∠ CAD =30°.∵ S △ ABC = S △ ABD + S △ ACD ,∴
即 3 cos B sin C = sin C sin B ,因为 sin C ≠0,
2024全国高考真题数学汇编:正弦定理与余弦定理
2024全国高考真题数学汇编正弦定理与余弦定理一、单选题1.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A B C D 二、解答题2.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.3.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .4.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.5.(2024北京高考真题)在ABC 中,,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.参考答案1.C【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,由正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.2.(1)4(3)5764【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.(2)法一:因为B 为三角形内角,所以sin 16B =,再根据正弦定理得sin sin a b A B =,即4sin A =sin 4A =,法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin 4A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知sin B =因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()9157cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯+⨯=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以sin 16B ===,所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=⨯=3.(1)π3B =(2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===因为()0,πC ∈,所以sin 0C >,从而sin 2C =,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.(2)由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而,a b ===,由三角形面积公式可知,ABC的面积可表示为21113sin 222228ABC S ab C c c ==⋅= ,由已知ABC的面积为32338c =所以c =4.(1)π6A =(2)2+【分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 122A A +=,即sin()1π3A +=,由于ππ4π(0,π)(,)333A A ∈⇒+,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A得到:224cos 30(2cos 0A A A -+=⇔=,解得cos 2A =,又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos sin f A A A '==,即tan 3A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=,又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,2222)sin 211t t A A t t-+==+++,整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=,由正弦定理可得,sin sin sin a b cA B C==,即2ππ7πsin sin sin 6412bc==,解得b c ==故ABC的周长为2+5.(1)2π3A =;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B =,因为A 为钝角,则cos 0B ≠,则2sin 7B =,则7sin sin sin b a BA A ==,解得sin 2A =,因为A 为钝角,则2π3A =.(2)选择①7b =,则sin 7B ==2π3A =,则B 为锐角,则3B π=,此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin B ,则代入2sin 7B =得2147⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B⎛⎫=+=+=+ ⎪⎝⎭131142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7322ABC S ab C ==⨯⨯选择③sin c A =2c ⨯=5c =,则由正弦定理得sin sin a c A C =5sin C,解得sin 14C =,因为C为三角形内角,则11cos 14C ==,则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+⎪⎝⎭111142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7522ABC S ac B ==⨯⨯=△。
超实用高考数学重难点专题复习:正弦定理和余弦定理
4.用余弦定理判断三角形的形状 在△ABC 中,a,b,c 分别为角 A,B,C 的对边,当 b2+c2 -a2>0 时,可知 A 为锐角;当 b2+c2-a2=0 时,可知 A 为直 角;当 b2+c2-a2<0 时,可知 A 为钝角.
3.口诀第3、4句在△ABC 中,角 A,B,C 所对的边分别为 a,b,
c,已知 sin2B+sin2C=sin2A+sin Bsin C.
(2)若 cos B=13,a=3,求 c 的值. 解:由(1)可知 sin A= 23,
因为 cos B=13,B 为△ABC 的内角,所以 sin B=232,
又 sin(B+C)=sin A,得 sin A=1,
即 A=π2,因此△ABC 是直角三角形.
法二:因为 bcos C+ccos B=b·a2+2ba2b-c2+c·a2+2ca2c-b2=
22aa2=a,所以 asin A=a,即 sin A=1,故 A=π2,因此△ABC
是直角三角形.
[答案] B
2× 2
2 2 =12,
又 0<C<π4,所以 C=π6.
答案:B
3.口诀第3、4句在△ABC 中,角 A,B,C 所对的边分别为 a,b, c,已知 sin2B+sin2C=sin2A+sin Bsin C. (1)求角 A 的大小; 解:由正弦定理可得 b2+c2=a2+bc, 由余弦定理得 cos A=b2+2cb2c-a2=12, 因为 A∈(0,π),所以 A=π3.
(2)由正弦定理可得
c2-c-b a=sin
正余弦定理的高考真题
一.正弦定理1(07湖南)在ABC ∆中,角A ,B ,C 所对的边分别为a,b,c ,若a=1,c=3,C=3π则A=( ) 2(06湖北)在ABC ∆中,已知a=,30,4,3340==A b sinB=( ) 3(07北京)在ABC ∆中,若tanA=31,0150=∠C ,BC=1,则AB=( ) 4(07重庆)在ABC ∆中,AB=3,0075,45=∠=∠C A ,则BC=( ) A 3-3 B 2 C 2 D 3+35(06山东)在ABC ∆中,角A ,B ,C 所对的边分别为a,b,c ,已知A=3π,a=3,b=1,则c=( ) A 1 B 2 C 3-1 D 36(05北京)在ABC ∆中,AC=3,0075,45=∠=∠C A ,则BC 的长为( ) 7若ABC ∆的周长为7.5cm ,且sinA :sinB :sinC=4:5:6,则下列式子中成立的个数是( )① a :b :c=4:5:6 ②a :b :c=2:5:6 ③a=2,b=2.5c=3 ④A :B :C=4:5:6A 0B 1C 2D 38在ABC ∆中,A=600,13=a ,则=++++CB A c b a sin sin sin ( ) A 338 B 3392C 3326 D23 二.余弦定理1(06江苏)在ABC ∆中,已知BC=12,A=600,B=450,则AC=( )2(07重庆)在ABC ∆中,AB=1,BC=2,B=600,则AC=( )3(07湖南)在ABC ∆中,角A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B=( )4(05上海)在ABC ∆中,若0120=∠A ,AB=5,BC=7,则AC=( )5(06辽宁)在ABC ∆中,角A ,B ,C 所对的边分别为a,b,c ,设向量m =(a+c ,b ),n =(b-a ,c-a)若m//n ,则角C 的大小为( ) A 6π B 3π C 2π D 32π 6(06全国)在ABC ∆中,角A ,B ,C 所对的边分别为a,b,c ,若a,b,c 成等比数列,且c=2a ,则cosB=( ) A 41 B 43 C 42 D 32 7(06辽宁)已知等腰三角形ABC 的腰为底的2倍,则顶角A 的正切值为( ) A 23 B 3 C 815 D 715 8(06四川)在ABC ∆中,角A ,B ,C 所对的边分别为a,b,c ,则a 2=b(b+c)是A=2B 的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件9(07天津)在ABC ∆中,AB=2,AC=3,D 是边BC 的中点,则−→−∙−→−BCAD =( )10(07天津)在ABC ∆中,0120=∠BAC ,AB=2,AC=1,D 是BC 上一点,DC=2BD ,−→−∙−→−BCAD =( ) 11(06全国理)在ABC ∆中,角A ,B ,C 所对的边分别为a,b,c ,若A ,B ,C 成等差数列,则AB=1,BC=4,则边BC 上的中线AD 的长为( )三.正弦定理与余弦定理的综合应用1(06北京)在ABC ∆中,若sinA :sinB :sinC=5:7:8,则B ∠的大小是( ) 2在ABC ∆中,sinA :sinB :sinC=3:2:4,则cosC 的值为( ) A-41 B 41 C-32 D 32 3在ABC ∆中,C C B B A 222sin sin sin sin sin ++=,则∠A=( )A300 B 060 C 0120 D 01504(05江苏)在ABC ∆中,A=3π,BC=3,则ABC ∆的周长为( ) A 3)3sin(34++πB B 3)6sin(34++πB C 3)3sin(6++πB D 3)6sin(6++πB5(05辽宁)若钝角三角形三内角的度数成等差数列,且最大边与最小边的比值为m ,则m 的范围是( )A (1,2)B (2,)∞+C [3,)∞+D (3,)∞+6锐角ABC ∆中,B=2A ,则ab 的取值范围是( ) A (-2,2) B (0,2) C (2,2) D 3,2)7钝角三角形边长为a,a+1,a+2,其最大角不超过1200,则a 的取值范围是( ) A (0,30 B[23,3) C (2,3] D[1,)25 8(07广东)已知三个顶点的直角坐标分别为A (3,4),B (0,0)C (c ,0)。
专题24 正弦定理和余弦定理-2020年领军高考数学一轮复习(文理通用)(解析版)
2020年领军高考数学一轮复习(文理通用)专题24正弦定理和余弦定理最新考纲掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.基础知识融会贯通1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.在△ABC 中,已知a ,b 和A 时,解的情况3.三角形常用面积公式(1)S =12a ·h a (h a表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形内切圆半径).【知识拓展】 1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C 2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sinA +B 2=cosC 2;(4)cos A +B 2=sin C 2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ; b =a cos C +c cos A ; c =b cos A +a cos B .重点难点突破【题型一】利用正、余弦定理解三角形【典型例题】已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,△ABC 的面积为S ,且.(1)若C =60°且b =1,求a 边的值;(2)当时,求∠A 的大小.【解答】解:(1)由,,∴a =2b •sin C ,∵C =60°且b =1,∴a ;(2)当时,,∵b2+c2﹣2bc•cos A,∴,即,∴,得sin(A)=1.∵A∈(0,π),∴A∈(),则A,得A.【再练一题】在△ABC中,AB=6,.(1)若,求△ABC的面积;(2)若点D在BC边上且BD=2DC,AD=BD,求BC的长.【解答】(本小题满分12分)解:(1)由正弦定理得:,所以sin C=1,,所以,所以.(2)设DC=x,则BD=2x,由余弦定理可得解得:所以.思维升华(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【题型二】和三角形面积有关的问题【典型例题】△ABC的内角A,B,C所对的边分别为a,b,c,已知.(1)求角A;(2)若a=2,求△ABC面积的最大值.【解答】解:(1)由及正弦定理得:,因为sin B≠0,所以,即.因为0<A<π,所以.……………………………………(2)因为a=2,所以,所以,因为,所以当且仅当时S△ABC最大,所以S△ABC最大值为.………………【再练一题】如图所示,在平面四边形ABCD中,若AD=2,CD=4,△ABC为正三角形,则△BCD面积的最大值为.【解答】解:设∠ADC =α,∠ACD =β,由余弦定理得:AC 2=42+22﹣2×4×2cos α=20﹣16cos α,∴cos β,又由正弦定理可得,则sin β,∴S △BCD BC •CD •sin (β)=2BC (sin βcos β)=2BC •(••)=4sin (α)+4,故△BCD 面积的最大值为4+4,故答案为:4+4思维升华 (1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【题型三】正弦定理、余弦定理的简单应用命题点1 判断三角形的形状 【典型例题】已知a .b .c 分别是△ABC 的内角A 、B 、C 的对边,若c <b cos A ,则△ABC 的形状为( ) A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【解答】解:∵c <b cos A ,∴利用正弦定理化简得:sin C =sin (A +B )=sin A cos B +cos A sin B <sin B cos A , 整理得:sin A cos B <0, ∵sin A ≠0, ∴cos B <0. ∵B ∈(0,π),∴B 为钝角,三角形ABC 为钝角三角形. 故选:A .【再练一题】在△ABC中,若22,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【解答】解:∵22,∴c2﹣a2=bc cos A,∴c2﹣a2=bc•,化简可得:c2=a2+b2,∴△ABC是直角三角形.故选:B.命题点2求解几何计算问题【典型例题】在△ABC中,A,B,C的对边分别是a,b,c,且b=2,B=60°,△ABC的面积为,则a+c=()A.4 B.C.2 D.【解答】解:△ABC中,b=2,B=60°,所以△ABC的面积为S ac sin B ac•,解得ac=4;又b2=a2+c2﹣2ac cos B,即4=a2+c2﹣ac=(a+c)2﹣3ac=(a+c)2﹣12,所以(a+c)2=16,解得a+c=4.故选:A.【再练一题】如图,D是直角△ABC斜边BC上一点,∠BAC=90°,.(1)设∠DAC=30°,求角B的大小;(2)设BD=2DC=2x,且,求x的值.【解答】解:(1)在△ABC中,根据正弦定理,有.∵AC DC,∴sin∠ADC sin∠DAC.又∠ADC=∠B+∠BAD=∠B,∴∠ADC,∴∠C=π,∴∠B;(2)设DC=x,则BD=2x,BC=3x,AC x,∴sin B,cos B,AB x.在△ABD中,AD2=AB2+BD2﹣2AB•BD•cos B,即:(2)2=6x2+4x2﹣2x×2x2x2,得:x=2.故DC=2.思维升华(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系.②化角:通过三角恒等变换,得出内角的关系,此时要注意应用A+B+C=π这个结论.(2)求解几何计算问题要注意:①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.基础知识训练1.【贵州省贵阳市2019届高三2月适应性考试(一)】平行四边形ABCD 中,AB=2,AD=3,AC=4,则BD=( ) A .4 BCD【答案】B 【解析】 如图所示:平行四边形ABCD 中,AB=2,AD=3,AC=4, 则:在△ABC 中,AB=2,BC=3,AC=4,利用余弦定理:22249161cos 22234AB BC AC ABC AB BC +−+−∠===−⋅⋅⋅,故:1cos cos 4DAB ABC ∠=−∠=, 则:2222?•DAB BD AD AB AD AB cos ∠=+−, 解得:. 故选:B .2.【辽宁省丹东市2019届高三总复习质量测试】在ABC ∆中,1cos 3A =,2AB =,3BC =,则ABC ∆的面积为( ) A .1 B .2C .12x xD.【答案】C由余弦定理可知2222cos BC AB AC AB AC A =+−⋅⋅ 234150AC AC ⇒−−=3AC ⇒=,因为1cos 3A =,所以sin A ==因此1sin 2ABC S AB AC A ∆=⋅⋅= C. 3.【山东省烟台市2019届高三3月诊断性测试(一模)】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c,若1a =cos )cos 0A C C b A ++=,则角A =( )A .23πB .3πC .6πD .56π 【答案】D 【解析】∵1a =cos )cos 0A C C b A ++=,cos cos cos A C C A b A +=−,)cos A C B b A +==−,sin cos B b A =−,sin sin cos A B B A =−, ∵sin 0B >,cos A A =−,即:tan 3A =−, ∵(0,)A π∈, ∴56A π=. 故选:D .4.【山东省淄博市2019届部分学校高三阶段性诊断考试试题】在ABC ∆中,角,,A B C 对边分别是,,a b c ,满足22()6,3c a b C π=−+=,则ABC ∆的面积为( )A .B .2C .2D .32【答案】B,∴22226c a ab b =−++,又,由余弦定理可得: 222222cos c a b ab C a b ab =+−=+−∴ 222226a ab b a b ab −++=+−,解得:6ab =,由三角形面积公式可得1sin 22ABC S ab C ∆==故答案选B 。
高三一轮总复习高效讲义第4章第6节正弦定理、余弦定理及应用举例课件
[对点练]
1.在△ ABC中,c-2ca
=sin
2B 2
(a,b,c分别为角A,B,C的对边),则
△ ABC的形状为( )
A.直角三角形
B.等边三角形
C.等腰三角形或直角三角形 D.等腰直角三角形
解析:由cos
B=1-2sin
2B 2
得sin
2B 2
=1-co2s
B ,所以c-2ca =1-co2s
AE sin sin
45° 30°
=
2AB cos 15°
,因此CD=AD
sin
60°= cos
2×10 (45°-30°)
×sin 60°=10(3- 3 ).
答案:10(3- 3 )
备考第 2 步——突破核心考点,提升关键能力
考点1 利用正弦定理、余弦定理解三角形[自主演练]
1.△ ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin
答案:BC
4.在△ ABC中,内角A,B,C的对边分别为a,b,c,若a=4,b=5,b>c, △ ABC的面积为5 3 ,则c=________.
解析:由三角形面积公式,得12 ×4×5sin C=5 3 ,
即sin
C=
3 2
.又b>a,b>c,所以C为锐角,于是C=60°.
由余弦定理,得c2=42+52-2×4×5cos 60°,解得c= 21 .
3.(多选)在△ ABC中,角A,B,C所对的各边分别为a,b,c,若a=1,b= 2 ,
A=30°,则B等于( )
A.30°
B.45°
C.135°
D.150°
解析:根据正弦定理sina A =sinb B 得,
专题3.5 正弦定理和余弦定理(原卷版)
第三篇 三角函数与解三角形 专题3.5 正弦定理和余弦定理【考纲要求】掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 【命题趋势】正、余弦定理是解三角形的主要工具.高考中主要考查用其求三角形中的边和角及进行边、角之间的转化. 【核心素养】本讲的内容主要考查数学运算,直观想象的核心素养. 【素养清单•基础知识】 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径). a =2R sin A b =2R sin B c =2R sin C , sin A =a 2R sin B =b 2R sin C =c2R ,a ∶b ∶c =sin A ∶sin B ∶sin C , a sin B =b sin A , b sin C =c sin B , a sin C =c sin A , a +b +csin A +sin B +sin C =2R2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).4.在△ABC 中,已知a ,b 和A ,解三角形时解的情况【素养清单•常用结论】 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sinA +B 2=cosC 2;(4)cos A +B 2=sin C2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角. 【真题体验】1.【2019年高考全国Ⅱ卷理数】的内角的对边分别为.若,则的面积为_________.2.【2019年高考浙江卷】在中,,,,点在线段上,若,则___________,___________..3.【2019年高考全国Ⅰ卷理数】的内角A ,B ,C 的对边分别为a ,b ,c ,设.(1)求A ; (2)若,求sin C .4.【2019年高考全国Ⅲ卷理数】△ABC的内角A,B,C的对边分别为a,b,c,已知.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.5.【2019年高考北京卷理数】在△ABC中,a=3,b−c=2,cos B=.(1)求b,c的值;(2)求sin(B–C)的值.6.【2019年高考天津卷理数】在中,内角所对的边分别为.已知,.(1)求的值;(2)求的值.7.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =,cos B =,求c 的值;(2)若,求的值.【考法拓展•题型解码】考法一 利用正、余弦定理解三角形 解题技巧:应用正弦、余弦定理的解题技巧(1)求边:利用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin Csin A 或其他相应变形公式求解.(2)求角:先求出正弦值,再求角,即利用公式sin A =a sin B b ,sin B =b sin A a ,sin C =c sin Aa或其他相应变形公式求解.(3)已知两边和夹角或已知三边可利用余弦定理求解.(4)利用式子的特点转化:如出现a 2+b 2-c 2=λab 形式用余弦定理,等式两边是关于边或角的正弦的齐次式用正弦定理.【例1】 (2018·浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =__________,c =__________.【例2】 (2018·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.考法二 利用正、余弦定理判断三角形的形状解题技巧:利用正、余弦定理判断三角形形状的两种思路(1)“角化边”:利用正弦、余弦定理把已知条件转化为只含边的关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)“边化角”:利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论. 注意:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解. 【例3】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.考法三 与三角形面积有关的问题解题技巧:与三角形面积有关问题的常见类型及解题策略(1)求三角形的面积.对于公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用含哪个角的公式.(2)已知三角形的面积解三角形.与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化. 【例4】 (1)(2018·全国卷Ⅲ)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( ) A .π2B .π3C .π4D .π6(2)(2018·北京卷)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =__________;ca的取值范围是__________.【例5】 (2016·浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.【易错警示】易错点 判断三角形形状时容易漏解【典例】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,若tan A ∶tan B =a 2∶b 2,试判断△ABC 的形状.【错解】:因为sin A cos A ∶sin Bcos B =a2∶b2=sin2A ∶sin2B ,所以sin Acos B cos Asin B =sin2A sin2B ,整理得sin 2A =sin 2B ,所以A =B ,所以△ABC 为等腰三角形.【错因分析】:在△ABC 中,sin 2A =sin 2B 与2A =2B 是不等价的,我们知道,互为补角的两个角的正弦值也相等,因此,在求解过程中忽视了2A +2B =π这一特性,因而造成判断错误. 【正解】:因为sin A cos A ∶sin Bcos B =a 2∶b 2=sin 2A ∶sin 2B ,所以sin A cos B cos A sin B =sin 2A sin 2B ,整理得sin 2A =sin 2B ,所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形.【跟踪训练】 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形【递进题组】1.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( ) A .π12B .π6C .π4D .π32.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若直线bx +y cos A +cos B =0与ax +y cos B +cos A =0平行,则△ABC 一定是( ) A .锐角三角形 B .等腰三角形C .直角三角形D .等腰或者直角三角形3.(2018·全国卷Ⅰ)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b sin C+c sin B=4a sin B sin C,b2+c2-a2=8,则△ABC的面积为__________.4.(2018·北京卷)在△ABC中,a=7,b=8,cos B=-1 7.(1)求∠A;(2)求AC边上的高.【考卷送检】一、选择题1.(2019·武汉中学期中)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=1,b=3,A=30°,若B为锐角,则A∶B∶C=()A.1∶1∶3 B.1∶2∶3C.1∶3∶2 D.1∶4∶12.在△ABC中,∠A=45°,∠C=105°,BC=2,则边长AC=()A.3-1 B.1C.2 D.3+13.在△ABC中,AC=7,BC=2,B=60°,则BC边上的高等于()A.32B.332C.3+62D.3+3944.在△ABC中,若AB=2,AC2+BC2=8,则△ABC面积的最大值为() A. 2 B.2C. 3 D.35.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( ) A .直角三角形 B .等腰非等边三角形 C .等边三角形D .钝角三角形6.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B .932C .332D .3 3二、填空题7.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a ,b ,c 成等比数列.若sin B =513,cos B =12ac ,则a +c 的值为________.8.(2017·浙江卷)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.9.(2019·开封一模)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin A sin B =5c2b ,sin B =74,S △ABC =574,则b 的值为________. 三、解答题10.(2019·邢台质检)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且b =2a sin B ,tan A >0. (1)求角A 的大小;(2)若b =1,c =23,△ABC 的面积为S ,求a S .11.(2019·河南重点高中期中)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin 2A 2=c -b2c .(1)判断△ABC 的形状并加以证明; (2)当c =1时,求△ABC 周长的最大值.12.已知在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1,△ABC 的面积为12.(1)求sin ∠CAB 的值; (2)若∠ADC =π6,求CD 的长.13.(2019·重庆二中期中)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足b 2+c 2-a 2=bc ,AB →·BC →>0,a =32,则b +c 的取值范围是( ) A .⎝⎛⎭⎫1,32 B .⎝⎛⎭⎫32,32C .⎝⎛⎭⎫12,32D .⎝⎛⎦⎤12,32。
余弦定理和正弦定理(二)-高考数学复习
(1)若 D 是 BC 的中点,求 AD 的长度;
解:∵ AB =2, AC =4,△ ABC 的面积为2 3 ,
1
∴ S △ ABC = AB ·AC ·sin
2
∴ sin ∠ BAC =
1
∠ BAC = ×2×4×
2
3
,又∠ BAC 为钝角,
2
sin ∠ BAC =2 3 ,
目录
高中总复习·数学
A > sin B ;③ a - b < c < a + b 及三角函数的性质、三角恒等变
换公式等推导证明.
目录
高中总复习·数学
△ ABC 的内角 A , B , C 的对边分别为 a , b , c ,已知 cos
A )+
2( π +
2
5
cos A = .
4
(1)求 A ;
解:由已知得 sin
即 cos
2A-
2A+
5
cos A = ,
4
1
cos A + =0.所以(
4
1
cos A - )2=0,
2
1
cos A = .
2
π
由于0< A <π,故 A = .
3
目录
高中总复习·数学
(2)若 b - c =
3
a ,证明:△ ABC 是直角三角形.
3
解:证明:由正弦定理及已知条件可得 sin B - sin C =
又 sin
2A+
cos
2 A =1,∴
3 10
sin A =
.
10
目录
高中总复习·数学
(2)设 AB =5,求 AB 边上的高.
高考第二轮复习利用正余弦定理解三角形课件
π ∵C∈(0,π),∴C= 3 . (2)由(1)及余弦定理得 cos C=a2+2ba2b-c2=21, 又 c=2 3,∴a2+b2-12=ab, ∴(a+b)2-12=3ab≤3a+2 b2, 即(a+b)2≤48(当且仅当 a=b=2 3时等号成立). ∴△ABC 周长的最大值为 6 3.
【解析】 ∵bsin C+csin B=4asin Bsin C, ∴由正弦定理得 sin Bsin C+sin Csin B=4sin Asin Bsin C.
又 sin Bsin C>0,∴sin A=21. 由余弦定理得 cos A=b2+2cb2c-a2=28bc=b4c>0,
∴cos A= 23,bc=co4s A=833,
【解析】 (1)根据正弦定理,由已知得 (sin A-2sin B)cos C+sin Ccos A=0. 即 sin Acos C+sin Ccos A=2sin Bcos C, ∴sin(A+C)=2sin Bcos C, ∵A+C=π-B,∴sin(A+C)=sin(π-B)=sin B>0, ∴sin B=2sin Bcos C,∴cos C=12.
【解析】 (1)方法一:由 2ccos B=2a+b 及余弦定理,得 2c·a2+2ca2c-b2=2a+b,
得 a2+c2-b2=2a2+ab,即 a2+b2-c2=-ab, ∴cos C=a2+2ba2b-c2=-2aabb=-21, 又 0<C<π,∴C=23π.
方法二:∵sina A=sinb B=sinc C, ∴由已知可得 2sin Ccos B=2sin A+sin B, 则有 2sin Ccos B=2sin(B+C)+sin B, ∴2sin Bcos C+sin B=0, ∵B 为三角形的内角,∴sin B≠0,∴cos C=-12. ∵C 为三角形的内角,∴C=2π 3 .
2025年高考数学一轮复习-4.6-正弦定理和余弦定理【课件 】
(注: 为 外接圆的半径)
2.三角形常用面积公式
(1) ( 表示边 上的高).
(2) __________=__________.
(3) ( 为三角形内切圆半径).
(4) .
【练一练】
1.判断正误(正确的打“√”,错误的打“×”)
2.(2023·福建泉州模拟)设 的内角 , , 所对的边分别为 , , ,已知 ,则 _ _.
解析:由题意,得 ,又 ,所以 .
核心考点 师生共研
02
考点一 利用正、余弦定理解三角形(自主练透)
1.在 中,已知 , , ,则此三角形的解的情况是( )A.有一解 B.有两解C.无解 D.有解但解的个数不确定
解析:选C.在 中,设 , , ,由余弦定理得 ,因为 为 的内角,所以 .故选C.
√
3.已知 中, , , ,则 ( )A. B. C. D.
解析:选D.由正弦定理,得 ,得 .又 ,所以 ,所以 .故选D.
√
4.在 中,角 , , 所对的边分别为 , , ,若 , , ,则 ____, ___.
解析:选C.由正弦定理得 ,所以 ,所以 不存在,即满足条件的三角形不存在.
√
2.在 中,内角 , , 所对的边分别为 , , ,已知 , , ,则 _ _, ___.
5
解析:在 中,由正弦定理得 ,所以 ,所以 .在 中,由余弦定理得 ,得 ,即 ,解得 或 ,经检验, 不符合要求,所以 .
3.(2023·甘肃省第一次诊断考试)在 中,角 , , 的对边分别为 , , ,且 , , ,则 ___.
2
解析:因为 ,所以由正弦定理得 ,又 ,所以 ,因为 ,所以 .由余弦定理 ,得 ,化简得 ,解得 或 (舍去),故 .
全国版2024高考数学一轮复习第4章三角函数解三角形第4讲正余弦定理及解三角形试题1理含解析
第四章 三角函数、解三角形第四讲 正、余弦定理及解三角形练好题·考点自测1.[2024全国卷Ⅲ,7,5分][理]在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19 B.13 C.12 D.232.[2024 山东,9, 5分][理]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若△ABC 为锐角三角形,且满意sin B (1+2cosC )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A.a =2bB.b =2aC.A =2BD.B =2A3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =18,b =24,A =45°,则此三角形( ) A.无解 B.有一解 C.有两解D.解的个数不确定4.下列说法正确的是(△ABC 中,角A ,B ,C 的对边分别为a ,b ,c )( ) ①在△ABC 中,若A >B ,则必有sin A >sin B ; ②在△ABC 中,若b 2+c 2>a 2,则△ABC 为锐角三角形;③在△ABC 中,若A =60°,a =4√3,b =4√2,则B =45°或B =135°;④若满意条件C =60°,AB =√3,BC =a 的△ABC 有两个,则实数a 的取值范围是(√3,2); ⑤在△ABC 中,若a cos B =b cos A ,则△ABC 是等腰三角形. A.①③④⑤ B.①②③④ C.①④⑤D.①③⑤5.[2024全国卷Ⅱ,15,5分][理]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若b =6,a =2c ,B =π3,则△ABC 的面积为 .6.[2024浙江,14,6分]在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上.若∠BDC =45°,则BD = ,cos∠ABD = .7.[2024全国卷Ⅱ,13,5分][理]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b = .8.[2024深圳市高三统一测试]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )= (a -c )sin C ,b =2,则△ABC 的外接圆面积为 .9.[湖北高考,5分][理]如图4-4-1,一辆汽车在一条水平的马路上向正西行驶,到A 处时测得马路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD = m .图4-4-1 拓展变式1.(1)[2024江淮十校联考]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2a sin A -b sin B =2c sin C ,cos A =14,则sinB sinC=( ) A.4 B.3 C.2 D.1(2)在锐角三角形ABC 中,b =2,a +c =√7(a >c ),且满意2a sin B cos C +2c sin B cos A =√3b ,则a -c = . 2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c , (1)若cb <cos A ,则△ABC 的形态为 .(2)若c -a cos B =(2a -b )cos A ,则△ABC 的形态为 .3.[2024河南洛阳4月模拟]在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c. (1)若△ABC 的面积S 满意4√3S +c 2=a 2+b 2,c =√7,a =4,且b >c ,求b 的值; (2)若a =√3,A =π3,且△ABC 为锐角三角形,求△ABC 周长的取值范围.4.[2024全国卷Ⅰ,17,12分][理]在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5. (1)求cos∠ADB ; (2)若DC =2√2,求BC.5.(1)[解三角形与数列、基本不等式综合]设△ABC 的角A ,B ,C 成等差数列,且满意sin(A -C )-sin B =-√32,BC 延长线上有一点D ,满意BD =2,则△ACD 面积的最大值为( ) A .1 B .√34C .√32D .√63(2)[新课标全国Ⅰ,5分][理]在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 6.[2024山东,15,5分]某中学开展劳动实习,学生加工制作零件,零件的截面如图4-4-6所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH ∥DG ,EF =12 cm ,DE =2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为 cm 2.图4-4-6答 案第四讲 正、余弦定理及解三角形1.A 由余弦定理得AB 2=AC 2+BC 2-2AC ×BC ×cos C =16+9-2×4×3×23=9,AB =3,所以cos B =9+9-162×9=19,故选A .2.A 由题意可知sin B +2sin B cos C =sin A cos C +sin(A +C ),即2sin B cos C =sin A cos C ,又cos C ≠0,故2sin B =sin A ,由正弦定理可知a =2b.故选A.3.C ∵b sin A =12√2<a <b ,∴三角形有两解.4.C 对于①,在△ABC 中,若A >B ,则a >b ,a 2R >b2R (R 为△ABC 的外接圆的半径),即sin A >sin B ,①正确;对于②,在△ABC 中,若b 2+c 2>a 2,则A 是锐角,但△ABC 不肯定是锐角三角形,②错误;对于③,由a sinA =b sinB 得sin B =ba sinA √24√3×√32=√22,因为a >b ,所以B <A ,所以B =45°,③错误;对于④,由条件可得BC sin C <AB <BC ,即√32a <√3<a ,解得√3<a <2,④正确;对于⑤,由a cos B =b cos A 得sinA cosB =sin B cos A ,即sin(A -B )=0,又A ,B 为三角形的内角,所以A =B ,故△ABC 是等腰三角形,⑤正确.故选C .5.6√3 因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =2 √3,所以a =4√3,所以△ABC 的面积S =12ac sin B =12×4 √3×2√3×sin π3=6√3.6.12√257√210 在Rt△ABC 中,易得AC =5,sin C =AB AC =45.在△BCD 中,由正弦定理得BD =BC sin∠BDC ×sin∠BCD =√2245=12√25,sin∠DBC =sin[180°-(∠BCD +∠BDC )]=sin(∠BCD +∠BDC )=sin∠BCD cos∠BDC +cos∠BCD sin∠BDC =45×√22+35×√22=7√210.又∠ABD +∠DBC =90°,所以cos∠ABD =sin∠DBC =7√210.7.2113解法一 因为cos A =45,cos C =513,所以sin A =35,sin C =1213,从而sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.由正弦定理a sinA =b sinB ,得b =asinB sinA =2113. 解法二 因为cos A =45,cos C =513,所以sin A =35,sin C =1213,从而cos B =-cos(A +C )=-cos A cos C +sin A sin C =-45×513+35×1213=1665.由正弦定理a sinA =c sinC ,得c =asinC sinA =2013. 由余弦定理b 2=a 2+c 2-2ac cos B ,得b =2113.解法三 因为cos A =45,cos C =513,所以sin A =35,sin C =1213, 由正弦定理a sinA=c sinC,得c =asinC sinA=2013.从而b =a cos C +c cos A =2113.8.43π 利用正弦定理将已知等式转化为(a +b )(a -b )=(a -c )c ,即a 2+c 2-b 2=ac ,所以由余弦定理得cos B =a 2+c 2-b 22ac=12,因为0°<B <180°,所以B =60°.设△ABC 的外接圆半径为R ,则由正弦定理知,2R =b sinB=√3,R =√3,所以△ABC 的外接圆面积S =πR 2=43π.9.100√6 由题意,得∠BAC =30°,∠ABC =105°.在△ABC 中,因为∠ABC +∠BAC +∠ACB =180°,所以∠ACB =45°. 因为AB =600 m,由正弦定理可得600sin45°=BCsin30°,即BC =300√2 m .在Rt△BCD 中,因为∠CBD =30°,BC =300√2 m,所以tan 30°=CDBC =300√2,所以CD =100√6 m .1.(1)D 因为△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2a sin A -b sin B =2c sin C ,利用正弦定理将角化为边可得2a 2-b 2=2c 2①,由①及余弦定理可得cos A =b 2+c 2-a 22bc=b 4c =14,化简得b c =1,即sinBsinC =1,故选D .(2)√3 因为2a sin B cos C +2c sin B cos A =√3b ,所以2sin A sin B cos C +2sin C sin B cos A =√3sin B.在锐角三角形ABC 中,sin B >0,所以2sin A cos C +2sin C cos A =√3,即sin(A +C )=√32,所以sin B =√32,cos B =12.因为b 2=a 2+c 2-2ac cosB =(a +c )2-2ac -2ac cos B ,所以ac =1.因为(a -c )2=(a +c )2-4ac =7-4=3,且a >c ,所以a -c =√3.2.(1)钝角三角形 已知c b<cos A ,由正弦定理,得sinCsinB<cos A ,即sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sinB cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,即B 为钝角,所以△ABC 是钝角三角形.(2)等腰三角形或直角三角形 因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C -sin A cos B =2sin A cos A -sinB cos A ,又C =π-(A +B ),所以sin C =sin(A +B ),所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A (B =π-A 舍去),所以△ABC 为等腰三角形或直角三角形.3.(1)因为4√3S =a 2+b 2-c 2,所以4√3×12ab sin C =2ab cos C , 所以tan C =√33,又0<C <π,所以C =π6.由余弦定理及c =√7,a =4,得cos π6=16+b 2-78b,解得b =3√3或b =√3.因为b >c =√7,所以b =3√3. (2)由正弦定理及a =√3,A =π3得√3sinπ3=b sinB =csinC ,故b =2sin B ,c =2sin C =2sin(2π3-B ).则△ABC 的周长为√3+2sin B +2sin(2π3-B )=√3+√3cos B +3sin B =√3+2√3sin(B +π6).由题意可知{0<B <π2,0<2π3-B <π2,解得π6<B <π2.所以π3<B +π6<2π3,故√32<sin(B +π6)≤1,因此三角形ABC 周长的取值范围为(3+√3,3√3]. 4.(1)在△ABD 中,由正弦定理得BD sinA=ABsin∠ADB.由题设知,5sin45°=2sin∠ADB ,所以sin∠ADB =√25. 由题设知,∠ADB <90°,所以cos∠ADB =√1-225=√235. (2)由题设及(1)知,cos∠BDC =sin∠ADB =√25.在△BCD 中,由余弦定理得BC 2=BD 2+DC 2-2×BD ×DC ×cos∠BDC =25+8-2×5×2√2×√25=25,所以BC =5.5.(1)B 因为△ABC 的角A ,B ,C 成等差数列,所以B =π3,又sin(A -C )-sin B =-√32,所以A =B =C =π3,设△ABC 的边长为x ,由已知有0<x <2,则S △ACD =12x (2-x )sin 2π3=√34x (2-x )≤√34(x+2-x 2)2=√34(当且仅当x =2-x ,即x =1时取等号),故选B .(2)(√6−√2,√6+√2) 如图D 4-4-1,作△PBC ,使∠B =∠C =75°,BC =2,作直线AD 分别交线段PB ,PC 于A ,D 两点(不与端点重合),且使∠BAD =75°,则四边形ABCD 就是符合题意的四边形.过C 作AD 的平行线交PB 于点Q ,在△PBC 中,可求得BP =√6+√2,在△QBC 中,可求得BQ =√6−√2,所以AB 的取值范围是(√6−√2,√6+√2).图D 4-4-16.5π2+4 如图D 4-4-2,连接OA ,作AQ ⊥DE ,交ED 的延长线于Q ,AM ⊥EF 于M ,交DG 于E',交BH 于F',记过O 且垂直于DG 的直线与DG 的交点为P ,设OP =3m ,则DP =5m ,不难得出AQ =7,AM =7,于是AE'=5,E'G =5,∴∠AGE'=∠AHF'=π4,△AOH 为等腰直角三角形,又AF'=5-3m ,OF'=7-5m ,AF'=OF',∴5-3m =7-5m ,得m =1,∴AF'=5-3m =2,OF'=7-5m =2,∴OA =2√2,则阴影部分的面积S =135360×π×(2√2)2+12×2√2×2√2−π2=(5π2+4)(cm 2).。
高考数学 正弦定理和余弦定理 专题
高考数学 正弦定理和余弦定理 专题一、选择题1.在△ABC 中,若∠A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C 的值为( )A.2633B.2393C.393D.1333解析:∵S △ABC =3,即12bc sin A =3,∴c =4.由余弦定理a 2=b 2+c 2-2bc cos A =13,∴a=13, ∴a +b +c sin A +sin B +sin C =a sin A =2133=2393.答案:B2.在△ABC 中,已知∠B =45°,c =22,b =433,则∠A 等于( )A .15°B .75°C .105°D .75°或15°解析:根据正弦定理c sin C =b sin B ,sin C =c sin B b =22×22433=32.∴C =60°或C =120°,因此A =75°或A =15°. 答案:D3.在△ABC 中,设命题p :a sin B =b sin C =c sin A,命题q :△ABC 是等边三角形,那么命题p是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:若△ABC 是等边三角形,则a sin B =b sin C =c sin A ;若a sin B =b sin C =csin A ,又a sin A =b sin B =csin C,则⎩⎪⎨⎪⎧a 2=bc ,b 2=ac ,c 2=ab ,即a =b =c .∴p 是q 的充要条件. 答案:C4.若钝角三角形三内角成等差数列,且最大边长与最小边长的比值为m ,则m 的范围是( )A.(1,2) B.(2,+∞) C.=sin(B+C)=sin B cos C+cos B sin C=32cos C+12sin C,∴3+12sin C=32cos C+12sin C,即sin C=cos C.又0°<C<180°,∴C=45°,A=180°-(B+C)=75°.解法二:设最大边长为a,最小边长为c,则ac=3+12,由a2+c2-b22ac=12,则b2=a2+c2-ac.cos C=a2+b2-c22ab=2a2-ac2a a2+c2-ac=2·a2c2-ac2·aca2c2-ac+1=22.又0°<C<180°,∴C=45°,则A=180°-(B+C)=75°.1.在△ABC中,角A、B、C所对应的边分别为a、b、c,a=23,tanA+B2+tanC2=4,2sin B cos C=sin A,求A,B及b,c.解答:由tanA+B2+tanC2=4得cotC2+tanC2=4,∴cosC2sinC2+sinC2cosC2=4,∴1sinC2cosC2=4.∴sin C=12,又C∈(0,π),∴C=π6,或C=5π6,由2sin B cos C=sin A得2sin B cos C=sin(B+C),即sin(B-C)=0,∴B=C,B=C=π6,A=π-(B+C)=2π3,由正弦定理asin A=bsin B=csin C得b=c=asin Bsin A=23×1232=2.2.如下图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.(1)证明sin α+cos 2β=0;(2)若AC=3DC,求β的值.解答:(1)证明:∵AB=AD,则∠ADB=β,∴∠C=β-α.又∠B+∠C=90°,即2β-α=90°,则2β=90°+α,cos 2β=-sin α,即cos 2β+sin α=0.①(2)在△ADC中,DCsin α=ACsin β,即sin β=3sin α.②①代入②整理得:23sin2β-sin β-3=0.解得sin β=32,或sin β=-33舍去,又β为锐角,则β=60°.。
高考数学专题复习题:正弦定理和余弦定理
高考数学专题复习题:正弦定理和余弦定理一、单项选择题(共8小题)1.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c .已知a ,b ,c 是三个连续的自然数,且a b c <<,最大角是最小角的两倍,则cos C =( ) A .0B .112C .18D .342.在锐角ABC V cos cos sin sin A C A B C a c ⎛⎫+= ⎪⎝⎭cos 2C C +=,则a b +能取到的值有( )A .5B .4C .D .33.在ABC V 中,角,,A B C 的对边分别是,,a b c ,若cos sin ,a B b A c a +==222sin a b c ab C +−=,则( )A .tan 1C =B .π3A =C .b =D .ABC V 的面积为4.已知点,A F 分别为椭圆22:143x yC +=的左顶点、右焦点,点M 为C 上一点,且OM为AMF ∠的平分线,60AMF ∠=︒,则AFM △的内切圆的半径为( )A B C .12D 5.ABC V 的内角,,A B C 所对的边分别为,,a b c .若17,6,cos 5b c B ===,则a =( )A .5B .6C .8D .106.如图,在正四棱柱1111ABCD A B C D −中,14AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .717B .1417C .1617D .8177.在ABC V 中,1202ACB BC AC ∠=︒=,,D 为ABC V 内一点,AD CD ⊥,120BDC ∠=︒,则tan ACD ∠=( )A.B C D 8.已知双曲线2222:1(0,0)x y C a b a b−=>>的右焦点为F ,圆222:O x y a +=与C 的渐近线在第二象限的交点为P ,若tan FPO ∠C 的离心率为( ) A .2BC .3D 二、多选题(共3小题)9.ABC V 的内角A B C 、、的对边分别为a b c 、、,则下列说法正确的是( ) A .若A B >,则sin sin A B >B .若ABC V 为钝角三角形,则222a b c +> C .若30,4,3A b a ===,则ABC V 有两解D .若三角形ABC 为斜三角形,则tan tan tan tan tan tan A B C A B C ++=10.如图,在ABC V 中,2,3,60AB AC BAC ∠===,若O 为ABC V 外接圆的圆心,且(),,AO AB AC λμλμ=+∈R ,则以下结论中正确的是( )A .43AO AB λμ⋅=+ B .92AO AC ⋅= C .ABC V 外接圆的面积为2πD .5233λμ+=11.在ABC V 中,AD AB λ=,BE BC μ=,CF tCA =,,,0t λμ>且1t λμ++=,则( ) A .()DEF ABC S t t S λμλμ=++△△ B .3ABC DEF S S ≥△△CD .λ∃,μ,t三、填空题(共2小题)12.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则2a c +的最小值为________. 13.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c .若3π4B =,6b =,22a c +=,则ABC V 的面积为________.四、解答题(共5小题)14.在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,且22cos 0b c a C +−=. (1)求角A .(2)射线AB 绕A 点旋转90交线段BC 于点E ,且1AE =,求ABC V 的面积的最小值.15.在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知()2cos cos 0a c B b C −−=. (1)求B .(2)已知b =122a c +的最大值.16.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,且()1cos cos cos 02B c B bC a ++=. (1)求角B 的大小.(2)若7,8,b a c a c =+=<,求,a c 的值;求()sin 2A C +的值.17.记ABC V 的内角,,A B C 的对边分别为,,a b c .已知2b ac =,点D 在边AC 上,且BD b =.(1)求证:sin sin BD ABC a C ∠=. (2)若2AD DC =,求cos ABC ∠.8.记ABC V 的内角,,A B C 的对边分别为,,a b c ,若()()3a b c a b c +++−=,且ABC V 的(1)求角C .(2)若2AD DB =,求CD 的最小值.参考答案1.C2.B3.C4.D5.A 6.C 7.B 8.C 9.ACD 10.ABD 11.ABCD12.3+13.314.(1)2π3A =(215.(1)π3B = (216.(1)2π3B =(2)35a c =⎧⎨=⎩17.(1)证明:设ABC V 的外接圆半径为R ,由正弦定理得2sin ,2sin R ABC b R C c ∠==,因为2b ac =,BD b =,所以b BD ac ⋅=,由此可得2sin 2sin BD R ABC a R C ⋅∠=⋅,所以sin sin BD ABC a C ∠=(2)71218.(1)2π3C = (2。
(完整版)正余弦定理知识点总结及全国高考考试题型
一、知识点 (一)正弦定理:2,sin sin sin a b cR A B C===其中R 是三角形外接圆半径。
a=2RsinA , b=2RsinB, c=2RsinC(二)余弦定理:2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C=+-=+-=+-由此可得:222222222cos ,cos ,cos .222b c a a c b a b c A B C ab ac ab +-+-+-===。
注:2a >22c b +⇒A 是钝角;2a =22c b +⇒A 是直角;2a <22c b +⇒A 是锐角; (三)三角形面积公式:(1)111sin sin sin .222ABCS ab C bc A ac B === 二、例题讲解 (一)求边的问题1、在△ABC 中,角,,A B C 的对边分别为,,a b c ,3A π=,3,1a b ==,则c =( )A 、1B 、2C 、31-D 、32、 在△ABC 中,,,a b c 分别为,,A B C ∠∠∠的对边.如果,,a b c 成等差数列,B ∠=30°,△ABC 的面积为23,那么b =( ) A 、132+B 、31+C 、232+D 、32+3、在△ABC 中,角,,A B C 所对的边长分别为,,a b c ,若C ∠=120°,2c a =,则( ) A 、a b > B 、a b < C 、a b = D 、a 与b 的大小关系不能确定4、在△ABC 中,10a =,B ∠=60°,C ∠=45°,则c 等于( )A 、310+B 、()1310- C 、13+D 、3105、若△ABC 的周长等于20,面积是310,=A ∠60°,则BC 边的长是( )A 、5B 、6C 、7D 、86、已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ) A 、51<<xB 、135<<xC 、50<<xD 、513<<x7、三角形的两边分别为5和3,它们夹角的余弦是方程25760x x --=的根,则三角形的另一边长为( )A 、52B 、213C 、16D 、4矚慫润厲钐瘗睞枥庑赖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数、解三角形
全国名校高考数学优质学案汇编(附详解)
正弦、余弦定理高考命题趋向
第四章
三角函数、解三角形
三角函数、解三角形 在高考中正弦定理、余弦定理既可以单独考查(在小题中出 现),也可以综合考查(在小题中出现),还可以和向量、三角函 数、三角形等综合命题(一般放在解答题的第一题),难度中等, 很少有难题. 与三角形综合时常用边化角和角化边两种方法. 在 解决此类问题时,首先应该抓住问题关键,寻求最佳方法,并 能触类旁通、学以致用.
[点拨]
判断三角形的形状时一般有两种思路, 一是考虑三角形
的三边关系,二是考虑三角形的内角关系,有时也可以将边和 角巧妙结合,同时考虑求解.
第四章
三角函数、解三角形
【解】 法一:由角的关系转化为边的关系 由于 b2sin2C+c2sin2B=2bccos Bcos C, 则 b2(1-cos2C)+c2(1-cos2B)=2bccos Bcos C, 根据余弦定理的推论,则可以得到
第四章
三角函数、解三角形
对于已知三角形的两边及其中一边的对角解三角形的方法如下: 可先根据余弦定理列一元二次方程求出第三边(注意边的取舍), 然后利用正弦定理求其他的两角;也可以先利用正弦定理求出 第二个角(注意角的取舍), 再利用三角形内角和定理求出第三角, 最后应用正弦定理求出第三边.上述的两种方法中,都要注意 边的取舍或者角的取舍,避免产生增根.
[点拨] 根据条件可先利用余弦定理求出边 c,再利用正弦定理
求出角 A,最后利用三角形内角和定理求出角 B.
第四章
三角函数、解三角形
6+ 2 【解】 因为 cos C=cos 15° =cos (45° -30° )= , 4 6- 2 sin C=sin 15° = , 4 又由余弦定理得到 c2=a2+b2-2abcos C=8-4 3, 所以 c= 8-4 3= ( 6- 2)2= 6- 2. a c asin C asin 15° 1 由正弦定理 = ,得 sin A= c = c = . sin A sin C 2 因为 b>a,则 A=30° ,所以 B=180° -A-C=135° .
第四章
三角函数、解三角形
已知三角形三边解三角形 在△ABC 中, 角 A, B, C 所对边的边长分别为 a, b, c, 若 a∶b∶c=2∶ 6∶( 3+1),求△ABC 的各角.
[点拨] 可以利用比例关系设字母 k,将 a、b、c 用 k 来表示,
为了使用余弦定理求角创造充分条件.
第四章
三角函数、解三角形
【解】 因为 a∶b∶c=2∶ 6∶( 3+1), 则设 a=2k, b= 6k, c=( 3+1)k(k>0),由余弦定理得到 b2+c2-a2 6+( 3+1)2-4 2 cos A= = = , 2bc 2× 6×( 3+1) 2 所以 A=45° ; a2+c2-b2 4+( 3+1)2-6 1 cos B= = = ,所以 B=60° ; 2ac 2 2×2×( 3+1) 所以 C=180° -A-B=180° -45° -60° =75° .
三角函数、解三角形
【解】 法一:在△ABC 中,利用余弦定理得到 a2=b2+c2- 2bccos A,则 c2-2 3c-6=0, 则 c= 3± 3.因为 c>0,所以 c= 3+3. 法二:在△ABC 中,由正弦定理得到 2 6× 2 1 bsin A sin B= = = . a 2 2 3 由于 b<a,则 B<A,所以 B=30° ,C=180° -A-B=105° , 所以 sin C=sin 105° =sin (45° +60° ) 6+ 2 =sin 45° cos 60° +cos 45° sin 60° = . 4 asin C 则 c= = 3+3. sin A
第四章
三角函数、解三角形
解三角形时,如果已知三角形的两角和任意一边,由三角形内 角和定理,可以计算ቤተ መጻሕፍቲ ባይዱ三角形的第三个角,然后再由正弦定理 计算出三角形的两边.
第四章
三角函数、解三角形
判断三角形的形状 在△ABC 中,已知 A,B,C 所对边的边长为 a,b,c, 且 b2sin2C+c2sin2B=2bccos Bcos C,试判断△ABC 的形状.
第四章
三角函数、解三角形
对于已知三角形的两边及其夹角解三角形的方法如下:先利用 余弦定理求出第三边,再利用余弦定理的推论或者正弦定理求 出第二个角,最后利用三角形内角和定理求出第三角.在本题 中由正弦定理求得 sin A 值后, 应该注意根据已知条件中边的关 系,对角 A 的值作出判断,从而避免产生增根.
第四章
三角函数、解三角形
已知两边及一边的对角解三角形 在△ABC 中,已知 A,B,C 所对边的边长为 a,b,c, 若 a=2 3,b= 6,A=45° ,求边 c 的长.
[点拨] 可以利用余弦定理求边长 c, 也可先由正弦定理求出 B,
进而求出 C,同时利用正弦定理或余弦定理求出边长 c.
第四章
第四章
三角函数、解三角形
已知两角与任意一边,理清思路 在△ABC 中,若 A=75° ,B=45° ,c=3 2,求 a,b.
[点拨] b. 已知角 A,B, 则可求出角 C, 再根据正弦定理求出 a,
【解】 由 A=75° ,B=45° ,则 C=60° , csin B 则由正弦定理得 b= =2 3; sin C csin A 由正弦定理得 a= =3+ 3. sin C
a2+b2-c2 a2+c2-b2 2 2 2 b2+c2-b2 - c 2ab 2ac
第四章
三角函数、解三角形
本题是已知三边求三个角,基本的思路是先利用余弦定理的推 论求一个角的余弦,判定此角的取值,求得第一个角;再用正 弦定理(或余弦定理的推论)求出第二个角; 最后用三角形内角和 定理求出第三个角(可先求出最小角,再求出最大角).
第四章
三角函数、解三角形
已知两边及其夹角解三角形 在△ABC 中,已知角 A,B,C 所对边的边长分别为 a, b,c,若 a=2,b=2 2,C=15° ,求角 A,B 和边 c 的值.