函数凹凸性判别法与应用

合集下载

函数凹凸性的性质判定及应用

函数凹凸性的性质判定及应用

函数凹凸性的判定性质及应用曹阳数学计算机科学学院摘要:函数的凹凸性在数学研究中具有重要的意义。

本文从凸函数的多种定义入手,引出凹凸函数的性质,介绍了凹凸函数的性质及判定定理。

在此基础上,将一元函数的凹凸性进行推广,推广到二元函数上,讨论了二元函数凹凸性的性质,判定方法及其应用。

一元到二元,即增加了一个变量,那么对于n元的情况是否有相似的函数存在呢?本文层层深入,将二元函数进行再次推广,至n元的情形,给出n元凹凸函数的定义,判定方法及性质。

本文主要讨论了一元,二元,多元凹凸函数的定义,性质,及判定方法,并介绍了它们应用。

关键词:凹凸性;一元函数;二元函数;多元函数;判别法;应用;Convex function of Judge Properties and Applications Abstract: The function of convexity in mathematical research is of great significance. In this paper, the definition of convex function of a variety of start, leads to uneven nature of the function, describes the properties of convex functions and decision theorem. On this basis, the concave and convex functions of one variable to promote, promote to the binary function, discusses the uneven nature of the nature of the binary function, determine the method and its application. One to a binary, an increase of a variable, then for n-whether it is a similar function exist? This layers of depth, the binary function tore-promote, to the case of n-given definition of n-convex function, determine the methods and properties. This article focuses on one element, binary, multiple convex function definition, nature, and judging methods, and describes their application.Keywords: Convexity; One Function; Binary function; Multiple functions; Criterion; Applications;1.引言凸函数是数学中一类极其重要的函数,它在最优化,运筹与控制理论,模具设计等方面具有重要的理论和实践意义。

函数凹凸的定义

函数凹凸的定义

02 函数凹凸的几何意义
凹函数的几何意义
凹函数图像呈下凹状,即对于函数图 像上的任意两点A和B,如果A、B两 点连线的中点始终位于A、B连线的下 方,则该函数为凹函数。
在几何意义上,凹函数具有一个明显 的特征,即函数图像上任意两点的连 线的斜率始终小于或等于该点处的函 数导数。
凸函数的几何意义
通过分析函数的凹凸性,我们可以确定函数的拐点,从而更好地理解函数 的性质,为求解最优化问题提供指导。
在求解无约束最优化问题时,可以利用函数凹凸性选择合适的算法,如梯 度下降法、牛顿法等,以提高求解效率。
在经济学中的应用
函数凹凸性在经济学中也有 广泛应用,它可以帮助我们 理解经济现象和预测经济行
为。
函数凹凸的定义
目录
• 函数凹凸的基本概念 • 函数凹凸的几何意义 • 函数凹凸的判定方法 • 函数凹凸的应用 • 函数凹凸的反例 • 函数凹凸的扩展知识
01 函数凹凸的基本概念
凹函数
01
凹函数是指函数图形在任意两点 之间总是位于这两点连线的下方, 即对于定义域内的任意x1和x2, 都有 f((x1+x2)/2)≥f(x1)+f(x2)/2。
03
在计算机科学中,函数凹凸性可以帮助我们设计更有效的算法和数据 结构,如动态规划、图算法等。
04
在生物学中,函数凹凸性可以帮助我们理解生物系统的复杂性和行为, 如生态学、生物化学反应等。
05 函数凹凸的反例
凹函数的反例
总结词
凹函数的反例是指函数图像呈现下凹形状的反例。
详细描述
凹函数的反例通常是指那些在一定区间内,函数值随着自变量的增加而减少的函数。例如,二次函数 $f(x) = x^2$在区间$(-infty, 0)$内是一个凹函数的反例,因为在这个区间内,函数值随着$x$的增加 而减少。

高等数学函数的单调性和凹凸性

高等数学函数的单调性和凹凸性

连续曲线 y ? f ( x) 的拐点.
y
y ? x4
例如 ,
o
x
(2) 若 f ??( x0 ) 不存在 ,点 ( x0 , f ( x0 )) 也可能
是连续曲线 y ? f ( x ) 的拐点 .
y
例如 ,
o
25x
注意 改变凹凸性的点只可能是二阶导数为零及二阶 导数不存在的点 .
判断曲线的凹凸性和拐点的步骤:
x2
?
2,
3
对应
y1
(0,1)
(
2
3
,
11
27
)
?
1,
y2
?
2
11 27
3) 列表判别
3
x (?? ,0)
0
(0,
2 3
)
2
3
(
2 3
,
?
?
)
y?? ? 0 ? 0 ?
y凹
1
凸 11
27

故该曲线在
(??
, 0)

(
2
3
,
?
?
) 上向上凹 , 在(0,
2) 上
3
向上凸
, 点(0,1)及
(2
3
,
11 27
1 (1 , 2)
0?
2 (2, ? ? ) 0?
f (x)
2
1
y

的单调增区间为
(??
, 1), (2, ? ? );
2
1
的单调减区间为 (1 , 2).
o 12 x
11
练习 确定 f ( x ) ? ( x ? 1) ?3 x 2 的单调区间 .

函数凹凸性判别法与应用

函数凹凸性判别法与应用


设曲线 在点 处有穿过曲线的切线. 且在切点近旁,曲线的切线的两侧分别是 严格凹和严格凸的,这时称点 为曲线 的拐点. 由定义可见,对于具有凹凸性的 函数而言,拐点正是函数的凹凸性发生改 变的那一点,即拐点的两侧邻域有着互异 的严格凹凸性.如下图中的M点.

严格地说,拐点都是平面光滑曲线(即切 线连续变动的曲线)弯曲方向发生改变的 转折点,拐点的几何特征是该点的切线不 是在曲线的一侧“托着曲线”而是切线在 切点处把曲线一分为二,分别在切线的两 侧.

观察函数图象,我们很容易得出结论:凹 函数的一阶导数是不断变大的,而凸函数 的一阶导数则恰恰相反。这是我们通过观 察几何图形进行直观的感知得到的结论, 但是人的观察不可避免的存在着一定的局 限性,只有通过严密的证明得到的结论才 能使人信服.迄今为止,判别函数的凹凸性 已经有很多的方法。
函数的凹凸理论在高等数学中占有重要地位。函数的 凹凸性揭示了函数的因变量随自变量变化而变化的快 慢程度。作为研究分析函数的工具和方法,它在许多 学科里有着重要的应用。

我们已经同之处是:曲线 上任意两点间 的弧段总在这两点连线的下方;而曲线 则相反,任意两点间的弧段总在这两点连 线的上方。我们把具有前一种特性的曲线 称为凹的,相应的函数称为凹函数;后一 种曲线称为凸的,相应的函数成为凸函数. 函数凹凸性的分析定义形式较多,下面给 出函数凹凸性定义的更一般的形式。

《函数的凹凸性》课件

《函数的凹凸性》课件

凸函数的性质
凸函数图像呈上凸状,即对于函数图像上的任意两点A(x1, y1)和B(x2, y2),当x1 < x2时,y1 < y2。
凸函数的导数在定义域内小于0,即f''(x) < 0。
凸函数具有局部最大值,即对于任意x0属于定义域,存在一个邻域使得 该邻域内所有点的函数值都小于或等于f(x0)。
在物理学中,凹凸性可以用于描述物 体的弹性、光学性质等。
在经济学中,凹凸性可以用于描述商 品的需求和供给关系,以及价格和产 量的变化关系。
在计算机科学中,凹凸性可以用于图 像处理、机器学习等领域。
02
函数的凹凸性判定
判定方法一:二阶导数法
总结词
举例说明
二阶导数法是判断函数凹凸性的常用 方法之一,通过计算函数的二阶导数 并分析其符号来判断函数的凹凸性。
05
实际应用案例
金融领域的应用
金融数据分析
函数的凹凸性在金融数据分析中有着广泛的应用,如股票价格、收益率等金融时间序列数 据的分析,通过识别数据的凹凸性,可以预测未来的价格走势和风险评估。
投资组合优化
在投资组合优化中,凹凸性可用于确定最优投资组合,通过最小化投资组合的风险或最大 化预期收益,实现资产的有效配置。
判定方法三:几何意义法
总结词
几何意义法是通过观察函数图像 ቤተ መጻሕፍቲ ባይዱ几何形状来判断函数的凹凸性

详细描述
如果一个函数的图像是一条向下 凸出的弧形线,则该函数是凹的 ;如果图像是一条向上凸起的弧
形线,则函数是凸的。
举例说明
以函数$f(x) = x^4 - x^2$为例 ,通过绘制该函数的图像可以观 察到,该函数在$x < 0$时图像 向下凸出,因此函数$f(x) = x^4

6.4知识资料函数的单调性与曲线的凹凸性

6.4知识资料函数的单调性与曲线的凹凸性
所以 函数在(,0]单调减少; 在(0, )内, y 0,
所以 函数在[0, )单调增加.
6.4 函数的单调性与曲线的凹凸性
二、函数单调区间的求法
问题 如上例, 函数在定义区间上不是单调的, 但在各个部分区间上单调.
若函数在其定义域的某个区间内是单调的, 则该区间称为函数的单调区间.
导数等于零的点和不可导点, 可能是单调区间 的分界点.
证 设f ( x) 1 x2 ex sin x 且f (0) 0 2 定不出符号
f ( x) x ex cos x 且f (0) 0
f ( x) 1 ex sin x 0
0 x 1, f ( x) 0, f ( x) C[0,1].
所以f ( x)在[0,1]上单调增加.
6.4 函数的单调性与曲线的凹凸性
f ( x) 1 x2 ex sin x 2
f ( x) x ex cos x
f ( x)在[0,1]上单调增加
当0 x 1时,有f ( x) f (0) 0. 0 x 1, f ( x) 0, f ( x)C[0,1].
所以f ( x)在[0,1]上单调增加.
(上)方, 称为凹(凸) 弧.
从几何直观上, 随着x的增大, 凹弧的曲线段
f (x)的切线斜率是单增的, 即f ( x)是单增的, 而凸 弧的切线斜率是单减的, 即f ( x) 是单减的.
利用二阶导数判断曲线的凹凸性
6.4 函数的单调性与曲线的凹凸性
2. 凹凸性的判别法
y
B y f (x)
A
y
B y f (x)
证 任取x0 (a, b), 泰勒公式
f (x)
f ( x0 )
f ( x0 )(x x0 )

3-4函数单调性与凹凸性(09)

3-4函数单调性与凹凸性(09)

二、函数单调性的应用
——证明不等式和判断方程根的个数. ——证明不等式和判断方程根的个数. 证明不等式和判断方程根的个数 1. 证明不等式 关键是根据所证不等式及所给区间构造辅助函数 关键是根据所证不等式及所给区间构造辅助函数, 并讨论 构造辅助函数 它在指定区间内的单调性. 它在指定区间内的单调性. 例4 证明不等式 e x ≥ x + 1 证
令 f 2 ( x ) = ln(1 + x ) − x
因 为 f2 (0) = 0, 而 f2′( x) =
−x < 0 ( x > 0) 1+ x
则 f ( x )单减 即 f 2 ( x ) < f 2 (0)( x > 0) 故 单减.
ln(1 + x ) < x

x3 令 f ( x ) = tan x − x − 3
f ′(x) ≤ 0 A y = f (x)
B
o
a
b
x
o a
b x
各点处切线的斜率为正
各点处切线的斜率为负
在区间(a, 上单调递增 若 y = f (x)在区间 b)上单调递增 在区间 在区间(a, 上单调递减 若y = f (x)在区间 b)上单调递减 在区间
f ′( x) ≥ 0
f ′( x) ≤ 0
研究函数的单调性, 就是判断它在哪些区间内递增, 注1 研究函数的单调性 就是判断它在哪些区间内递增 哪些 区间内递减. 对可导函数的单调性, 区间内递减 由定理 1 对可导函数的单调性 可根据导数的正 负情况予以确定. 负情况予以确定 注2 包括无穷区间) 定理 1 的结论对其他各种区间 (包括无穷区间 也成立 包括无穷区间 也成立.

凹凸函数判定

凹凸函数判定

凹凸函数判定引言凹凸函数是数学中的重要概念,在各个领域有着广泛的应用。

凹凸函数的性质可以用来优化问题求解、判定函数的凸性以及分析函数的特征。

本文将全面、详细、完整地探讨凹凸函数的判定方法及其应用。

凹凸函数的定义凹凸函数是指函数在定义域上的一种特殊性质,即函数的曲线在任意两点之间的区间上或下凸性保持不变。

更正式地说,对于定义在区间[a, b]上的函数f(x),如果对于区间中的任意两个点x1和x2以及任意一点t,都有以下条件成立:1.凹函数:f((1-t)x1 + tx2) ≤ (1-t)f(x1) + tf(x2)2.凸函数:f((1-t)x1 + tx2) ≥ (1-t)f(x1) + tf(x2)其中,0 ≤ t ≤ 1。

如果函数满足上述条件,则称其为凹函数;如果相反方向满足上述条件,则称其为凸函数。

几何解释凹凸函数的几何解释可以通过观察函数的图像得到。

对于凹函数,其图像在任意两点之间的区间上是下凸的,即曲线在该区间上的任意一点的下方;对于凸函数,则是相反的情况,曲线在该区间上的任意一点的上方。

下图展示了凹函数与凸函数的图像示例:凹函数示例凸函数示例凹凸函数的判定方法一阶导数的判定法一阶导数的判定法是判定函数凹凸性的常用方法之一。

凹函数的一阶导数可以通过以下方式判定:1.对于凹函数,其一阶导数是递增的;2.对于凸函数,其一阶导数是递减的。

具体判定步骤如下:1.求取函数的一阶导数;2.分别计算函数在凸区间上的一阶导数值;3.判断一阶导数的递增或递减性。

以下是一个凹函数的一阶导数判定示例:f(x)=2x2−3x+1首先,求取函数的一阶导数:f′(x)=4x−3然后,计算函数在凸区间上的一阶导数值:x f’(x)1 12 53 9最后,判断一阶导数的递增或递减性。

根据上表可知,一阶导数递增,因此函数为凹函数。

二阶导数的判定法二阶导数的判定法是判定函数凹凸性的另一种常用方法。

凹函数的二阶导数可以通过以下方式判定:1.对于凹函数,其二阶导数始终大于等于零;2.对于凸函数,其二阶导数始终小于等于零。

函数曲线的凹凸性

函数曲线的凹凸性

x1 x2 f ( x1 ) f ( x2 ) f 2 2
曲线凹凸性的定义
y
y f x
f ( x1 ) f ( x2 ) 2
y
x x f 1 2 2
y f x
x x f 1 2 2
f ( x1 ) f ( x2 ) 2
判别法三:定义
例2 判定曲线 y x3 的凹凸性.
x1 x2 f ( x1 ) f ( x2 ) 凹 f 2 2
x1 x2 f ( x1 ) f ( x2 ) 解:f 2 2 3( x1 x2 )( x1 x2 )2 8
f ( x) 0 凹
解:y ' 3x 2 , y '' 6 x, 当 x 0 时, y '' 0, 曲线在 [0, )上是凹的;
f ( x) 0 凸
当 x 0 时, y '' 0, 曲线在 (,0] 上是凸的.
小结--判定方法:几何法、代数法
x1 x2 f ( x1 ) f ( x2 ) f 2 2 f ( x) 0
f ( x1 ) f ( x2 ) (1) (2) 可得 f ( x1 ) f ( x2 ) ? 2f( 2xf0 ), ( x0 ) 即 2
曲线 y f ( x) 在 [a, b] 上是凹的.
x1 x2 f . 2
判别法四:二阶导数符号
例 3 判定曲线 y x3 的凹凸性.
二阶导数符号判定凹凸性
设 f ( x) C( [a, b] ) , 在 (a, b) 内具有一阶和二阶导数,那么
定理

《函数凹凸性》课件

《函数凹凸性》课件
几何意义
在函数图像上,凸函数表现为图像位于其连接直线的上方。
凹凸函数的几何意义
凹函数的几何意义
在凹函数的图像上,任意两点之间的线段都位于这两点之间函数的曲线下方。这 表明,对于凹函数,中点的函数值总是大于或等于两端点连线上中点的函数值。
凸函数的几何意义
在凸函数的图像上,任意两点之间的线段都位于这两点之间函数的曲线上方。这 表明,对于凸函数,中点的函数值总是小于或等于两端点连线上中点的函数值。
几何意义
在函数图像上,凹函数表现为图像位于其连接直线的下方。
凸函数的定义
凸函数
对于函数$f(x)$,如果在区间$I$上,对于任意$x_1, x_2$( $x_1 < x_2$)都有$f(x_1) + f(x_2) < 2f[(x_1 + x_2)/2]$, 则称$f(x)$在区间$I$上是凸函数。Βιβλιοθήκη 4凹凸性在优化问题中的应用
利用凹凸性求解优化问题
01
确定函数的凹凸性
首先需要判断函数的凹凸性,可以通过求二阶导数或观察函数图像来进
行判断。
02 03
利用凹凸性寻找极值点
在确定了函数的凹凸性之后,可以利用凹凸性寻找函数的极值点。在凹 函数中,极值点出现在二阶导数为0的点;在凸函数中,极值点出现在 边界点或一阶导数为0的点。
有$f(x_1) + f(x_2) < 2fleft(frac{x_1 + x_2}{2}right)$,则称$f(x)$在区间$I$上是凸函数。
二次导数法
总结词
通过判断一阶导数的正负来判断函数 凹凸性的常用方法
详细描述
如果函数$f(x)$的二阶导数$f''(x) > 0$,则函数$f(x)$为凹函数;如果二 阶导数$f''(x) < 0$,则函数$f(x)$为 凸函数。这种方法适用于一阶导数容 易计算或形式较为简单的函数。

深入学习函数凸凹性数学专题知识

深入学习函数凸凹性数学专题知识

02
函数凹凸性判定方法
一阶导数与二阶导数
一阶导数定义及性质
二阶导数定义及性质
一阶导数与二阶导数关系
实际问题求解中一阶导数 与二阶导数应用
高阶导数应用
海森矩阵特征分析
海森矩阵定义
海森矩阵(Hessian Matrix),也称 为二阶偏导数矩阵,是描述多元函数 局部凸凹性的矩阵。它由函数各变量 的二阶偏导数构成,反映了函数在指 定点的曲率大小和方向。
深入学习函数凸凹性数学专题知识
探索凹凸性质奥秘与应用
目录
01 函数凸凹性定义 03 凸凹性数学定理与性质 05 函数凸凹性实际应用
02 函数凹凸性判定方法 04 函数凹凸性判定方法 06 最新研究与进展
01
函数凸凹性定义
凹凸性基本概念
凹凸性定义
凹凸性是描述函数图像弯曲程度 的数学概念。凸函数在各点处的 切线斜率是正的,而凹函数的切 线斜率是负的,体现了函数的上 升和下降趋势。
02
凸区间定义与示例
凸区间是函数图像上点连线的斜 率大于零的区间。例如,在区间 [0, π] 中,函数 y = x^2 是凸函 数,因为其导数大于零(2),表 明函数图像在逐渐变得平坦。
03
边界点与凹凸性转换
边界点是指同时属于凹区间和凸 区间的点。例如,在区间 [0, π] 中,点 (π/2, π/2) 既是凹点也是 凸点,因为在此点的左侧凸函数 渐成凹函数,右侧凹函数渐成凸 函数。
凹函数判定定理
判定凹函数基本条件
凹函数的判定可以通过一阶导数和二阶导 数来判断。一阶导数小于零或二阶导数小 于零时,函数在该区间内为凹函数。此外 ,函数在开区间上的任意点处切线的斜率 必须小于切点的切线斜率,也是判断凹函

函数凹凸性的应用

函数凹凸性的应用

函数凹凸性的应用什么叫函数的凸性呢?我们先以两个具体函数为例,从直观上看一看何谓函数的凸性.如函数y =所表示的曲线是向上凸的,而2y x =所表示的曲线是向下凸的,这与我们日常习惯上的称呼是相类似的.或更准确地说:从几何上看,若y =f(x)的图形在区间I 上是凸的,那么连接曲线上任意两点所得的弦在曲线的上方;若y =f(x)的图形在区间I 上是凹的,那么连接曲线上任意两点所得的弦在曲线的下方.如何把此直观的想法用数量关系表示出来呢?设函数()f x 在区间I上是凸的(向下凸),任意1x ,2x I∈(12x x <).曲线()y f x =上任意两点11(,())A x f x ,11(,())B x f x 之间的图象位于弦AB的下方,即任意12(,)x x x ∈,()f x 的值小于或等于弦AB 在x 点的函数值,弦AB 的方程211121()()()()f x f x y x x f x x x -=-+-.对任意12(,)x x x ∈有,整理得21122121()()()x x x x f x f x f x x x x x --≤+--.令221()x x t x x -=-,则有01t <<,且12(1)x tx t x =+-,易得1211x x tx x -=--,上式可写成1212[(1)]()(1)()f tx t x tf x t f x +-≤+-1.1凸凹函数的定义凸性也是函数变化的重要性质。

通常把函数图像向上凸或向下凸的性质,叫做函数的凸性。

图像向下凸的函数叫做凸函数,图像向上凸的函数叫做凹函数。

设[]()()()()()211212:,,,0,1,11f I R I f ff x x x x x x λλλλλ→∀∈∀∈+-≤+-若不等式成立,(1)则称f为I 上的凸函数。

若()120,1,,x x λ∀∈≠()()()()()121211f ff x x x x λλλλ+-+-不等式 (2)则称f 为I 上的严格凸函数。

4.5函数曲线的凹凸性及其判别

4.5函数曲线的凹凸性及其判别

例1 判断曲线 y x 3 的凹凸性.
解 y 3 x 2 , y 6 x ,
当x 0时, y 0,
曲线 在( ,0]为凸的;
当x 0时, y 0,
曲线 在[0,)为凹的;
注意到, 点(0,0)是曲线由凸变凹的分界 点.
三、曲线的拐点及其求法
x
f ( x )
f ( x)
( ,0)
0 0
拐点

凹的
( 0, 2 ) 3
凸的
2
3 0
( 2 ,) 3
凹的
( 0,1)
拐点 ( 2 , 11 ) 3 27
凹凸区间为( ,0],
[0, 2 ], 3
[ 2 ,). 3
注意: 若 f ( x0 ) 不存在, 点 ( x0 , f ( x0 )) 也可能
令 y 0 得
x1 1 , x 2 2 3 , x 3 2 3
从而三个拐点为
(1 , 1 ) ; ( 2 3 ,
1 3 1
1 3 84 3
) ; ( 2 3 ,
1
1 3 84 3
)
1 3
1 因为 8 4 3 , ( 2 3) 1 4
4.5函数曲线的凹凸性及其判别
曲线凹凸的定义
曲线的凹凸的判定
曲线的拐点及其求法
一、曲线的凹凸的定义
问题:如何研究曲线的弯曲方向?
y
y f ( x)
y
y f ( x)
o
x1
x2
x
o
x1
x2
x
图形上任意弧段 位于所张弦的下方
图形上任意弧段 位于所张弦的上方

高数课件14凹凸性

高数课件14凹凸性

凹凸性与光滑性 的应用:在优化 问题、微分方程 等领域有广泛应 用
凹凸性与函数的单调性
凹凸性:函数在某点处的二阶导数符号决定了该点的凹凸性
单调性:函数在某点处的一阶导数符号决定了该点的单调性
凹凸性与单调性的关系:凹凸性与单调性是函数在某点处的二阶导数和一阶导数的符号决定的
凹凸性与单调性的应用:在解决实际问题时,可以利用凹凸性与单调性来判断函数的极值和拐 点
利用极限判断: 如果极限存在且 大于0,则为凹 函数;如果极限 存在且小于0, 则为凸函数。
03
凹凸性的性质
凹凸函数的性质
01 02
03 04
05 06
凸函数:对于任意x1, x2, y1, y2,若x1 < x2,则f(x1) < f(x2) 凹函数:对于任意x1, x2, y1, y2,若x1 < x2,则f(x1) > f(x2) 凸函数的二阶导数大于等于0
正二阶导数:函数在该点处 为凸函数
负二阶导数:函数在该点处 为凹函数
注意事项:凹凸性判定法只 适用于二阶可导的函数
06
凹凸性的扩展知识
凹凸性的连续性和可微性
凹凸性的连续性:凹凸性是函数 在某点附近的局部性质,与函数 的连续性无关
凹凸性的可导性:凹凸性是函数 在某点附近的局部性质,与函数 的可导性无关
凹凸性与函数极值的关系
凹凸性是函数在某点附近的性质,与函数在该点的极值有关 凸函数在极小值点处具有凹性,凹函数在极大值点处具有凸性 凸函数的极小值点处,其导数大于等于0 凹函数的极大值点处,其导数小于等于0 凸函数的极小值点处,其二阶导数大于等于0 凹函数的极大值点处,其二阶导数小于等于0
感谢观看
汇报人:

函数凹凸性及其在高中数学中的应用探讨

函数凹凸性及其在高中数学中的应用探讨

函数凹凸性及其在高中数学中的应用探讨在高中数学中,函数的凹凸性是一个非常重要的概念,它对于函数的性质和图像具有重要的指导和应用作用。

本文将探讨函数凹凸性的概念和其在高中数学中的应用。

首先,我们来了解凹凸性的概念。

给定一个定义在区间[a,b]上的函数f(x),如果对于[a,b]上的任意两个不相等的实数x1和x2,总有对应的λ∈(0,1),使得f(λx1+(1−λ)x2)≤λf(x1)+(1−λ)f(x2),则称函数f(x)在[a,b]上是凹函数;如果上述不等式反向成立,则称函数f(x)在[a,b]上是凸函数。

其次,函数的凹凸性在高中数学中具有广泛的应用。

以下是几个常见的应用:1.极值问题:对于一个凸函数,如果它在一个区间上的两个点处取得极值,则它在该区间上的任意两个点处均取得极值。

这意味着我们可以通过找到凸函数的一个极值点来确定整个区间上的极值点。

同样地,对于一个凹函数,如果它在一个区间上的两个点处取得极值,则它在该区间上的任意两个点处均取得极值。

这对于求解函数的最大值和最小值问题具有重要意义。

2.曲线的凹凸性判断:函数的凹凸性可以用来判断曲线的凹凸性。

通过判断函数的二阶导数或拐点,我们可以判断一个函数在一些区间上是凹函数还是凸函数。

当二阶导数大于0时,函数是凹的;当二阶导数小于0时,函数是凸的。

3.凸集的判定:在几何学中,凸集是指集合中的每两个点之间的连线都在该集合内。

函数的凹凸性可以用来判定几何中的集合是否为凸集。

例如,如果一个多边形的边是凹函数,那么该多边形即是凸多边形。

4.约束条件优化问题:在约束条件优化问题中,我们需要在给定一组约束条件下求解一个目标函数的最值。

通过分析约束条件和目标函数的性质,我们可以判断所求最值点的性质。

如果目标函数是凹函数且约束条件线性,则最值点唯一存在且是凸集的一些边界点;如果目标函数是凸函数且约束条件线性,则最值点唯一存在且是凸集的一些内点。

利用凹凸性可以使我们更有效地求解这类问题。

函数凹凸性判别法与应用讲解

函数凹凸性判别法与应用讲解

函数凹凸性判别法与应用讲解
函数凹凸性是指函数的变化趋势,即函数的单调性。

单调指的是曲线的一面朝上、一
面朝下,即函数的上凹下凸。

凹凸性判别法是利用函数的三阶导数来判断函数的凹凸性,它的原理是:若一个函数
的三阶导数大于 0,则其对应的前面的函数为凸函数;若一个函数的三阶导数小于0,则
其对应的前面的函数为凹函数。

因此,凹凸性判别法是基于三阶导数判断函数凹凸性的一种方法。

具体来进行凹凸性判断时,首先要求函数的三阶偏导数,记为y'''',如果y''''>0,说明该点处曲线呈凸函数;如果y''''<0,说明该点处曲线呈凹函数。

1、它可以用来判断函数图像的凹凸性,如弧线的凹凸情况;
2、它是非线性优化算法的基本前提。

非线性优化首先要求目标函数的形式,然后通
过数值分析来求解函数的极值、拐点等;
3、它还可以用来分析对策优化问题,研究决策问题中随机变量的影响,研究决策问
题中策略的选择等。

据此,可以看出凹凸性判别法不仅可以用来判断某函数的凹凸性,还能用于优化函数
求解和决策问题的研究中,由此可见它的重要性和实用性。

凹凸性高等数学

凹凸性高等数学
这些实际生活中的问题,都可以用弯曲方向不同的 函数图形具体呈现出来。
二.函数的凹凸性
1.曲线凹凸性定义
问题:如何研究曲线的弯曲方向?
y y f (x)
y
y f (x)
o x1
x2 x
o x1
x2 x
二.函数的凹凸性
在区间 I 上连续,
(1)若恒有 图形是凹的;
(2)若恒有 图形是凸的;
则称 在区间 I 上的
不等式关系,得证。
四.小 结
利用二阶导数的(正负)符号可以判定函数的 凹凸性;
通过求出二阶导数等于0的点和二阶导数不存在 的点作为凹凸区间的分界点,进而确定函数的凹 凸区间;
利用函数的凹凸性证明不等式.
其中a,b均为正常数,试分析庄稼产量随氮量增长率放缓。
解: Y (N ) aN bN
D :[0, )(b
N) N N)2
ab (b N )2
0
三.典型案例
Y (N )
[
(b
ab N
)2
]
2ab (b N )3
0
在 (0, ) 内,y 0, 函数 Y (N ) 的变化率单调减少。
则称 在区间 I 上的
y
连续曲线上凹凸分界点称为拐点 x
二.函数的凹凸性
注意
1.拐点处 f (x0) 0 ,或者 f (x0 ) 不存在。 拐点两侧,二阶导数异号。
2.拐点在曲线上,因此满足曲线的方程。 3.若 (x0, f (x0 )) 是 f (x) 的拐点, 则 f (x)在 x0 处连续。
这些点将函数的定义域分成了若干的小区间。 (4)讨论二阶导数在小区间内的符号,确定凹凸性(列表) (5)考察二阶导数在以上点两侧的符号,看是否出现拐点

判断函数凸凹性的五种方法

判断函数凸凹性的五种方法

判断函数凸凹性的五种方法判断函数的凸性和凹性可以通过以下几种方法:1. 通过二阶导数(对于一元函数)对于一元函数f(x),其凸性和凹性可以通过其二阶导数f′′(x)来判断:●如果f′′(x)≥0对于所有x在函数的定义域内都成立,并且至少在某个子区间内f′′(x)>0,则函数f(x)在该定义域内是凸的。

●如果f′′(x)≤0对于所有x在函数的定义域内都成立,并且至少在某个子区间内f′′(x)<0,则函数f(x)在该定义域内是凹的。

注意:如果f′′(x)在定义域内恒等于0,则函数是线性的,既是凸的又是凹的。

2. 通过一阶导数(对于一元函数,但较不直观)虽然不如二阶导数直观,但也可以通过分析一阶导数f′(x)的单调性来判断函数的凸凹性。

不过,这种方法通常需要更多的分析和技巧,并且不如二阶导数方法直接。

3. 通过定义(对于一元或多元函数)●凸函数:对于定义域内的任意两点x1,x2(对于多元函数,则是任意两个点x1,x2)和任意实数0≤λ≤1,如果都有●f(λx1+(1−λ)x2)≤λf(x1)+(1−λ)f(x2)●(对于多元函数,则是类似的向量不等式),则称f是凸函数。

●凹函数:与凸函数相反,将上述不等式中的“≤”替换为“≥”,则称f是凹函数。

4. 利用Hessian矩阵(对于多元函数)对于多元函数f(x),其Hessian矩阵是一个由二阶偏导数组成的矩阵。

函数的凸凹性可以通过检查Hessian矩阵的正定性或负定性来判断:●如果Hessian矩阵在函数的定义域内处处半正定(即所有特征值非负),则函数是凸的。

●如果Hessian矩阵在函数的定义域内处处半负定(即所有特征值非正),则函数是凹的。

5. 图形判断(直观方法)通过观察函数的图形,也可以直观地判断其凸凹性。

凸函数的图形在其上任意两点之间的连线总是位于图形之上,而凹函数的图形则在其上任意两点之间的连线之下。

注意●在判断函数的凸凹性时,需要注意函数的定义域。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数凹凸性判别法与应用作者:祝红丽 指导老师:邢抱花摘要 函数的凹凸性是函数的重要性质之一.它反映在函数图象上就是曲线的弯曲方向,通过它可以较好地掌握函数对应曲线的性状.本文基于函数凹凸性概念的分析,着重探讨了函数凹凸性的判别方法以及在解题中的应用,如在不等式证明中的应用以及在求函数最值时的应用等.并结合相关例题做了较详细的论述.关键词 凹凸性 导数 不等式 应用1 引言函数的凹凸理论在高等数学中占有重要地位.函数的凹凸性揭示了函数的因变量随自变量变化而变化的快慢程度,如果结合函数的其它性质,可以使我们对函数的认识更加精确.以函数()y f x =在某区间I 上单调增加为例说明.我们不难理解,随着自变量x 的稳定增加,当函数y 的增量越来越大时,函数图形是凹的,当函数y 的增量越来越小时,函数图形是凸的,当函数y 的增量保持不变时,函数图象是直线,对于减函数我们可以作类似的分析.作为研究分析函数的工具和方法,它在许多学科里有着重要的应用.长期以来,很多学者致力于函数凹凸性的判别法及其应用的研究.近年来,关于函数凹凸性的判定与应用的研究取得了一些成果,使函数凹凸性的判别法与应用更加的广泛.本文先从两个具体的函数图象为出发点,直观上观察函数图象的弯曲方向,从而引出函数凹凸性的概念和拐点的定义.并在此基础上介绍了凹凸函数的几何特征,接着介绍函数凹凸性的几种判别方法,如:用定义去判别函数的凹凸性,利用二阶导函数判别函数的凹凸性,及利用函数凹凸性的判定定理判别函数的凹凸性.其中利用函数凹凸性的概念是最基本的判别方法,利用二阶导函数与函数凹凸性之间的关系是最常用的判别方法.最后举例介绍了函数凹凸性在证明不等式、求函数最值以及函数作图中的应用.虽然说并不是所有的不等式都能利用函数的凹凸性证明,但是利用函数的凹凸性去证明某些不等式,是其它方法不可替代的.利用函数凹凸性证明不等式丰富了不等式的证明方法,开阔了解题思路.利用导数分析函数的上升、下降,图形的凹凸性和极值.根据对这些的讨论可以帮助我们画出用公式表示的函数图形,了解函数的凹凸性能够使对函数图形的描绘更加精确化.2 凹凸函数及拐点的定义我们已经熟悉函数2y x =和lg y x =的图象.X它们的不同之处是:曲线2y x =上任意两点间的弧段总在这两点连线的下方;而曲线lg y x =则相反,任意两点间的弧段总在这两点连线的上方.我们把具有前一种特性的曲线称为凹的,相应的函数称为凹函数;后一种曲线称为凸的,相应的函数成为凸函数.函数凹凸性的分析定义形式较多,下面给出函数凹凸性定义的更一般的形式.2.1函数凹凸性的定义定义 设函数()f x 在区间I 上连续,若对I 上的任意两点1x ,2x 和任意实数(0,1)λ∈,总有: 1212[)]()(1)()f x x f x f x λλλλ≤+-+(1-, 则称f 为I 上的凹函数. 反之,如果总有:1212[)]()(1)()f x x f x f x λλλλ≥+-+(1-,则称f 为I 上的凸函数. 特别地,当λ=12时,满足121211()()()222x x f f x f x +≤+的函数为凹函数,满足121211()()()222x x f f x f x +≥+的函数为凸函数. 如果定义中的不等式改为严格不等式,则相应的函数称为严格凹函数和严格凸函数.2.2 凹函数与凸函数的几何意义定义中凹函数与凸函数的图象如图1、图2.图1 图2 凹函数(凸函数)的几何意义:连接曲线()y f x =上任意两点的弦总位于对应曲线的上方(下方).2.3 拐点的定义设曲线()y f x =在点0,0(())x f x 处有穿过曲线的切线.且在切点近旁,曲线的切线的两侧分别是严格凹和严格凸的,这时称点0,0(())x f x 为曲线()y f x =的拐点.由定义可见,对于具有凹凸性的函数而言,拐点正是函数的凹凸性发生改变的那一点,即拐点的两侧邻域有着互异的严格凹凸性.如下图中的M 点.严格地说,拐点都是平面光滑曲线(即切线连续变动的曲线)弯曲方向发生改变的转折点,拐点的几何特征是该点的切线不是在曲线的一侧“托着曲线”而是切线在切点处把曲线一分为二,分别在切线的两侧.易知,有正弦曲线的图象可知sin y x =有拐点(,0)k π ,k 为整数.2.4 拐点的判别法(1)若()f x 在0x 处连续,在0x 两侧()''f x 反号,则()()00,x f x 是曲线()y f x =的拐点.(2)若()''00f x =,()(3)00f x ≠,则()()00,x f x 是()y f x =的拐点.例题1 求下列函数的拐点 ()1()()2211xf x x =+-; ()2 ()3f x x =. 解 ()1()()()'3211x f x x -+=-,()()()''2421x f x x +=- , 当()()2,11,x ∈-⋃+∞时,()''0fx >; 当(),2x ∈-∞-时,()''0f x < ,又()529f -=, 所以点52,9⎛⎫- ⎪⎝⎭是函数的拐点. ()2()'23f x x =,()''6f x x =,()'''6f x =,()''00f =,()'''00f ≠,所以点()0,0是函数的拐点.注意:函数的拐点只是表示在该点的两侧函数具有不同的严格凹凸性,而不能只依靠判断二阶导数是否为零来确定函数的拐点.对于二阶导数不存在的点0x ,检查''()f x 在0x 左右两侧邻近的符号,那么当两侧邻近的符号相反时,点00(,())x f x 是曲线()y f x =的拐点,当两侧的符号相同时,点00(,())x f x 不是曲线()y f x =的拐点函数的拐点.因此函数的拐点与二次导数是否存在没有必然的联系.例如:1()f x x x=+在0x =时的情况.易知''32()f x x =,()f x 在0x =处的二阶导数不存在,但是当0x <时,''()0f x <,当0x >时,''()0f x >,所以0x =是()f x 的一个拐点.3 函数凹凸性的判别法观察函数图象,我们很容易得出结论:凹函数的一阶导数是不断变大的,而凸函数的一阶导数则恰恰相反.这是我们通过观察几何图形进行直观的感知得到的结论,但是人的观察不可避免的存在着一定的局限性,只有通过严密的证明得到的结论才能使人信服.迄今为止,判别函数的凹凸性已经有很多的方法.3.1 定义法判别函数的凹凸性用定义法去判别函数的凹凸性是最基本的判定方法,也是其它判定方法的基础.所以对定义的理解和掌握是至关重要的.例题2 f ,g 均为I 上的连续函数,证明:(1)若f ,g 均为凹函数,则g f +为凹函数;(2)若f ,g 均为递增非负凹函数,则g f ⋅为凹函数.证明 设任意的1x ,2x I ∈,(0,1)λ∈,(1)、因为f ,g 均为凹函数,所以由定义知:1212[)]()(1)()f x x f x f x λλλλ≤+-+(1-和1212[)]()(1)()g x x g x g x λλλλ≤+-+(1-.两式相加:12[)]f x x λλ+(1-+12[)]g x x λλ+(1-≤12()(1)()f x f x λλ+-+12()(1)()g x g x λλ+-, 即:1212()[)]()()(1)()()f g x x f g x f g x λλλλ+≤++-++(1-, 所以f g +为凹函数.(2)、由题题意得:121212()[)][)][)]f g x x f x x g x x λλλλλλ⋅=⋅+(1-+(1-+(1-1212[()(1)()][()(1)()]f x f x g x g x λλλλ≤+-⋅+-221122()()(1)()()f x g x f x g x λλ=+-1122(1)[()()()()]f x g x f x g x λλ+-+.下面只要证明:221122()()(1)()()f x g x f x g x λλ+-1122(1)[()()()()]f x g x f x g x λλ+-+12()()(1)()()f g x f g x λλ≤⋅+-⋅即可.采用做差法比较两者的大小:221122()()(1)()()f x g x f x g x λλ+-1122(1)[()()()()]f x g x f x g x λλ+-+-12()()(1)()()f g x f g x λλ⋅+-⋅=1212(1)[()()][()()]f x f x g x g x λλ----0≤. 综上所述,可得1212()[(1)]()()(1)()()f g x x f g x f g x λλλλ⋅+-≤⋅+-⋅.所以f g ⋅是凹函数.例3 ()f x 为区间I 上的可导函数,证明:若对于I 上的任意两点1x ,2x ,有'21121()()()()f x f x f x x x ≥+-, 则()f x 为I 上的凹函数.证明 设以1x ,2x 为I 上任意两点,12(1)x x x λλ=+- , 01λ<< .由'21121()()()()f x f x f x x x ≥+-, 并利用112(1)()x x x x λ-=--与221()x x x x λ-=-,''1112()()()()()(1)()()f x f x f x x x f x x x f x λ≥+-=+--.''2221()()()()()()()f x f x f x x x f x x x f x λ≥+-=+-.分别用λ与1λ-上列两式并相加,得到:1212()(1)()()[(1)]f x f x f x f x x λλλλ+-≥=+-.所以()f x 为I 上的凹函数.3.2 函数凹凸性的判定定理定理 ()f x 为I 上的函数,若对于I 上的任意三点123x x x <<,总有:32212132()()()()f x f x f x f x x x x x --≤-- , 则()f x 为I 上的凹函数. 证明 在I 上任取两点13,x x 13()x x <,在13[,]x x 上任取一点213(1),(0,1)x x x λλλ=+-∈,则,3231x x x x λ-=-,21311x x x x λ--=- , 因为 32212132()()()()f x f x f x f x x x x x --≤-- ,所以有: 322212321213()()()()()()()()x x f x x x f x x x f x x x f x -+-≤-+-.所以有,312321213()()()()()()x x f x x x f x x x f x -≤-+- ,因为 310x x ->,所以不等式两边同时除以31()x x -有:32212133131()()()x x x x f x f x f x x x x x --≤+--. 即213()()(1)()f x f x f x λλ≤+-又213()[(1)]f x f x x λλ=+-.所以1313[(1)]()(1)()f x x f x f x λλλλ+-≤+-.所以()f x 为I 上的凹函数.例题4 设()f x 为区间I 上的函数,若对于00,x I ∀∈∃实数a ,使得x I ∀∈,有00()()()f x a x x f x ≥-+, 证明:()f x 为区间I 上的凹函数.证明 设123x x x <<是区间I 上任意三点,由已知条件,对于2x ,存在实数a ,使得,22()()()f x a x x f x ≥-+, ()x I ∀∈.令1x x = , 有1122()()()f x a x x f x ≥-+,得到1212()()f x f x a x x -≤-. 再令3x x =, 有3322()()()f x a x x f x ≥-+ ,得到3232()()f x f x a x x -≥-. 综上所述,32123212()()()()f x f x f x f x a x x x x --≥≥-- ,所以()f x 为区间I 上的凹函数. 3.3 函数凹凸性的充要条件充要条件 设函数()y f x =在I 上连续,在I 内具有一阶和二阶导数,那么,(1)若在I 内恒有''()0f x ≥,则()f x 在I 上的图形是凹的;(2)若在I 内恒有''()0f x ≤,则()f x 在I 上的图形是凸的.注意:若在区间I 内的某一子区间上''()0f x ≡,则()y f x =在该子区间上的图形是一段直线,该子区间既非凹区间也非凸区间.证明 (1)充分性:因为''()0f x ≥,所以'f 为I 上的增函数,设任意的1x ,2x ∈I ,在以1x ,2x (不妨设12x x <)为端点的区间上,由拉格朗日中值定理和'f 为I 上的增函数,可得:''2121121()()()()()()f x f x f x x f x x x ξ-=-≥-,即对I 上的任意两点1x ,2x ,有:'21121()()()()f x f x f x x x ≥+-.令312(1)x x x λλ=+-,01λ<<,有,1312(1)()x x x x λ-=--;2321()x x x x λ-=-;所以,''133133123()()()()()(1)()()f x f x f x x x f x x x f x λ≥+-=+--.''233233213()()()()()()()f x f x f x x x f x x x f x λ≥+-=+-.以上两个不等式的两端分别乘以λ与(1)λ-并相加得:12312()(1)()()[(1)]f x f x f x f x x λλλλ+-≥=+-.即()f x 在I 是凹函数;必要性:任取I 上两点()1212,x x x x <及充分小的正数h .由于1122x h x x x h -<<<+,根据()f x 是凹函数及函数凹凸性的判定定理有:()()()()()()11212221f x f x h f x f x f x h f x h x x h---+-≤≤-. 由于()f x 是可导函数,令0h +→时可得()()()()21''1221f x f x f x f x x x -≤≤-. 所以()'f x 为I 上的增函数,所以在I 内恒有''()0f x ≥.(2)''()0f x ≤的情况类似的可以证明.例题5 求曲线3()(12ln 10)f x x x =-的凹凸区间及拐点.解 函数的定义域为(0,)+∞,又'22()36ln 18f x x x x =-,''()72ln f x x x =, 令''()0f x =,即72l n 0xx =,得到1x =,点1x =把定义域分成两个部分即(0,1]与[1,)∞.在各部分区间内'()f x 与''()f x 的符号,相应曲段弧的升降及凹凸、拐点等,如下图表:可得:在(0,1]内,''()0f x ≤,因此是曲线的凸区间.在[1,)∞内,''()0f x ≥,因此是曲线的凹区间.所以:点(1,10)-是曲线的拐点.小结:求曲线凹凸区间及拐点的步骤:首先找出可能是拐点的横坐标(包括使二阶导数为零的点和二阶导数不存在的点),再利用二阶导数的符号判断该曲线的凹凸区间及拐点. 4 函数凹凸性的应用函数凹凸性的应用及其广泛,很多与函数、不等式交汇的综合问题都可以利用函数的凹凸性加以解决.利用函数的凹凸性去解决问题,往往能够使某些复杂的问题简单化.接下来,我们重点讨论函数凹凸性在不等式的证明、求函数最值以及函数作图等中的应用.4.1 函数凹凸性在证明不等式中的应用有些不等式的表达形式很简单,但如果通过常规的证明方法和技巧却很难达到预期的效果,这就需要我们另辟蹊径,寻找更有效的方法技巧,利用凹凸函数的性质不但可以减少计算量,使解题更加合理,而且借助凹凸函数的几何特征可以使解题思路更加清晰直观.4.1.1 利用函数的凹凸性证明一个重要的不等式定理 如果()f x 是凸函数⇔对12,,[0,1]n ∀∂∂⋅⋅⋅∂∈,满足121n ∂+∂+⋅⋅⋅+∂=,都有11221122()()()()n n n n f x x x f x f x f x ∂+∂+⋅⋅⋅+∂≥∂+∂+⋅⋅⋅+∂. 特别地,当121n n∂=∂=⋅⋅⋅=∂=时,上述不等式称为琴生(Jensen )不等式. 例题 6 任意n 个非负实数的调和平均值小于或等于它们的几何平均值小于或等于他们的算数平均值.即:0i x ∀≥,(1,2,,)i n =⋅⋅⋅, 恒有:1212111n n x x x nnx x x ++⋅⋅⋅+≤≤++⋅⋅⋅+. 当且仅当12n x x x ==⋅⋅⋅=时等号成立.证明 考虑函数ln y x =,很容易判断出其是凸函数,有琴生(Jensen )不等式得到:1212121111lnln ln ln ln()n n n x x x x x x x x x n n n n n++⋅⋅⋅+≥++⋅⋅⋅+=⋅⋅⋅= 即:12ln n x x x n++⋅⋅⋅+≥ln y x =在定义域上是单调递增的.12n x x x n ++⋅⋅⋅+≤,当且仅当12n a a a ==⋅⋅⋅=时等号成立. 另一方面, ln 12111n nx x x ++⋅⋅⋅+=12111ln n x x x n ++⋅⋅⋅+-121111(ln ln ln )nn x x x ≤-++⋅⋅⋅+=即:12ln 111n nx x x ≤++⋅⋅⋅+又ln y x =在定义域上是单调递增的.所以有:12111nnx x x ≤++⋅⋅⋅+12n a a a ==⋅⋅⋅=时等号成立.综上所述有:1212111n n x x x n nx x x ++⋅⋅⋅+≤≤++⋅⋅⋅+. 当且仅当12n a a a ==⋅⋅⋅=时等号成立.注意:利用函数的凹凸性证明不等式时,一定要注意构造或者引进我们所需要的辅助函数,使条件和结论、已知与未知建立联系.4.1.2 凹凸函数不等式的积分形式定理 设()f x 是[,]a b 上的可积函数且()m f x M ≤≤,()t ϕ是[,]m M 上的连续凸函数,则:11(())[()]b b a af x dx f x dx b a b a ϕϕ≥--⎰⎰(如果()t ϕ是凹函数,则不等式反向). 例题7 设()f x 为[,]a b 上的正值连续函数, 证明:11ln ()ln ()b b a a f x dx f x dx b a b a≤--⎰⎰. 证明 令()ln t t ϕ=,由上述定理得:11(())ln ()b b a a f x dx f x dx b a b a ϕ=--⎰⎰ ≥1ln ()b af x dx b a -⎰.即得证. 例题8设()f x 在[0,1]上连续可导,'()0,()0f x f x ≥≤.若0()()xF x f t dt =⎰,证明: 10(1)()2(),(0,1)xF F x F t dt x ≤≤∈⎰. 证明 由0()()xF x f t dt =⎰,可得'()()F x f x =,进而得到'''()()F x f x =,所以''()0F x ≤.由函数凹凸性的充要条件知()F x 为凸函数.所以有:[1(1)0](1)(1)(0)F x x x F x F ⋅+-⋅≥⋅+-.又(0)0F =,所以()(1)F x x F ≥⋅.另一方面,由Hadamard 不等式:设函数()f x 是[,]a b 上连续的凸函数,对任意的12,[,],x x a b ∈12x x < ,有:21121221()()1()()22x x x x f x f x f f t dt x x ++≥≥-⎰,得101(0)(1)()102F F F t dt +≥-⎰. 即:10(1)()2F F t dt ≥⎰,又'()()0F x f x =≥,所以()F x 在[0,1]为单调增函数,所以有: (1)()22F F x ≥, 即102()()F t dt F x ≥⎰.综上所述, 即有: 10(1)()2(),(0,1)xF F x F t dt x ≤≤∈⎰. 小结:利用函数凹凸性证明不等式虽然有一定的局限性,但是它却能够避免一些繁杂的解题过程,大大的简化解题步骤,是其它方法不能达到的.利用函数凹凸性证明不等式的解题关键是构造合适的辅助函数,能够使问题和已知的条件联系起来,只有这样才能达到预期的效果.4.2 函数凹凸性在求函数最值中的应用通过观察不等式的证明,我们可以发现,如果不等式的一边是常数的话,那么不等式的证明就演变成了求函数的最值问题,我们就可以利用函数的凹凸性来求函数的最值,从而就可以避免繁杂的化简、转化、变形等过程.若能够灵活运用函数的凹凸性解题,可达到事半功倍的效果.例题9 设0(1,2,)k x k n >=⋅⋅⋅,试求 1212222()()n nx x x x x x ++⋅⋅⋅++⋅⋅⋅+的最小值. 解析 如果采用一般的解题方法,我们就会发现很难找到问题的突破口,但是如果我们采用函数的凹凸性去思考,再结合着题目的表达形式,就很容易联想到琴生(Jensen )不等式,问题就迎刃而解了.解 设2()f x x =,则'22()f x x =-,''44()0x f x x=>.所以()f x 为凹函数,由琴生(Jensen )不等式12121()[()()()]n n x x x f f x f x f x n n ++⋅⋅⋅≤++⋅⋅⋅+,得: 121221222()n nn x x x n x x x ≤++⋅⋅⋅+++⋅⋅⋅. 化简整理得:1212222()()n nx x x x x x ++⋅⋅⋅++⋅⋅⋅+22n ≥, 所以1212222()()n nx x x x x x ++⋅⋅⋅++⋅⋅⋅+的最小值为22n . 例题10 设函数()f x 为[,]a b 上的凸函数,则求()f x 在闭区间[,]a b 上的最值. 解 对于任意的[,]x a b ∈,取b x b a λ-=-,([0,1]λ∈),所以有(1)x a b λλ=+-. 进而有()[(1)]f x f a b λλ=+-,又()f x 为[,]a b 上的凸函数所以有:()[(1)]()(1)()min{(),()}f x f a b f a f b f a f b λλλλ=+-≥+-≥.所以()f x 的最小值为min{(),()}f a f b .记区间[,]a b 的中点为A ,且2a b A +=,设任意的[,]x a b ∈关于A 的对称点为'x 则有 '22x x a b ++=,又()f x 是[,]a b 上的凸函数,所以有: ''()()()()()2222a b x x f x f x f x m f f ++++=≥≥,即:()2()2a b f x f m +≤-).(其中min{(),()}m f a f b =).所以()f x 的最大值为 :2()2a b f m +-,(其中min{(),()}m f a f b =. 注意:此例题可以表述为若函数()f x 在[,]a b 为凸函数,则()f x 在闭区间[,]a b 上有界.例题11 若,,,a b c d R +∈,且16a b c d +++=,求2222a b c d +++的最小值.解 设2()f x x =,则'()2f x x =,''()20f x =>,所以()f x 为凹函数.所以有:1()[()()()()]44a b c d f f a f b f c f d +++≤+++. 即:22222()1()164a b c d a b c d +++≤+++. 化简整理得:222264a b c d +++≥,当且仅当4a b c d ====时等号成立.小结:求函数最值的常用方法是利用函数的单调性、求导和均值不等式等方法,但是求函数值域没有通用的方法和固定的模式,要靠在学习过程中不断积累,掌握规律.而利用函数的凹凸性求解,为求函数最值开辟了一条新的路径.从上面几个例题可以看出利用函数凹凸性去求函数最值的关键还是构造合适的辅助函数. 4.3 利用函数的凹凸性作函数图象图象是刻画函数变量之间关系的一个重要途径,是研究函数性质的一种常用方法,是数形结合的基础和依据.函数图象是函数的一种表达形式,它形象地显示了函数的性质,为研究数量关系提供了“形”的直观性,是探求解题途径、获得问题结果的重要工具.但是在实际的解题过程中,并不是所有的函数图形都能够很容易地作出.下面我们就利用函数的凹凸性去解决一些函数作图问题.例题12 作出函数2()[cos(2arccos )]f αα=的图形.解析 题目中的函数解析表达式不够直观,我们考虑将函数做恒等变换,之后再利用函数的凹凸性作出函数图象.解 因为2cos(2arccos )12sin cos arc αα=-,设sin cos x arc α=,[1,1]x ∈- ,所以所给函数的表达式可以写成22()(12)f x x =-,且函数的定义域为[1,1]x ∈-,该函数是偶函数,它的图形关于y 轴对称,因此只需讨论区间[1,0]-上的图形即可.'()8(1)(1)f x x =-,进而得到:''2()4881)f x x =-=-+,在区间[1,0]-上,'()0f x =的解为0x =或2x =-,''()0f x =,的解为6x =-.用点2x =-和6x =-把区间[1,0]-划分为[1,2--,[,26--,[6-三个部分区间.在各部分区间内'()f x 及''()f x 的符号、相应曲线弧的升降、凹凸性、极值点因而在2x =-处,()f x 取极小值0,再由函数关于y 轴对称,所以在0x =处,()f x 取极大值1,在2x =处,()f x 取极小值0,曲线有两个拐点 4()69-和4)69. 函数的图象如下图所示:小结:利用函数凹凸性作图的步骤: (1)确定函数()f x 的定义域,讨论函数的一些基本性质,如奇偶性、对称性和周期性等,并求出函数的一阶导数'()f x 及二阶导数''()f x .(2)求出方程'()0f x =和''()0f x =在定义域内的全部实根及使'()f x 和''()f x 不存在的点,用以上两种点将函数()f x 的定义域划分成几个部分区间.(3)确定在这些部分区间内'()f x 及''()f x 的符号,并由此确定函数图形的升降和凹凸、极值点和拐点.(4)确定函数图形的水平铅直渐近线.(5)列表并作出函数图象.函数的凹凸性揭示了函数因变量随自变量变化而变化的快慢程度,如果结合函数其它性质,可使我们对函数图象的描绘更加的准确.4.4 利用函数的凹凸性判断函数单调性判断函数单调性的一般方法是利用导函数的正负来判断的,但是利用函数的凹凸性来判断函数的单调性,作为判断函数单调性方法的补充,是需要我们了解的.例题13 设()00f =,()f x 在[)0,+∞上为非负的严格凹函数,()()f x F x x=,()0x >.试证明:()(),f x F x 为严格递增的函数.证明 因为()f x 为严格凹函数,()00f =,所以()()()()00f x f x f F x x x -==-为严格递增的.因为()f x 是非负函数,所以对于 0x ∀>,有()()00f x f ≥=.若某点10x >,使得()10f x =,则在[]10,x 上有()0f x ≡ 与()f x 为严格凹函数矛盾. 所以0x ∀>,有()0f x >,最后设120x x <<,则:()()()()()21112111000f x f x f x f f x x x x x -->=>--,得()f x 为严格递增的()0x >.结 束 语本文从函数凹凸性的概念出发,通过具体的实例较系统地介绍了函数凹凸性的常规的判定方法及在证明不等式、求函数最值以及在作函数图象时的应用.把握函数凹凸性在数学中的应用,关键就是在把握函数凹凸性的基本概念、定理的基础上,同时加强此方面的训练和研究.函数凹凸性的应用,拓展了学习和研究的邻域.由于受到各种因素的限制,本文也有一定的不足之处.函数凹凸性的判别方法与应用还有很多,本文只介绍了其中的一部分,还有其它方法与应用可以补充.参考文献[1] 宣立新. 高等数学(上册)[M].高等教育出版社,1999.[2] 华东师范大学数学系[M].数学分析.高等教育出版社,2007.[3] 毛纲源.高等数学解题方法技巧归纳[M].华中理工大学出版社,2002.[4] 于淑兰.关于曲线拐点的判别法[J].数学的实践与认识,2003,33(1):98-100.[5] 刘玉琏,傅沛仁.数学分析讲义(第三版)[M].高等教育出版社,1995.[6] 沈家英,方永宏.高等数学(上册)[M].山东大学出版社,1995.[7] 裴礼文.数学分析中的典型问题与方法[M].高等教育出版社,2007.[8] 孙清华,郑小姣.高等数学内容、方法与技巧[M].华中科技大学出版社,2004.[9] Fred Brauer .Fundamentals of Advanced Mathematics[M] .Higher Education Press,2006.[10] 何卫力,缪克英.高等数学方法导引(上)[M].北京交通大学出版社,2004.[11] 盛祥耀.高等数学[M].高等教育出版社,2004.[12] 刘士强.数学分析[M].广西民族出版社,2000.The discrimination approach and application of concave and convex function Author: Zhu Hongli Supervisor: Xing BaohuaAbstract Concave and convex function is one of the important properties in function.It reflects curving direction of the curve on the function image, and it allows you to grasp the curve properties better about the corresponding function. This paper bases on analysis about the concept of convex and concave function, and focuses on exploring the discrimination approach and application of concave and convex function, such as the application in inequality proving and function max/min value, etc. It makes a detailed exposition with relevant examples.Keywords concave and convex derivative inequality application.。

相关文档
最新文档