项目三数控机床电气控制系统连接

合集下载

数控机床的电气连接与调试(1)

数控机床的电气连接与调试(1)

数控机床的电气连接与调试(1)
数控机床是现代制造业中非常重要的设备之一,其具有高精度、高效率、高自动化等特点。

在数控机床的电气连接与调试过程中,需要注
意以下几点:
一、确定电气连接
数控机床的电气连接需要依据设备整体结构以及控制系统要求进行设计。

在电气连接方面,需要将电源线、控制信号线、以及各个执行元
件的连接线进行区分,并进行正确的连接。

同时需要注意线路是否牢固、接触是否良好、以及是否接地等方面的问题。

二、确保电源电压稳定
数控机床对于电源的电压和频率要求非常高,需要确保供电电源的电
压和频率稳定,以免影响机床的正常运行。

在电气连接过程中需要使
用合适的电源并进行测试,以确保运行时的稳定性。

三、进行电气调试
电气调试是验证整个机床电气系统运行正常的关键环节。

在此环节中,需要通过操作数控系统进行测试,逐个检查各个控制信号线路是否畅通,设备运行是否正常等。

如果在调试过程中遇到了问题,需要及时
分析并定位故障原因,修复故障,以确保机床的正常运行。

四、进行参数设置
数控机床的参数设置是决定设备运行效率和质量的关键。

在电气调试
过程中,需要对数控机床进行合适的参数设置,包括速度、加工参数、刀具半径、坐标系等方面的设置。

这样才能确保数控机床能够高效、
精准地完成加工任务。

综上,数控机床的电气连接和调试需要经过仔细的设计和测试,以确
保设备的高效稳定运行。

只有掌握了正确的电气连接和调试方法,才
能使数控机床发挥其优异的性能。

机床电气控制与PLC技术项目教程(S7-1200)项目2 典型普通机床电气控制线路分析

机床电气控制与PLC技术项目教程(S7-1200)项目2 典型普通机床电气控制线路分析

四、知识准备
知识点1 :电气原理图的画法
1.0 常用电气图形符号和文字符号标准
电气控制系统是由许多电器元件按照一定的要求和方法 连接而成。为了便于电气控制系统的设计、安装、调试、使 用和维护,将电气控制系统中各电器元件及连接电路用一定 的图形表达出来,这就是电气控制系统图。
电气控制系统图主要包括:电气原理图、电气设备总 装图接线图、电器元件布置图与接线图。
普通车床的电气控制系统是机床的重要 组成部分,和机械液压气动等机构分工协作 共同保障机床工作。制造车间的工程技术人 员需要具备车床控制线路分析的专业能力, 以便完成电气控制系统安装与调试、故障分 析与排除等工作。
二、任务描述
现有C650型卧式车床1台。车削加工时工件进行旋转运动,由主电动机拖动;溜板箱上 带着刀架沿着导轨的直线运动为刀架的进给运动,由主轴电动机带动;车床刀架的快速移动由 一台单独的电动机拖动,采用点动控制;车削加工螺纹、切断工件等操作时要求主轴正反转运 动来实现进刀、退刀控制;按下停止按钮后,主轴停止转动。。
任务1、C650型卧式车床的主要结构和控制要求认知
任务2、 C650型卧式车床的主电路和控制电路分析
三、问题思考
1. C650型卧式车床的加工范围和控制要求有哪些? 2. C650型卧式车床的主电路和控制电路有何区别,电力拖动方案有 哪些控制要求? 3. 如何根据C650型卧式车床的控制要求分析其电气原理图?
C650型卧式车床的认知 C650型卧式车床的主电路、控制电路分析 辅助电路的分析
【知识目标】
1.了解电气原理图阅读和分析的步骤。 2.掌握C650型卧式车床的主要结构和运动分析。 3.熟知C650型卧式车床的电力拖动方案和控制要求。 4.完成C650型卧式车床电气控制线路分析。

数控机床主轴电气控制

数控机床主轴电气控制
数控机床主轴电气控制
目录
• 数控机床主轴电气控制概述 • 主轴电机及驱动技术 • 主轴电气控制系统的设计 • 主轴电气控制系统的调试与维护 • 数控机床主轴电气控制的未来发展
01
数控机床主轴电气控制 概述
主轴电气控制系统的组成
主轴驱动器
用于接收数控系统的指令,驱动 主轴电机旋转,实现主轴的启停、 正反转和调速等功能。
伺服电机
伺服电机具有快速响应、高精度、 高动态性能等优点,常用于高速、 高精度的数控机床主轴。
电机驱动技术
变频器驱动
变频器驱动技术可以实现电机速度的精确控制,具有 调速范围宽、精度高、节能等优点。
伺服驱动器驱动
伺服驱动器驱动技术可以实现电机的快速响应和高精 度控制,适用于高速、高精度的数控机床主轴。
ABCD
精度原则
主轴电气控制系统应具有高精度控制能力,以满 足加工零件的精度要求。
易用性原则
主轴电气控制系统应具有友好的人机界面,方便 操作和维护。
主轴电气控制系统的设计流程
系统设计
根据需求分析结果,设计主轴 电气控制系统的整体结构和功 能模块。
软件设计
根据系统设计要求,编写控制 程序,实现主轴电气控制系统 的各项功能。
正反转控制
根据加工需求,控制主轴电机的正反转,实 现主轴的顺时针和逆时针旋转。
自动换挡控制
根据加工需求,自动切换主轴电机的挡位, 实现主轴的多挡控制。
主轴电气控制技术的发展历程
模拟控制阶段
早期的主轴电气控制系统采用模拟电路实现控制,精度和稳定性较 低。
数字控制阶段
随着微处理器技术的发展,主轴电气控制系统逐渐采用数字电路实 现控制,提高了精度和稳定性。
智能控制阶段

数控机床的电气控制系统设计

数控机床的电气控制系统设计

数控机床的电气控制系统设计在设计数控机床电气控制系统时,首先要明确设计目标。

通常情况下,设计目标包括以下几个方面:高精度:提高数控机床的加工精度是首要任务。

电气控制系统作为机床的核心部分,对于提高机床精度起着至关重要的作用。

高效率:通过优化电气控制系统,提高机床的加工效率,从而缩短加工周期,提高产能。

易维护:考虑到后期维护和保养的问题,设计方案应使得电气控制系统易于更换和维修。

数控机床电气控制系统的组成部分主要包括以下几部分:主电路:包括电源、电动机、导轨等硬件设施,为整个系统提供动力。

控制电路:包括各种传感器、控制器、执行器等,用于监测和控制主电路的工作状态。

传感器:用于实时监测机床的工作状态,将信号反馈给控制电路。

操作显示屏:用于显示机床的工作状态和加工信息,同时也支持人工输入操作。

数控机床电气控制系统的设计步骤和方法如下:根据设计目标确定系统的基本架构,包括主电路和控制电路的布局。

根据设计要求选择合适的传感器和执行器,并布置在系统中。

依据系统的工作原理和性能要求,设计控制算法和程序,实现高精度和高效率的加工。

考虑到安全性,进行线路的优化和安全防护措施的设计。

数控机床电气控制系统的优化措施可以从以下几个方面进行:采用先进的控制算法:采用现代控制理论和方法,如模糊控制、神经网络控制等,以提高系统的动态性能和稳态精度。

提升智能化程度:通过引入人工智能和机器学习等技术,实现系统的自主决策和优化调整,提高生产效率。

增强抗干扰能力:针对恶劣工作环境和电磁干扰等问题,采取有效的电磁兼容设计和滤波抗干扰措施,以保证系统的稳定运行。

模块化和标准化设计:实现模块化设计和标准化元器件,便于系统的维护和升级,降低成本。

某汽车制造企业采用数控机床进行零部件的加工。

为了提高生产效率和降低成本,该企业决定对数控机床电气控制系统进行升级改造。

经过调研和分析,设计师团队采用了先进的模块化设计方案,使得系统更易于维护和扩展。

数控机床电气控制系统调试的方法

数控机床电气控制系统调试的方法

数控机床电气控制系统调试的方法数控机床电气控制系统调试方法包含了机床正常运行和各项功能测试。

在进行这些测试之前,需要首先了解数控机床电气控制系统的基本功能及结构,然后再参考具体的调试手册。

数控机床电气控制系统主要由数控装置、电气控制柜以及外围设备组成,其中数控装置是数控机床的核心部件,负责控制机床的各项运动。

因此,在进行数控机床调试的时候,需要将其与电气控制柜进行配合。

以下是数控机床电气控制系统调试方法的具体步骤:第一步:检查设备在进行调试之前,需要仔细检查各项设备,保证其符合要求、工作正常。

这些设备包括数控装置、电气控制柜以及机床本体等。

在检查设备的时候,要特别注意电气管路、电缆以及电气连接是否正确。

另外,还需要检查液压、气动及机械部分是否正常。

第二步:检查程序在进行数控机床调试之前,需要首先将程序进行检查,保证程序无误并可以正常运行。

程序检查需要针对具体的机床类型进行,但通常都需要检查主轴、进给、径向及轴向运动的参数是否正确。

此外,还需要对程序的每个部分进行精细的检查,尽量减少因程序错误引起的损失。

第三步:校准系统在进行数控机床调试之前,需要对数控系统进行校准。

校准主要是针对数控系统中的各类参数进行调整,以保证机床的精度和稳定性。

其中,数控系统的参数包括回零点、误差补偿、运动控制模式、加工模式等。

通过校准可以使调试后的机床具有更高的准确性。

第四步:进行试运行在完成前面的步骤之后,可以进行数控机床的初步试运行。

这一步需要根据不同的机床类型进行不同的操作。

一般来说,试运行主要包括工件的夹持、机床的自检、加工过程的模拟等步骤。

第五步:功能测试在完成初步试运行之后,需要对机床的各项功能进行测试。

这些测试包括进给速度、主轴转速、工件尺寸精度、表面质量、工艺加工能力等。

通过这些测试可以判定机床是否符合要求,并进行必要的调整和优化。

在进行数控机床电气控制系统调试的过程中,需要注意的是必须根据具体的机床类型进行操作,并且需要在专业人员的指导下进行。

5.第五章 数控机床电气控制线路

5.第五章 数控机床电气控制线路
图5.1 数控机床电气组成结构框图
1
第一节 数控车床电气控制线路
数控车床的机械部分比同规格的普通车床更为紧凑简洁。 主轴传动为一级传动,去掉了普通机床主轴变速齿轮箱, 采用了变频器实现主轴无级调速。进给移动装置采用滚 珠丝杠,传动效率高、精度高、摩擦力小。
2
1.1 数控车床的主要工作情况
一般经济型数控车床的进给均采用步进电动机,进给电 动机的运动由NC装置实现信号控制。 数控车床的刀架能自动转位。换刀电动机有步进、直流 和异步电动机之分,这些电动刀架的旋转、定位均由NC 数控装置发出信号,控制其动作。而其他的冷却、液压 等电气控制跟普通机床差不多。 现以经济型CK0630型数控车床为例,说明普通数控车床
20
图 5.11 数控系统控制步进驱动接线图原理图
21
4、数控系统对电动刀架的控制:
(1)、直流型电动机电动刀架
数控系统控制电动刀架,主要控制刀架电动机的正反转, 所反应的刀号数送给数控系统.从数控系统输入信号接 口来看,低电平有效。由于电动机电流不是太大,故 选用数控系统能驱动的功率继电器。
数控系统控制电动刀架电动机的接线原理图如图5.12 所 示 。 P3 口 的 O6(P3.6) 和 O7 ( P3.7) 控 制 KA3 、 KA4继电器,由于输出低电平有效,故中间继电器另一端 接+24V。三个微动开关信号SQ1~ SQ3分别接P3口 的I1(P3.21)、I2(P3.22)、I3(P3.23),信号低 电平有效。图5.12中,用 KA3、KA4的触点控制直流 电动机正反转,而直流电源 DC27V的产生通过变压器 和整流桥等电路产生。
31
图5.19 CLK脉冲与DIR信号波形
图5.20 数控系统与步进驱动的接口图

数控机床的电气控制系统设计

数控机床的电气控制系统设计

数控机床的电气控制系统设计一、本文概述《数控机床的电气控制系统设计》这篇文章主要探讨了数控机床电气控制系统的基本设计原理、实现方法及其在实际应用中的优化策略。

数控机床作为现代制造业的核心设备,其电气控制系统的设计直接关系到机床的性能、稳定性和加工精度。

因此,对数控机床电气控制系统的深入研究与设计优化,对于提升机床的整体性能、提高生产效率以及降低运行成本具有重要意义。

本文将首先介绍数控机床电气控制系统的基本组成和工作原理,包括数控系统、伺服驱动系统、传感器与检测装置等关键组成部分的功能与特点。

随后,文章将重点分析电气控制系统的设计要点,包括硬件设计、软件设计、控制算法选择等方面,以及如何根据机床的具体需求和加工要求来进行合理的系统设计。

本文还将探讨电气控制系统设计中的关键技术问题,如抗干扰设计、故障诊断与处理、系统可靠性保障等,并介绍相应的解决方案和策略。

文章将总结数控机床电气控制系统设计的发展趋势和未来挑战,为相关领域的研究与实践提供参考和借鉴。

通过本文的阅读,读者可以全面了解数控机床电气控制系统的设计原理与实践方法,掌握关键技术的实现与应用,为数控机床的设计、制造和维护提供有力支持。

二、数控机床电气控制系统概述数控机床的电气控制系统是数控机床的重要组成部分,负责实现机床的运动控制、加工过程监控、故障诊断与保护等功能。

电气控制系统的设计直接关系到数控机床的性能、稳定性和加工精度。

随着科技的发展,数控机床电气控制系统也在不断进化,从早期的简单电路控制,发展到现在的基于微处理器、PLC(可编程逻辑控制器)以及CNC(计算机数控)系统的复杂控制。

数控机床电气控制系统主要由电源电路、输入/输出电路、控制核心、驱动电路、传感器电路以及安全保护电路等部分组成。

其中,控制核心通常使用CNC装置,它能够解析编程好的加工指令,转化为对机床运动的精确控制信号。

驱动电路则负责将控制信号放大,以驱动电动机等执行机构实现所需的运动。

数控机床的电气连接与调试(一)

数控机床的电气连接与调试(一)

数控机床的电气连接与调试(一)数控机床的电气连接与调试随着制造业的发展,数控机床已经成为了现代制造业不可或缺的一部分。

为了确保数控机床正常运转,电气连接与调试显得尤为重要。

下面,我们将重点讲述数控机床的电气连接与调试。

一、电气连接(1)电源接线首先,我们需要将电源接线正确连接。

一般情况下,数控机床使用三相交流电源,需要注意的是电源接线一定要符合国家电气安全标准,否则会导致机床损坏或电击等危险。

(2)机床内部电气连接当电源接线完成后,我们需要将机床内部的电气部件进行正确的连接。

具体来说,我们需要将导电件、保险丝、接线端子等进行正确的接线,确保机床能够正常运行。

(3)信号线连接为了确保机床的正常操作,各种传感器需要与主控系统进行连通。

这需要正确连接信号线。

信号线连接的过程中需要注意,不同的传感器和主控系统之间所用的信号线种类和线序可能存在不同。

二、调试电气连接完成后,我们需要对数控机床进行调试。

调试的过程中,我们需要注意以下几点。

(1)断电操作在进行调试之前,我们需要将机床断电操作,确保人身安全以及机床不会因为错误操作而被损坏。

(2)检查电气连接在进行调试之前,我们需要将机床的电气连接进行检查。

主要检查主控系统和传感器之间的连接以及各个导线、保险丝等是否齐全。

(3)调试控制器程序我们需要将控制器程序进行调试,确保机床能够正常运作。

具体来说,我们需要进行手动操作,再通过坐标轴移动模式的测试,确保控制器程序的正确性。

(4)检查各个轴是否运行正常在进行机床轴运行测试时,我们需要注意各种输入输出信号的正确性,针对不同的轴进行正确的检测,并进行坐标系、距离补偿等的校准。

总结:电气连接与调试是数控机床的重要一环。

只有严格按照规范进行电气连接并正确进行调试,才能确保机床的正常运作。

在电气连接与调试过程中,我们需要注意的事项很多,需要保持细心、认真的工作态度,以确保制造的产品能够达到高品质、高效率的标准。

机床电气控制线路基本环节

机床电气控制线路基本环节

机床电气控制线路基本环节概述机床电气控制线路是机床系统中的重要组成部分,它负责控制机床的各个运动部分,以实现各种加工操作。

本文将介绍机床电气控制线路的基本环节,包括电源输入、电气元件、控制器和传感器等内容。

电源输入机床电气控制线路的第一个环节是电源输入。

机床通常使用三相交流电作为电源。

三相电源具有稳定的电压和较低的失真,能够提供足够的电能以满足机床的工作需求。

在机床电气控制线路中,通常采用三相电源输入方式,以保证机床系统的稳定性和可靠性。

在机床电气控制线路中,常见的电气元件包括接触器、继电器、断路器、变压器和开关等。

这些电气元件用于控制机床的开关动作和电路的连接与断开,保证机床系统的正常运行。

接触器接触器是一种电磁开关,广泛应用于机床电气控制线路中。

接触器能够实现远距离的控制,具有较高的容量和可靠性。

在机床电气控制线路中,接触器常用于控制机床的电动机启停和正反转等动作。

继电器继电器是一种电气装置,用于在电路中实现信号的接通和断开。

继电器能够将小电流信号转化为大电流信号,以控制机床系统的各个动作部分。

在机床电气控制线路中,继电器常用于控制机床的多路切换和信号转换等操作。

断路器是一种保护设备,它能够在电路中检测到过载电流和短路故障时自动断开电源。

断路器能够有效保护机床电气控制线路和设备免受电流过载和短路故障的损害,并提供重要的安全保护。

变压器变压器是一种电气设备,它能够将交流电能转换为不同电压级别的电能。

在机床电气控制线路中,变压器常用于调整电路中的电压和电流,以满足不同电器设备的工作要求。

开关开关是机床电气控制线路中最基本的元件之一,用于控制电路的通断。

开关的种类繁多,常见的有单档开关、双档开关、限位开关和按钮开关等。

开关能够实现机床系统的手动和自动控制,是机床电气控制线路中的核心组件之一。

控制器是机床电气控制线路中负责控制和调节机床工作状态的重要组成部分。

控制器通常由微处理器、存储器、输入输出接口和控制算法等部分组成。

数控机床的电气连接与调试

数控机床的电气连接与调试

840C型数控装置是32位微处理机系统,具有计算机辅助设计 (CAD)功能,能控制多轴,可5轴联动。
⑤SINUMERIK8型
8型数控装置时用于柔性制造的控制系统,它采用多微处理器, CPU均为8086
2021/9/15
7
项目1:数控系统的连接及调试
⑥SINUMERIK840D型 SINUMERIK 840D系统适用于所有的数控场合,10个加工通道,从2轴 到31轴控制。系统有三种基于不同计算机性能主板而分别适用于高级、 中级和基本的应用范围。840D系统控制器和相关的软件均按照模块化 结构进行配备,可以实现从复杂的多轴运动控制直到高速切削所需要 的数控系统基础平台和应用范围很广的应用操作知识库。零件的编程 以易于操作使用为原则,可使用循环方式和轮廓方式直接进行编程, 用通俗易懂的图形模拟方式验证切削路径和几何尺寸,可选定一个面、 顶部或三维观察的方式,采用带刀尖轨迹或不带刀尖轨迹进行模拟显 示
2021/9/15
1
项目1:数控系统的连接及调试
④F16系列
F16系列的性能位于F15系列和F0系列之间,结构为多主控总线, 它采用CISC处理器的基础上增加了用于高速运算处理的32位RISC 高速处理器
⑤F18系列
F18系列是在F16系列之后推出的32位数控装置,性能位于F15系列 和F0系列之间。但低于F16系列
简单的操作编程支持工具MANUAL GUIDE 0i
针对磨床的独特控制功能
以太网功能
数据服务器功能
2021/9/15
3
项目1:数控系统的连接及调试
2021/9/15
CP1:系统直流24V输入电源接 口FUSE:系统DC24V输入熔断
器(5A)。 JA7A:串行主轴/主轴位置编码器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▲在数控机床电气控制系统中,需要稳压电源给驱动器、 控制单元、直流继电器、信号灯等提供直流电源。
9.直流稳压电源(2)
三、FANUC 0i-TD数控车床电气 控制系统连接
1.主电路控制部分(3)
(2)数控车床电气控制主电路 数控车床电气控制主电路原理图如图所示
电源 进线
1.主电路控制部分(4) 电 源 总
◆行程开关是根据运动部件位置而切换电路的自动控制电器; ◆用来控制运动部件的运动方向、行程大小或位置保护; ◆如果把行程开关安装在工作机械的各种行程终点处,限制
其行程,它就称为限位开关或终端开关; ◆当工作机械运动到某一预定位置时,行程开关就通过机械
可动部分的动作将机械信号变换为电信号,以实现对机械 的电气控制。
4.热继电器 (3)
4.热继电器 (4)
5.按钮(1)
●按钮是一种结构简单、应用广泛的主令电器;。 ●在低压控制电路中,用于手动发出控制信号; ●按钮常做成复合式结构,即具有常开和常闭触点; ●按下时常闭触点先断开,然后常开触点闭合; ●去掉外力后在复位弹簧的作用下,常开触点断开,
常闭触点复位。
2.低压断路器 (2)
低压断路器的主要参数有 ●额定电压 ●额定电流 ●极数 ●脱扣器类型 ●额定电流整定范围 ●电磁脱扣器整定范围 ●主触点的分断能力等。
2.低压断路器 (3)
2.低压断路器 (4)
3.接触器(1)
★是一种用来频繁地接通或分断电路带有负载的自动控制 电制器。
★接触器由电磁机构、触点系统、灭弧装置及其他部件四 部分组成。
5.按钮(2)
5.按钮(3)
6.继电器(1)
■继电器是一种根据输入信号的变化接通或断开控制 电路的电器。
■继电器的输入信号可以是电流、电压等电量,也可 以是温度、速度、压力等非电量,输出为相应的触 点动作。
6.继电器(2)
继电器的种类很多: ◆按输入信号的性质:电压继电器、电流继电器、时
间继电器、温度继电器、速度继电器等。 ◆按工作原理:电磁式继电器、感应式继电器、电动
启动电路
2.控制电路部分(2)
★其工作原理是当线圈通电后,铁芯产生电磁吸力将衔铁 吸合。衔铁带动触点系统动作,使常闭触点断开,常开 触点闭合。
★当线圈断电时,电磁吸力消失,衔铁在反作用弹簧力的 作用下释放,触点系统随之复位。
3.接触器(2)
3.接触器(3)
3.接触器(4)
接触器按其主触点通过电流的种类不同,分为: ●直流 ●交流 机床上应用最多的是交流接触器。
式继电器、热继电器等。
6.继电器(3)
电磁式继电器
6.继电器(4)
时间继电器结构及工作原理 ▲是一种用来实现触点延时接通或断开的控制电器; ▲分为电磁式、空气阻尼式、电动式和晶体管式类型; ▲机床控制电路中应用较多的是空气阻尼式时间继电
器,晶体管式时间继电器等.
6.继电器(5)
7.行程开关(1)
◆当电路发生严重过载或短路时,熔断器的熔体熔断而切断 电路,达到保护的目的。
1.熔断器(2)
熔断器主要参数: ■额定电压:指熔断器长期工作时和分断后能够承受的电压,其
值一般等于或大于电气设备的额定电压。 ■额定电流:指熔断器长期工作时,设备部件温升不超过规定值
时所能承受的电流。 ■极限分断能力:是指熔断器在规定的额定电压和功率因数(或时

3.接触器(5)
4.热继电器 (1)
电动机在实际运行时,短时过载是允许的,但如果长期过载、 欠电压运行或断相运行等都可能使电动机的电流超过其额定值, 这样将引起电动机发热。绕组温升超过额定温升,将损坏绕组 的绝缘,缩短电动机的使用寿命,严重时甚至会烧毁电动机绕 组,因此必须采取过载保护措施。 最常用的是利用热继电器进行过载保护。
7.行程开关(2)
8.机床变压器(1)
★机床变压器是一种将某一数值的交流电压变换成频率相同 但数值不同的交流电压的电器。 ★机床控制变压器适用于频率50 Hz-60 Hz,输入电压不超 过交流660V的电路。
8.机床变压器(2)
8.机床变压器(3)
9.直流稳压电源(1)
▲直流稳压电源的功能是将非稳定的交流电源变成稳定的 直流电源。
数控机床调试与维修
项目三 数控机床电气控制系统连接 武汉船舶职业技术学院 周兰
一、数控机床电气控制系统构成
1.数控机床电气控制系统构成
二、数控机床常用电器认识
1.熔断器(1)
◆熔断器是一种结构简单、使用方便、价格低廉而有效的保 护电器。
◆在使用时,熔断器串接在所保护的电路中,作为电路及用 电设备的短路和严重过载保护,主要用作短路保护。
间常数)的条件下,能分断的最大电流值。
1.熔断器(3)
熔断器图形符号
2.低压断路器 (1)
◆又称为自动空气开关,是将控制和保护的功能合为一体 的电器。
◆常作为不频繁接通和断开电路的总电源开关或部分电 路的电源开关。
◆当发生过载、短路或欠压等故障时能自动切断电路,有 效地保护串接在它后面的电器设备,并且在分断故障电 流后一般不需要更换零部件。
QF4
伺服变压器 380VAC/220
VAC
交流接触 器
KM1/KM2
交流接 触器 KM1
QF2
电抗器
13 15 17
一体化伺服放大 器
SVPM-TB1
KM1线圈 回转刀架
一体化伺服 放大器
SVPM-CX3
控制变压器 380VAC /220VAC 开关电源
2.控制电路部分(1)
数控车床控制电路原理图如图所示。
4.热继电器 (2)
热继电器的结构如图所示。热元件串接在电动机定子 绕组中,绕组电流即为流过热元件的电流。当电动机 正常工作时,热元件产生的热量虽能使双金属片弯曲, 但不足以使其触点动作。当过载时,流过热元件的电 流增大,其产生的热量增加,使双金属片产生的弯曲 位移增大,从而推动导板,带动温度补偿双金属片和 与之相连的动作机构使热继电器动作,切断电动机控 制电路。
开关
伺服驱 动
器电源
主轴电 机风扇 电源
刀架电 源
控制电 源
SVPM -TB1
主轴风扇 电机动力 线接口
回转刀架 电机动力 线接口
SVPM-CX3 控制电 路电源
1.主电路控制部分(5)
(2)数控车床电气控制主电路 数控车床电气控制主电路实物接线图如图所示。
1.主电路控制部分(6)
QF
0QF1
QF3
相关文档
最新文档