单点渐进成形

合集下载

单点渐进成形工艺参数对激光拼焊板圆锥台件回弹影响研究

单点渐进成形工艺参数对激光拼焊板圆锥台件回弹影响研究

2019年2月第47卷第4期机床与液压MACHINE TOOL &HYDRAULICSFeb.2019Vol.47No.4DOI :10.3969/j.issn.1001-3881.2019.04.002本文引用格式:安治国,陈科衡,郭秋华.单点渐进成形工艺参数对激光拼焊板圆锥台件回弹影响研究[J ].机床与液压,2019,47(4):6-10.AN Zhiguo ,CHEN Keheng ,GUO Qiuhua.Effects of Single Point Incremental Forming Process Parameters on the Recoil of the Laser Welded Plate [J ].Machine Tool &Hydraulic ,2019,47(4):6-10.收稿日期:2017-08-10基金项目:重庆市自然科学基金资助项目(cstc2016jcyjA0467);四川省教育厅2018年科研立项项目(18ZB0050)作者简介:安治国(1976—),男,博士,副教授,研究方向为模具技术及模具CAD /CAM /CAE 。

E -mail :azgcqu @ 。

通信作者:陈科衡(1993—),男,硕士研究生。

E -mail :474980190@ 。

单点渐进成形工艺参数对激光拼焊板圆锥台件回弹影响研究安治国,陈科衡,郭秋华!(重庆交通大学机电与车辆工程学院,重庆400074)摘要:激光拼焊板单点渐进成形回弹是影响成形精度的重要因素。

使用回弹角来度量板料回弹大小,并使用正交试验设计对工具头直径、成形高度、下压量、半顶角等因素进行实验研究,得到各因素对回弹的影响程度。

得出影响板料回弹因素的大小依次为:成形高度、下压量、半顶角和工具头直径;工具头直径变化对回弹影响不大;成形高度对回弹影响显著,成形高度越高,回弹量越小;在一定范围内,回弹角的大小取决于下压量的大小,下压量越大回弹角越小;过大或过小的半顶角都会导致显著的回弹现象,合适的半顶角设计能够有效减少回弹的出现,从而保证成形精度。

无模金属板料成形技术(单点渐进式成形)7.7

无模金属板料成形技术(单点渐进式成形)7.7

无锡市澳富特精密快速成形科技有限公司
Page 6
单点渐进式成形技术简介
无模金属板料的成形技术是国际上一种先进的柔性加工工艺。该工艺不需 要专用模具,具有生产周期短、成本低的优点。特别适合于小批量、多品种、 复杂金属板材零件的生产。
以汽车工业为例,汽车覆盖件是汽车关键零部件中的关键领件,随着汽车 市场的竞争日趋激烈,汽车生产已经呈现出多品种、换型周期短的特点。按传 统工艺,开发一个车型全套的覆盖件模具一般需上亿元的投入,而且需要一年 以上的制造周期。
无锡市澳富特精密快速成形科技有限公司
Page 13
无模板料成形技术应用前景
在当今世界,随着生产力水平的提高,制造业需要成千 上万各类模具以生产出形状各异的产品及零部件。尤其是 在飞机、轮船、汽车等产品的覆盖件制造上,更需要大量 的模具,其制造和调试除要花费巨额资金外,加工周期也 往往需要几个月甚至十几个月。而且产品一旦换型,模具 也必须随之更换,从而严重制约了制造业的发展。而无模 成形技术就是要成为万能板材成形机,不用模具就能生产
无锡市澳富特精密快速成形科技有限公司
Page 3
技术介绍
4
传统的金属板料成形方式
传统的金属板料成形方式 冷冲压等板料成形方法在汽车等工业中占有重要地位; 广泛应用于汽车覆盖件的大批量生产; 除需要大型冲压机床外,模具要求高,造价昂贵,制造周期长。
无锡市澳富特精密快速成形科技有限公司
Page 5
单点渐进式成形的成形方法
无模金属板料成形技术(单点渐进式成形)
——无锡澳富特精密快速成型科技有限公司
公司介绍
2
公司介绍
澳富特(AFT)公司是无锡市2009年度的530重点项目之一,是致力于 金属板材快速成型技术的高科技公司。 该项目技术独步于国内,具有国际领先水平,并已拥有多项发明专利及 实用新型专利等自主知识产权,公司还在继续申请国内外的相关专利。 正在与上海交通大学、华中科技大学、哈尔滨理工大学、江苏大学等建 立产学研平台,开展联合攻关,加速拓宽该项目技术的应用领域及该项目 技术的不断升级。 该项目得到了无锡市及新区科技局的重视和大力支持。

单点渐进成形装置研制

单点渐进成形装置研制
文 章 编 号 : 6 2 01 12 1 )2 0 4 — 3 1 7 — 2 (0 0 — 0 4 0 1
ห้องสมุดไป่ตู้
单 点 渐 进 成 形 装 置 研 制
邓 玉 山 ,曹 望 汇 ,李 明 哲
( 林 大 学 辊 锻 工 艺研 究所 , 林 长 春 1 0 2 ) 吉 吉 3 0 5
摘 要 : 点 渐 进 成 形 是 一 种 基 于 分 层 逐 步 成 形 的 原 理 , 一 层 采 用 局 部 塑 性 变 形 , 终 达 到 产 品 目标 形 单 每 最
也 就是说 这个工 装上 的压边 圈与工件 必须 相对 于成
形 工 具 在 垂 直 方 向静 止 。 当成 形 工 具 给 工 件 一 个 向
下 的 分 力 并 移 动 一 定 位 移 时 , 压 边 圈 和 工 件 必 须 同
成 形 工 具
步 向下 移 动 相 同 位 移 , 则 , 垂 直 方 向 上 成 形 工 具 否 在 就会使 工件压堆 或拉 长 , 成 变形量误 差 , 品出现 造 产 次品或 者废 品。在设计 该工装 时考 虑到 这一缺 陷产
置 起 固
加 工教学
元 , 成 形 时 , 形 工 具 头 对 相 应 的 单 元 施 加 一 定 的 在 成
作 用 力 ,将 这 些 单 元 依 次 地 沿 着 z轴 方 向 滑 移 到倾
料 能 够 平 衡 静 止 在 任 意 位 置 ,只 有 当 成 形 工 具 对 工 件 施 加 作 用 力 时 , 件 才 能 匀 速 向下 移 动 , 要 设 置 工 需
控 铣 床 的 单 点 渐进 成 形 加 工 的 专 用 装 置 。通 过 大 量 实 验 研 究表 明 , 装 置 能 够 平 衡 压 边 圈本 身 重 量 , 时可 该 同

单点渐进成形原理

单点渐进成形原理

单点渐进成形原理IDMEC,研究所高级Tecnico,TULisbon,葡萄牙机械工程学系,丹麦技术大学,丹麦摘要:本文介绍了完整的单点渐进成形的基本原理理论分析模型,解释了过去几年里文献中实验和数值结果的可信性。

该模型是基于平面内双向接触摩擦的膜分析,以单点渐进成形过程中发现的极端的变形方式重点。

本文全部的研究都来自作者的实验,数据来自检索到文献。

关键词:金属薄板成形性能单点渐进成形1.简介单点渐进成形(SPIF)是一种具有高潜力应用的快速原型制造和少量生产经济收益的新型板材成形工艺。

图1介绍了该进程的基本组成部分:(i)金属板坯料,(ii)压板(iii)垫板及(iv)单点旋转成形工具。

该压板是单点渐进成形工艺中用来夹紧和夹住工作板的。

该垫板支持支撑板料其开口确定了单点渐进成形工具的工作区域。

该工具是用来逐步将板料成形为一个工件,其路径是由数控加工中心产生。

在成形工艺中有没有备份模具支撑板料的背面。

大多数关于SPIF的研究结果与工艺的应用和成形极限有关。

到目前为止,研究得出结论认为该工艺的成形性可由四个主要参数来决定[1]:(i)板材厚度,(ii)轴向进给量,(iii)速度(包括转速和进给速度)及(iv)成形工具半径。

第一个参数的影响通常解释为正弦定律。

关于第二个参数,一般认为成形性随着轴向进给量的增大而减小,但是由Ham和Jeswiet (文献[2])提供的新的结果似乎表明,轴向进给量本身对成形性影响不大。

众所周知,成形工具的速度影响成形性,因为其直接影响成形工具与板料间的摩擦条件。

较小成形工具的半径可以具有更好的成形性,这是由于成形工具下方的板料变形区域存在应变集中。

较大的刀具半径往往使应变分布在一个更为广泛的区域,使这一工艺类似于传统的冲压工艺。

虽然Jeswiet(文献[1]),Fratini(文献[3])和Allwood(文献[4])等人不仅对SPIF作出了重大贡献,而且在其他方面(如工业应用的发展和更好地表征进程中的成形极限)也有很多贡献,但是变形的机制仍然鲜为人知。

金属板料单点渐进成形变形控制策略

金属板料单点渐进成形变形控制策略

金属板料单点渐进成形变形控制策略张国新1,戴京东2(1无锡科技职业学院中德机电学院,无锡214000;2 澳富特精密快速成形科技有限公司,无锡214000)摘要:为了有效控制金属板料单点渐进成形变形,根据成形件结构,分析其成形变形机理,提出了有效控制变形措施:采用打钉限位法,可有效控制由于后续成形力作用而产生的变形;采用局部刚性支撑结构,可实现小曲率区域完全塑性成形;采用过矫正成形法,可控制板料成形的局部回弹;优化成形件结构,可减少板料成形时的回弹量;利用加工硬化原理,可控制平坦曲面成形时的回弹;通过去应力退火,可提高板料成形塑性又可消除板料成形时内应力;采用分层等高成形法编制成形程序,可有效控制双峰制件的结构成形时的变形。

通过生产实践验证,这些措施有效可靠,对板料单点渐进成形技术的广泛应用与实际生产具有较强的适用价值。

关键词:板料成形;单点渐进成形;变形控制;回弹中图分类号:TG306Sheet metal incremental forming a single point deformation control strategyZHANG Guo-xin 1,DAI Jing-dong2(1 Sino-German College of mechanical and electrical ,Wuxi college of Science and Technolog ,JiangSu Wuxi 214000, China;2 AFTTECH Co. Ltd, JiangSu Wuxi 214000, China) Abstract :In order to effectively control sheet metal incremental forming single point deformation, this paper analyzes its forming deformation mechanism and puts forward some effective measures to control deformation.1)The nailing limit method can effectively control the following-up forming force and deformation of role. 2)The partial rigid support structure can realize complete plastic forming in small curvature area.3)The overcorrection forming method can control the sheet metal forming local rebound.4) Forming structure Optimization can reduce the sheet metal spring- back.5) The work-harden principle can control surface spring-back on flat surface. 6)Stress relieving improves the plastic sheet metal forming and can eliminate sheet metal forming stress.7)The accordant layered forming method can effectively control the structure distortion of petronas doublet. These measures are proved effective and reliable in production. It can be widely applied in sheet metal single point incremental forming process and actual production.Key words:sheet forming;single-point incremental forming;Deformation control;springback;引言金属板材单点数控渐进成形技术就是一种先进的柔性加工工艺。

基于正交试验设计的单点渐进成型极限的研究

基于正交试验设计的单点渐进成型极限的研究
lohgn pr et ei . ee em n r usi i t t , bi i niosi t r e ; r ooa e ei n ds n x r ete h n c e h l rao c dtn n h po s o t l x m g p i s d a a u c n o i e c s t t f ; r h os e b f ec;i i o l ratp mz g0 m ei ed o 20r /l m s nd a en n a c i r l i u ew ho ru i n o iin . m d gs e r 00 m l t l bc , t i 1 f n p f a lrnt ietomn mtnlo A 2 hem t 2 。 i,e g s ri l i g a hbg f gi ef2 1 et e ls . a s ai7 5 l i K yw rsSnl pitnrmetlomigSet tl r ooa epr n; e od:ig — o ce na fr n ;heme ; t gnlxei t e ni aO h me l
JAN Hu sn . I a — h n, I G — e L n z e Xi
(C l g f c a i l n ier g Qn d oT c nlgcl nv r t, ig a 6 0 3 C ia ol eo h nc g ei , ig a eh o i ies y Q n d o2 6 3 , hn ) e Me aE n n o aU i
(F W 1 F N ig a uoF coy Qn do2 6 4 , hn ) A J A G Q n d oA t a t , ig a 6 0 3 C ia E r
l 【 要】 摘 单点渐进成型 技术是近些年发展起来的 一种板料成型方法, 确定板料的成型极限 是该技 i术应用于工业生产的前提条件之一。 利用 U 软件建立了 G 成型零件三维模型并编写了 数控程序, 采用正 l交 试验法对 板料2 1 在单点渐进成型q A2 - 的成型 极限 进行了 研究。 验结果表明, 实 成型过程q的润滑 - 状况 i对板料成型极限的影响最大; 以机油为润滑剂、 背吃刀量为 0 m 、 . m 进给速度为 20m /i 时, 1 00 mmn 板料

单点渐进成形薄板成型分析

单点渐进成形薄板成型分析

word中文摘要单点渐进成形是在数控机床上通过计算机程序控制形状简单的成形工具,利用其沿着垂直方向的进给以与水平方向的运动轨迹逐层形成板类件的三维包络面,从而实现金属板料连续局部塑性成形的加工方法,在板类件成形领域有着广泛的应用前景。

这种成型方式是一种具有高潜能的经济收益,快速的原型应用以与小批量生产特点的新型薄板成型方式,并且为形状复杂的板类件成形开辟了一条新路。

本文讨论了单点渐进成形的原理,以与当今社会对单点成型的研究动态。

在此根底上学习了液压缸设计的一些内容。

通过利用液压传动达到夹紧工件的目的,从而实现单点渐进成形加工和生产的一体化。

在此过程中,通过学习和实践,掌握了液压缸的工作原理,并且对液压传动有了一个本质的认识,这在今后的学习中对作者将会有很大的帮助。

关键词:单点渐进成形薄板成型液压缸液压传动AbstractSingle point incremental forming is a processing method,which utilizes puter program to control the simple shape of forming tool in the numerical control machine,using the feed motion along the vertical direction as well as the trajectories of horizontal layers to form three-dimensional pieces of sheet metal,thereby achieving metal sheet the local continuous plastic forming,so it has a wide prospect of application in the field of sheet metal forming.This forming is a new sheet metal forming process with a high potential economic payoff for rapid prototyping applications and for small quantity production,which cuts a new road for plex shape of sheet.This article discusses the principle of Single point incremental forming,as well as the dynamic study for the single point forming in today's society.On this basis,the author studies the contents of hydraulic cylinder design.Through the using of fluid drive,this device achieves the intention of clamping the workpiece,thereby achieving the single point incremental forming process and the integration of production.In this process,through learning and practice,the author masters the working principle of hydraulic cylinder,and has a nature understanding to fluid drive,which will give author a great helpin the future.Keywords: Single point incrementalforming Sheet metal forming Hydraulic cylinder Fluid drive目录目录4绪论6第一节、本课题国内外研究动态6、单点渐进成形的特点61.2.单点渐进成形的国内外研究动态6第二节、研究的根本内容,拟解决的主要问题8、本文研究主要内容8第三节、液压转动的特点9、液压传动的优点9、液压传动的缺点9第一章液压缸设计10第一节、液压缸各局部零件的材料、公差以与热处理101.1 液压缸零件10、缸体10、活塞杆10、端盖10、轴套11、半圆环11、半圆环活塞11第二节、液压缸的密封装置11、密封装置的类型11、间隙密封11、接触密封12、密封元件的常用材料12、常用密封元件的结构和性能13、O形密封圈13、Y形密封圈14、V形密封圈14、鼓形和蕾形密封圈15、活塞环15、防尘密封圈16第三节、液压缸的主要参数与设计计算17、机构尺寸与形式17、实际工作时输出力17、单杆活塞式液压缸和柱塞式液压缸的推力F117、单杆活塞式液压缸拉力F218、液压缸的输出速度18、单杆活塞式液压缸活塞外伸时速度19单杆活塞式液压缸活塞缩进时的速度19、根本尺寸20、缸筒壁厚20、液压缸缸底厚度21、缸体中部与底部联结法兰的厚度21、端盖法兰的厚度22第四节、最小导向长度H23第二章强度校核25第一节、液压缸局部校核25、法兰与下压板接触面的挤压应力25、法兰过度局部25、缸底强度计算28、筒壁局部28第二节、普通螺纹预紧与其强度校核31、底板上内六角螺钉的强度校核与其预紧力确实定35、缸体底部法兰和缸盖螺纹连接强度校核与其预紧力确实定36 第三节、立柱预紧和计算37第四节、立柱螺母的设计与强度计算39第五节、上、下压板的刚度计算42、上压板刚度计算42、下压板刚度计算44结论47致谢48参考文献49绪论第一节、本课题国内外研究动态1.1、单点渐进成形的特点单点渐进成形是以计算机为主要手段实现板料成形,具有以下一些特点:1)实现板料柔性成形不需要传统的对合模具或仅采用简单凸模就可以通过数控设备加工出成形极限较大、形状复杂的板类件,可实现规X成形,大大提高成形质量。

单点渐进成形工艺参数对铝合金圆锥台表面粗糙度的影响

单点渐进成形工艺参数对铝合金圆锥台表面粗糙度的影响

单点渐进成形工艺参数对铝合金圆锥台表面粗糙度的影响刘长喜;姜旭;孙建华;毕凤阳;王晓宏;解凯
【期刊名称】《黑龙江工程学院学报》
【年(卷),期】2024(38)2
【摘要】表面粗糙度是影响渐进成形零件质量的关键因素之一,为了探究工艺参数对零件表面粗糙度的影响,采用单点渐进成形技术对5052铝合金板料进行成形实验,研究工艺参数轴向进给量、主轴转速、进给速度对圆锥台表面质量的影响,并使用粗糙度仪测量外表面粗糙度R_(a)值。

实验结果表明:降低轴向进给量可以改善零件表面质量;随着主轴转速增大,零件粗糙度R_(a)呈先减小后增大趋势;进给速度对粗糙度R_(a)影响较小,随着进给速度增大,粗糙度R_(a)呈先减小后增大趋势,受零件尺寸限制,进给速度超过2817 mm·min^(-1)时,内表面“鱼鳞纹”和粗糙度R_(a)几乎没有变化。

【总页数】6页(P7-11)
【作者】刘长喜;姜旭;孙建华;毕凤阳;王晓宏;解凯
【作者单位】黑龙江工程学院机电工程学院;黑龙江工程学院工程训练中心
【正文语种】中文
【中图分类】TG306
【相关文献】
1.单点渐进成形工艺参数对表面质量的影响
2.单点渐进成形工艺参数对制件表面质量影响的研究进展
3.单点渐进成形工艺参数对正五边锥形件壁厚的影响
4.单点渐进成形工艺参数对激光拼焊板圆锥台件回弹影响研究
因版权原因,仅展示原文概要,查看原文内容请购买。

变角度缓面零件单点渐进成形轨迹优化

变角度缓面零件单点渐进成形轨迹优化

变角度缓面零件单点渐进成形轨迹优化王华毕;魏目青;桑文刚【摘要】文章针对变角度缓面零件加工表面波纹不均匀、成形尺寸精度差的问题,提出了一种基于增量角度Δθ来控制增量步长Δz的方法,建立了Δz与Δθ之间的数学方程,并利用Matlab软件求解出给定Δθ时的增量步长Δz,并将该方法成功应用于变角度缓面零件成形.试验对比结果表明:该方法改善了变角度缓面零件的表面波纹,减小了底部圆形区域大小,能提高成形效率,提高变角度缓面零件的使用性能.%In this paper,a new method of controlling incremental step Δz based on incremental angle Δθ is proposed to improve the surface quality and geometrical accuracy and reduce forming time of variable angle surface parts.A mathematical equation between Δz and Δθ is built,Δz is determined on ly by Δθ and it is solved by using the Matlab software.The method is applied to the variable angle surface parts forming.The experimental results show that both the surface quality and the geometrical accuracy are significantly improved,especially the surface waviness of the parts.The method is effective in improving the forming efficiency and the performance of the variable angle surface parts.【期刊名称】《合肥工业大学学报(自然科学版)》【年(卷),期】2017(040)003【总页数】5页(P294-298)【关键词】渐进成形;刀具轨迹优化;增量步长;表面质量;波纹度【作者】王华毕;魏目青;桑文刚【作者单位】合肥工业大学机械工程学院,安徽合肥 230009;合肥工业大学机械工程学院,安徽合肥 230009;合肥工业大学机械工程学院,安徽合肥 230009【正文语种】中文【中图分类】TG386.32金属板料单点渐进成形技术是一种新型的柔性无模成形[1-6]。

单点渐进成形装置研制

单点渐进成形装置研制

单点渐进成形装置研制1. 引言- 介绍单点渐进成形技术的背景和发展现状- 阐述本文的研究目的和意义2. 单点渐进成形装置的设计与制造- 系统地介绍单点渐进成形装置的结构和各部件- 分析不同部件间的工作原理、协调性和相互制约关系- 总结制造过程中遇到的问题及解决方法3. 单点渐进成形装置的性能测试- 给出单点渐进成形装置的测试方法和测试结果- 对结果进行分析,并与其他同类装置进行比较- 探讨装置在使用中可能出现问题及相应解决方案4. 单点渐进成形技术在制造领域的应用- 介绍单点渐进成形技术在不同领域的应用情况- 分析单点渐进成形技术在制造领域的优缺点以及未来的发展趋势- 探讨如何进一步完善和提高单点渐进成形技术的应用5. 总结与展望- 系统总结本文的研究成果和主要发现- 对单点渐进成形装置的未来发展进行展望- 提供相关建议,为后续研究提供参考注:提纲仅供参考,具体内容需根据实际情况进行调整。

第1章节引言随着现代制造业的发展和人们对制造品质与效率的不断追求,新型的制造技术不断涌现出来。

单点渐进成形技术就是其中一种非常有潜力的技术,该技术可将薄板材料或线材直接化为具有高精度,复杂形状的零部件。

相较于其它传统的制造技术,该技术能够在更短的时间内生产出高质量的产品,降低生产成本,提升生产效率。

因此,在航空航天、汽车、电子、原子能等多个领域都具有广泛的应用前景。

单点渐进成形技术的核心部分是单点成形加工,其利用半导体激光灯作为能量源、通过数控技术将焊接头按照所需的一定的路径和方向逐渐熔化并凝固,形成具有高精度形状和结构的3D金属微观结构。

相比于传统的成形加工技术,单点渐进成形技术具有高精度、高效率、低成本等优点,并且可以制造出高质量的三维模型、特殊各向异性等特点,并且可以在特殊的材料和器件等方面发挥重要的作用。

本文通过研发单点渐进成形装置,来对该技术进行深入的研究和评估。

本研究所开发的单点渐进成形装置的特点是结构紧凑、加工调节灵活、维护便捷。

金属板材单点渐进成形过程数值分析

金属板材单点渐进成形过程数值分析

(3)该技术是对板材局部加压,变形连续积累而达到整体成形,具有变形工艺力小,设备小,投资少;近似于静压力、振动小、噪音低,可以成形其他技术无法成形的零件。

(4)易于实现自动化,三维造型,工艺规划,成形过程模拟、成形过程控制等过程全部采用计算机技术,实现CAD/CAM/CAE一体化生产,是一项很有发展前途的先进制造技术。

但到目前为止该技术还限于实验室研究阶段,而且大多数仅限于研究轴对称零件,零件形状简单,有关基础理论的研究还没有展开。

日本的AMINO公司制造出样机,但缺乏相应的成形基础研究,缺乏基于成形理论的控制软件。

除了同本(和我国华中科技大学)有少量报道[”】,国内外还没有作广泛研究。

图1.2日本AMINo公司所开发的一种样机圈1.3数字化无模渐进成形加工的薄壳类样件目前国内华中科技大学快速成形中心也已经开发出样机,如图1.4所示,1.4板材单点渐进成形样机图1.5成形的样梓ANSYS/L¥_DYNA是全缴界范围连最知名的有限元显式求解程序。

程序翼:发的最初稿的是为北约组级的武器结构设计、防护结构服务,是该组织的PublicDomain程序,后来巍驶化后广泛传揆剔世爨各地的研究机构和大学。

从理论肇口算法蕊言,LSDYNA怒嗣前所有的显式求解程序的弊租和理论基础。

经过多年豹发展,LSDYNA已经成为功能最丰寓、应用领域最广、全球用户最多的有限元显式求勰程序。

ANSYS/L¥DYNAt271128]f29】的应用领域是:各种爆炸过程仿真、高速弹丸对板靶的穿翠模拟、离速碰潼模拟(如飞机、汽车、火车、船舶碰撞事故簪}起的结构动力响应和破坏)、乘客的安全性分析(保护气囊与假人的相互作用,安全惜的可靠性分析)、零件制造(冲逶、锻压、铸造、挤压、礼制、越塑性成形等)、机械部件的运动分析、建筑物的地震设计、罐状容器的设计、生物医学工程等这些高度非线性复杂瞬态动力学闯题。

·高发非线性瞬态动力分析高速大整碰撞分辑·复杂运动学分析爨1。

液压支撑单点渐进成形临界角研究

液压支撑单点渐进成形临界角研究

液压支撑单点渐进成形临界角研究
尚苗;李言;杨明顺;郑建明;景张帅
【期刊名称】《中国机械工程》
【年(卷),期】2024(35)1
【摘要】单点渐进成形复杂形状的薄壁制件时,不均匀厚度分布是影响产品性能和成形质量的主要原因。

将液压支撑引入单点渐进成形过程中,提出一种液压支撑单点渐进成形工艺,该工艺通过对悬空板材增加柔性支撑来促进厚度的均匀分布。

在静压和变压的辅助支撑下,采用Al1060板材单点渐进成形不同壁角的圆锥台制件,通过数值模拟和实验研究定量分析静压参数与变压方案对厚度分布及厚度均匀临界角的影响规律。

结果表明,对厚度均匀分布临界角的有利静压压力范围为0~0.18 MPa,最有利的静压压力值为0.17 MPa。

与无支撑单点渐进成形相比,液压支撑单点渐进成形工艺可以使厚度均匀临界角增大7°,有效提升板材的厚度分布均匀性和成形性能。

【总页数】9页(P181-189)
【作者】尚苗;李言;杨明顺;郑建明;景张帅
【作者单位】西安理工大学机械与精密仪器工程学院
【正文语种】中文
【中图分类】TG386.4
【相关文献】
1.多点复合渐进成形与单点渐进成形的对比分析
2.铝板数控单点渐进成形的成形极限曲线研究
3.板材单点渐进成形工艺数值模拟与成形缺陷研究
4.静压支撑单点渐进成形厚向应变分布研究
因版权原因,仅展示原文概要,查看原文内容请购买。

金属板料数字化渐进成形工艺研究

金属板料数字化渐进成形工艺研究

金属板料数字化渐进成形工艺研究摘要:本文围绕板材数控单点渐进成形技术的工艺规划的一般原则的建立和加工轨迹优化方法。

主要内容包括基于理论分析和实践经验的一般性工艺规划和针对解决实际问题的加工轨迹优化处理。

关键词:数字化成形快速成形加工轨迹1 引言金属板材数控单点渐进成形技术是一种数字化的柔性加工技术,与传统的塑性成形技术相比,具有不需要设计、制造模具,小批量多品种加工板材零件的优点。

其柔性的特点决定了该项技术尤其适合于新产品开发阶段的板料零件成形,如日用品、汽车覆盖件、航天航空产品的研制阶段的工作,利用该技术可以大大缩短产品开发周期,降低开发成本和新产品开发的风险。

本文根据在加工过程中的一些实例,在UG软件进行使用方法的介绍,供同行们参考。

2 金属板料塑性成形技术的概述2.1 传统板料塑性成形技术金属板料通过塑性成形方法可以加工成各种零件,它们被应用于国民经济和日常生活的各个领域中。

例如汽车行业、航天航空、电机电器、食品包装、建筑等工业用品、家庭用品及家居装饰品、工艺美术品、医疗器械、家用电器等日常用品都大量使用金属板料塑性成形件。

传统的板料塑性成形技术的加工过程通常包括两个阶段。

第一阶段是模具的设计与制造阶段;第二阶段是采用模具的生产阶段。

这种加工方式的优点是,一旦模具设计制造成功后,可以大批量的生产需要的零件。

但是,因为在模具的设计制造过程中,需要反复的对模具进行修改,这样就表现出模具的设计、制造费用高、周期长,使板材零件的应用范围受到限制。

2.2 板料塑性无模成形技术二十一世纪是以知识经济和信息社会为特征的新时代,制造业正面临着空前严峻的挑战。

如何快速、低成本和高质量地开发出新产品,以满足信息社会中瞬息万变的市场对小批量多品种产品的要求,是企业生存和发展的关键。

传统的板料塑性成形技术已经不能够满足这种要求,市场经济要求提高成形的柔性。

提高塑性加工柔性的方法有两种途径”,一是从机器的运动功能上着手,例如多向多动压力机,快速换模系统及数控系统。

金属板材单点渐进成形技术的研究进展

金属板材单点渐进成形技术的研究进展

万方数据2009年第43卷№5器手越来越多的被应用到数控渐进成形技术中,更好地实现了制造的柔性化与自动化【5】(如图2所示)。

图2工业机器手在数控渐进成形中的应用2.1金属板材单点渐进成形工艺及精度的研究成形工件尺寸精度不高是金属板材单点渐进成形技术难以得到广泛应用的主要原因【6,7|,也是目前该技术国内外研究的热点,现行的大部分的成形工艺研究也正是围绕如何提高成形精度而展开。

由于成形力越小越有利于提高工件的成形精度,而成形力又随着步长、成形角、工具头半径和板材厚度的减少而减小,因此可以通过控制工艺参数达到提高成形精度的目的。

为得到确切的工艺参数与工件成形精度的关系,意大利的Ambrogio【8J通过调整工艺参数对工件进行多次试验成形,然后利用统计分析方法对试验数据进行分析总结,从而得到了工艺参数与工件尺寸精度的关系表达式。

但该方法适用范围有限,一般只适合于简单的零件,对于复杂零件很难找到工艺参数与工件尺寸精度的确切关系表达式。

另外,工艺参数中板材厚度的选定并不能只根据成形力的需要而随意更改,而其它工艺参数对成形力的影响并不显著,而且还会降低成形效率【7.91。

工具头与板材接触区域附近不必要的塑性变形和回弹是成形件几何尺寸精度不高的主要原因№J。

为了获得良好的成形精度,一般希望在成形区(即板材与工具头接触的区域)内的金属板材具有较低的屈服强度和较好的延伸性,这样有益于板材在较小的成形力下加工成形,并且还能防止板材卸载后的回弹;但与此同时又希望在成形区域外的金属板材具有较高的屈服强度,这样有助于避免成形区外板材产生不必要的塑性变形,从而达到板材的准确成形。

对金属板材的上述两个要求看起来有些冲突,因为同一金属板材很难同时具备相互矛盾冲突的两9种属性。

通过改变装置可以达到提高成形区外材料刚度、并由此提高成形精度的目的,但该方法会降低工艺的柔性[10]。

比利时的Duflou[6,7]利用激光对板材成形区域进行局部动态加热,从时间和空间上改变材料性质,达到了减小成形区材料屈服强度的目的。

单点渐进成形设备数控系统总体设计

单点渐进成形设备数控系统总体设计
但是实际应用 中, 可能 由于电机与编码器的设置 了丰富的 N C基本 软件功能模块 , 稳定性好 , 具有用 同。 不匹配、 或是接线错误 , 造成电机与编码器旋转正方 户界 面 和 内核 两 级 开放 性 ,是 目前 最 常 见 的一 种 开 向相 反 ,形 成 正 反馈 ,导致 运 动 控 制器 不 能 正 常 工 放式 数 控 系统 形式 。 作, 有必要设置编码器计数 的正方 向; 运动控制轴初 始 化 包 括 将 轴设 为前 面轴 、 置 输 出模 式 、 使 能 、 设 轴 开闭环控制等 ;单轴运动控制包括控制模式选择及 参数设置等 ; 多轴协调运动包括坐标映射 、 坐标系运 动合成速度 、 加速度等设置 、 运动命令缓 冲区操作 ; H mIe 速捕 获 ,控制 器 为 每个 轴 提 供 了一个 高 o / x高 d 速位置捕获寄存器 ,允许使用增量式编码器的 C相 信号或原点(o e Hm) 开关信号作为捕获轴位置 的触发 信号 ; 运动错误监测包括位置误差极 限监测 , 驱动器 通用数字量 1 可进行输入输 出操作 , / 0 用于 本系统采用 固高 G 一 0S T 4 0G基 于 P I C 总线的连 报警等 ; 续轨迹运 动控制卡【 。采用该运动控制器进行控制 限位等开关量控制 。主机发送的命令 , 运动控制器在 检查 、 校验后 , 会给出一个 反馈 , 运动控 制器为每一 时, 用户需要一 台 IM P B — C或其兼容机 、 一套运动控 6 可以通过调 制器及配套的连接 电缆和接 口端子板、电机及驱动 个控制轴提供一个 l 位 的状态寄存器 ,
1 单点 渐进成形数 控 系统硬 件组成
越 限的方向运动。运动控制器默认 限位开关信号为 低 电平。运动控制器缺省设置认为控制 电机旋转的
即电机控制 电压为正时 电机的旋转方 向) 与 N C嵌入 P C型的开放式数控系统如图 1它能充 正方 向 ( , 即脉冲计数值增加 的方向) 相 分利用丰富 的 P C微机软硬件资源, 运动控制器提供 编码器计数的正方 向 (

铝板数控单点渐进成形的成形极限曲线研究

铝板数控单点渐进成形的成形极限曲线研究

第31卷第8期中国机械工程V o l .31㊀N o .82020年4月C H I N A M E C HA N I C A LE N G I N E E R I N Gp p.960G967铝板数控单点渐进成形的成形极限曲线研究侯晓莉㊀李㊀言㊀杨明顺㊀柏㊀朗㊀石㊀珣㊀张成兴西安理工大学机械与精密仪器工程学院,西安,710048摘要:对薄壁复杂构件进行数控单点渐进成形时,板料易发生破裂㊁起皱等缺陷,且材料变形机制演化复杂,对加载条件极为敏感,使得板料在数控单点渐进成形时的破裂预测和控制变得极难.为此,选取1060铝板作为研究材料,通过试验研究了数控单点渐进成形技术中板料的成形性能,以实现对破裂的预测和控制.利用拓印法将制件的空间变形问题转化为平面变形问题,采用数码显微镜对拓印的制件网格数据进行测量和提取,选用插值法和多项式拟合法对数据进行拟合处理,最终得到了1060铝板料在数控单点渐进成形技术下的成形极限曲线(F L C ).通过对F L C 进行分析研究,得到了制件破裂区和安全区域的应变分布,实现了制件破裂的预测和控制.为进一步提高1060铝板的成形极限,将超声振动引入到单点渐进成形中,通过试验对比研究了超声振动辅助渐进成形的F L C 和传统渐进成形的F L C ,试验结果表明:当振动功率为120W ㊁振动频率为25k H z 时,1060铝板料的成形极限提高了11%.关键词:破裂预测和控制;数控单点渐进成形;1060铝板;成形极限曲线;超声振动中图分类号:T G 336D O I :10.3969/j .i s s n .1004 132X.2020.08.011开放科学(资源服务)标识码(O S I D ):R e s e a r c h o nF L C i nC N CS i n g l e P o i n t I n c r e m e n t a l F o r m i n g ofA l u m i n u mS h e e t s HO U X i a o l i ㊀L IY a n ㊀Y A N G M i n g s h u n ㊀B A IL a n g ㊀S H IX u n ㊀Z H A N GC h e n g x i n gS c h o o l o fM e c h a n i c a l a n dP r e c i s i o n I n s t r u m e n t E n g i n e e r i n g ,X i a nU n i v e r s i t y o fT e c h n o l o g y ,X i a n ,710048A b s t r a c t :W h e nC N Cs i n g l e p o i n t i n c r e m e n t a l f o r m i n g o f t h i n Gw a l l e dc o m p l e xc o m p o n e n t sw a s c a r r i e do u t ,s h e e tm e t a lw a s p r o n e t o c r a c k i n g ,w r i n k l i n g an d o t h e r d e f e c t s ,a n d t h e e v o l u t i o no fm a Gt e r i a l d e f o r m a t i o nm e c h a n i s m w a s c o m p l e x ,w h i c hw a s v e r y s e n s i t i v e t o l o a d i n g co n d i t i o n s .I tw a s d i f Gf i c u l t t o p r e d i c ta n dc o n t r o l t h ef r a c t u r eo fs h e e t m e t a l s i nC N Cs i n g l e p o i n t i n c r e m e n t a l f o r m i n g.T h e r e f o r e ,1060a l u m i n u ms h e e tw a s s e l e c t e d a s t h e r e s e a r c hm a t e r i a l ,a n d t h e f o r m i n gpe rf o r m a n c e o f t h e s h e e tm e t a l s i nC N Cs i ng l e p o i n t i n c r e m e n t a l f o r m i n g t e ch n o l o g y w a s s t u di e d e x p e r i m e n t a l l y t o r e a l i z e t h e p r e d i c t i o na n dc o n t r o l o f f r a c t u r e .S p a t i a l d e f o r m a t i o no f p a r t sw a s t r a n s f o r m e d i n t o p l a n e d e f o r m a t i o nb y r u b b i n g m e t h o d .T h e g r i dd a t a o f r u b b i n g p a r t sw e r em e a s u r e d a n d e x t r a c t e db y d i gi t Ga lm i c r o s c o p e .T h e d a t aw e r e f i t t e db y i n t e r p o l a t i o n m e t h o da n d p o l y n o m i a l f i t t i n g m e t h o d .F i n a l l y,t h eF L C i nC N Cs i n g l e p o i n t i n c r e m e n t a l f o r m i n g o f 1060a l u m i n u ms h e e t sw a so b t a i n e d .T h e s t r a i n d i s t r i b u t i o n s i n t h eb r e a ka r e a a n ds a f e a r e aw e r eo b t a i n e db y a n a l y z i n g t h eF L C .T h e p r e d i c t i o na n d c o n t r o l o f t h e r u p t u r e f o r t h ew o r k p i e c e sw e r e r e a l i z e d .I no r d e r t o f u r t h e r i m p r o v e t h e f o r m i n g li m i t o f 1060a l u m i n u ms h e e t s ,u l t r a s o n i cv i b r a t i o nw a s i n t r o d u c e d i n t os i n g l e p o i n t i n c r e m e n t a l f o r m i n g.T h eF L Co f u l t r a s o n i c v i b r a t i o n a s s i s t e d i n c r e m e n t a l f o r m i n g a n d t r a d i t i o n a l i n c r e m e n t a l f o r m i n g w e r e c o m p a r e db y t e s t s .T h e t e s t i n g r e s u l t s s h o wt h a t t h e f o r m i n g l i m i t o f 1060a l u m i n u ms h e e t i n c r e a s e s b y 11%w h e n t h e v i b r a t i o n p o w e r i s a s 120Wa n d t h e v i b r a t i o n f r e q u e n c yi s a s 25k H z .K e y wo r d s :f r a c t u r e p r e d i c t i o na n d c o n t r o l ;C N Cs i n g l e p o i n t i n c r e m e n t a l f o r m i n g ;1060a l u m i n u m s h e e t ;f o r m i n gl i m i t c u r v e (F L C );u l t r a s o u n dv i b r a t i o n 收稿日期:20190125基金项目:国家自然科学基金资助项目(51475366,51575443)0㊀引言金属板料单点渐进成形(s i n gl e p o i n t i n c r e Gm e n t a l f o r m i n g,S P I F )是利用分层制造的思想,通过局部变形累积实现零件整体成形的一种新型板料柔性快速成形技术,无需模具或只需简易模具,适用于单件小批量㊁多样化和复杂形状产品的生产需求.然而,在S P I F 技术中,过大的局部应力易引起过于集中的应变,致使板料易发生失稳㊁起皱㊁破裂等缺陷,尽管许多学者对S P I F 工艺进行了广泛的理论与试验研究,然而在成形极限㊁成形效率㊁成形精度及表面质量等方面的不足始终制约着此项技术的工业化大范围应用,如何提高S P I F 技术的成形极限㊁改善成形质量是该领域目前的研069 Copyright©博看网 . All Rights Reserved.究热点.成形极限指的是金属板料在成形过程中介于应变安全区和应变破裂区的一个界限,由成形极限曲线(f o r m i n g l i m i t c u r v e,F L C)进行表征,它位于主应变ε1㊁ε2所构建的平面坐标系内.为研究S P I F技术的成形极限,国内外学者进行了大量的工作,并取得了一定的成效[1G3].S O E I R O等[4]对S P I F过程中材料的应力应变进行了理论计算,他们认为板料在径向拉应力的作用下发生了破裂,且破裂会发生在与工具头接触的上边缘处.P A R K等[5]提出了基于应变历史的极限状态判断方法,并对三种不同类型试样的应变历史和等效塑性应变进行了测量,研究结果表明,基于有效塑性应变的断裂成形极限图适用于预测先进高强度板料在复杂成形过程中的突然断裂.S I MO N E T T I等[6]提出了改进的应变数据拟合方法.陈劫实等[7]从能量的角度出发,基于总塑性功的积分形式,考虑了成形过程中应变路径变化㊁材料的硬化指数等因素的影响,建立了板料的成形极限判断依据.王进等[8]提出了通过渐进成形圆弧沟槽㊁十字交叉圆弧沟槽直至板料端部破裂后,测量破裂位置最大和最小主应变以获得板料渐进成形极限图的方法.王华毕等[9]通过数控机床渐进成形锥形零件,试验测量了不同因素(原始板厚㊁垂直增量步长㊁润滑剂种类㊁零件形状)下的成形极限角,以此来比较渐进成形性能以及探究限制材料成形极限的原因.为提高板料在S P I F技术下的成形极限,部分学者尝试了双点渐进成形㊁双边渐进成形㊁电磁辅助渐进成形㊁激光辅助渐进成形㊁热渐进成形㊁增加支撑等复合工艺.S H A M S A R I等[10]采用液压胀形和S P I F相结合的方式提高成形极限和成形效率.Z H A N G等[11]尝试将S P I F工件卸载后通过退火处理,以降低工件的回弹变形和提高成形极限.J A W A L E等[12]根据断裂力学的模式,通过试验确定了铜的断裂成形极限(F F L)和剪切裂缝成形极限(S F F L).龚航等[13]对大型铝合金曲面件电磁渐进成形技术进行了研究.C U I等[14]采用电磁辅助S P I F和拉伸相结合的方式进行了大尺度薄壁椭圆体零件变形.李小强等[15]研究了整体加热和局部加热对成形极限的影响,试验发现随着温度的升高,材料的成形极限也会相应提高,局部加热的方式可使非加热区域的板料因处于相对低温而保持较好的刚性,从而提高了整体零件的精度.综上所述,为避免成形缺陷并提高成形质量,国内外的科研工作者在板料成形极限的影响机理㊁研究手段㊁改善措施等方面做了诸多工作,并取得了大量的成果.本文以制件破裂区域的应变分布为研究对象,利用拓印法和显微观测法获取破裂区域的应变分布数据,选用插值法和多项式拟合法处理并分析应变数据,最终得到关于1060铝板在S P I F技术作用下的成形极限,实现了制件破裂的预测和控制.在此基础上,鉴于超声振动在塑性加工工艺中表现出来的提高成形极限㊁减小成形力等积极作用[16G18],本文将超声振动引入S P I F过程中以改变材料流变状态和组织演化机制来提高成形极限,通过试验对比研究了超声振动辅助渐进成形的F L C和传统渐进成形的F L C,验证并量化了超声振动对成形极限的改善效果.1㊀数控单点渐进成形板料成形极限试验由于板料成形极限源于试验,试验中的一些具体因素和标准不同,而这些因素和标准却对试验结果又有着重要的影响(如采用颈缩失效和破裂失效时,两者的判断标准不一样,试验中得到的F L C也不同),因此,本文基于板料S P I F的工艺要求,从试验条件的可观测性角度出发确定成形中的极限状态,以期提高成形试验结果的实用性和可靠性.板料发生颈缩现象一般是材料细微组织的变化,实际生产中零件局部出现明显的颈缩痕迹即认为零件冲压失效,但由于板料在S P I F过程中的颈缩现象并不易观测[19G20],因此,1060铝板常温下的成形极限由板料的破裂极限来定义,当板料在成形过程中出现任何破损现象时即视为成形极限的判定标准.图1㊀成形轨迹简图及试验装置F i g.1㊀F o r m i n g t r a j e c t o r y d i a g r a ma n d t e s t d e v i c e 1.1㊀试验原理和装置采用数控加工中心作为数控S P I F试验平台.通过预先编制好的数控程序控制成形工具头的运动轨迹,逐层成形出圆锥台成形工件.成形轨迹及装置如图1所示.试验系统由成形工具头㊁夹具和待成形板料组成,将1060铝板放在夹具底座上,板料四周用压板夹紧.成形工具采用圆柱形高速钢棒料球头状刀具,对刀具球头进行抛光处理.工具头直径为10mm,原始板料厚度为1mm,板料尺寸为140mmˑ140mm,并在板料表面印制圆形网格,最终成形圆锥台的成形壁角α=64ʎ.成形过程中,层间距选择0.3mm,工具头转速为750r/m i n,进给速度为200mm/169铝板数控单点渐进成形的成形极限曲线研究 侯晓莉㊀李㊀言㊀杨明顺等Copyright©博看网 . All Rights Reserved.m i n,润滑油选用昆仑LGHM46抗磨液压油.试验用1060铝板力学性能属性如表1所示.表1㊀1060铝板的力学性能T a b.1㊀M e c h a n i c se rf o r m a n c e o f1060A l u m i n u m m a t e r i a l1.2㊀成形极限的测量网格测量是塑性变形实测中常用的一种测量方法,对板料极限应变的测量关键是确定极限状态,将破裂作为板料成形极限的判断依据.网格测量主要有三类方法:①直接测量法,将试件成形至破裂,测量破裂区域附近的网格,该方法操作简单但误差较大;②插值法,测量破裂失效变形网格附近的若干个网格,通过插值处理得出极限应变,该方法对初期网格数据测量要求较高,但插值结果比较准确;③与应变历程相关的测量方法[21G22],通过应变随时间的变化关系确定极限应变,该方法对设备精度要求较高,未能普遍使用.在研究过程中,本文利用拓印法将曲面变形问题转换成平面变形问题,结合现代数码显微技术进行精确测量,再采用插值和多项式拟合处理数据并绘制铝板的F L C.数控S P I F试验中,最终成形工件多为曲面形状,其形变在毫米级.在金属板表面印刷网格,采取常用圆形网格形式,原始网格大小控制在直径2.2mm.将胶带粘贴在被测曲面上,将成形曲面的网格形变拓印出来(即将制件空间曲面转换成平面),拓印出来的网格能够较为准确地反映出被测曲面网格的形变.采用I S MGP M200S数码显微镜配合U S B 数据传输采集测量系统来测量破裂区域的网格形变大小,如图2所示.图2㊀拓印网格及测量设备F i g.2㊀R u b b i n g g r i da n dm e a s u r i n g e q u i p m e n t1060铝板成形后圆形网格拉伸变形为椭圆形网格,分别测量每一个椭圆形网格的长短轴变化,将测量数据进行处理得到该板料的两个主应变.通过I S MGP M200S数码显微镜放大30倍后,依次测量出拓印的5条网格形变带,局部显示如图3所示,其中L a为所测椭圆形网格的短轴, L b为所测椭圆形网格的长轴,D为圆形网格(即L a=L b时的情况)直径.(a)第1㊁2㊁3条网格形变带(形变初段)(b)第1㊁2㊁3条网格形变带(形变中段)(c)第4㊁5条网格形变带(形变初段)(d)第4㊁5条网格形变带(形变中段)图3㊀放大30倍后网格形变F i g.3㊀M e s hd e f o r m a t i o na f t e r30Gf o l dm a g n i f i c a t i o n 1.3㊀测量与计算结果每条网格形变带上分别有11个网格,测得的5条网格形变带的形变情况如表2所示.板料受力后的应变情况主要有平面应变㊁胀形应变㊁拉伸应变,上述三种状态如图4所示,以S P I F圆锥件为研究对象,由表2中的数据可得,圆形网格成形后的形变为,椭圆形网格的长轴拉伸量较大,短轴伸长量较小.故此种成形应变状态可以看作平面应变状态.269中国机械工程第31卷第8期2020年4月下半月Copyright©博看网 . All Rights Reserved.表2㊀沿路径提取网格形变T a b .2㊀E x t r a c tm e s hd e f o r m a t i o na l o n gt h e pr e s c r ib e d p a thmm网格数L a1L b 1L a 2L b 2L a 3L b 3L a 4L b 4L a 5L b 512.2052.2052.2742.2742.2202.2202.2922.2922.2832.28322.3782.3782.3222.3222.3832.3832.2882.2882.2912.29132.2913.1312.2943.1232.2993.1082.2662.9302.2392.95742.3773.5082.4053.4272.4003.4622.4103.3452.4053.37552.4244.6022.4324.6462.4624.4272.5504.2642.4984.31362.6406.9232.6957.0702.6337.1352.5547.3072.7097.24372.4825.0502.5105.2662.5185.2022.5735.2522.5165.22882.4543.5602.4543.5862.4183.5472.4353.4922.4053.56692.3022.7732.4002.7822.3662.7562.3782.6272.3772.709101.8102.1052.2132.3492.2092.2502.2872.3262.2972.371112.2252.2252.2282.2282.3452.3452.2742.2742.3082.308(a)平面应变㊀(b)胀形应变㊀(c)拉伸应变图4㊀三种应变状态F i g.4㊀T h r e e s t r a i n s t a t e s 对于平面应变状态,板料成形中的厚向应力可以忽略不计,但厚向应变却不能忽略,因此板料的应变可以用三个主应变ε1㊁ε2和ε3来表示.根据体积不变定律,三个主应变之和为零,则三个应变变量之中的任何一个变量均可以由另外两个表示(即两个应变变量可以表示板料的应变状态).由此,用面内的两个主应变ε1㊁ε2来表示铝板的应变状态,在成形后的板料上测量椭圆形网格的长短轴大小,就可计算得到板料的主次应变.主次应变的值可利用工程应变和真实应变两种计算方法,计算公式分别如下.工程应变计算方法:ε1=L a -D 0D 0㊀㊀ε2=L b -D 0D 0真实应变(对数应变)计算方法:ε1=l n L a D 0㊀㊀ε2=l n L bD 0式中,D 0为圆形网格变形前的原始直径,取D 0=2.2m m .由于工程应变需计算无穷多个中间状态的工程应变,其总变形量为近似每个中间量之和,不能准确反映出材料的实际变形情况,而真实应变则反映了板料变形的实际情况,故在本试验研究中,采用真实应变进行计算.用ε1表示计算得到的轴向网格应变,ε2表示计算得到的切向网格应变;将成形后板料的轴向网格应变作为第一主应变,切向网格应变作为第二主应变.计算可得到5条网格形变带的应变,如表3所示.表3㊀成形后的板料沿路径提取网格应变T a b .3㊀T h e g r i d s t r a i nd a t a a l o n gt h e p a t ha f t e r f o r m i n gt h e s h e e tm e t a l 网格数εa 11εb 12εa 21εb 22εa 31εb 32εa 41εb 42εa 51εb 521000000000020.0760.0760.0210.0210.0710.071-0.002-0.0020.0030.00330.0380.3510.0090.3170.0350.336-0.0110.246-0.0190.25940.0750.4640.0560.4100.0800.4440.0500.3780.0520.39150.0950.0860.0670.7140.1030.6900.1070.6200.0860.63660.1801.1440.1701.1340.1711.1680.1081.1590.1711.15570.1180.9410.0990.8400.1260.8520.1160.8290.0970.82980.1070.4790.0760.4550.0850.4690.0610.4210.0520.44690.0430.2290.0540.2020.0640.2160.0370.1360.0400.17110-0.197-0.046-0.0270.032-0.0050.013-0.0020.0150.0060.038110.0220.022-0.020-0.0200.0550.055-0.008-0.0080.0110.0112㊀1060铝板成形极限曲线的绘制测量数据具有离散性与跳跃性,测量过程中存在人为的误差,采用在区间上的数值插值能有效地减少数据之间的跳跃,可去除与插值曲线相差比较大的数据点.三次样条插值函数具有平滑可导性㊁准确性高的优点,因此本文采用数值分析中常用的三次样条插值.利用M A T L A B 对所测数据进行插值拟合,编写插值三次样条插值程序,采用三次样条插值函数s pl i n e (X 0,Y ,x ).初值X 0为成形后经过破裂区域的网格编号1~11,Y 1~Y 5分别为测量5条形变带长短轴的实际形变,插值步长x 为0.05.将成形后椭圆形网格的短轴形变量L a 记为轴向网格形变量,长轴形变量L b 记为切向网格形变,得到的轴向和切向插值的曲线分别见图5㊁图6.图5㊀轴向网格形变插值曲线F i g .5㊀I n t e r p o l a t i o n c u r v e f i t t i n g de f o r m a t i o no f a x i a lm e s h图6㊀切向网格形变插值曲线F i g .6㊀I n t e r p o l a t i o n c u r v e f i t t i n g de f o r m a t i o no f t a n ge n t i a lm e s h369 铝板数控单点渐进成形的成形极限曲线研究侯晓莉㊀李㊀言㊀杨明顺等Copyright©博看网 . All Rights Reserved.从被测的5条形变带数据的插值曲线可以看出,轴向网格形变插值曲线较为分散,切向网格形变插值曲线重合度高.若要提取破裂区周围的最大形变量来绘制F L C ,则轴向形变插值曲线的数据分散㊁误差较大,而切向网格形变插值曲线在最大形变(破裂区)附近的数据重合度高,误差较小.由于5条轴向插值曲线重合度不高,若要采用其数据绘制F L C 则误差较大,故需要从数据整体变化趋势的角度,并结合数据分布的大致情况来确定应用的拟合模型,采用多项式曲线拟合形变以减小其误差.对所测数据进行多项式拟合,同样将成形后椭圆形网格的短轴形变量L a 记为轴向网格形变量,长轴形变量L b 记为切向网格形变量,其中以第2条网格形变带轴向㊁第3条网格形变带切向拟合的多项式曲线为例,分别见图7㊁图8.(a)多项式拟合曲线(b)残差图7㊀轴向网格多项式拟合曲线及其对应残差F i g .7㊀C u r v i l i n e a r p o l y n o m i a l f i t t i n g ax i a lm e s ha n d i t s c o r r e s p o n d i n g re s i d u a ls (a)多项式拟合曲线(b)残差图8㊀切向网格多项式拟合曲线及其对应残差F i g .8㊀C u r v i l i n e a r p o l y n o m i a l f i t t i n g t a n ge n t i a lm e s h a n d i t s c o r r e s p o n d i n g re s i d u a l s 图7a 中的离散数据点为实际测得的轴向网格形变量,分别用三次多项式和五次多项式曲线拟合实测的数据.图7b 为对应残差,其中三次多项式的残差模为0.18858mm ,五次多项式的残差模为0.17446mm .由表2可知,第2条网格形变带的轴向最大网格形变为2 695mm ,则可计算出轴向最大网格形变的相对误差如下.三次多项式拟合相对误差为0.188582.695ˑ100%=6.997%五次多项式拟合相对误差为0.174462.695ˑ100%=6.473%图8a 中的离散数据点为实际测得的切向网格形变量,分别用三次多项式和七次多项式曲线拟合实测的数据.图8b 为对应残差,其中三次多项式的残差模为3.2127mm ,七次多项式的残差模为1.6342mm .由表2可知,第3条网格形变带的切向最大网格形变为7 135mm ,则可计算出切向最大网格形变的相对误差如下:三次多项式拟合相对误差为3.21277.135ˑ100%=45.03%七次多项式拟合相对误差为1.63427.135ˑ100%=22.90%由网格形变多项式拟合曲线可以发现,轴向多项式拟合曲线的最大相对误差为6.997%,误差较小,且三次拟合与五次拟合的相对误差变化不大.由此可知,轴向五次多项式拟合曲线就能很好地反映出实际测得的形变量曲线.由于在S P I F 过程中制件深度方向的形变要远大于侧面曲面的形变,出现的拉伸破损为切向拉伸破损,所以切向的应变变化大,且切向多项式拟合曲线的误差较大,最大相对误差为45.03%.三次多项式与七次多项式的相对误差变化也很大,故切向多项式拟合曲线并不能真实反映出实测数据的变化情况.其他各条网格形变带在轴向和切向拟合的多项式均符合上述类似的多项式拟合结果.经上述分析,最终提取轴向五次多项式拟合曲线数据和切向三次样条插值曲线数据来绘制1060铝板的F L C .在成形后的网格形变带上,被测量的网格在第5个网格上没有发生破损失效,而在第6个网格上发生了破损失效.若将第5个网格作为应变的极限,则有可能实际还没有达到最大应变;若将第6个网格作为应变的极限,但第6个网格已经发生了破损失效,且由于破裂区域实际测量中应变明显会增大,故也不能作为极限应变,如图9所示.由此,采取从轴向形变曲线拟合五次多项式中求取第5~6个网格的区间数据,作为成形极限应变来绘制F L C ;从切向三次样条插值曲线中提取从第5~6个网格的连续数据,作为成形极限应变来绘制F L C .469 中国机械工程第31卷第8期2020年4月下半月Copyright©博看网 . All Rights Reserved.(a)测量破裂区域(b)实际破裂区域图9㊀测量破裂区域与实际破裂区域的对比F i g .9㊀C o m pa r i s o nb e t w e e n t h em e a s u r e dc r e v a s s e a nd t he a c t u a l c r e v a s s e将成形后椭圆形网格的短轴应变作为平面第一主应变ε1,长轴应变作为平面第二主应变ε2.得到的破裂区网格5㊁6的极限形变量所对应的应变如图10所示.最终将第一主应变ε1作为横坐标,第二主应变ε2作为纵坐标,绘制得到1060铝板的F L C ,如图11所示.可以看出,F L C 将整个区域分为安全区与破裂区,在F L C 以下时认为板料的变形是安全的,在F L C 以上时认为板料发生破裂或者失稳.(a)第一主应变(b)第二主应变图10㊀主应变曲线F i g .10㊀P r i n c i pa l s t r a i n c u r ve 图11㊀1060铝板成形极限曲线F i g .11㊀F o r m i n gl i m i t c u r v e o f 1060a l u m i n u ms h e e t 如图12所示,将直接测量的离散点与拟合曲线进行对比,离散的数据点为直接测量法所得成形破裂区网格的应变极限,曲线为数据拟合的应变极限曲线.由于直接测量法是通过测量破损区域附近有限数量个网格,且均为已出现了破裂的网格或是形变量还未达到破裂的网格,故存在不可避免的测量误差.已破裂网格的应变比极限网格的应变要大,而未破裂的网格则很难判断刚好达到应变极限.所以直接测量得到的应变极限较为分散,安全区和破裂区的界限不易区分出来,从实际的成形结果分析,若要得到最大形变的成形件,则并不能作为良好的依据.拟合得到的曲线连续而光滑,应变数据点比破裂点低,同时比未破裂点高,更符合实际情况.在安全系数要求较高的板料成形中,应用拟合得到的F L C 更为安全可靠.图12㊀直接测量法与拟合的对比F i g .12㊀C o m pa r i s o no f d i r e c tm e a s u r e m e n t a n d i n t e r po l a t i o n 3㊀超声振动对成形极限曲线的改善在前述的常温静态试验研究的基础上,本文进一步针对不同功率和频率超声振动下的1060铝板的S P I F 性能进行了对比试验研究,采用表4中的5种功率和频率数据,以成形力为监测指标,分析了超声振动功率和频率对铝板成形性能的影响.表4㊀超声波振动参数数据T a b .4㊀D a t a o f u l t r a s o u n d v i b r a t i o n p a r a m e t e r s序号频率(k H z )功率(W )序号频率(k H z )功率(W )11580430140220100535160325120569 铝板数控单点渐进成形的成形极限曲线研究侯晓莉㊀李㊀言㊀杨明顺等Copyright©博看网 . All Rights Reserved.㊀㊀依据本课题组前期的研究成果[23],当频率一定时,随着功率从80~120W 的增大,成形力呈减小趋势,之后随着功率从120~160W 的继续增大,成形力又呈现增大的趋势,当功率为120W时,成形力最小;而当功率一定时,随着超声振动频率从15~25k H z 的提高,板料的成形力逐渐减小,当频率从25~35k H z 继续提高,其成形力又逐渐增大,当频率为25k H z 时,成形力最小.由此可知,当频率为25k H z ㊁功率为120W 时,1060铝板的成形效果最好.利用静态S P I F 技术成形一圆锥台件直至发生破损,同时利用超声波参数为频率25k H z ㊁功率120W 的数控S P I F 技术使同一圆锥台件发生破损,并将两者破裂时的应变极限曲线进行了对比,以说明超声振动对S P I F 极限的影响.试验和分析所得静态以及外加超声振动后的板料成形极限应变的对比如图13所示.图13㊀静态与超声极限应变对比F i g .13㊀C o m pa r i s o no f s t a t i c a n du l t r a s o u n d l i m i t s t r a i n 从图13中可以看出,在理想振型参数的作用下,1060铝板超声数控S P I F 的塑性应变极限较静态条件下有所提高,提高幅度在11%左右.在该振动功率下,由于超声能量的输入,促进了铝板位错运动,对铝薄板滑移系开动有影响,使塑性变形更易进行,因此,铝板的屈服强度有所降低.当超声振动的能量刚好能对滑移系有促进作用时,薄铝板的应变极限就会有一定程度的提高.4㊀结论(1)1060铝板在单点渐进成形(S P I F )技术作用下的形变量处于毫米级,且成形制件为空间曲面件,因此采用拓印法能够将空间变形问题转化成可测的平面变形问题,并利用I S M GP M 200S 数码显微镜测量破裂区域的拓印带以获取制件的成形极限.经实践证实,该方法具有一定的可行性和实用性.(2)因直接测量的离散数据存在不可避免的测量误差,故本文提出了基于插值曲线和多项式拟合的数据优化处理方法.对拟合优化后的1060铝板成形极限曲线(F L C )进行了分析,得到了该材料制件在S P I F 技术下的破裂区和安全区以及制件破裂区域的应变分布,实现了制件破裂的预测和控制.(3)为进一步提高1060铝板的成形极限,将超声波振动赋予到成形工具头上,以改善材料的流变机理和组织演化机制.通过试验对比研究了超声振动辅助下与传统渐进成形下的F L C ,试验结果表明,当频率为25k H z ㊁功率为120W 时,1060铝板料制件的成形极限得到了明显的提高.参考文献:[1]㊀曹宇,高锦张,贾俐俐.渐进成形圆孔翻边变形区厚度减薄现象的模拟研究[J ].锻压技术,2015,40(2):52G59.C A O Y u ,G A OJ i n z h a n g,J I AL i l i .N u m e r i c a l S i m Gu l a t i o n f o rT h i c k n e s sT h i n n i n g ofD e f o r m a t i o nZ o n e o nH o l e Gf l a n g i n g b y I n c r e m e n t a l F o r m i n g [J ].F o r gGi n g &S t a m p i n g T e c h n o l o g y,2015,40(2):52G59.[2]㊀A N D R A D E R ,S K U R T Y SO ,O S O R I O F .D e v e l Go pm e n t o f aN e w M e t h o dt oP r e d i c t t h e M a x i m u m S p r e a dF a c t o r f o r S h e a rT h i n n i n g D r o ps [J ].J o u r n a l o fF o o dE n g i n e e r i n g,2015,157:70G76.[3]㊀M O R A L E S GP A L M AD ,V A L L E L L A N O C ,G A R C ÍA GL O M A SF J .A s s e s s m e n t o f t h eE f f e c t o f t h eT h r o u gh Gt h i c k n e s s S t r a i n /S t r e s sG r a d i e n t o n t h eF o r m a b i l i t y o f S t r e t c h Gb e n d M e t a lS h e e t s [J ].M a t e r i a l s &D e s i gn ,2013,50(17):798G809.[4]㊀S O E I R OJM C ,S I L V A C M A ,S I L V A M B ,e ta l .R e v i s i t i n g t h eF o r m ab i l i t y L i m i t sb y F r ac t u r e i n S h e e tM e t a l F o r m i n g[J ].J o u r n a l o fM a t e r i a l sP r o Gc e s s i n g T e c h n o l o g y,2015,217:184G192.[5]㊀P A R K N ,HUH H ,L I M SJ ,e t a l .F a c t u r e Gb a s e dF o r m i n g L i m i tC r i t e r i a f o rA n i s o t r o pi c M a t e r i a l s i n S h e e t M e t a lF o r m i n g [J ].I n t e r n a t i o n a lJ o u r n a lo f P l a s t i c i t y,2017,96:1G35.[6]㊀S I MO N E T T IOP ,R AMA NSV.S t r a i n i n g to J u s Gt i f y S t r a i nM e a s u r e m e n t [J ].J a c c Gc a r d i o v a s c u l a r I m Ga g i n g ,2010,3(2):152G154.[7]㊀陈劫实,周贤宾.板料成形极限预测新判据[J ].机械工程学报,2009,45(4):64G69.C H E NJ i e s h i ,Z HO U X i a n b i n .N e wF o r m i n g L i m i t P r e d i c t i o nC r i t e r i o nf o rS h e e tM e t a l s [J ].J o u r n a l o f M e c h a n i c a l E n g i n e e r i n g ,2009,45(4):64G69.[8]㊀王进,姜虎森,陶龙,等.板料渐进成形极限图测试方法研究[J ].锻压技术,2013,38(2):34G36.WA N G J i n ,J I A N G H u s e n ,T A O L o n g,e ta l .S t u d y o nE x p e r i m e n t a lM e t h o d o fM e a s u r i n g Fo r m Gi n g L i m i t D i a g r a m i nI n c r e m e n t a lS h e e t F o r m i n g669 中国机械工程第31卷第8期2020年4月下半月Copyright©博看网 . All Rights Reserved.[J].F o r g i n g&S t a m p i n g T e c h n o l o g y,2013,38(2):34G36.[9]㊀王华毕,桑文刚,魏目青.金属板料单点渐进成形性能的研究[J].机械设计与制造,2017(1):108G111.WA N G H u a b i,S A N G W e n g a n g,W E IM u q i n g.R eGs e a r c ho fS h e e t M e t a lB a s e do nS i n g l eP o i n t I n c r eGm e n t a l F o r m a b i l i t y[J].M a c h i n e r y D e s i g n&M a n uGf a c t u r e,2017(1):108G111.[10]㊀S HAM S A R I M,M I R N I A M J,E L Y A S I M,e ta l.F o r m ab i l i t y I m p r o v e m e n t i nS i n g l eP o i n t I nc r eGm e n t a l F o r m i n g o fT r u n c a t e dC o n eU s i n g aT w oGs t a g eH y b r i dD e f o r m a t i o nS t r a t e g y[J].I n t e r n a t i o n a lJ o u r n a l o f A d v a n c e d M a n u f a c t u r i n g T e c h n o l o g y,2017,9:1G12.[11]㊀Z HA N GZ,Z HA N G H,S H IY,e t a l.S p r i n g b a c k R e d u c t i o n b y A n n e a l i n g f o r I n c r e m e n t a l S h e e tF o r m i n g[J].P r o c e d i a M a n u f a c t u r i n g,2016,5:696G706.[12]㊀J AWA L EK,D U A R T EJ F,R E I SA,e t a l.C h a rGa c t e r i z i n g F r a c t u r eF o r m i n g L i m i t a n dS h e a rF r a cGt u r eR o r m i n g L i m i t f o rS h e e t M e t a l s[J].J o u r n a lo f M a t e r i a l sP r o c e s s i n g T e c h n o l o g y,2018,255:886G897.[13]㊀龚航,黄亮,李建军,等.大型铝合金曲面件在电磁渐进成形首次放电条件下的起皱行为研究[J].中国材料进展,2016,35(4):284G291.G O N G H a n g,HU A N G L i a n g,L I J i a n j u n,e t a l.R e s e a r c ho n W r i n k l i n g B e h a v i o r o fL a r g eA l u m i nGi u m A l l o y C u r v e d P a r t s u n d e rt h e C o n d i t i o n o fF i r s t D i s c h a r g e o f E l e c t r o m a g n e t i c P r o g r e s s i v eF o r m i n g[J].C h i n e s e M a t e r i a lP r o g r e s s,2016,35(4):284G291.[14]㊀C U IX i a o h u i,MO J i a n h u a,L I J i a n j u n,e t a l.L a r g eGs c a l eS h e e tD e f o r m a t i o nP r o c e s sb y E l e c t r oGm a g n e t i c I n c r e m e n t a l F o r m i n g C o m b i n e d w i t hS t r e t c hF o r m i n g[J].J o u r n a l o fM a t e r i a l sP r o c e s sGi n g T e c h n o l o g y,2016,237:139G154.[15]㊀李小强,董红瑞,张永生,等.板材数控热渐进成形工艺研究进展[J].塑性工程学报,2018,25(5):87G98.L IX i a o q i a n g,D O N G H o n g r u i,Z HA N G Y o n g s hGe n g,e t a l.R e v i e wo fH o t I n c r e m e n t a l S h e e t F o r mGi n g P r o c e s s[J].J o u r n a l o fP l a s t i c i t y E n g i n e e r i n g,2018,25(5):87G98.[16]㊀赵升吨,李泳峄,范淑琴.超声振动塑性加工技术的现状分析[J].中国机械工程,2013,24(6):835G840.Z HA OS h e n g d u n,L IY o n g y i,F A NS h u q i n.A n a lGy s i so fP r e s e n tS i t u a t i o no f U l t r a s o n i c V i b r a t i o nP l a s t i c i t y M a c h i n i n g T e c h n o l o g y[J].C h i n a M eGc h a n i c a l E n g i n e e r i n g,2013,24(6):835G840.[17]㊀柏朗,李言,杨明顺,等.超声振动G单点增量复合成形过程中成形力的分析与建模[J].机械工程学报,2019,55(2):42G50.B A IL a n g,L IY a n,Y A N G M i n g s h u n,e t a l.A n aGl y t i c a lM o d e l o fU l t r a s o n i cV i b r a t i o nS i n g l eP o i n tI n c r e m e n t a l F o r m i n g F o r c e[J].J o u r n a l o fM e c h a n i c a lE n g i n e e r i n g,2019,55(2):42G50.[18]㊀L A N G E N E C K E RB.E f f e c t s o fU l t r a s o u n do nD eGf o r m a t i o n C h a r a c t e r i s t i c s o f M e t a l s[J].I E E ET r a n s a c t i o n so n S o n i c s&U l t r a s o n i c s,1966,13(1):1G8.[19]㊀A N D R A D ER,S K U R T Y SO,O S O R I OF.D e v e lGo p m e n t o f aN e w M e t h o d t oP r e d i c t t h eM a x i m u mS p r e a dF a c t o r f o rS h e a rT h i n n i n g D r o p s[J].J o u rGn a l o fF o o dE n g i n e e r i n g,2015,157:70G76.[20]㊀祁爽,蔡力勋,包陈,等.基于应力三轴度的材料颈缩和破断行为分析[J].机械强度,2015,37(6):1152G1158.Q I S h u a n g,C A IL i x u n,B A O C h e n,e ta l.S t u d yo nN e c k i n g a n dF r a c t u r e o f D u c t i l eM a t e r i a l s B a s e do nS t r e s s T r i a x i a l i t y[J].J o u r n a lo f M e c h a n i c a lS t r e n g t h,2015,37(6):1152G1158.[21]㊀S O T O G,F O N T B O N AJ,C O R T E ZR,e t a l.A n O n l i n eT w oGs t a g e A d a p t i v e A l g o r i t h m f o rS t r a i nP r o f i l eE s t i m a t i o n f r o m N o i s y a n dA b r u p t l y C h a nGg i n g B O T D R D a t aa n d A p p l i c a t i o nt o U n d e r g r o u n dM i n e s[J].M e a s u r e m e n t,2016,92:340G351.[22]㊀G U A N W S,H U A N G H X.A P r o p o s e dT e c h n i q u e t o A c q u i r e C a v i t y P r e s s u r e U s i n g a S u r f a c eS t r a i nS e n s o r d u r i n g I n j e c t i o nGc o m p r e s s i o n M o l d i n g[J].J o u r n a lo f M a n u f a c t u r i n g S c i e n c e&E n g i n e e r i n g,2013,135(2):021003.[23]㊀柏朗,李言,杨明顺,等.超声振动单点增量成形力研究[J].机械科学与技术,2018,37(2):270G275.B A IL a n g,L IY a n,Y A N G M i n g s h u n,e t a l.R eGs e a r c ho nF o r m i n g F o r c e i nS i n g l eP o i n t I n c r e m e nGt a l F o r m i n g w i t hU l t r a s o n i cV i b r a t i o n[J].M e c h a nGi c a lS c i e n c ea n d T e c h n o l o g y f o r A e r o s p a c e E n g iGn e e r i n g,2018,37(2):270G275.(编辑㊀胡佳慧)作者简介:侯晓莉,女,1979年生,博士研究生.研究方向先进制造与现代加工技术及试验方法.发表论文10余篇.EGm a i l:x i aGo l i h o u@x a u t.e d u.c n.李㊀言(通信作者),男,1960年生,教授㊁博士研究生导师.研究方向为深孔加工㊁新型加工原理及成形技术.出版专著1部,发表论文30余篇.EGm a i l:j y x yGl y@x a u t.e d u.c n.769铝板数控单点渐进成形的成形极限曲线研究 侯晓莉㊀李㊀言㊀杨明顺等Copyright©博看网 . All Rights Reserved.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• • • • 1.对南充市最长天桥(长度200米)作简单评价。 2.重庆大学男女比例6:1,为什么厕所数量不是6:1? 3.钟表为什么时针最短,分针次之,秒针最长? 4.思考实验室和传感器的关系。
单点渐进成形
发展历史及现状
• 松原茂夫于20世纪90年代提出 • Lesz ak 在1967 年获得发明专利 • 2005 年以来, 单点渐进成形获得了极大 的发展 目前理论不完善,工艺不成熟,应用不广 泛,但是具有广阔的发展前景
定义
单点渐进成形是在数控机床上通过计算 机程序控制形状简单的成形工具,利用其沿 着垂直方向的进给以及水平方向的运动轨迹 逐层形成板类件的三维包络面,从而实现金 属板料连续局部塑性成形的加工方法。单点 渐进成形适用于新产品试制及小批量生产。
产品
图1 汽车门外覆盖件
图2 工艺品
图3 汽车翼子板覆盖件
制约因素
1) 单步加工难以达到较大成形角 ——温度控制 2) 出现回弹效应 ——温度控制、优化路径 3) 高应力集中在已加工区域出现自由变形 ——优化路径、工具形状
存在问题
( 1) 成形工艺方面: 目前对金属板材单点渐进成形机理 的研究还不够充分, 对成形过程中发生的拉裂、 起皱、 回弹等一些复杂缺陷还没有找到本质原因。 ( 2) 专用软件方面: 需要开发一些可适用于该技术的专 用软件, 使这些软件具有成形件 C A D 模型修正、 成形轨迹生成、 成形过程虚拟仿真、 工艺参数优化、 工艺参数数据库及专家系统等功能。 ( 3) 支撑方面: 需要研究更能符合成形工艺的支撑 C AD 模型生成方法和经济、 快速、 自动化程度高的支撑 制作方法。 ( 4) 成形运动方式: 目前的研究大多局限于基于等高线 运动的三轴数控成形方式, 今后有必要研究其他运动 方式和多轴成形加工, 如基于螺旋运动和五轴数控成
成形能力表征量:成形极限角
影响因素:加工步长 进给速度 主轴转速 刀具头半径
数字成形系统
成形系统工作过程
成形缺陷
缺陷:破裂(凹陷)
防止措施:起刀点均布
成形缺陷
缺陷:失稳(起皱)
防止措施:采用顺逆相间的加工方法
应用领域
1) 汽车 车身面板及其它金属板材结构件; 2) 建筑业 定制的模型、 面板等; 船舶 船体板等。
发展趋势
由于单点 渐进成形在柔性 加工方面的独 特优势, 所以各国都不遗余力地发展该技术。 Duf lou 开发的局部加热系统, 使得加工厚度 更大的板材成为可能。Alwood 开发新型球头 工具来提高加工精度。相信这些新技术的应 用, 已经 开启了 SPI F 工艺大规模工程化应 用的时代。
思考
Key Words:数控机床 计算机程序 运动轨迹 板类件 连续局部塑性成形
分类
按成形方向:负成形、正成形 按有无支撑:无模成形、有模成形
支撑类型
特点
1)实现板料柔性成形
2)实现板料变轨迹和路径成形 3)易于实现CAD/CAE/CAM一体化 4)在同一台设备上可进行多种不同 形状板类件的加工
工艺参数对成形能力的影响
相关文档
最新文档