(完整版)(经典)高考数学三视图还原方法归纳(可编辑修改word版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学三视图还原方法归纳
方法一:还原三步曲
核心内容:
三视图的长度特征——“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一
样长,左视图和俯视图一样宽。
还原三步骤:
(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;
(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;
(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示
(1)将如图所示的三视图还原成几何体。
还原步骤:
①依据俯视图,在长方体地面初绘ABCDE 如图;
②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D 处不可能有垂直拉升的线条,而在 E 处必有垂直拉升的线条ES,由正视图和侧视图中高度,确定点S 的位置;如图
③将点S 与点ABCD 分别连接,隐去所有的辅助线条,便可得到还原的几何体S-ABCD 如图所示:
3
经典题型:
例题 1:若某几何体的三视图,如图所示,则此几何体的体积等于( )cm ³。
解答:(24)
例题 2:一个多面体的三视图如图所示,则该多面体的表面积为( )
答案:21+ 计算过程:
步骤如下:
第一步:在正方体底面初绘制ABCDEFMN 如图;
第二步:依据正视图和左视图中显示的垂直关系,判断出节点E、F、M、N 处不可能有垂直拉升的线条,而在点A、B、C、D 处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点G, G', B', D', E ', F ' 地位置如图;
第三步:由三视图中线条的虚实,将点G 与点E、F 分别连接,将G'与点E ' 、F '分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
例题3:如图所示,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()
答案:(6)
还原图形方法一:
若由主视图引发,具体步骤如下: (1) 依据主视图,在长方体后侧面初绘 ABCM 如图:
(2) 依据俯视图和左视图中显示的垂直关系,判断出在节点 A 、B 、C 出不可能有垂直向前拉升的线
条,而在 M 出必有垂直向前拉升的线条 MD ,由俯视图和侧视图中长度,确定点 D 的位置如图:
(3) 将点 D 与 A 、B 、C 分别连接,隐去所有的辅助线条便可得到还原的几何体 D —ABC 如图所示:
解:置于棱长为 4 个单位的正方体中研究,该几何体为四面体 D —ABC ,且 AB=BC=4,AC=
4
,DB=DC=
2 5 ,可得DA=6.故最长的棱长为 6.
方法 2
若由左视图引发,具体步骤如下: (1) 依据左视图,在长方体右侧面初绘 BCD 如图:
(2) 依据正视图和俯视图中显示的垂直关系,判断出在节点 C 、D 处不可能有垂直向前拉升的线条,
2
而在 B 处,必有垂直向左拉升的线条BA,由俯视图和左视图的长度,确定点 A 的位置,如图:
(3)将点A 与点B、C、D 分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC 如图:
方法3:
由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个正方体做载体还原:
(1)根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,用红线表示。如图,也就是说正视图的四个顶点必定是由原图中红线上的点投影而成;
(2)左视图有三个顶点,画出它们的原象所在的线段,用蓝线表示,如图;
(3)俯视图有三个顶点,画出它们的原象所在的线段,用绿线表示,如图;
(4) 三种颜色的公共点(一定要三种颜色公共交点)即为几何体的顶点,连接各顶点即为原几何体,
如图。然后计算出最长的棱。
课后习题:
1、某四棱台的三视图如图所示,则该四棱台的体积是( )
A.4
B.
14 3 C. 16 3
D.6
答案:B
2、某几何体的三视图,如图所示,则此几何体的表面积是( )cm ² A. 90 B. 129 C. 132 D.138 答案:D
方法二:利用空间几何坐标系法
由三视图复原成几何体,一般采用下面的步骤:
主 视
左 视
俯 视
主视图
俯视图
第一步:把俯视图用斜二侧画法画出来,并画出 z 轴;
z
第二步:让左视图与xoz 面平行,下底边与俯视图对应边重合,沿y 轴滑动(或让主视图与yoz 面平行,下底边与俯视图对应边重合,沿x 轴滑动),放在合适的位置上。
z
第三步:让主视图与yoz 面平行,下底边与俯视图对应边重合,沿x 轴滑动,(或让左视图与xoz 面平行,下底边与俯视图对应边重合),沿y 轴滑动放在合适的位置上。
z
通过上面三个步骤,就可以画出或判断出是什么几何体了。
方法三:找规律法
1简单几何体的三视图还原规律
“万变不离其宗”,要掌握组合体的三视图还原首先就要搞清楚简单几何体的三视图还原规律,简单几何体主要包括柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、台体(圆台、棱台)、球体。它们的三视图还原规律如下:
(1)三视图中如果有两个识图是矩形,那么该几何体为柱体。若第三个视图是圆形,该几何体为圆柱,否则为棱柱。
(2)三视图中如果有两个视图是三角形,那么该几何体为锥体。若第三个视图是圆形,则该几何体为圆锥,否则为棱锥。
(3)三视图中如果有两个视图是梯形,那么该几何体为台体,若第三个视图是圆形,则该几何体为圆台,否则为棱台。球体的三视图都是圆形,最容易识别。根据
以上规律,可以快速地还原简单几何体的三视图。
2简单组合体的三视图还原方法
简单组合体有两种基本的组成形式;(1)将简单几何体拼接成组合体,称为叠加式;(2)从简单几何体中切掉或挖掉部分构成的组合体,称为切割式。叠加式的组合体可以采用“化整为零”的方法,把组合体的三视图划分成一个个简单几何体的三视图,按照上面所说的“简单几何体三视图的还原规律”把它们还原成简单几何体,再组合在一起,就得到了组合体的三视图,该方法对于学生来说容易理解和掌握,在此就不举例说明了。
具体过程如下: