初中语数英三科七年级数学竞赛试题及答案

合集下载

数学竞赛试题初一及答案

数学竞赛试题初一及答案

数学竞赛试题初一及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果a和b是两个非零实数,且a+b=5,那么a-b的最大值是多少?A. 5B. 4C. 3D. 23. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 44. 下列哪个选项是4的倍数?A. 7B. 8C. 9D. 105. 如果一个三角形的内角和为180°,那么一个四边形的内角和是多少度?A. 360°B. 540°C. 720°D. 900°二、填空题(每题2分,共10分)6. 一个数的绝对值是它与____的距离。

7. 圆的周长公式是C=__。

8. 如果一个数的立方等于它本身,那么这个数可能是____。

9. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是____。

10. 一个数的倒数是1/这个数,那么1的倒数是____。

三、简答题(每题5分,共15分)11. 解释什么是有理数,并给出两个有理数的例子。

12. 什么是质数?请列出前5个质数。

13. 描述如何使用勾股定理来计算直角三角形的斜边长度。

四、计算题(每题10分,共20分)14. 计算下列表达式的值:(2+3)×(2-3)。

15. 解下列方程:2x + 5 = 13。

五、解答题(每题15分,共30分)16. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。

17. 一个班级有40名学生,其中1/4是男生,1/3是女生,剩余的是教师。

求男生、女生和教师的人数。

答案:一、选择题1. B2. A3. A4. B5. A二、填空题6. 07. 2πr(或πd,d为直径)8. 0, ±19. 5 10. 1三、简答题11. 有理数是可以表示为两个整数的比的数,例如1/2和3。

12. 质数是大于1的自然数,且除了1和它本身外,不能被其他自然数整除的数。

七年级数学竞赛试题(含答案)

七年级数学竞赛试题(含答案)

七年级数学竞赛试题(含答案)一、耐心填一填(每题5分,共50分)1、某天,5名同学去打羽毛球,从上午8:45一直到上午11:05,若这段时间内,他们一直玩双打(即须4人同时上场),则平均一个人的上场时间为________分2、已知:一条射线OA,若从点O再引两条射线OB、OC,使∠AOB=600,∠BOC=200,则∠AOC=___________度3、()()_______________1541957.0154329417.0=-⨯+⨯+-⨯+⨯。

4、定义a*b=ab+a+b,若3*x=27,则x的值是________。

5、有一个正方体,在它的各个面上分别标上字母A、B、C、D、E、F,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。

问:F的对面是_______。

FA DBCAED C6 A、B、C、D、E、F六足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E、五队已分别比赛了5、4、3、2、1场球,则还没与B队比赛的球队是________。

7、正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为________。

8、小李同学参加了学校组织的名为“互帮互助向未来”活动,为此小李自己在家制作了四份小礼物,准备送给他的新同学,四份小礼物分别装在形状完全一样的小长方体的盒子里,每个小长方体的长、宽、高分别是3、1、1,然后把这四个小长方体盒子用漂亮的丝带捆绑成一个大长方体,那么这个大长方体的表面积可能有________ 中不同的值,其中最小值为________。

9、当a ______时,方程组223196922x y a ax y a a⎧+=+-⎪⎨-=-+⎪⎩的解是正数。

10、如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是________平方厘米。

二、细心选一选(每题5分,共30分)1、如果有2015名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2015名学生所报的数是()A、1B、2C、3D、42、俗话说“商场如战场”,“买的永远没有卖的精”。

初中语数英三科七年级数学竞赛试题与标准

初中语数英三科七年级数学竞赛试题与标准

初中语数英三科七年级数学比赛试题及答案(沉稳沉着;仔细答题;挑战自我;相信自己! )三题号一二1314151617总分得分一、精心选一选;相信你选得准! (每题 5分;共 30分)1.已知 a2011 2011 2011 ; b 2012 2012 2012 ; c 2013 20132013;则 abc2010 2010 20102011 2011 20112012 2012 2012的值为( ).A .- 3B .- 1C . 3D .12.如图;已知 B 、C 是线段 AD 上随意两点; M 是 AB 的MN中点; N 是 CD 的中点;若 MN = a ; BC = b ;则 AD ADBC的长等于().A .2a - bB .ab - aC . a + 2bD .2a + b3.假如 a 、b 、 c 为非零的有理数;且a +b +c = 0;则ab c abc 的全部可能的| a || b | | c|| abc |值为( ).A .0B .1 或- 1C . 0 或- 2D .2 或- 24.如图 AB ∥ EF ;设∠ C =90o ;∠ B 、∠ D 、∠ E 三个角的大小分别为x 、 y 、 z ;则 x 、 y 、z 之间知足的关系式是()。

AxBCA .y = x + zoyD B . x + y + z = 180C . x + y - z = 90oEzD .y + z - x = 90oF5.已知 x 、y 、z 、a 、b 均为非零的实数; 且知足 xy1 b 3; yz1; xz 1;x y a 3 y z a 3x za 3b 3xyz zx 1;由 a 的值为().xy yz 12A .2B .- 2C . 1D .- 16.设 a 、 b 、c 均匀数为 M ;a 、 b 均匀数为 N ;N 与 c 均匀数为 p ;如 a > b >c ;则 M 与 p 的大小关系是( ). A .M = pB .M > pC . M < pD .不可以确立二、填空题(每题 5 分;共 30 分)7.x 4y 3,( 4x 3y)3 8 ;则3 x y =_____________.kx y 88.若方程组y z 6 的解使得kx+2y-z的值为10;则k=_______________.z x 4 A E D9.如图在长方形ABCD 中; E 是 AD 的中点; F 是 CE 的中F 点;若△ BDF 的面积为 2cm2;则长方形 ABCD 的面积为2 .B C__________ cmA 10.如图;图中有线段 a 条;小于 180o的角有 b 个;则 a+ b= _________.11.长 90 米的列车的速度是54 千米 /小时;它追上并超出60 米的列车用了15 秒;假如这两列火车相向而行;从相碰到完整走开需用__________秒.B1 B2 B3 B4B5B6 B7三、解答题 ( 共 40 分)13.(6 分)某企业只生产一般汽车和新能源汽车;该企业在昨年的汽车产量中;新能源汽车占总产量的10%;今年因为国家能源政策的导向和油价上升要素的影响;计划将普通车的产量减少10%;为保持总产量与昨年相等;那么今年新能源汽车的产量应增添的百分数为多少?14.( 8 分)某服饰厂生产一种西服和领带;西服每套订价为200 元;领带每条订价为40 元;厂方展开促销活动时期;向客户供给两种优惠方法:①买一套西服送一条领带;②西服和领带均按订价的九折付款;某商铺到该服饰厂买西服20 套.⑴若购置的领带为50 条时;经过计算说明应采纳哪一种方案购置更优惠.⑵领带买多少条时;两种优惠方法付款同样多.16.( 10 分)将连续自然数1— 1015 按如图方式摆列成一个长方形阵列;用一个正方形框出 16 个数。

七年级数学竞赛试题 人教版

七年级数学竞赛试题 人教版

12012--2013学年度七年级语、数、英三科竞赛数学试卷一、填空题(每小题3分,共30分)1、-21-= , =-π3 。

2、38780000000 精确到亿位并用科学记数法表示为 。

3、若b a ,互为相反数,则=--b a 663 。

4、若,023=-++y x 则x 3-y 2= 。

5、若单项式212)1(y xm m -+-的次数是5,则m 的值是 。

6、已知3=a ,2=b ,且a b b a -=-,则b a += 。

7、时钟表面7点到40分到8点时,时针与分针夹角的度数是90度是____ __。

8、012=-+m m ,则2009223++m m = 。

9、老师讲了多项式的加减,放学后,某同学回家拿出笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +2y 空格的地方被钢笔水弄污了,那么空格中的一项是 。

10若a 、b 、c 是两两不等的非0数码,按逆时针箭头指向组成的两位数,ab bc 都是7的倍数(如图),则可组成三位数abc ,其中的最大的三位数与最小的三位数的和等于_________.二、选择题(每小题3分,共18分)11、下列各组数中,不相等的是( )A 、223)3(--和 B 、2233和)(-C 、332)2--和( D 、3322--和12、若-(-a )为正数,则a 为 ( )A 、正数B 、负数C 、0D 、不能确定13、计算:()()2002200122-+-的结果是( )A 、1B 、-2C 、20012-D 、2001214、若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,则!98!100的值为( ) A.4950 B.99! C.9900 D.2! 15、小明用所示的胶滚从左到右的方向将图案滚到墙上,正面给出的四个图案中,用图示胶滚涂出的( )A B C D16、计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数A 、6E B 、78 C 、5F D 、B0三、解答题。

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个数的3倍加上5等于这个数的5倍减去9,那么这个数是:A. 3B. 4C. 5D. 63. 一个长方形的长是14厘米,宽是10厘米,那么它的周长是多少厘米?A. 24B. 28C. 48D. 564. 下列哪个分数是最接近0.5的?A. 1/2B. 3/5C. 4/7D. 5/95. 一个数的75%是60,那么这个数是多少?A. 80B. 120C. 160D. 2006. 一个班级有48名学生,其中2/3是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 407. 一个数除以3的商加上2等于这个数除以4的商,这个数是多少?A. 6B. 9C. 12D. 158. 下列哪个数是质数?A. 2B. 4C. 6D. 89. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是多少厘米?A. 1B. 2C. 3D. 410. 下列哪个表达式的结果是一个整数?A. (1/2) + (1/3)B. (1/2) + (1/4)C. (1/3) + (1/6)D. (1/4) + (1/5)二、填空题(每题4分,共40分)11. 一个数的1/4加上它的1/2等于______。

12. 如果5个连续的整数的和是45,那么中间的数是______。

13. 一个数的2倍与7的和是35,那么这个数是______。

14. 一个等腰三角形的两个底角都是70度,那么它的顶角是______度。

15. 一本书的价格是35元,如果打8折出售,那么现价是______元。

16. 一辆汽车以每小时60公里的速度行驶,2小时后它行驶了______公里。

17. 一个数的3/4加上它的1/2等于5,那么这个数是______。

18. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,那么它的表面积是______平方厘米。

初中七年级数学竞赛试题(附参考答案)

初中七年级数学竞赛试题(附参考答案)

七年级数学竞赛试题(限时120分钟,满分150分,允许使用计算器)一、选择题(请把正确答案题号填入下表,每小题5分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、2012+(-2012)-2012×(-2012)÷2012=( ).A 、-4024B 、-2012C 、2012D 、6036 2、a 是有理数,则200011a 的值不能是( ).A 、1B 、-1C 、 -2000D 、 03、当代数式x 2+3x +5的值等于7时,代数式3x 2+9x -2的值等于( ) A .4 B.0 C.-2 D.-44、一天,有个年轻人来到“高记”童鞋店里买了一双鞋,这双鞋的成本是15元,标价是21元,这个年轻人掏出一张50元的人民币要买这双鞋,鞋店当时没有零钱,就用那张50元钱向街坊换了50元的零钱,找给年轻人29元,但是,街坊后来发现那张50元的钱是假钞,鞋店老板无奈之下,还了街坊50元,现在的问题是:鞋店在这次交易中到底损失了( )钱。

A 、15元 B 、44元 C 、50元 D 、100元5、如图是测一颗玻璃球体积的过程。

(1)将300ml 的水倒进一个容量为500ml的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满; (3)再加一颗同样的玻璃球放入水中,结果水满溢出。

(1) (2) (3)根据以上过程,推测这样一颗玻璃球的体积在( )A 、20cm 3以上,30cm 3以下B 、30cm 3以上,40cm 3以下C 、40cm 3以上,50cm 3以下D 、50cm 3以上,60cm 3以下6、若干桶方便面摆放在桌子上,如图所示是它的三视图,则这一堆方便面共有( )桶 A. 10 B. 9 C.8 D. 77、如图,某汽车公司所运营的公路AB 段有四个车站依次是A 、C 、D 、B ,AC=CD=DB 。

现想在AB 段建一个加油站M ,要求使A 、C 、D 、B 站的各一辆汽车到加油站M 所花的总时间最少,则M 的位置在 ( )A 、在AB 之间 B 、 在CD 之间C 、在AC 之间D 、 在BD 之间学校 班次 姓名 指导教师8、在“消防安全”知识竞赛的选拔赛中共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分者通过选拔赛,九山学校的小明通过了选拔赛,他至少答对了多少道题?()A.10 B.11 C.12 D.139、一个女孩的身高为157cm,下肢长为95cm,问她应该穿多高的高跟鞋,看起来最美? (提示:要想看起来最美,应使人的下肢与身高之比黄金分割数0.618)()A.5.3cm B.2cm C.8.8cm D.6cm10、2005年9月1日国家实施皮鞋新标准,一位顾客到商店买鞋,仅知道自己的老尺码是43码,而不知道自己应穿多大的新鞋号。

(word完整版)初中七年级数学竞赛试题及答案,文档.docx

(word完整版)初中七年级数学竞赛试题及答案,文档.docx

2019 年初中七年级数学竞赛试题及答案一、选择题 ( 每小题 6 分,共 48 分;以下每题的4 个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内. )1 .如果 a 是有理数,代数式2a 1 1 的最小值是 --------------------------()(A) 1 (B) 2 (C) 3 (D) 42 .正五边形的对称轴有--------------------------------------------------( )( A ) 10 条( B )5 条( C ) 1 条( D ) 0 条3.已知等腰三角形的两边长分别为是3 和 6,,则这个三角形的周长是 --------( )( A ) 9( B ) 12( C ) 15( D ) 12 或 154.从一幅扑克牌中抽出5 张红桃, 4 张梅花, 3 张黑桃放在一起洗匀后,从中一次随机抽出 10张,恰好红桃、梅花、黑桃 3 种牌都抽到,这件事情 --------------- ( )( A )可能发生 ( B )不可能发生 ( C )很有可能发生( D )必然发生5 . 如 果( A )a b c abc 的 值 为 - - - - - - - - - - - - - - - - - - - - - - - - - - - ()ab1 , 则abcc1( B ) 1 ( C )1( D )不确定6.棱长是 1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是()( A ) 36cm 2( B ) 33cm 2( C ) 30cm 2 ( D ) 27cm 2(第 6 题图)(第 7 题图)7.如图是一块矩形 ABCD 的场地,长 AB=102m ,宽 AD=51m ,从 A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为 2m ,其余部分种植草坪,则草坪面积为 ----------- ( ) 22 2 (D) 2( A ) 2018m ( B ) 2018m (C) 2018m 2018m 8.如果一个方程有一个解是整数,我们称这个方程有整数解 . 请你观察下面的四个方程:( 1) 6x 4 y13 ( 2) 3x7 y 10 (3) ( x3)( y 2) 4( 4)1 11xy 2005其中有整数解的方程的个数是 ------------------------------------- ( )(A) 1(B) 2(C) 3 (D) 4二、填空题 ( 每小题 6 分,共 42 分 )9.观察下列算式:4 × 1 × 2+1=3 24 × 2 × 3+l=54 × 3 × 4+l=7 4 × 4 × 5+1=9222用代数式表示上述的律是.10.七 0 一班班主任一起共 48人到公园去划船 .每只小船坐 3 人,租金20 元,每只大船坐 5 人,租金 30元 . 他租船要付的最少租金是元 .11. 2018 减去它的1,再减去剩余数的1,再减去剩余数的1,⋯,依此推,一直234到减去剩余数的1,那么最后剩余的数是.200512.一个正 n 形恰好有 n 条角,那么个正n 形的一个内角是度.13.如, DE是△ ABC的 AB 的垂直平分,分交AB、 BC于 D、 E, AE 平分∠ BAC,若∠ B=30°,∠ C=度.14.ABC的三分a, b,c,其中a, b 足a b4(a b2)20 ,第三的 c 的取范是.15.根据下列 5 个形及相点的个数的化律,在第100 个形中有个点 .三、解答 ( 共 60 分 )16.( 15 分)如,ABC中, AB=6,BD=3, AD BC于 D,B=2 C,求 CD的 .AB CD17.( 15 分)两个代表从甲地乘往乙地,每可乘 35 人。

七年级数学竞赛.doc

七年级数学竞赛.doc

七年级三科联赛数学试题(时间:120分钟 分数:120分)一、选择题:1、当x=2时,代数式ax 3-bx+1的值为-17,那么当x=-1时,代数式12ax-3bx 3-5的值是( ) A .-20 B.22 C.-25 D.192、某商品进货价便宜8%,而售价保持不变,那么他的利润由目前的x%增加到[(x+10)%],则x%是( )A .12% B.15% C.30% D.50%3、设a+b+c=0,abc >0,则||a c b ++||b a c ++||c ba +的值为 ( )A .-3 B.1 C.3或-1 D.-3或14、甲从一鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2ba +元的价格把鱼全部卖掉,结果发现赔了钱,原因是 ( )A .a >b B.a <b C.a=b D.与a 和b 的大小没有关系5、把14个棱长为1的正方体,在地面上堆叠成如图所示的立方体, 然后将露出的表面部分染成红色,那么红色部分的面积为( )A .21 B.24 C.33 D.376、把足够大的一张厚度为0.1mm 的纸连续对折,要使对折后的整叠纸总厚度超过12mm ,至少要对折( )A .6次 B.7次 C.8次 D.9次 7.若(5a+8b )x+7=0无解,则a ·b 是( )A .正数B .非正数C .负数D .非负数 8.如图,一个周长为12的大圆内有许多小圆, 这些小圆的圆心都在大圆的一条直径上,记 所有小圆的周长之积为C ,则( )A .C12B .C12C .C=12D .无法计算 二、填空题9、若a 、b 、c 都是有理数,且满足aa ||+bb ||+c c ||=1,则abc abc ||=10、|x+1|+|x-2|+|x-3|的最小值为11、方程2x+6x +12x +20x +30x +……+2005·2004x =2004的解为12、某人以4km/h 的速度步行由甲地到乙 ,然后又以6km/h 的速度从乙返回到甲地,对那么此人往返一次的平均速度是 km/h.13、某商场有一部自动电梯自下向上运动,甲、乙两人都急于上楼办事,在乘扶梯的同时匀速登梯,甲登了55级后到达楼上,乙登楼梯速度是甲的2倍(单位时间内乙登楼梯的级数是甲的2倍),他登了60级后到达楼上,那么,由楼下到楼上自动扶梯的级数为 14、从黄冈开往九龙的特快列车,途中只有两个停靠点,如果任意两站间的的票价都不相同,那么应准备 种不同的车票。

2022年七年级数学竞赛试卷及答案解析

2022年七年级数学竞赛试卷及答案解析

2022年七年级数学竞赛试卷一.选择题(共10小题,满分30分,每小题3分)1.已知a 是两位数,b 是一位数,把a 接写在b 的后面,就成为一个三位数.这个三位数可表示成( ) A .10b +aB .baC .100b +aD .b +10a2.设x 为有理数,若|x |=x ,则( ) A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数3.某地区一天三次测量气温如下,早上是﹣8℃,中午上升了4℃,半夜下降了14℃,则半夜的气温是( ) A .﹣15℃B .2℃C .﹣18℃D .﹣26℃4.关于x 的方程2x ﹣4=3m 和x +2=m 有相同的解,则m 的值是( ) A .10B .﹣8C .﹣10D .85.当3≤m <5时,化简|2m ﹣10|﹣|m ﹣3|得( ) A .13+mB .13﹣3mC .m ﹣3D .m ﹣136.计算:3+(﹣2)结果正确的是( ) A .1B .﹣1C .5D .﹣57.观察图中的数轴:用字母a ,b ,c 依次表示点A ,B ,C 对应的数,则1ab,1b−a,1c的大小关系是( )A .1ab<1b−a<1cB .1b−a<1ab<1cC .1c<1b−a<1abD .1c<1ab<1b−a8.平面内3条直线最多可以把平面分成( ) A .4部分B .5部分C .6部分D .7部分9.一项工程,甲单独做需m 小时完成,若与乙合作20小时可以完成,则乙单独完成需要的时间是( ) A .20m m−20小时 B .20mm+20小时 C .m−2020m小时 D .m+2020m小时10.如图,是一个正方体的展开图,把展开图折叠成正方体后有“水”字一面的相对面上的字是( )A.共B.山C.绿D.建二.填空题(共10小题,满分40分,每小题4分)11.(4分)已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B的常数项是.12.(4分)写出一个数,使这个数等于它的倒数:.13.(4分)若2x2a﹣b﹣1﹣3y3a+2b﹣16=10是关于x,y的二元一次方程,则a+b=.14.(4分)小东在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1所示.小林看见了说:“我也来试一试.”结果小林七拼八凑,拼成了如图2那样的正方形,中间还留下了一个恰好是边长为2cm的小正方形,则这个小长方形的面积为cm2.15.(4分)如图,点O在直线AB上,∠AOD=120°,CO⊥AB,OE平分∠BOD,则图中一共有对互补的角.16.(4分)若a2+a=0,则a2001+a2000+12的值是.17.(4分)如图,△ABC三边的中线AD,BE,CF相交于点G,若S△ABC=15,则图中阴影部分面积是.18.(4分)小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小何共花费元.(用含a,b的代数式表示)19.(4分)观察式子11×3=12(1−13),13×5=13(13−15),15×7=12(15−17),…由此可知1 1×3+13×5+15×7+⋯+1(2n−1)×(2n+1)=.20.(4分)在长为20m、宽为16m的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,则每个小长方形花圃的面积是m2.三.解答题(共2小题,满分30分,每小题15分)21.(15分)我们把形如aaa1(1≤a≤9且为整数)的四位正整数叫做“三拖一”数,例如:2221,3331是“三拖一”数.(1)最小的“三拖一”数为;最大的“三拖一”数为;(2)请证明任意“三拖一”数不能被3整除;(3)一个“三拖一”数与50的和的2倍与另一个小于5000不同的“三拖一”数与75的和的3倍的和正好能被13整除,求这两个“三拖一”数.22.(15分)对于某些自然数n,可以用n个大小相同的等边三角形拼成内角都为120°的六边形.例如,n=10时就可以拼出这样的六边形,如图,请从小到大,求出前10个这样的n.2022年七年级数学竞赛试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.已知a 是两位数,b 是一位数,把a 接写在b 的后面,就成为一个三位数.这个三位数可表示成( ) A .10b +aB .baC .100b +aD .b +10a解:两位数的表示方法:十位数字×10+个位数字;三位数字的表示方法:百位数字×100+十位数字×10+个位数字.a 是两位数,b 是一位数,依据题意可得b 扩大了100倍,所以这个三位数可表示成100b +a . 故选:C .2.设x 为有理数,若|x |=x ,则( ) A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数解:设x 为有理数,若|x |=x ,则x ≥0,即x 为非负数. 故选:D .3.某地区一天三次测量气温如下,早上是﹣8℃,中午上升了4℃,半夜下降了14℃,则半夜的气温是( ) A .﹣15℃B .2℃C .﹣18℃D .﹣26℃解:由题意早上是﹣8℃,中午上升了4℃,即中午的温度为﹣8℃+4℃=﹣4℃, 半夜下降了14℃,即﹣4℃﹣14℃=﹣18℃.故选C .4.关于x 的方程2x ﹣4=3m 和x +2=m 有相同的解,则m 的值是( ) A .10B .﹣8C .﹣10D .8解:由2x ﹣4=3m 得:x =3m+42;由x +2=m 得:x =m ﹣2 由题意知3m+42=m ﹣2解之得:m =﹣8. 故选:B .5.当3≤m <5时,化简|2m ﹣10|﹣|m ﹣3|得( ) A .13+mB .13﹣3mC .m ﹣3D .m ﹣13解:由于3≤m <5,则|2m ﹣10|﹣|m ﹣3|=10﹣2m ﹣(m ﹣3)=13﹣3m ; 故选:B .6.计算:3+(﹣2)结果正确的是( ) A .1B .﹣1C .5D .﹣5解:3+(﹣2)=+(3﹣2)=1, 故选:A .7.观察图中的数轴:用字母a ,b ,c 依次表示点A ,B ,C 对应的数,则1ab,1b−a,1c的大小关系是( )A .1ab<1b−a<1cB .1b−a<1ab<1cC .1c <1b−a<1abD .1c<1ab<1b−a解:由所给出的数轴表示可以看出﹣1<a <−23,−13<b <0,c >1, ∴0<1c<1,…① ∵13<b ﹣a <1,∴1<1b−a<3…② ∵23<|a |<1,0<|b |<13, ∴0<|ab |<13, ∴1|ab|>3,∴1ab>3…③.∴①<②<③, ∴选C .8.平面内3条直线最多可以把平面分成( ) A .4部分B .5部分C .6部分D .7部分解:如图:平面内3条直线最多可以把平面分成7部分. 故选D .9.一项工程,甲单独做需m 小时完成,若与乙合作20小时可以完成,则乙单独完成需要的时间是( ) A .20m m−20小时 B .20mm+20小时 C .m−2020m小时 D .m+2020m小时解:设工作总量为1,那么甲乙合作的工效是120,甲单独做需m 小时完成,甲的工效为1m,乙单独完成需要的时间是1÷(120−1m)=1÷m−2020m =20mm−20小时.故选:A .10.如图,是一个正方体的展开图,把展开图折叠成正方体后有“水”字一面的相对面上的字是( )A .共B .山C .绿D .建解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形, ∴有“水”字一面的相对面上的字是“建”. 故选:D .二.填空题(共10小题,满分40分,每小题4分)11.(4分)已知A =3x 3+2x 2﹣5x +7m +2,B =2x 2+mx ﹣3,若多项式A +B 不含一次项,则多项式A +B 的常数项是 34 .解:∵A +B =(3x 3+2x 2﹣5x +7m +2)+(2x 2+mx ﹣3) =3x 3+2x 2﹣5x +7m +2+2x 2+mx ﹣3 =3x 2+4x 2+(m ﹣5)x +7m ﹣1 ∵多项式A +B 不含一次项,∴m ﹣5=0, ∴m =5,∴多项式A +B 的常数项是34, 故答案为3412.(4分)写出一个数,使这个数等于它的倒数: ±1 . 解:如果一个数等于它的倒数,则这个数是±1. 故答案为:±1. 13.(4分)若2x 2a﹣b ﹣1﹣3y 3a +2b﹣16=10是关于x ,y 的二元一次方程,则a +b = 7 .解:根据题意,得:{2a −b −1=13a +2b −16=1,解得:{a =3b =4∴a +b =3+4=7, 故答案为:7.14.(4分)小东在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1所示.小林看见了说:“我也来试一试.”结果小林七拼八凑,拼成了如图2那样的正方形,中间还留下了一个恰好是边长为2cm 的小正方形,则这个小长方形的面积为 60 cm 2.解:设每个长方形的宽为xcn ,长为ycm ,那么可得出方程组为: {5x =3y 2x =y +2, 解得:{x =6y =10,因此每个长方形的面积应该是xy =60cm 2. 故答案为:60.15.(4分)如图,点O 在直线AB 上,∠AOD =120°,CO ⊥AB ,OE 平分∠BOD ,则图中一共有 6 对互补的角.解:∵∠AOD=120°,CO⊥AB于O,OE平分∠BOD,∴∠COD=∠DOE=∠EOB=30°,∴这三个角都与∠AOE互补.∵∠COE=∠DOB=60°,∴这两个角与∠AOD互补.另外,∠AOC和∠COB都是直角,二者互补.因此一共有6对互补的角.故答案为:6.16.(4分)若a2+a=0,则a2001+a2000+12的值是12.解:根据题意,a2+a=0,故原式=a1999(a2+a)+12,=12.故答案为12.17.(4分)如图,△ABC三边的中线AD,BE,CF相交于点G,若S△ABC=15,则图中阴影部分面积是5.解:∵△ABC的三条中线AD、BE,CF交于点G,∴点G是△ABC的重心,∴CG=2FG,∴S△ACG=2S△AFG,∵点E是AC的中点,∴S△CEG=12S△ACG,∴S△CGE=S△AGE=13S△ACF,同理:S △BGF =S △BGD =13S △BCF , ∵S △ACF =S △BCF =12S △ABC =12×15=7.5, ∴S △CGE =13S △ACF =13×7.5=2.5,S △BGF =13S △BCF =13×7.5=2.5, ∴S 阴影=S △CGE +S △BGF =5. 故答案为518.(4分)小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费 (4a +10b ) 元.(用含a ,b 的代数式表示) 解:依题意得:4a +10b ; 故答案是:(4a +10b ). 19.(4分)观察式子11×3=12(1−13),13×5=13(13−15),15×7=12(15−17),…由此可知11×3+13×5+15×7+⋯+1(2n−1)×(2n+1)= n 2n+1.解:原式=12(1−13)+12(13−15)+⋯+12(12n−1−12n+1)=12(1−13+13−15+⋯+12n−1−12n+1) =12(1−12n+1) =12×2n 2n+1 =n2n+1. 故答案为n 2n+1.20.(4分)在长为20m 、宽为16m 的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,则每个小长方形花圃的面积是 32 m 2.解:设小矩形的长为xm ,宽为ym , 由题意得:{2x +y =202y +x =16,解得:{x =8y =4, 即小矩形的长为8m ,宽为4m .答:一个小矩形花圃的面积32m 2,故答案为:32三.解答题(共2小题,满分30分,每小题15分)21.(15分)我们把形如aaa1 (1≤a ≤9且为整数)的四位正整数叫做“三拖一”数,例如:2221,3331是“三拖一”数.(1)最小的“三拖一”数为 1111 ;最大的“三拖一”数为 9991 ;(2)请证明任意“三拖一”数不能被3整除;(3)一个“三拖一”数与50的和的2倍与另一个小于5000不同的“三拖一”数与75的和的3倍的和正好能被13整除,求这两个“三拖一”数.解:(1)由题意可知最小的“三拖一”数为1111;最大的“三拖一”数为9991; 故答案为:1111;9991;(2)证明:由题意得aaa1=1110a +1=3×370a +1(1≤a ≤9且为整数),∴3×370a 是3的倍数,∵1不是3的倍数,∴任意“三拖一”数不能被3整除;(3)设这两个“三拖一”数为aaa1,bbb1(1≤a ≤9,1≤b ≤4且a ,b 为整数,a ≠b ), 则有:2(aaa1+50)+3(bbb1+75)=13(171a +256b +25)+2b ﹣3a +5=13k (k 为正整数),∵1≤a ≤9,1≤b ≤4且a ,b 为整数,∴﹣20≤2b ﹣3a +5≤10,∴2b ﹣3a +5=﹣13或0,∴2b ﹣3a =﹣18或﹣5,∴{a =8b =3,{a =3b =2. ∴这两个数为8881,3331或3331,2221.22.(15分)对于某些自然数n ,可以用n 个大小相同的等边三角形拼成内角都为120°的六边形.例如,n =10时就可以拼出这样的六边形,如图,请从小到大,求出前10个这样的n .解:设所用的等边三角形的边长单位为1.任何满足条件的六边形的外接三角形一定是一个边长为l的大等边三角形.该六边形可以通过切去边长分别为a,b,c的等边三角形的角而得到,其中a,b,c为正整数,并且满足a≥b≥c≥1,l>a+b.又由于用边长为1的等边三角形拼成的一个边长为x(正整数)的等边三角形.所需要的个数是1+3+5+…+(2x﹣1)=x2.因此n=l2﹣(a2+b2+c2),其中l≥3,l>a+b,a≥b≥c≥1.(1)l=3时,n可以为32﹣(12+12+12)=9﹣3=6.(2)l=4时,n可以为42﹣(22+12+12)=16﹣6=10;42﹣(12+12+12)=16﹣3=13.(3)l=5时,与上面不同的n可以为52﹣(32+12+12)=25﹣11=14;52﹣(22+22+12)=25﹣9=16;52﹣(22+12+12)=25﹣6=19;52﹣(12+12+12)=25﹣3=22.(4)l=6时,与上面不同的n可以为62﹣(42+12+12)=36﹣18=18;62﹣(32+12+12)=36﹣11=25;62﹣(22+22+22)=36﹣12=24;62﹣(22+22+12)=36﹣9=27;62﹣(22+12+12)=36﹣6=30;62﹣(12+12+12)=36﹣3=33.(5)l=7时,与上面不同的n都比27大.(6)l≥8时,可以证明满足要求的n都不小于26.由(1)到(6)可得,前10个满足要求的n为6,10,13,14,16,18,19,22,24,25.。

数学竞赛试题及答案初一

数学竞赛试题及答案初一

数学竞赛试题及答案初一【试题一】题目:计算下列表达式的值:\[ 2^3 + 3 \times 4 - 5^2 \]【答案】首先计算指数部分:\[ 2^3 = 8 \]\[ 5^2 = 25 \]然后进行乘法运算:\[ 3 \times 4 = 12 \]接下来,按照运算顺序,先进行加法和减法:\[ 8 + 12 - 25 = 20 - 25 = -5 \]所以,表达式的值为 -5。

【试题二】题目:如果一个数的平方等于该数的两倍,求这个数。

【答案】设这个数为 \( x \),根据题意,我们有:\[ x^2 = 2x \]将等式两边同时除以 \( x \)(注意 \( x \neq 0 \)):\[ x = 2 \]所以,这个数是 2。

但我们还应该检查 \( x = 0 \) 的情况,因为 0 的平方也是 0 的两倍:\[ 0^2 = 2 \times 0 \]所以,这个数也可以是 0。

【试题三】题目:一个长方形的长是宽的两倍,如果长和宽都增加 2 米,那么面积增加了 24 平方米。

求原长方形的长和宽。

【答案】设原长方形的宽为 \( w \) 米,那么长为 \( 2w \) 米。

根据题意,长和宽都增加 2 米后,新的长为 \( 2w + 2 \) 米,新的宽为 \( w + 2 \) 米。

新的面积与原面积的差为 24 平方米:\[ (2w + 2)(w + 2) - 2w \times w = 24 \]展开并简化:\[ 2w^2 + 4w + 2w + 4 - 2w^2 = 24 \]\[ 6w + 4 = 24 \]\[ 6w = 20 \]\[ w = \frac{20}{6} = \frac{10}{3} \]所以原长方形的宽为 \( \frac{10}{3} \) 米,长为 \( 2 \times \frac{10}{3} = \frac{20}{3} \) 米。

【试题四】题目:一个班级有 40 名学生,其中 25% 的学生是男生。

初一数学竞赛系列练习16套 (含答案)全套 七年级

初一数学竞赛系列练习16套 (含答案)全套 七年级

初一数学竞赛系列训练1——自然数的有关性质一、选择题1、两个二位数,它们的最大公约数是8,最小公倍数是96,这两个数的和是( )A 、56B 、78C 、84D 、962、三角形的三边长a 、b 、c 均为整数,且a 、b 、c 的最小公倍数为60,a 、b 的最大 公约数是4,b 、c 的最大公约数是3,则a+b+c 的最小值是( )A 、30B 、31C 、32D 、333、在自然数1,2,3,…,100中,能被2整除但不能被3整除的数的个数是( )A 、33B 、34C 、35D 、374、任意改变七位数7175624的末四位数字的顺序得到的所有七位数中,能被3整除的数的个数是( )A 、24B 、12C 、6D 、05、若正整数a 和1995对于模6同余,则a 的值可以是( )A 、25B 、26C 、27D 、286、设n 为自然数,若19n+14≡10n+3 (mod 83),则n 的最小值是( )A 、4B 、8C 、16D 、32二、填空题7、自然数n 被3除余2,被4除余3,被5除余4,则n 的最小值是8、满足[x,y]=6,[y,z]=15的正整数组(x,y,z)共有 组9、一个四位数能被9整除,去掉末位数后得到的三位数是4的倍数,则这样的四位数中最大的一个,它的末位数是10、有一个11位数,从左到右,前k 位数能被k 整除(k=1,2,3,…,11),这样的最小11位数是11、设n 为自然数,则3 2 n +8被8除的余数是12、14+24+34+44+…+19944+19954的末位数是三、解答题13、求两个自然数,它们的和是667,它们的最小公倍数除以最大公约数所得的商是120。

14、已知两个数的和是40,它们的最大公约数与最小公倍数的和是56,求这两个数。

15、五位数H 97H 4能被12整除,它的最末两位数字所成的数7H 能被6整除,求出这个五位数。

16、若a,b,c,d 是互不相等的整数,且整数x 满足等式(x-a)(x-b)(x-c)(x-d)=9求证:4∣(a+b+c+d)17、一个数是5个2,3个3,2个5,1个7的连乘积,这个数当然有许多约数是两位数,这些两位约数中,最大的是多少?18、求2400被11除,所得的余数。

七年级下数学竞赛试卷含答案

七年级下数学竞赛试卷含答案

)6.122-+-++x x x 的最小值是…………………………………………………… ( ) A. 5 B.4 C.3 D. 2 7.已知等腰三角形的一个外角为1100,则它的一个底角等于( ) A .550 B .700 C .550 或700 D .不能确定8.若多项式942++ax x 是一个完全平方式,则a 的值为 ( ) A 、6 B 、±6 C.、12 D 、±129.已知554433222,3,5,6a b c d ====,那么,,,a b c d 从小到大的顺序是( ) A .a <b <c <d B .a <b <d <c C .b <a <c <d D .a <d <b <c 10.计算:(2-1)(2+1)(22+1)(23+1)(24+1)……(232+1)+1结果的个位数是( ) A .2 B .4 C .6 D .7 二、耐心填一填:(把答案填放下表相应的空格里。

每小题3分,共15分。

)11.._______200720061431321211=⨯+⨯+⨯+⨯12.单项式14212n m a b a b ++-与合并后的结果为24a b -,m n +=____。

13.如果∠α的补角加上300后,等于它的余角的4倍,那么这个角 等于___。

14.如下图是平面上6个点A 、B 、C 、D 、E 、F 连线得到的图形,则 ∠A+∠B+∠C+∠D+∠E+∠F=___。

15.细心观察下列新运算:,1211a b n a b n a b n ⊕=+⊕=+⊕+=-,,已知111⊕=,根据以上运算规律,请你计算:20102010⊕=_______。

三、细心做一做:(本大题共3小题,每小题7分,共21分。

)16.已知:,2,3==+ab b a 求22b a +的值A B C DE F17.若2222113()2(1)0,()()234a b c ac c b ++-++=÷∙-22求(-ac )的值。

2024年七年级数学竞赛试卷

2024年七年级数学竞赛试卷

2024年七年级科学素养与数理能力测评(数学部分)(时间:90分钟满分:100分)一、选择题(本大题共6小题,每小题5分,共30分.)1.王老伯在集市上先买回5只羊,平均每只a 元,稍后又买回3只羊,平均每只b 元,后来他以每只的价格把羊全部卖掉了,结果发现赔了钱,赔钱的原因是(▲)A .35>B .b a <C .b a =D .ba >2.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等.则原来甲筐苹果质量与乙筐苹果质量的比值为(▲)A .B .C .D .3.如图,AD 与BE 是△ABC 的角平分线,D ,E 分别在BC ,AC 上,若AD =AB ,BE =BC ,则∠C =(▲)A .︒)(13900B .︒)(9623C .69°D .不能确定4.已知a 、b 、c 分别是ABC 的三边,则()2222224a b c a b +--为(▲)A.正数 B.负数 C.零 D.无法确定5.已知a 与b 互为相反数,且,那么的值为(▲)A.199- B.199 C.9 D.9-6.灰太狼在跑一段山路时,上山速度是80米/分,到达山顶后再下山,下山的速度是上山速度的2倍,如果上、下山的路程相同,那么灰太狼跑这段山路的平均速度是(▲)A.80米/分B.110米/分C.96米/分D.120米/分二、填空题(本大题共4小题,每小题5分,共20分.)7.计算:+++++++++432113211211…1003211+++++ =▲.2b a +3575535712+++-ab a b ab a 6||=-b a8.把一个环形绳套对折n 次,然后从中间剪一刀,绳套变成▲段.9.已知()2f x x =,例如()()22224,339f f ====.规定:()()()1f x f x f x ∆=+-,则()f a b ∆+=▲.10.如图,一个棱长为5厘米的正方体,它是由125个棱长为1厘米的小正方体组成的,P 为上底面ABCD 的中心,如果挖去的阴影部分为四棱锥,剩下的部分还包括▲个完整的棱长是1厘米的小正方体.(第10题)三、解答题(本大题共5小题,共50分.解答时应写出必要的过程)11.(本题8分)已知正整数a 、b 满足ab+a+b=64,求ab 的值.12.(本题8分)已知:a 为有理数,.求23420121...a a a a a ++++++的值.3210a a a +++=13.(本题8分)已知:4a b -是11的倍数,其中a ,b 是整数,求证:224023a ab b +-能被121整除.14.(本题12分)若x 为整数,且式子|429||319|79x x x ---+-的值恒为一个常数,求x 的值.15.(本题14分)如图,将三角板ABC与三角板ADE摆放在一起,已知∠BAC=∠D=90°,∠ACB=30°,∠DAE=45°,固定三角板ABC,将三角板ADE绕点A顺时针旋转,记旋转角为ɑ(0°<ɑ<180°).(1)在旋转过程中,∠CAD与∠BAE有怎样的数量关系?请说理;(2)若△ADE的旋转速度为3°/s,当△ADE的一边与△ABC的某一边平行(不共线)时,求t的值.。

初中七年级下数学竞赛试卷习题含答案

初中七年级下数学竞赛试卷习题含答案

⋯⋯⋯⋯ 第二学期校际联考⋯ _ ⋯⋯_七年级数学试卷_ ⋯__ ⋯_ ⋯题_1617 18192021 222324 25总分_ ⋯一二_ 次__ 得__ ⋯⋯分名校⋯说明:本卷共 8页,25题,总分120分,考试时间共120分钟。

⋯_ 答 温馨提示:亲爱的同学们,请相信自己,认真审题,沉稳作答,就必定能考出好成⋯ __ ⋯绩,祝你成功!__ ⋯ __ ⋯ 一、精心选一选:(每题给出四个供选答案,此中只有一个是正确的,把正确的答__ 准 _ 案代号填放下表相应题号下的空格内。

每题3分,共30分。

)_ ⋯ 别⋯ 题班1 2 3 4 5 67 8 9 10 ⋯号 ⋯不答⋯案 _ ⋯⋯ .以下计算正确的选项是( ) __ ⋯1_ 内 4 4 16 2 3 5 _ ?x x )x_A .xB .x ?(x_ ⋯__ ⋯ _ 2 ?a 2 2a 2 D .a 2 a 3 a 5_ ⋯ C .a号 ⋯2.已知∠A+∠B=1800,∠A 与∠C 互补,则∠B 与∠C 的关系是( )考⋯A .相等B .互补C .互余D .不可以确立 ⋯ 3.用科学计数法表示近似数的正确的选项是()⋯⋯A . 10 1B .10 2C . 10 1D . 10 -2封_4.以下说法正确的选项是() ⋯__ ⋯ b_ A .0不是单项式 B . 是单项式_ ⋯_ a_ ⋯_ 1_ 密3 2 3_ C . 1多项式 D .单项式 xy 的次数是3,系数是_ ⋯x名5.以以下图所示,已知AB∥CD∥EF,且CG∥AF,则图中与∠BAF 相等的角的个数姓⋯ ⋯是( ) A B⋯C .4个D .9个 ⋯A .7个B .3个CD ⋯⋯ EG F⋯⋯⋯七年数学卷第1共86.用长分别为10cm,30cm,40cm,50cm的四段线段,任取此中三段线段能够构成不一样的三角形有()个A.0B.1C.2D.37.已知等腰三角形的一个外角为1100,则它的一个底角等于()A.550B.700C.550或700D.不可以确立8.已知以下条件,不可以独一画出一个三角形的是()A.AB=5cm,∠A=700,∠B=500B.AB=5cm,∠A=700,∠C=500C.AB=5cm,AC=4cm,∠C=500D.AB=5cm,AC=4cm,∠A=500 9.已知a255,b344,c533,d622,那么a,b,c,d从小到大的次序是()A.a<b<c<dC.b<a<c<dB.a<b<d<cD.a<d<b<c10.计算:(2-1)(2+1)(22+1)(23+1)(24+1)(232+1)+1结果的个位数是()A.2B.4C.6D.7二、耐心填一填:(把答案填放下表相应的空格里。

数学竞赛试卷七年级【含答案】

数学竞赛试卷七年级【含答案】

数学竞赛试卷七年级【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个数的平方根是9,那么这个数是:A. 81B. 9C. 3D. -92. 下列哪个数是有理数?A. √2B. √3C. √5D. √93. 下列哪个数是整数?A. 3.5B. 2.7C. 1.2D. 0.94. 下列哪个数是无理数?A. 1/2B. 1/3C. 1/4D. 1/55. 下列哪个数是负数?A. -1B. 0C. 1D. 2二、判断题(每题1分,共5分)1. 任何数的平方都是正数。

()2. 两个负数相乘的结果是正数。

()3. 0的平方是0。

()4. 任何数的平方根都是正数。

()5. 两个正数相乘的结果是负数。

()三、填空题(每题1分,共5分)1. 如果一个数的平方是16,那么这个数是______。

2. 两个负数相乘的结果是______。

3. 0的平方根是______。

4. 任何数的平方都是______。

5. 两个正数相乘的结果是______。

四、简答题(每题2分,共10分)1. 请简述有理数的定义。

2. 请简述无理数的定义。

3. 请简述整数的定义。

4. 请简述负数的定义。

5. 请简述正数的定义。

五、应用题(每题2分,共10分)1. 一个数的平方是25,请问这个数是多少?2. 两个负数相乘的结果是什么?3. 0的平方是多少?4. 两个正数相乘的结果是什么?5. 一个数的平方是9,请问这个数是多少?六、分析题(每题5分,共10分)1. 请分析并解释为什么两个负数相乘的结果是正数。

2. 请分析并解释为什么0的平方是0。

七、实践操作题(每题5分,共10分)1. 请计算并填写下表中的空缺部分:| 数字 | 平方 | 平方根 |--|| 4 | 16 | 2 || 9 | ? | ? || 16 | ? | ? |2. 请计算并填写下表中的空缺部分:| 数字 | 平方 | 平方根 |--|| -2 | 4 | ? || -3 | 9 | ? || -4 | 16 | ? |八、专业设计题(每题2分,共10分)1. 设计一个数学游戏,要求游戏中包含至少三种不同的数学运算。

初一数学竞赛试题及答案

初一数学竞赛试题及答案

初一数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果a,b,c是三个不同的实数,且a + b + c = 0,那么下列哪个等式是正确的?A. a = -b - cB. a = b + cC. b = -a - cD. c = a + b3. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 1或-14. 一个圆的半径为3厘米,那么它的周长是:A. 6πB. 12πC. 18πD. 24π5. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 7/14二、填空题(每题2分,共10分)6. 一个数的相反数是-5,这个数是______。

7. 如果一个数的绝对值是2,那么这个数可以是______。

8. 一个两位数,十位数字是x,个位数字是y,这个数可以表示为10x + y,如果这个数是偶数,那么y的值可以是______。

9. 一个直角三角形,其中一个锐角是30°,另一个锐角是______。

10. 如果一个数的立方是-64,那么这个数是______。

三、解答题(每题5分,共20分)11. 一个数列的前三项是1,2,3,从第四项开始,每一项都是前三项的和。

求这个数列的第10项。

12. 一个班级有40名学生,其中20名学生参加了数学竞赛,15名学生参加了物理竞赛,有5名学生同时参加了数学和物理竞赛。

求没有参加任何竞赛的学生人数。

13. 一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,求这个长方体的体积。

14. 一个数的平方加上这个数的两倍等于10,求这个数。

答案一、选择题1. B. 12. A. a = -b - c3. C. 04. B. 12π5. C. 3/4二、填空题6. 57. ±28. 0, 2, 4, 6, 89. 60°10. -4三、解答题11. 第10项是144。

初中数学竞赛题(七年级)含答案

初中数学竞赛题(七年级)含答案

永阳中学七年级数学竞赛试题一、选择题(每小题3分,共30分)1、若21)1(22)1(1)1(32=+-⨯--⨯-+--M ,则)(=M A .2- B .1- C .1 D .22、若N 是能够被所有小于8的正整数整除的第二小的正整数,则N 的各数字之和是( )A .12B .10C .8D .63、在△ABC 中,∠A+∠C=2∠B ,2∠A+∠B=2∠C ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形4、△ABC 外角的度数之比为3:4:5,则与之对应的三个内角度数之比为( )A .5:4:3B .3:4:5C .3:2:1D .1:2:35、若2011999=a ,20121000=b ,20131001=c ,则( ) A .a<b<c B .b<c<a C .c<b<a D .a<c<b6、下列命题中,正确的是( )A .若0>a ,则a a >2;B .一个数的绝对值的相反数和这个数的相反数的绝对值不可能相等;C .倒数等于其自身的数只有1;D .负数的任意次幂都不会是0;7、电视机的售价连续两次下降10%,降价后每台电视机的售价为a 元,该电视机的原价为( ) A .a 81.0 B .a 21.1 C .21.1a D .81.0a 8、一个多边形的内角和为900°,则从这个多边形的某一个顶点引出的对角线有( )A .3B .4C .5D .69、△ABC 的三边长分别是a ,b ,c ,如果)(22a c b a bc c b -+=-+,那么△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形10、用8个相同的小正方形搭成一个几何体,其俯视图如图4所示,那么这个几何体的左视图一定不是( )二、填空题(每小题4分,共48分)11、以小于20的质数为边长的各边不等的三角形有________个;12、已知 a □b=2a -3b+ab , a ★b=a+b -ab ,则 [2□(-3)] ★[3□(-2)]=___________;13、如图6,射线OC 、OD 、OE 、OF 分别平分∠AOB 、∠COB 、∠AOC 、∠EOC ,若∠FOD=24°,则∠AOB=_____________14、李强用15分钟完成了某项工作的254,若他将工作效率提高到原来的23倍,则他再需________小时即可完成这项工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七 年 级 数 学 试 题
(沉着冷静,细心答题;挑战自我,相信自己!)
1.已知201020102010201120112011+⨯-⨯-
=a ,201120112011201220122012+⨯-⨯-=b ,2012
201220122013
20132013+⨯-⨯-=c ,则abc
的值为( ).
A .-3
B .-1
C .3
D .1 2.如图,已知B 、C 是线段AD 上任意两点,M 是AB 的中点,
N 是CD 的中点,若MN =a ,BC =b ,则AD 的长等于( ). A .2a -b B .ab -a C .a +2b D .2a +b
3.如果a 、b 、c 为非零的有理数,且a +b +c =0,则||||||||abc abc
c c b b a a -
++的所有可能的值为( ). A .0 B .1或-1 C .0或-2
D .2或-2
4.如图AB ∥EF ,设∠C =90o ,∠B 、∠D 、∠E 三个角的大小分别为x 、y 、z ,则x 、y 、
z 之间满足的关系式是( )。

A .y =x +z
B .x +y +z =180o
C .x +y -z =90o
D .y +z -x =90o
5.已知x 、y 、z 、a 、b 均为非零的实数,且满足
331
b a y x xy -=+,31a z y yz =+,3
31b a z x xz +=
+,12
1
=++zx yz xy xyz ,由a 的值为(
).
A .2
B .-
2 C .1 D .-1
6.设a 、b 、c 平均数为M ,a 、b 平均数为N ,N 与c 平均数为p ,如a >b >c ,则M 与p 的大小关系是( ). A .M =p
B .M >p
C .M <p
D .不能确定
二、填空题(每题5分,共30分)
7.8)34(,343-=+=-y x y x ,则3y x +=_____________.
8.若方程组⎪⎩

⎨⎧=+=+=+468x z z y y kx 的解使得kx +2y -z 的值为10,则k =_______________.
9.如图在长方形ABCD 中,E 是AD 的中点,F 是CE 的中 点,若△BDF 的面积为2cm 2,则长方形ABCD 的面积为 __________cm 2.
10.如图,图中有线段a 条,小于180o 的角有b 个,则a +b =_________.
11.长90米的列车的速度是54千米/小时,它追上并超过
60米的列车用了15秒;如果这两列火车相向而行,从相遇到完
全离开需用__________秒. 三、解答题(共40分)
13.(6分)某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽
车占总产量的10%,今年由于国家能源政策的导向和油价上涨因素的影响,计划将普通车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为多少?
14.(8分)某服装厂生产一种西服和领带,西服每套定价为200元,领带每条定价为40元,厂方开展促销活动期间,向客户提供两种优惠方法:①买一套西服送一条领带;
②西服和领带均按定价的九折付款,某商店到该服装厂买西服20套.
⑴若购买的领带为50条时,通过计算说明应采用哪一种方案购买更优惠.
⑵领带买多少条时,两种优惠方法付款一样多.
16.(10分)将连续自然数1—1015按如图方式排列成一个长方形阵列,用一个正方形框出16个数。

⑴这16个数的和能否为:①2013 ②2016 ③2080 请说明理由,若可能,请写出该方框16个数中最大的数和最小的数各为多少?⑵这样的正方形方框共有多少个,请说明理由.
1009 1010 1011 1012 1013 1014
17.(8分)朝阳中学租用两辆小汽车(设速度相同)同时送一各带队老师及7名七年级学生到县城参加语、数、外三科能力测评考试,已知每辆车限坐4人(不包括司机),其中一辆小在距离考场15千米的地方出现了故障,此时离截止进考场的时间还有42分钟,这时唯一可利用的交通工具是另一辆小汽车。

且这辆小汽车的平均速度为60千米/小时,人步行的速度为5千米/小时(上、下车的时间忽略不计),根据以上信息,请你设计出两个能在规定的时间内赶到考点的方案,并求出所需的时间.
2013七年级数学竞赛试题参考答案
一、1.B
2.A 3.D 4.C
5.A
6.B 二、7.-1 8.2
9.16
10.61 11.7.5
12.-
77
62 三、13.设该公司去年生产的汽车总量为a ,又设今年新能源汽车的产量应增加的百分数
为x 。

依题意有:a =90%a (1-10%)+10%a (1+x ) (4分) ∴x =0.9=90%. (6分) 14.⑴方案一:买一套西服送一条领带,因买西服20套时,要买50条领带,只须出
30条领带钱和20套西服的费用,故一共有20×200+30×40=5200元.(2分) 方案二:西服和领带一起均按9折付款,所以方案二应出的费用为:
90%(20×200+50×40)=6000×
100
90
=5400元. 所以买50条领带时,按方案一更优惠. (4分) ⑵设领带买x 条时,按方案一的费用为y 1,按方案二所出的费用为y 2元, 依题意有:当x ≤20时,y 1=20×200;当x >20y ,y 1=20×200+40(x -20) 并y 2=(20×200+40x )×0.9=3600+36x .
若按方案一和方案二付款一样多,则有:3600+36x =20×200 此时x =
36
400
∵x 为整数,故不符合 当3600+36x =20×200+40(x -20)时,有:x =100 ∴当买100条领带时,两种方案优惠一样多.(8
分)
15.如图,依平均知识可知:A ′(-1,3) B ′(3,-2)分别过A ′、B ′作x 轴和y 轴的垂线, 分别交x 轴、y 轴于EF ,两线交于点G .
∵10542
1''=⨯⨯=∆GB A S 5.1312
1''=⨯⨯=∆EC A S 33221
''=⨯⨯=∆F C B S S 长方形FGFC ′=1×2=2
∴S △A ′B ′C ′=10―1.5―2―3=3.5 (4分)
又设A ′B ′交y 轴于D 点 其点D (0,y ) 依题意有:5.332
112
1=⨯⨯+⨯⨯y y ∴y =
47 ∴D (0,4
7
) (8分) 16
上角的第一个数为x ,所示: 所以这16个数的和为16x +
) A ′
若16x +192=2013时,x =113
16
13
,∵x 为整数,故不符合题意. (4分) 当16x +192=2016时,有x =114.∵114被7除余2,∴114处在该数表中第17行第2列,而该数表有145行7列,故存在这样的正方形方框,框出的最小
数为114,最大数为138 (6分) 当16x +192=2080时,x =118,∵118被7除余6,此时118处在该数表中第6列,所以不存在这样的正方形方框. (8分) ⑵依题意可知,该数表中第1至4列的数除最后三行12个数以外,均可以作为正方形方框中的第一个数,因为该数表共有1015÷7=145行,故这样的方框共有(145-3)×4=568个. (10分) 17.(以下两种方案都行)
方案1:当小汽车出现故障时,乘这辆车的4个
人下车步行,另一辆车把车内4人送到考点,立即
返回接步行的4人
解:设车子返回C 点遇到第二批人,设AC =x ,则BC =15-x ,由于从A 点到C
步行时间,等于车子从A 到B ,再到C 所用时间,故得方程
60
15155x x -+=
解得1330
=x 所以时间为
421354052356013301551330<==÷⎪⎭⎫ ⎝

-+÷h ( 4分) 方案2:(最佳方案)
今车子到C 点后,让他们步行去考点,
返回接第二批人在D 点,使两批人同时到达考点。

因为两批步行的人行程一样,设AD =BC =y 列方程
60
215155y
y y -+-=
得y =2 ∴时间为60
37
6021552=
-+小时=37(min)<42. ( A C 故障点 A D C B
故障点 考点。

相关文档
最新文档