第八篇第一讲激光原理
激光原理及应用 ppt课件
高斯
多元高斯
• 减少脉冲时间,高的峰值能量,更多的能量密度
Less pulse time, high peak power more energy density
能量密度=功率/频率/光斑面积
pulse
1.1uW/um=220W/20KHz/900um2
Hz
ppt课件
13
4.重叠率计算——Overlap
激光器 扫描镜
• 场镜:聚焦系统为F-θ 平场透镜,选用焦距 f=254mm。普通聚焦透镜像高y与入射角度θ 的关 系符合y=f tgθ ,当入射光偏转时其在焦平面上 的扫描速度不断变化;对普通透镜作改进后使像
高y=f θ ,以等角速度偏转的入射光实现线性扫 描,这种线性成像物镜称为F-θ 镜。
振镜
扫描振镜其专业名词叫做高速扫描振镜Galvo scanning system。所谓振镜,又可以称之 为电流表计,它的设计思路完全沿袭电流表的设计方法,镜片取代了表针,而探头的信号由计 算机控制的-5V—5V 或-10V-+10V 的直流信号取代,以完成预定的动作。同转镜式扫描系统 相同,这种典型的控制系统采用了一对折返镜,不同的是,驱动这套镜片的步进电机被伺服电
场镜
ppt课件
16
振镜是一种优良的矢量扫描器件。它是一种特殊的摆动电机 ,基本原理是通电线圈在磁场中产 生力矩 ,但与旋转电机不同 ,其转子上通过机械纽簧或电子的方法加有复位力矩 ,大小与转子偏 离平衡位置的角度成正比 ,当线圈通以一定的电流而转子发生偏转到一定的角度时 ,电磁力矩与 回复力矩大小相等 ,故不能象普通电机一样旋转 ,只能偏转 ,偏转角与电流成正比 ,与电流计一 样 ,故振镜又叫电流计扫描振镜(galvanomet ric scanner) 。
激光原理第一讲ppt课件
29
球面波
波阵面为一系列同心圆的波是球面波
➢球面简谐波方程:
U
U0 r
cost
cr
➢球面波的复数表示法:
U U0 eitkr r
编辑版pppt
30
光子
➢ 在真空中一个光子的能量 h
式中h是普朗克常数,h=6.63×10-34J•s。
➢
光子具有的运动质量
mc2
hc2 hmc2
➢ 光子的动量
h h h2 p h P m c n 0cn 0 ln 02 pln 02 pk
Schawlow
编辑版pppt
16
激光技术发展简史之一
美国休斯公司实验室一位从事 红宝石荧光研究的年轻人梅曼 在1960.5.16利用红宝石棒首 次观察到激光; 梅曼在7月7日正式演示了世 界第一台红宝石固态激光器; 他在Nature(8月16日)发表了 一个简短的通知。
编辑版pppt
Maiman
发射 hE2E1
吸收 hE1E2
E2: 高能 , E1级 : 低能级
编辑版pppt
42
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
33
原子的能级
物质是由原子、分子或离子组成,而原子由带正电的原子 核及绕核运动的电子组成; 电子一方面绕核做轨道运动,一方面本身做自旋运动。
-e
+e 原子核
-e 电子 角动量L=r×p
编辑版pppt
34
原子的能级
原子中电子的状态由下列四个量子数来确定:
➢主量子数n,n=1,2,3,…大体上决定原子中电子的能 量值.不同的主量子数表示电子在不同的壳层上运动;
激光原理课件
吸收跃迁: 低 吸收能量 高 辐射跃迁: 高 辐射能量 低
(自发辐射)
h E1 E2
3. 受激辐射:
激光原理 . 第一章
爱因斯坦发现,若只有自发辐射和吸收跃迁, 黑体和辐射场之间不可能达到热平衡,要达 到热平衡,还必须存在受激辐射。
二、自发辐射、受激吸收和受激辐射
1. 自发辐射
E2
h
E1
发光前
发光后
h E2 E1
激光原理 . 第一章
普通光源(白炽灯、日光灯、高压水银灯)的发光过程 为自发辐射。各原子自发辐射发出的光彼此独立,频率、 振动方向、相位不一定相同——为非相干光。
A 自发跃迁几率(自发跃迁爱因斯坦系数): 21
1
A21 S
原子在能级 E2 的平均寿命
只与原子本身性质有关,与辐射场无关
爱因斯坦——1917年,提出受激辐射概念。 1. 黑体辐射的Planck公式:
任何物质在一定温度下都要辐射和吸收电磁辐射。
黑体:能够完全吸收任何波长 的电磁辐射的物体。
空腔辐射体
热平衡状态:
激光原理 . 第一章
黑体吸收的辐射能量 黑体发出的辐射能量
单色能量密度
:
dE
dVd
Planck辐射能量量子化假说:
激光原理 . 第一章
A21 B21
8 h 3
c3
n h
B12 f1 B21 f2
f1 f2
B12 B21 W12 W21
A21
8 h
c3
3
B21
结论:
激光原理 . 第一章
1. 其他条件相同时,受激辐射和受激吸收具有相同几率。
2. 热平衡状态下,高能级上原子数少于低能级上原子数,故 正常情况下,吸收比发射更频繁,其差额由自发辐射补偿。
激光原理及应用PPT课件
激光治疗
通过激光照射病变组织,达到治 疗目的,如激光治疗近视、祛斑
等。
激光手术
利用激光进行微创手术,具有出 血少、恢复快、精度高等优点, 如激光心脏手术、激光眼科手术
等。
激光诊断
利用激光光谱技术对人体组织进 行检测和分析,为疾病诊断提供
依据。
军事国防领域应用
激光雷达
利用激光雷达进行目标探测、识别和跟踪,具有高分辨率、抗干 扰能力强等特点。
微型化与集成化
发展微型激光器,实现与其他光电器件的集成,推动光电子集成技 术的发展。
新型激光技术
研究新型激光技术,如光纤激光器、化学激光器等,拓展激光器的 应用领域。
高功率、高效率、高稳定性挑战
高功率激光器
提高激光器的输出功率,满足高能激光武器、激光聚变等领域的 需求。
高效率激光器
优化激光器的能量转换效率,降低能耗,提高激光器的实用性。
02
03
工作原理
通过激励固体增益介质 (如晶体、玻璃等)中的 粒子,实现粒子数反转并 产生激光。
特点
结构紧凑、效率高、光束 质量好。
应用领域
工业加工、医疗、科研等。
气体激光器
工作原理
利用气体放电激励气体分子或原子, 使其产生能级跃迁并辐射出激光。
特点
应用领域
激光切割、焊接、打孔等工业应用。
输出功率大、光束质量好、效率高。
激光原理及应用PPT课 件
contents
目录
• 激光原理基本概念 • 激光技术发展历程及现状 • 激光器类型及其特点分析 • 激光在各领域应用案例分析 • 激光安全问题及防护措施探讨 • 未来发展趋势预测与挑战分析
激光原理基本概念
激光原理与技术讲稿
第一章 激光的基本原理及其特性激光技术是二十世纪六十年代初发展起来的一门新兴学科。
激光的问世引起了现代光学技术的巨大变革。
激光在现代工业、农业、医学、通讯、国防、科学研究等各方面的应用迅速扩展,之所以在短期间获得如此大的发展是和它本身的特点分不开的。
激光与普通光源相比较有三个主要特点,即方向性好,相干性好和亮度高,其原因在于激光主要是光的受激辐射,而普通光源主要是光的自发辐射。
研究激光原理就是要研究光的受激辐射是如何在激光器内产生并占据主导地位而抑制自发辐射的。
本章首先从光的辐射原理讲起,讨论与激光的发明和激光技术的发展有关的各方面物理基础和产生激光的条件。
光的辐射既是一种电磁波又是一种粒子流,激光是在人们认识到光有这两种相互对立而又相互联系的性质后才发明的。
因此本章从介绍光的波粒二象性开始研究原子的辐射跃迁。
激光的产生又是光与物质的相互作用的结果,对光的平衡热辐射和光与物质的相互作用 (光的自发辐射、受激辐射、受激吸收) 的研究是发明激光的物理基础。
光谱线的宽度,线型函数是影响激光器性能的重要因素,提高激光的单色性是激光技术的发展的一个重要方向。
阐明上述这些基础后,本章最后一节讨论激光产生的条件。
1. 1 激光的特性光的一个基本性质就是具有波粒二象性。
人类对光的认识经历了牛顿的微粒说、惠更斯菲涅耳的波动说到爱因斯坦的光子说的发展,最后才认识到波动性和粒子性是光的客观属性,波动性和粒子性总是同时存在的。
一方面光是电磁波,具有波动的性质,有一定的频率和波长。
另一方面光是光子流,光子是具有一定能量和动量的物质粒子。
在—定条件下,可能某一方面的属性比较明显,而当条件改变后,另一方面的属性变得更为明显。
例如,光在传播过程中所表现的干涉、衍射等现象中其波动性较为明显,这时往往可以把光看作是由一列一列的光波组成的;而当光和实物互相作用时(例如光的吸收、发射、光电效应等),其粒子性较为明显,这时往往又把光看作是由一个一个光子组成的光子流。
第八篇激光原理文稿演示
1、受激吸收
外来光也有可能被吸收,使原子从E1E2 .
单位体积中单位时间内因吸收外 来光而从E1E2 的原子数:
E2 N2
h
ddN 1t2吸
B12,TN1
收
E1 N1
B12—— 吸收系数
令 W12=B12 ( 、T)
③使激光具有极好的方向性,只沿轴线发射;
④使激光具有极好的单色性(选频性).
对于可能有多种跃迁的情况,利用光的干涉条件
谐振腔的长度与波长满足:
Lk
2
阈值不—满—足维此持频振率荡的光将得不到加强而被淘汰.
( ) A21
B21
即相干光场的单色辐射能量密度大于某个最小值.
要增大()必须使激活介质长度远大于其横向尺寸.
即由自发辐射光子不断引起受激辐射,使()不断增大.
实际介质并不足够长,只有采用光学谐振腔 它由两个反射镜和激活介质构成一个光学谐振腔。
激励能源
激光
全反射镜
部分反射镜
光学谐振腔的作用: ①使非轴向光逸出腔外,轴向光来回反射; ② 延长介质长度,增强光放大;
数反转,三能级体系效率
不高.
E3
➢
四能级系统
E3 E1寿命短, E2 是亚稳态, 因此能容易实现E2与E1能
激 励
级的粒子数反转,四能级
体系效率高
抽
E2
运 A21
W12
W21
E1
抽
E2
运 A21 W12 W21
E1
E0
3.激光器的结构
➢ 激光器通常由工作 物质、光学谐振腔、 激励能源三部分组 成。
激光原理PPT课件
5. 自由电子激光器 以自由电子为工作物质微波到X射线的受激辐射
均称为自由电子激光。
第12页/共33页
这是一种特殊类型的新型激光器,被电子加速器
加速的电子流注入周期变化的磁场。只要改变电子束
的速度就可产生波长连续变化的相干电磁辐射,原则
上其相干辐射谱可从X射线波段过渡到微波区域,其 峰值功率和平均功率高且可调,相干性好,可获得偏
政”辐射光子。
第14页/共33页
激光是入射光子经受激辐射过程被放大。由于激 光产生的机理与普通光源的发光不同,这就使激光具 有不同于普通光的一系列性质。
1. 方向性好 激光不像普通光源向四面八方传播,几乎在一条 直线上传播,我们称激光的准直性好。因为激光要在 谐振腔内来回反射,若光线偏离轴线,则多次反射后 终将逸出腔外,因此从部分透明的反射镜射出的激光 方向性好。良好的方向性使激光是射得最远的光,应 用于测距、通讯、定位方面。
第15页/共33页
2. 亮度高 一般光源发光是向很大的角度范围内辐射,如电 灯泡不加约束是向四面八方辐射。激光的辐射范围在 1×10-3rad(0.06º)左右,因此既使普通光源与激光 光源的辐射功率相同,激光的亮度将是普通光源的上 百万倍。1962年人类第一次从地球上发出激光束射向 月球,由于激光的方向性好、亮度高,加上颜色鲜红, 所以能见到月球上有一红色光斑。激光的高亮度在激 光切割、手术、军事上有重要应用,现正研究用高亮 度的激光引发热核反应。
2. 用激光固定原子
气态原子、分子处在永不停息的运动中(速度接
近340m/s),且不断与其它原子、分子碰撞,要“捕
获”操纵它们十分不易。1997年华裔科学家、美国斯
坦福大学朱棣文等人,首次采用激光束将原子束冷却
《激光原理》PPT课件
2024/1/28
28
前沿动态及发展趋势预测
超快激光技术
实现飞秒、皮秒级超短脉冲输出,用 于精密加工、生物医学等领域。
高功率激光技术
发展高能量、高效率的激光器,应用 于国防、能源等领域。
2024/1/28
激光显示技术
利用激光作为光源的显示技术,具有 色域广、亮度高等优点,是未来显示 技术的重要发展方向。
概述光纤激光器的工作原理、 优势及在通信、传感等领域的 应用前景。
其他典型固体激光器
简要介绍其他类型的固体激光 器,如半导体激光器、拉曼激
光器等。
10
03
气体激光器原理与技术
2024/1/28
11
气体放电过程及发光机制
01
02
03
气体放电基本概念
电子与气体原子或分子碰 撞,引发电离和激发过程 ,产生带电粒子和光子。
液体染料激光器技术特点பைடு நூலகம்
具有宽调谐范围、高转换效率、短脉冲输出等优点。同时 ,液体染料激光器也存在染料稳定性差、需要定期更换等 缺点。
液体染料激光器应用领域
广泛应用于光谱学、生物医学、光化学等领域。例如,可 用于荧光光谱分析、激光医疗、光动力疗法等。
16
半导体材料发光机制及器件结构
2024/1/28
利用半导体材料的特性实现受激辐射,具有 体积小、效率高、寿命长等优点,广泛应用 于通信、显示等领域。
2024/1/28
6
02
固体激光器原理与技术
2024/1/28
7
固体激光材料及其发光机制
2024/1/28
固体激光材料种类与特性
01
包括晶体、玻璃、陶瓷等,具有不同的发光特性和应用场景。
第八篇第一讲 激光原理
二、激光的形成
处于热平衡下的粒子,满足玻耳兹曼分布
Nn e
N2 e N1 E2 E1 kT
En kT
若 E2 > E 1,则两能级上的原子数之比:
1
即能级越高,粒子数越少.
数量级估计:
T ~103 K;
E2 E1 kT 1 0.086
E 2-E 1~1eV;
kT~1.38×10-20 J ~ 0.086 eV;
2、激光的应用
激光技术的应用涉及到光、机、电、材料及检测等多门 学科,主要分为以下几类: 激光焊接:汽车车身厚薄板、汽车零件、锂电池、 心脏起搏器、密封继电器等密封器件以及各种不允 许焊接污染和变形的器件。目前使用的激光器有 YAG (钇铝石榴石)激光器,CO2激光器和半导体泵 浦激光器。 激光切割:汽车行业、计算机、电气机壳、木刀模 业、各种金属零件和特殊材料的切割、圆形锯片、 压克力、弹簧垫片、2mm以下的电子机件用铜板、 一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷 青铜、电木板、薄铝合金、石英玻璃、硅橡胶、 1mm以下氧化铝陶瓷片、航天工业使用的钛合金等 等。使用激光器有YAG激光器和CO2激光器。
三、激光的特性及其应用 1、激光的特性
方向性好 激光能量集中在其传播方向上。其发散角 很小,一般为10-5~10-8球面度。 亮度高 光源亮度是指光源单位发光表面在单位时间内 沿单位立体角所发射的能量。例如,太阳表面的亮度 比蜡烛大30万倍,比白炽灯大几百倍。而一台普通的 激光器的输出亮度,比太阳表面的亮度大10亿倍。 单色性好 如He-Ne激光器发射的632.8nm的谱线宽度 仅为10- 9nm。可用作光频计时标准。 相干性好普通光源(如钠灯、汞灯等)其相干长度只 有几个厘米,而激光的相干长度则可以达到几十公里, 比普通光源大几个数量级。
2024年激光原理与技术课件课件
激光原理与技术课件课件激光原理与技术课件一、引言激光作为一种独特的人造光,自20世纪60年代问世以来,已经在众多领域取得了举世瞩目的成果。
激光原理与技术已经成为现代科学技术的重要组成部分,并在光学、通信、医疗、工业加工等领域发挥着重要作用。
本课件旨在阐述激光的基本原理、特性以及应用技术,使读者对激光有更深入的了解。
二、激光的基本原理1.光的粒子性与波动性光既具有粒子性,也具有波动性。
在量子力学中,光被视为由一系列光子组成的粒子流,光子的能量与频率成正比。
而在波动光学中,光被视为一种电磁波,具有频率、波长、振幅等波动特性。
2.光的受激辐射受激辐射是指处于激发态的原子或分子在受到外来光子作用后,返回基态并释放出一个与外来光子具有相同频率、相位、传播方向和偏振状态的光子。
这个过程是激光产生的核心原理。
3.光的放大与谐振在激光器中,通过光学增益介质实现光的放大。
当光在增益介质中往返传播时,不断与激发态原子或分子发生受激辐射,使光子数不断增加。
同时,通过谐振腔的选择性反馈,使特定频率的光得到进一步放大,最终形成激光。
三、激光的特性1.单色性激光具有极高的单色性,即频率单一。
这是由于激光器中的谐振腔对光的频率具有高度选择性,只有满足特定频率的光才能在谐振腔内稳定传播。
2.相干性激光具有高度的相干性,即光波的相位关系保持稳定。
相干光在传播过程中能形成稳定的干涉图样,广泛应用于光学检测、全息成像等领域。
3.方向性激光具有极高的方向性,即光束的发散角很小。
这是由于激光器中的谐振腔对光的传播方向具有高度选择性,只有沿特定方向传播的光才能在谐振腔内稳定传播。
4.高亮度激光具有高亮度,即单位面积上的光功率较高。
这是由于激光的单色性、相干性和方向性使其在空间上高度集中,从而具有较高的亮度。
四、激光的应用技术1.光通信激光在光通信领域具有广泛应用,如光纤通信、自由空间光通信等。
激光的高单色性、相干性和方向性使其在传输过程中具有较低的信号衰减和干扰,从而实现高速、长距离的数据传输。
激光原理 全套课件
1.1 激光简史
– 1963年,Herbert Kroemer和 Rudolf Kazarinov、Zhores Alferov的团队独立的提出了利 用异质结构造半导体激光器的 思路,这一工作使得他们获得 了2000年的诺贝尔物理学奖。
– 1964年,C. K. N. (Kumar) Patel研制了第一台CO2激光器;
1.1 激光简史
– 1965年,Anthony J.DeMaria, D. A. Stetser和H. A. Heynau报道了 第一台利用钕玻璃激光器和饱和吸 收器产生皮秒级脉冲的激光器。
– 1965年,George C. Pimentel和 Jerome V. V. Kasper 研制了第一 台化学激光器;
1.1 激光简史
– 1959年,Gordon Gould 发表论文“The LASER: Light Amplification by Stimulated Emission of Radiation”,这是 LASER这一术语第一次被提出。
– 1960年5月,休斯实验室的Maiman和Lamb 共同研制的红宝石激光器发出了694.3nm的 红色激光,这是公认的世界上第一台激光器。
激光原理与技术·原理部分
第一讲 激光简史、发展与应用
课程简介
– 先修科目
• 几何光学 • 物理光学 • 量子力学 • 数学物理方法
– 参考书目
• 激光原理 国防工业出版社 2000年版 周炳琨等编 • 量子电子学 科学技术出版社 1983年版 Amnon Yariv,刘
颂豪等翻译 • Lasers, Anthony E. Siegman, Maple-Vail Book Manufacturing
1.1 激光简史
激光原理与技术完整ppt课件
1.1.1所示)。每一模式在三个坐标铀方向与相邻模的间隔为
Δkx=л/Δx,Δky=л/Δy,Δkz=л/Δy 因此,每个模式在波矢空间占有一个体积元
(1.1.6)
ΔkxΔkyΔkz =л3 /(ΔxΔyΔz)=л3 /V
(1.1. 7)
精选课件PPT
10
在k空间内,波矢绝对值处于|k|~|k|+d|k|区间的体积为(1/8)4л|k|2 d|k|,
可见,一个光波模在相空间也占有一个相格.因此,一个光波模等效于一个光子态。
一个光波模或一个光子态在坐标空间都占有由式(1.1.11)表示的空间体积。
精选课件PPT
12
三、光子的相干性
为了把光子态和光子的相干性两个概念联系起来,下面对光源的相干性进行讨论。
在一般情况下,光的相干性理解为:在不同的空间点上、在不同的时刻的光波场的某
4.4 典型激光器的速率方程
3.5 空心介质波导光谐振腔的反馈耦合损耗 4.5 均匀加宽工作物质的增益系数
4.6 非均匀加宽工作物质的增益系数
4.7 综合均匀加宽工作物质的增益系数
精选课件PPT
3
第五章 激光振荡特性
5.1 激光器的振荡阈值 5.2 激光器的振荡模式 5.3 输出功率和能量 5.4 弛豫振荡 5.5 单模激光器的线宽极限 5.6 激光器的频率牵引
ε=hv
(1.1.1)
式中 h=6.626×10-34J.s,称为普朗克常数。
(2)光子具有运动质量m,并可表示为
(1.1.2)
光子的静止质量为零。
精选课件PPT
7
(3)光子的动量P与单色平面光波的波矢k对应
(1
式中
n。为光子运动方向(平面光波传播方向)上的单位矢量。 4.光于具有两种可能的独立偏振状态,对应于光波场的两个独立偏振方向。 5.光于具有自旋,并且自旋量子数为整数。因此大量光于的集合, 服从玻色—爱因斯坦统计规律。处于同一状态的光子数目是没有限制的, 这是光子与其它服从费米统计分布的 粒子(电子、质子、中子等)的重要区别。 上述基本关系式(1.1.1)相(1.1.3)后来为康普顿(Arthur Compton)散射实验所证实 (1923年),并在现代量子电动力学中得到理论解释。量子电动力学从理论上把光的电磁 (波动)理论和光子(微粒)理论在电磁场的量子化描述的基础上统一起来,从而在理论上 阐明了光的波粒二象性。在这种描述中,
《激光原理》课件
单击此处添加副标题
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
激光概论
01.
What ?
单击此处添加正文
03.
How ?
单击此处添加正文
02.
Why ?
单击此处添加正文
单击此处添加大标题内容
What is Laser?
1917年,爱因斯坦预言受激辐射; 40年后,1957年是一个不平常的年份; 苏联发射世界上第一颗人造地球卫星; 我国爆发了全国范围的反右派运动; 贝尔实验室附近的一个餐馆里,两个人在吃饭 一个是哥伦比亚大学教授,贝尔实验室顾问汤斯(C.Townes),微波受激辐射放大名人 另一个是贝尔实验室博士后肖洛(A.Schawlow) 探讨如何实现光波段的受激辐射放大
试样通常是 微电子器件。
激光-原子力显微镜 (AFM)
激光器
分束器
布喇格室
棱镜
检测器
反馈机构
接计算机
微芯片
压电换能器
压电控制装置
添加标题
方向性好
01
添加标题
单色性好
02
添加标题
高功率
03
添加标题
相干性好
04
添加标题
Why is Laser so useful?
05
特点:
添加标题
方向性极好(发散角~10 -4弧度)
Why should I study Laser?
激光在能源、环境中的应用 探求无穷的绿色能源——激光核聚变 连接 激光大气检测 3激光引雷、激光驱雾 激光在土木、建筑中的应用 激光表面处理及剥离 激光切断及解体 激光挖掘
Why should I study Laser?
激光原理与应用课件
1 .3 激光工作物质的能级结构
一、三能级系统
激发态的平均寿命只有10-8(s)。然而在原子的能 级中,有一种特殊的能级,其寿命可达10-3(s)甚
至更长。我们称这种状态为原子的亚稳态。
在He、Ne、CO2 、N2等物质中都有这种能级结 构
10
物质三能级系统的示意图
抽运
快 E3
E2 (亚稳态)
n 受激辐射出的光子,与入射光子具有相
同的频率,相同的初相,相同的传播方
向,相同的偏振态等。
E2
hv
E1
hv
E2
hhvv
输入 hv
hv hv
hv hv 输出
E1
hv
受激辐射示意图
受激辐射光放大示意图
6
1 .2 粒子数反转
n 处在温度为T的平衡态下,各能级上分布的分 子数,服从玻尔兹曼分布,
n 高能态En'上分布的分子数与低能态En上分布的 分子数之比为:
34
3.4 激光在几何参数测量方面的应用
一、激光测距技术
1、激光脉冲计数方法
2、相位测距法
B
X A
He-Ne激 光
45°
二、利用激光技术和几M何学d原理可以对板N参材考平面
的厚度进行测量
激光测厚原理示意图
35
3.5 激光条码检测技术
n 条码技术是通过一定形状和间隔的条纹 组合来表达计算机“0” 、“1”语言的一种方 法。
慢
E1 (基态)
n 应该注意:三能级系统,是指激光器在运转过 程中,所涉及到的三级能级。并不是指该系统 仅有这三条能级。
11
二、四能级系统
抽运
快 E4
E3 (亚稳态)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、受激吸收、自发辐射和受激辐射
在物质发光和光吸收过程中,主要涉及三种过程:
受激吸收,自发辐射和受激辐射
1、受激吸收
外来光有可能被吸收,使原子从E1E2 .
激光原理
➢ 激光器是1960年诞生的一种新型光源。激光具有能量 集中、方向性强、单色性好和相干性好的一系列优点, 因而在科技领域有广泛的应用。可以说,激光的产生 与应用为光学的发展开创了一个新的纪元。
➢ 激光是受激辐射的光放大的简称,其英文全名为: “light amplification by stimulated emission of radiation” 激光是第一个字母的缩写“Laser” 。即激光是基于受激 发射放大原理而产生的一种相干光辐射。
2、激光的应用
激光医疗:激光在医学上的应用分为两大类:激光 诊断与激光治疗,前者是以激光作为信息载体,后 者则以激光作为能量载体。
2、激光的应用
激光打标:在各种材料和几乎所有行业均得到广泛 应用,目前使用的激光器有YAG激光器、CO2激光 器和半导体泵浦激光器。
激光热处理:在汽车工业中应用广泛,如缸套、曲 轴、活塞环、齿轮等零部件的热处理,同时在航空 航天、机床行业和其它机械行业也应用广泛。
激光化学:激光携带着高度集中而均匀的能量,可 精确地打在分子的键上,比如利用不同波长的紫外 激光,打在硫化氢等分子上,改变两激光束的相位 差,则控制了该分子的断裂过程。也可利用改变激 光脉冲波形的方法,十分精确和有效地把能量打在 分子身上, 触发某种预期的反应。
E3
E3 E1寿命短, E2 是亚稳态, 激 因此能容易实现E2与E1能 励
级的粒子数反转,四能级
体系效率高
抽
E2
运 A21
W12
W21
E1
抽
E2
运 A21 W12 W21
E1
E0
3.激光器的结构
(1).工作物质:能实现粒子数反转并产生光放大
(2).光学共振腔
激励能源
激光
全反射镜
部分反射镜
作用:①产生和维持光振荡。 ②控制光振荡,使激光以特定的频率输出。
N2
E2 E1
e kT
1
e 0.086
105
1
N1
1、粒子数反转
从E2 → E1 自发辐射的光,可能引起受激辐射过程, 也可能引起吸收过程。
dN21 dt
受激
W21N2
dN12 dt
吸收
W12 N1
产生激光必须
dN 21 dt
受激
dN 12 dt
吸收
根据爱因斯坦辐射公式可得
(2) 能源输入系统(称为泵或抽运)
能不断的将能量输送给激活介质,将原子有低能级激 发到合适的高能级,从而实现粒子数反转
3、能实现粒子数反转的能级系统
➢ 三能级系统
E3
E3与E1构成一个宽吸收 带,E3上的原子无辐射跃
激 励
迁到E2 , E2与E1构成粒子
数反转,三能级体系效率
不高. ➢ 四能级系统
dN dt
21
受激
W21
N2
二、激光的形成
处于热平衡下的粒子,满足玻耳兹曼分布 En N n e kT
若 E2 > E 1,则两能级上的原子数之比:
N2
E2 E1
e kT
1
N1
即能级越高,粒子数越少.
数量级估计:
T ~103 K; E 2-E 1~1eV;
kT~1.38×10-20 J ~ 0.086 eV;
dN 21 dt
自发
N2
E1
N1
写成等式
dN 21 dt
自发
A21 N 2
3、受激辐射
处于高能级E2的粒子在外来辐射的作用下,跃迁回低能
级E1,同时发射一个与外来辐射相同频率的光子.
外来光频率满足:
E2 E1
h
E2 N2
h
单位体积中单位时间内, E1 N1
全ቤተ መጻሕፍቲ ባይዱ光子
从E2 E1受激辐射的原子数:
单位体积中单位时间内因吸收外 来光而从E1E2 的原子数:
E2
N2
h
dN
12
dt 吸收
W12
N1
E1 N1
2、自发辐射
处于高能级E2的原子自发地向低能级E1跃迁而放出光子
设 N1 、N2 — 单位体积中 处于E1 、E2 能级的原子数
E2 N2
单位体积单位时间内,从
h
E2
E1自发辐射的原子数:
(3) 泵:为工作物质提供能量,使其实现并维持粒子数反转的装置
三、激光的特性及其应用 1、激光的特性
➢ 方向性好 激光能量集中在其传播方向上。其发散角 很小,一般为10-5~10-8球面度。
➢ 亮度高 光源亮度是指光源单位发光表面在单位时间内 沿单位立体角所发射的能量。例如,太阳表面的亮度 比蜡烛大30万倍,比白炽灯大几百倍。而一台普通的 激光器的输出亮度,比太阳表面的亮度大10亿倍。
➢ 单色性好 如He-Ne激光器发射的632.8nm的谱线宽度 仅为10- 9nm。可用作光频计时标准。
➢ 相干性好普通光源(如钠灯、汞灯等)其相干长度只 有几个厘米,而激光的相干长度则可以达到几十公里, 比普通光源大几个数量级。
2、激光的应用
➢ 激光技术的应用涉及到光、机、电、材料及检测等多门 学科,主要分为以下几类: 激光焊接:汽车车身厚薄板、汽车零件、锂电池、 心脏起搏器、密封继电器等密封器件以及各种不允 许焊接污染和变形的器件。目前使用的激光器有 YAG (钇铝石榴石)激光器,CO2激光器和半导体泵 浦激光器。 激光切割:汽车行业、计算机、电气机壳、木刀模 业、各种金属零件和特殊材料的切割、圆形锯片、 压克力、弹簧垫片、2mm以下的电子机件用铜板、 一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷 青铜、电木板、薄铝合金、石英玻璃、硅橡胶、 1mm以下氧化铝陶瓷片、航天工业使用的钛合金等 等。使用激光器有YAG激光器和CO2激光器。
W21=W12
必须 N2 > N1( 粒子数反转)。
2、实现粒子数反转的条件
(1) 能实现粒子数反转的介质(激活介质)
➢ 亚稳态能级:大多数物质原子的激发态都是不稳定 的,原子能够在激发态停留的时间很短,称之为能 级寿命τ很短(τ~10-8s)。而亚稳态能级的寿命可 达ms甚至s数量级。当粒子被激发后,能够在亚稳 态能级停留较长时间,以便创造粒子数反转分布的 条件。