第二章 解析函数

合集下载

第二章解析函数

第二章解析函数

第二章解析函数•复变函数的导数•解析函数的概念•初等解析函数复函数的求导法则由于复变函数中导数的定义与一元实变函数中导数的定义在形式上完全一致, 并且复变函数中的极限运算法则也和实变函数中一样, 因而实变函数中的求导法则都可以不加更改地推广到复变函数中来, 且证明方法也是相同的.例2证明()2f z x yi =+在复面内处处连续,但处处不可导.证明对复平面内任意点z , 有()()f z z f z +Δ−2.x yi =Δ+Δ()2()2x x y y i x yi =+Δ++Δ−−故0lim[()()]0.z f z z f z Δ→+Δ−=这说明()2f z x yi =+在复面内处处连续.000()()() (), f z z f z f z z z z ρ′+Δ−=Δ+ΔΔ,)()(lim 000z f z z f z =Δ+→Δ所以lim ()0,z z ρΔ→Δ=再由即()f z 在0z 处连续.反之, 由例2知, 处处不可导,()2f z x yi =+但处处连续。

例5问题:对函数f (z ) = u (x ,y ) + iv (x ,y ),如何判别其解析(可导)性?换句话说:()(),f z u v 的解析可导与的偏导数之间有什么关系?解析函数的性质:(1)两个解析函数的和、差、积、商仍为解析函数;(2)两个解析函数的复合函数仍为解析函数;(3)一个解析函数不可能仅在一个点或一条曲线上解析;所有解析点的集合必为开集。

证明必要性. 若存在,设0()f z ′0()f z a ib ′=+(a , b 是实常数). 因此000()()()f z z f z f z z z α′+Δ−=Δ+Δ12()()()()a ib x i y i x i y αα=+Δ+Δ++Δ+Δ12()a xb y x y αα=Δ−Δ+Δ−Δ21(,i b x a y x y αα+Δ+Δ+Δ+Δ其中12Re , Im .αααα==且当时,0z Δ→120, 0.αα→→0000(,)(,),u u x x y y u x y Δ=+Δ+Δ−0000(,)(,),v v x x y y v x y Δ=+Δ+Δ−则于是有00()().f z z f z u i v +Δ−=Δ+Δ12()u i v a x b y x y ααΔ+Δ=Δ−Δ+Δ−Δ21().i b x a y x y αα+Δ+Δ+Δ+Δ由两个复数相等的条件可得设21.v b x a y x y ααΔ=Δ+Δ+Δ+Δ12,u a x b y x y ααΔ=Δ−Δ+Δ−Δ于是,1(,),(,)..a u x y v x y C R =−−当时,满足条件,().f z z 从而在平面上处处可微,处处解析1(,),(,)0..a u x y v x y y C R ≠−=−当时,仅在直线上满足条件,().f z z 故在平面上处处不解析()00.f z y y =≠从而仅在上可微,在上不可微作业3第89页,第二章习题(一):2;4(1)(3);5(2)(4);7;8(2)(4);9; 11(1)(3)。

第二章 解析函数

第二章 解析函数

在z0解析,若f (z)在区域D内每一点解析,则称f (z)在D
内解析,则称f (z)是D内的一个解析函数(全纯函数或 正则函数)。 如f (z)在 z0不解析, 则称z0为f (z)的奇点。
§1 解析函数的概念
f (z)在 z0解析
函数f (z)在z0的邻域内可导
f (z)在 z0解析 函数f (z)在z0可导 二元函数的微分 [例 ] 的解析性
§3 初等函数 3 乘幂ab与幂函数 [例 ] 求 、 和 的值。
幂函数:
形如:zb=ebLnz(z≠0,b为ቤተ መጻሕፍቲ ባይዱ意复常数)
的函数成为幂函数。
§3 初等函数 4 三角函数和双曲函数
性质:
§3 初等函数 4 三角函数和双曲函数 性质:
§3 初等函数 4 三角函数和双曲函数
[例] 计算sin(3+4i) ,cosi,sin6i
|sinz|1和|cosz|1在复数范围内不再成立。 [例] 求方程cosz=0的解。
§3 初等函数 4 三角函数和双曲函数
[例] 求方程sinz+cosz=0的解。
其它复变数三角函数:
§3 初等函数 4 三角函数和双曲函数 双曲函数
性质:
§3 初等函数 4 反三角函数和反双曲函数 设z=cosw,则称w为z的反余弦函数,记作: w=Arccosz
ii) f’(z) =f(z); iii) 当Im(z)=0时, f(z) =ex, 其中x=Re(z)。
§3 初等函数 1 指数函数
为整数)
加法定理
§3 初等函数 2 对数函数
主值
[例] 求Ln1, Ln(-2) 以及它们相应的主值。
§3 初等函数 1 指数函数 总结:

第二章解析函数

第二章解析函数
z x iy 处可微且满足C-R条件
u x
v y
u
v
y x
(C-R条件)
运算法则
1 在区域D内解析的两个函数 f (z)与g(z)的和、差、
积、商(除去分母为零的点外)在D内解析;
2 设函数 h g z在 z 平面上的区域D内解析,函数
f h在 h平面上的区域G内解析,如果对D内
z0
z
lim
z0
nz
n 1
n
n 1
2!
z n 2 z
nzn1
所以
f z nzn1
例2 证明 f (z) Re z 在全平面处处不可导。
证明 因为对任意一点 z0
f z f z0 Re z Re z0 Re z z0
z z0
z z0
z z0
分别考虑直线 Re z Re z0 及直线 Im z Im z0 在前一直线上,上式恒等于0;在后一直线
故也称 f z在z0处可微。
df z0 f z0 z 为f z在z0处的微分
如果 f z 在区域D内处处可导(可微), 则称 f z在D内可导(可微)。
例1 求函数 f (z) z(n n为正整数)的导数。 解 因为
f z z f z
lim
z0
z
z zn zn
lim
u ax by 1
v bx ay 2
其中1 Re z z, 2 Im z z
是关于| z | 的高阶无穷小。 根据二元实函数的微分定义,u( x, y)和v( x, y)在点 z 可微,且有
u a= v , u b= v
x y y
x
即C—R条件成立。
“充分性”由u x, y , v(x, y)在点(x, y)处可微,有

第二章解析函数演示文稿

第二章解析函数演示文稿

第一节 导数
充分条件 设 f(z)=u(x,y)+iv(x,y),若u(x,y)和v(x,y)在(x,y)处
满足
1. u , u , v , v 在(x, y)点处存在且连续; x y x y
2. 在(x, y)点处满足Cauchy Riemann条件
那么f(z)在z=x+iy处可导。
逆命题不成立
第二章解析函数演示文稿
优选第二章解析函数
第一节 导数
导数的定义
设 =f(z)是定义在区域B上的单值函数,若在B内某
点z0,极限
lim lim f (z) f (z0 )
z z0
zz0
z z0
存在,则称函数f(z)在z0点处可导,并称该极限值为 函数f(z)在z0点处的导数或微商,记为
f
(z0 ),
df (z) dz
z z0

df (z0 ) dz
第一节 导数
说明
如果函数 =f(z)在区域B内的每一点可导,则称f(z) 在区域B内可导
两个例子:1. 求dzn/dz=nzn-1 2. 求证 =z*在z平面上处处连续,但处 处不可导
可导必连续
第一节 导数
求导法则
d dz
1
2
d1
dz
d2
dz
性质1:设函数 f(z)=u(x,y)+iv(x,y)在B内解析,则 u(x,y)=C1,v(x,y)=C2是B内的两组正交曲线
举例
f (z) z2
f (z) ez
红:实部 兰:虚部
第二节 解析函数
性质2:若函数 f(z)=u(x,y)+iv(x,y)是区域B内的解析 函数,则u(x,y)和v(x,y)均为B内的调和函数

第2章、解析函数

第2章、解析函数

第2章、解析函数第⼆章解析函数本章介绍复变函数中⼀个重要的概念:解析函数,并给出⼀个重要的判定⽅法:柯西黎曼条件。

最后分别介绍⼀些重要的单值初等解析函数及多值初等函数的分⽀解析。

第⼀节解析函数的概念与柯西-黎曼条件1、复变函数的导数:设()w f z =是在区域D 内确定的单值函数,并且,0z D ∈。

如果极限()000()lim z z f z f z z z →-- 存在,为复数a ,则称)(z f 在0z 处可导或可微,极限a 称为)(z f 在0z 处的导数,记作0()f z ',或0z z dw dz =。

2、解析函数:定义:如果)(z f 在0z 及0z 的某个邻域内处处可导,则称)(z f 在0z 处解析;如果)(z f 在区域D 内处处解析,则我们称)(z f 在D 内解析,也称)(z f 是D 的解析函数。

解析函数的导(函)数⼀般记为)('z f 或z z f d )(d 。

注1、此定义也⽤εδ-语⾔给出。

注2、可导必连续注3、解析必可导性,在⼀个点的可导不⼀定解析,可导性是⼀个局部概念,⽽解析性是⼀个整体概念;解析函数的四则运算:()f z 和()g x 在区域D 内解析,那么)()(z g z f ±,)()(z g z f ,)(/)(z g z f (分母不为零)也在区域D 内解析,并且有下⾯的导数的四则运算法则:(()())()()f z g x f z g z '''±=±[()()])()()()()f zg x f z g z f z g z ''=+2()()()()()()(()0)()()f z f z g z f z g z g z g z g z ''-'=≠复合求导法则:设)(z f =ζ在z 平⾯上的区域D 内解析,)(ζF w =在ζ平⾯上的区域1D 内解析,⽽且当D z ∈时,1)(D z f ∈=ζ,那么复合函数)]([z f F w =在D 内解析,并且有z z f F z z f F d )(d d )(d d )]([d ζζ=求导的例⼦:(1)如果()f x a =(常数),那么;()0df z dz= (2)z 的任何多项式 n n z a z a a z P +++=...)(10在整个复平⾯解析,并且有 121...2)('-+++=n n z na z a a z P(4)、在复平⾯上,任何有理函数,除去使分母为零的点外是解析的,它的导数的求法与z 是实变量时相同。

第二章 解析函数

第二章 解析函数
③ 设函数f (z),g (z) 均可导,则
[f (z)±g (z)] =f (z)±g(z),
[f (z)g(z)] = f (z)g(z) + f (z)g(z)
f (z) f ' ( z ) g( z ) f ( z ) g' ( z ) [ ]' , ( g( z ) 0) 2 g( z ) g (z) 由以上讨论
在(x,y)处满足
u u v v 1. , , , 在( x, y )点处存在且连续; x y x y 2. 在( x, y )点处满足Cauchy Riemann 条件
那么f(z)在z=x+iy处可导。
• 2.2.2 函数解析的充要条件 • 定理1 设函数 f ( z) u( x, y) iv( x, y) 在区域 D 内有定义,则 f ( z )在 D 内解析的充分必要条 件为 u, v 在 D 内任一点 z x iy处 (1)可微; (2)满足
ex1
试用C-R条件判定下列函数在何处可导,在何处解析:
w z
2
解 设z=x+iy w=x2+y2 u= x2+y2 , v=0 则
u 2x x
u 2y y
v 0 x
v 0 y
仅在点z = 0处满足C-R条件,故
w z 仅在0点可导,但处处不解析 。
2
例2: 设函数f(z)=x2+axy+by2+i(cx2+dxy+y2),问 常数a,b,c,d取何值时,f(z)在复平面内处 处解析。
例1 求函数 f ( z ) z 的导数(n 为正整数).
n
解 因为
k k ( z z )n Cn z (z )nk k 0

解析函数

解析函数

x
y
欲使 u v , u v , x y y x
2x ay dx 2 y, 2cx dy ax 2by,
所求 a 2, b 1, c 1, d 2.
例8 如果 f (z) 在区域 D 内处处为零 , 则 f (z) 在
区域 D 内为一常数.
证 Q f (z) u i v v i u 0, x x y y
两个互为反函数的单值函数, 且(w) 0
2、解析函数的概念及其运算
定义2.2 如果函数 f (z) 在 z0 及 z0 的邻域内处处 可导, 那末称 f (z) 在 z0 解析. 如果函数 f (z)在 区域 D内每一点解析, 则称 f (z)在 区域 D内解析. 或称 f (z)是 区域 D内的一 个解析函数 ( 全纯函数或正则函数 ) .
x iy
x iy
1 i y
1
i
x y
1 ik 1 ik
x
由于 k 的任意性,
z 1 ki 不趋于一个确定的值. z 1 ki
lim h(z0 z) h(z0 )不存在.
z0
z
因此 h(z) z 2 仅在 z 0 处可导, 而在其他点都 不可导,根据定义, 它在复平面内处处不解析.
(1) 如果能用求导公式与求导法则证实复变函 数 f (z) 的导数在区域 D内处处存在, 则可根据 解析函数的定义断定 f (z) 在 D内是解析的.
(2) 如果复变函数 f (z) u iv 中 u,v 在 D内 的各一阶偏导数都存在、连续(因而 u, v( x, y) 可微)并满足 C R 方程, 那么根据解析函数 的充要条件可以断定 f (z) 在 D内解析.
(3) f (z) 常数;
(4) f (z)解析;

第二章解析函数

第二章解析函数

f ( w) g ( z ), 其中 w g ( z ).
(e)
1 f ( z ) , 其中w f ( z )与z ( w)是 ( w)
两个互为反函数的单值 函数且 ( w) 0
说明
如果函数w=f(z)在区域B内的每一点可导, 则称f(z)在区域B内可导:
例2.1.4
讨论函数 w f ( z ) | Im z 2 | 在点 z0 0 处的可导性.
【解】 首先考察 C-R 条件是否满足. 根据 有
f ( z) | Im z 2 | 2 | xy | u( x, y) iv ( x, y)
u ( x, y ) 2 | xy |
两个例子:1. 求dzn/dz=nzn-1
2. 求证w= z 在z平面上处处连续,但 处处不可导
可导必连续。
例 2.1.1 用导数的定义证明公式: n nz n1 (n 为正整数) (z )
【证明】设 f ( z) z ,故
n
f ( z z ) f ( z ) ( z z ) z n(n 1) n 2 n 1 z[nz z z (z )n 1 ] 2 f ( z z ) f ( z ) lim nz n 1 z 0 z
二、复变函数导数存在的充要条件
可导条件
分析
f ( z) f ( z) lim f ' ( z0 ) lim x x0 x x0 z z y y y y
0 0
C-R条件
ux = vy vx = -uy
f ( z ) u iv u v lim i x x0 x x0 z x x x y y lim
多项式),除去使Q(z)=0的点外处处解析。

解析函数

解析函数

第二章 解析函数[Cauchy-Riemann 条件的说明]二元函数),(y x u 的可微:()22''y x o y B x A u dy u dx u du y x ∆+∆+∆+∆=∆⇔+=y u x u u y x ∆+∆≈∆''[命题] ),(y x u 的一阶偏导数),('),,('y x u y x u y x 连续),(y x u ⇒的可微。

设ib a z f +=)(',由于zz f z ∆∆=→∆ω0lim )(',)(z f =ω在(x ,y )可导意味着 ()()x b y a i y b x a y i x ib a z z f v i u ∆+∆+∆-∆=∆+∆+=∆≈∆+∆=∆))(()('ω x v y u b y v x u a x b y a v y b x a u ∂∂=∂∂-=∂∂=∂∂=⇒⎩⎨⎧∆+∆≈∆∆-∆≈∆, )(')('z f xv i x u ib a z f x =∂∂+∂∂=+= 另一版本的说明见课件。

------------------------------------------------------------------------------------[命题] 若R b a b a ∈≠,,,则iby ax +处处连续但处处不可导。

[证明] by y x v ax y x u ==),(,),(处处可微,因此函数处处连续,b v v u a u y x y x ===='0'0'',当且仅当b a =时CR 条件才满足,所以函数处处不可导。

□ 例如yi x z y i x iy x z z f ⋅+=+-==0Re ,2,)(等。

当b a =时a i a z f az iay ax z f =+==+=0)(',)(,与实变函数ax),(),,(y x v y x u P38 例 32222)(,2)(,)(y x z z h yi x z g z z f +==+==的可导、解析性。

解析函数

解析函数

第二章 解 析 函 数解析函数是复变函数研究的主要对象.本章介绍导数、解析函数的概念,并介绍一些常用初等函数的解析性.§1.解析函数的概念1.导数与微分 导数定义:设)(z f w=,D z ∈(区域),D z ∈0.若极限zz f z z f z ∆-∆+→∆)()(lim000存在,则称)(z f 在0z 处可导,记为)(0z f ',00 ,z z z z dz dfdz dw ==.若)(z f 在区域D 内处处可导,称 )(z f 在D 内可导.例1.求32)(2+=z z f 的导数.解:z z z zz z z z z f z z f z f z z z 4)Δ2(2 lim ]32[]3)(2[lim )()(lim )(0 220 0 =+=∆+-+∆+=∆-∆+='→∆→∆→∆,)(C z ∈.(处处可导).例2.问 yi x z f 3)(+= 是否可导 )(iy x z +=?解:z z z ∆+→,x x x ∆+→,y y y ∆+→,y i x z ∆+∆=∆.yix yix z yi x i y y x x z z f z z f z z z ∆+∆∆+∆=∆+-∆++∆+=∆-∆+→∆→∆→∆3 lim ]3[])(3)[(lim )()(lim0 0 0. 设z z ∆+ 沿平行于x 轴方向趋于z ,则0=∆y ,极限为 1lim 3lim 0 0 =∆∆=∆+∆∆+∆→∆→∆x xyi x yi x x z ;设z z ∆+ 沿平行于y 轴方向趋于z ,则0=∆x ,极限为33lim 3 lim 0 0 =∆∆=∆+∆∆+∆→∆→∆yiyi yi x yi x y z . 所以yi x z f 3)(+= 的导数不存在,无处可导.可导与连续的关系:函数可导⇒连续; 但函数连续≠⇒可导.证:“可导⇒连续”. 设)(z f 在0z 可导, 则 0 0, >∃>∀δε,当 δ<∆<z 0 时,ερ<'-∆-∆+=∆)()()(000z f zz f z z f . 因此,0lim 0 =→∆ρz . 而z z z f z f z z f ∆⋅+∆'=-∆+ρ)()()(000, 所以 )()(lim 000z f z z f z =∆+→∆,)(z f 在0z 连续. “连续≠⇒可导”. 见例2.求导法则:复变函数的导数定义与实函数的导数定义一致,故求导法则也相同.罗列如下,应当牢记. (1) )( ,0)(C c c ∈='; (2) ) ( , )(1N n z n z n n ∈='-;(3))()(])()([z g z f z g z f '±'='±; (4) )()()()(])()([z g z f z g z f z g z f '+'=';(5) ) 0)g( ( ,)()()()()()()(2≠'-'='⎥⎦⎤⎢⎣⎡z z g z g z f z g z f z g z f ; (6))()(})]([{z g w f z g f ''=',其中)(z g w =;(7) )(1)(z f w '='ϕ, 其中)(z f w =是)(w z ϕ= 的反函数,0)(≠'z f .微分:若)(z f 在0z 可导, 则 )()()()(000z o z z f z f Δz z f w ∆⋅+∆'=-+=∆, 定义dz z f dw )(0'=.2.解析函数 定义:(a ) 若)(z f 在0z 的某一邻域) ,(0δz U 内可导,称)(z f 在0z 处解析; (b ) 若)(z f 在区域D 内的每一点解析,称)(z f 在D 内解析;(c ) 若)(z f 在0z 不解析,称0z 为)(z f 的一个奇点.注:函数在区域内解析与可导等价.但可导与解析并不等价.函数在一点 0z 处可导,并不意味着在0z 处解析.例1.讨论32)(21+=z z f 和 yi x z f 3)(2+= 的解析性.解:)( ,4)(11z f z z f =' 在复平面上解析,称为全纯函数;)(2z f 处处不可导,无处解析. y例2.讨论函数 )1(1+=z z w 的解析性. 解:当1 0-≠≠z z 及 时, w 可导:22)1()12(++-=z z z dz dw . x 所以,在除0=z 及1-=z 外的复平面上,)(z f w = 解析.而1 0-==z z 和 是w 的两个奇点. 称函数)(z f w = 为亚纯函数.定理.两个解析函数的和、差、积、商(分母不为零)仍然是解析函数;解析函数的复合函数也是解析函数. 结论:多项式在C 内处处解析;有理分式函数)()()(z Q z P z f = 在分母不为零的区域内解析.§2.函数解析的充要条件判断复函数) ,() ,()(y x iv y x u z f += 是否解析,有如下的充要条件.定理.函数) ,() ,()(y x iv y x u z f += 在iy x z += 处可导的充要条件是:) ,(y x u 、) ,(y x v 在点 ) ,(y x 处可微,并且满足Riemann Cauchy- 方程: xvy u y v x u , ∂∂-=∂∂∂∂=∂∂.此时,有导数公式x y y x v i v iu u z f )(+=-='. (证略)注:(1) 若) ,(y x u 、) ,(y x v 在D 内具有一阶连续偏导数,且满足R C -方程,则)(z f 解析;(2) 将点改成区域D ,便得)(z f 在D 内解析的充要条件.例1.判断下列函数是否解析. (1)z z f =)(;(2))sin (cos )(y i y e z f x +=.解:(1)iy x z z f -==)(,y v x u -== ,. 100 ,1-====y x y x , v , v u u .y x v u ≠,不满足R C -方程, 故z z f =)( 无处可导, 无处解析.(2)y e u x cos =,y e v x sin =. 由于⎪⎩⎪⎨⎧-=-===x x yy xx v y e u v y e u sin cos , )(z f 处处解析,全纯函数. 例2.证明:若在区域D 内0)(='z f ,则 c z f ≡)((复常数).证:000 )( i v i v iu u z f x y y x +==+=-=',故0====y x y x v v u u21 c , v c u ≡≡⇒ c ic c z f Δ=+≡⇒21)( .例3.函数 iy x z f -=2)( ) (iy x z += 在何处连续?何处可导?何处解析?解:y v x u-== ,2,二元初等函数,处处连续,所以)(z f 处处连续. -⎪⎩⎪⎨⎧=-==-===0012x y y x v u v x u R , y x ∈-=⇒21. 故)(z f 仅在直线 21-=x 上可导,1)(-='z f . 但直线不含邻域,所以)(z f 无处解析.§3.初 等 函 数1.指数函数: 复变数指数函数:)sin (cos exp )( y i y e e e e e z z f x y i x y i x z +=⋅====+.它等价于关系式:x z e e = 及 πk y e Arg z2)(+=. 故0≠z e .z e z f =)( 具有性质:(1))()(z f z f =',)(z f 在C 内解析;(2) 若0)Im(==z y ,x e z f =)(; 若 0)Re(==z x ,y i y e z f i y sin cos )(+==;(3)ze服从加法定理:2121z z z z ee e+=⋅,2121z z z z e e e -=;(4) ze以i k 2π为周期:) ( , 2 2Z k e e e ez i k z ik z ∈=⋅=+ππ.例1.计算 22πi e+. 大写整数集Z解:22222sin 2cos ie i e ei =⎪⎭⎫ ⎝⎛+=+πππ.2.对数函数 定义:指数函数 0)( ,≠=z z e w 的反函数称为对数函数.记作) ,() ,()(y x iv y x u z f w +==, 而 θi re z =.则θi iv u re e =+, 故θ===r, v u e r u ln ,.这样,对数函数为 ) 0( , ln ≠=+=∆z z Ln iArgz z w (多值函数).若Argz 取主值,记 z i z z arg ln ln +=, 称为 z Ln 的主值.其它分支可表为 ) 0 ( , 2ln ≠∈+=Z, z k i k z z Ln π. 称为z Ln 的单值分支.特别,当x z x z ln ln , 0=>=时 (实对数函数).运算性质:2121 )(Lnz z Ln z z Ln +=,2121Lnz z Ln z z Ln -=.例1.求3 Ln ,)1( -Ln ,i Ln 以及相应的主值.解:i k Ln 23ln 3π+=,)(Z k ∈;主值为3ln ;i k iArg Ln )12()1(1ln )1( π+=-+=-,)(Z k ∈; 主值为i )1ln(π=-;i k iArgi i i Ln )212( ln π+=+=,)(Z k ∈;主值为i i 2ln π=. 对数函数的连续性与解析性: 对于z i z zarg ln ln +=,当 0≠z 时,z ln 连续,而z arg 则在原点与负实轴上不连续,故除原点与负实轴外,z ln 处处连续.w e z = 在区域 ππ<<-z arg 的反函数z w ln =单值,由反函数的求导法,有:ze dw de dz dw z w w11)(ln 1==⎪⎪⎭⎫ ⎝⎛=='-.因此,在除去原点与负实轴的复平面内 z ln 解析, z ln 的每个单值分支也解析,且 zLnz 1)(='. 3.幂函数定义:)(ln z iArg z Lnz z Ln ee ez w +====αααα, (α0,≠z 为复常数).由z Ln 的多值性,i k z Lnz e e e w 2ln απαα⋅==, )(Z k ∈. 可见,αz 也是多值函数(当α不是整数),幂函数的解析性:由于Lnz 的每一单值分支在除去原点与负实轴的复平面内解析,由复合函数的解析性知,αz 的每一单值分支在除去原点与负实轴的复平面内解析,且111 )()(---⋅=⋅=⋅='='ααααααααz z z z e e z Lnz z Ln .例1.求21和i i )1( - 的值.解:ik iArg Ln e ee 22)1 1(ln 21221π===+,)(Z k ∈.)2ln sin 2ln (cos )1(2 4) 2ln 2 4()4i 22ln ( )1( i eeeei k i k i k i i Ln i i +====--+--+-ππππππ,)(Z k ∈.4.三角函数与双曲函数由⎪⎪⎩⎪⎪⎨⎧-=+=⇒⎪⎩⎪⎨⎧-=+=---)(21sin )(21cos sin cos sin cos θθθθθθθθθθθθi i i i i i e e i e e i e i e , 称为Euler 公式.定义:)(21sin ),(21cos z i z i z i z i e e iz e e z ---=+=. zz z cos sin tan =;zzctg sin cos =;z z cos 1sec =; zz s i n 1c s c =.z z cos )(sin =',z z sin )(cos -=',处处解析. 大多数三角公式对于z z cos ,sin 成立.双曲余弦:)(21cosh zz e e chz z -+==;双曲正弦:)(21sinh z ze e shz z --==; 双曲正切:zz zz e e e e chz shz thz z --+-===tanh .以上函数均在定义域(分母不为零处)内可导并且解析. 5.反三角函数与反双曲函数 三角函数的反函数称为反三角函数.w z sin = 的反函数称为反正弦函数.下求之.由)(21sin iw iw e e iw z --==, 得 iwe 的二次方程:012)(2=--iw iw ize e , 根为:21z iz e w i -+=, (21z - 为双值函数). 所以)1( sin 2z iz Ln i z Arc w -+-==.反余弦函数:)1( cos 2-+-=z z Ln i z Arc ; 反正切函数:izizLn i Arctgz -+-=112.双曲函数的反函数称为反双曲函数. 它们是: 反双曲正弦:)1( 2++=z z Ln Arshz ; 反双曲余弦:)1( 2-+=z z Ln Archz ;反双曲正切:z1z 1 21-+=Ln Arthz . 它们都是多值函数.在复变函数中,常值函数、指数函数、对数函数、幂函数、三角函数、双曲函数、反三角函数等七类函数称为复基本初等函数.复初等函数:由复基本初等函数经过有限次加、减、乘、除和复合运算,能由一个式子表示的函数称为复初等函数. 如:ze z tgz w +=2,z e w z ln sin +=,等等.。

02_解析函数

02_解析函数

导数的计算公式
设 f(z)=u(x,y)+iv(x,y)在点z=x+iy可导,那么
df ( z ) u v v u i i dz x x y y
极坐标下的Cauchy-Riemann条件
u 1 v v 1 du , d
举例
dez z e dz
u u v v Ey , Ex Ex , Ey x y x y u v u v , C-R条件 x y y x 静电场的复势 f ( z ) u( x, y) iv( x, y) v v E Ex iE y gradv i i F ( z ) x y
d 1 12 12 2 dz 2 2
d dz 1 d dz
dF ( ) dF d dz d dz
说明
反之则 不成立
如果函数 f(z)在区域 D内的每一点可导,则称f(z)在区域 D内可导
可导
连续

C-R条件
设 f(z)=u(x,y)+iv(x,y)在区域D内有定
根式函数
wn z
i arg z 2 k n
由于z的n次方根为wn n z n | z |e
(k 0,1,2,, n 1)
n
且辐角具有多值性,因此根值函数wn
z为n值函数
第四节 解析函数的应用——平 面场的复势

用复变函数刻画平面向量场
我们说某一个向量场是一个平面场,并不是指这个场中所有的向量都定 义在某一平面内,而是指所有的向量都平行于某一固定的平面,而且在 垂直于的任一条直线上所有的点处,向量的大小和方向都相同。这样, 向量场就可以用平面上的向量场来表示 。 如果我们用复数表示平面上的向量,那么场就惟一地确定了一个复变函 数

复变函数:第2章 解析函数

复变函数:第2章  解析函数
= 0 ⋅ f ′( z 0 ) = 0
• 知 zlim f ( z ) = f ( z 0 ),故 →z
0
f (z )在点 z 0 处连续.
• 2.1.3 复变函数的微分 • 定义2 称函数 f (z)的改变量 ∆w的线性部分 定义 f ′( z0 )∆z 为函数 f (z)在点 z 0 处的微分,记作
n
k ( z + ∆z ) n = ∑ C n z k ( ∆ z ) n − k = n k =0
1 2 n ( ∆z ) n + C n (∆z ) n −1 z + C n ( ∆z ) n − 2 z 2 + ⋯ + C n ( ∆z ) n − n z n
所以,由导数定义有
n
( z + ∆z ) − z f ′( z ) = ( z )′ = lim ∆z →0 ∆z
n
n
= lim [(∆z )
∆z →0
n −1
+ C (∆z )
1 n
n−2
z +⋯+ C
n −1 n −1 n
z
]
= nz
n −1
• 例2 求 f ( z ) = • 解 由例1
z 的导数.
2
df f ′( z ) = = 2z dz
• 2.1.2 可导与连续的关系 • 若函数 w = f (z )在点 z 0处可导,则 点 z 0 处必连续. • 证 因为
dw 或 dz
,即
z = z0
dw f ′( z0 ) = dz
z = z0
f ( z0 + ∆z ) − f ( z0 ) = lim ∆z →0 ∆z

解析函数

解析函数
第二章 解析函数
§1 解析函数的概念与柯西-黎曼方程 §2 初等解析函数 §3 初等多值解析函数
§1 解析函数的概念与柯西-黎曼方程
1.复变函数的导数与微分
定义2.1 设函数 w f ( z ) 在点 z0 的邻域内D (或含 z0的区域
内)有定义, 若极限 存在, 则称此极限为函数 f ( z )在点 z0 的导数,记为 f ( z0 ) 这时也称 f ( z ) 在点 z0 可导
例2.3 设多项式P( z) an z n an1z n1 a0 (an 0) ,则由 基本性质(1)知, P( z ) 在
z
平面上解析,且
n1 n 2 P ( z) nan z (n 1)an1z a1
对于参数方程
z (t ) x(t ) iy(t ) (t [ , ]) , 则可直
[ f1 ( z) f2 ( z)] f1( z) f 2( z)
[ f1 ( z) f 2 ( z)] f1( z) f 2 ( z) f1 ( z) f 2( z)
f1 ( z ) f1( z ) f 2 ( z ) f1 ( z ) f 2( z ) [ ] f2 ( z) [ f 2 ( z )]2
定理2.2 设 f ( z ) u( x, y) iv( x, y) 在区域 D 则 在 D f ( z ) 内一点 充要条件是: 内有定义,
z x 可微(或在 iy
内解析)的 D
(1) u ( x, y ) ,v( x, y )在点 ( x,
y) (或在 D 内)可微;
v( x, y ) 在点 (2) u ( x, y ) ,
( x, y )(或在 D 内)满足C-R条

第二章解析函数

第二章解析函数

第二章解析函数1 .用导数定义,求下列函数的导数:⑴ /(x) = z Re Z.解:因z Re Az + Az Re 2 + Az Re Az Az 「 /n n A ReAz 、 =hm(Rez + ReAz + z ------- ) Az->0 Az当z wo 时,上述极限不存在,故导数不存在;当z = O 时,上述极限为0,故导数为0.2 .下列函数在何处可导?何处不可导?何处解析?何处不解析? 1 1) f(z) = z-z 2.解:f(z) = Z • Z2 = Z • Z • Z =| z |2 ・z= (x 2 + y 2)(x + iy) = x(x 2 + y 2) + iy(x 2 + y 2),这里 w(x, y) = x(x 2+ y 2), v(x, y) = y(x 2+)]).u x = x 2 + y 2 + 2x 2, v v = x 2 + y 2 + 2y 2, "y = 2xy,匕=2xy.要% = Uy,%, =-v x ,当且当x=y = 0,而"s%,,匕,4均连续,故f(z) = z ・z2.仅 在z = 0处可导,处处不解析.2 2) f(z) = x3 - 3xy 2 +i(3x 2y- y 3).解:这里 w(x, y) = x 3-3xy 2,v(x, y) = 3x 2y- y\u x = 3x 2-3y 2,4 = -6 孙匕=6孙 v y = 3x 2 - 3)2,四个偏导数均连续且% = 5人=-匕处处成立,故/(z)在整个复平面上处处可导, 也处处解析.3 .确定下列函数的解析区域和奇点,并求出导数.lim /(z + Az)-/(z) = lim ------------------------ Az-0 (z + Az) Re(z + Az) -zRez AzAzlim Az->0 lim(Rez + z A ZT O Re Az Az )=lim(Rez + zA VT O Ay->() AxAx + zAy(1)空至少有一不为零).cz + d解:当 c W 0 时,/ (z) = "z + "除 z=cz + d r (z )=(gycz + d(az + b)\cz + d) — (cz + d)\az + b)(CZ + 4)2a(cz + d) — c(az + h) ad- ch当c=o 时,显然有a 。

复变函数-第二章-解析函数

复变函数-第二章-解析函数

23
(3.4)当为无理数或 Im 0时:
z e

Lnz
e
(ln z i arg z 2 k i )
e
ln z
e
i arg z
e
2 k i
---- 无穷多值函数
(3.5)当 0, z 0 e0Lnz e0 1
在除原点和负实轴复平面内主值支及各分支解析,且 1 Ln z Ln z z e e z 1 z
e e
1 z
1 x yi
1 z
1 z
e
x y i x2 y2 x2 y2
,
Re(e ) e
x x2 y2
y cos 2 . 2 x y
16
2、 对数函数 定义 指数函数的反函数称为对数函数.即
把满 足 e w z( z 0)的函 数 w f (z) 称为 对数 函数 , 记作w Lnz.
10
推论1 函数f (z)=u(x, y)+iv(x, y),如果u(x, y)
和 v(x, y)的四个偏导数 :
u u v v , , , x y x y
在点(x,y)处连续 且满足 方程,则 f(z)在点 u , v v C-R u
x y z=x+iy处可导。 , x y .
给定一复数 z,如何计算 Lnz ?
令w u iv , z re i , 那 么 e u iv re i u ln r , v 2k ( k为 整 数).
w Lnz ln r i ( 2k ) ( k 0,1,) 每个确 定的k 或 Lnz ln z iArg z ln z i (arg z 2k ) 对应一

解析函数

解析函数

【证明】设 f (z) zn ,故
f (z z) f (z) (z z)n zn
z[nzn1 n(n 1) zn2z (z)n1] 2
lim f (z z) f (z) nzn1
z 0
z
例 2.1.2 讨论函数 f (z) z 在复平面上的可导性.
【解】由
f (z z) f (z)
即 ux v y,显然在复平面处处不满足C-R条件,故 原函数在复平面处处不可导。 说明:上述例题告诉我们,用C-R条件来判断函数不 可导是方便的.但当满足C-R条件时,函数就一定可 导吗?
例2.1.4 讨论函数w f (z) | Im z 2 | 在点 z0 0 处的可导性.
【解】 首先考察 C-R 条件是否满足.
1. 直角坐标形式的柯西—黎曼条件
即已知一个函数可导,得出其必须满足的条件.
设w f (z) u(x, y) iv(x, y) 在区域 D 内可导,则
由函数可导的定义,使用直角坐标,考察沿两个不同的方
向 z 0 ,得到的极限值应该相等.
注意到:
f (z z) f (z) z
u(x x, y y) iv (x x, y y) [u(x, y) iv (x, y x iy
其中 令 由上式得
lim (z) 0
z 0
f (z z) f (z) u i v ,
f (z) a i b, (z) 1 i 2
u i v (a ib)(x i y) (1 i 2)(x i y) (ax by 1x 2y) i(bx ay 2x 1y)
iz z
由于沿 e方向和沿 er 方向的导数应该相等,比较可 得极坐标形式的柯西-黎曼条件 (2.1.10)。

解析函数

解析函数
由(2)结论成立.
求函数的奇点
求函数的奇点,方法有:
第二章 解析函数
(1) f (z) 的不连续点为函数的奇点;
(2) f (z) = u + iv , u ,v不可微的点为函数的奇点;
(3) f (z) 的不可导的点为函数的奇点;
(4) 不满足C-R条件的点为函数的奇点;
(5) 不满足解析定义的点为函数的奇点.
0
函数f (z) 在z0可导
函数f (z) 在z0连续
3.求导法则
第二章 解析函数
复变函数的求导法则完全类似于实变函数的求导法则. 如果f (z)和g(z)在区域D内可导,则: (1) ( f (z) g(z))' f '(z) g'(z)
(2) [ f (z)g(z)]' f '(z)g(z) f (z)g'(z)
vx 2cx dy , vy dx 2 y
由C-R方程: ux
v

y
uy
vx
2x ay dx 2y
ax 2by (2cx dy) a 2 , b 1, c 1, d 2
所以当 a 2 , b 1, c 1, d 2 时, f (z)在复平面内处处解析.
第二章 解析函数
第二章 解析函数
解析函数是复变函数研究的主要对象. 介绍复变函数导数概念和求导法则. 重点介绍解析函数的概念及判别方法. 介绍一些常用的初等函数及其解析性. 第一节 解析函数的概念
本章内容 第二节 函数解析的充要条件 第三节 初等函数
第二章 解析函数
第一节 解析函数
• 一.复变函数的导数和微分 • 二.解析函数的概念
则f (z) 在D内为常数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

z 0
z
y0,x0 x iy
故f (z) z x iy不可导.
2020/10/11
7
2.可导与连续关系
从例2从可以看出:函数f (z) z x iy处处连续,但处处不可导,反之可导必连续.
结论:函数w f (z)在z0可导,则在z0处必连续,反之不成立.
证明:由导数的定义可知
f
(z0 )
2020/10/11
10
➢ 二、解析函数
在复变函数理论中,重要的不是只在个别点可导的函数,而是在 区域D内内处处可导的函数,即解析函数. 1.解析函数的概念
(1)如果函数f (z)在z0及z0的某一邻域内处处可导,那么称f (z)在z0处解析;
(2)如果函数f (z)在区域D内每一点都解析,那么称f (z)在D内解析, 或称f (z)是D内的一个解析函数(全纯函数或正则函数).
解:lim f (z z) f (z) lim (z z)2 z2 lim (2z z) 2z
z 0
z
z 0
z
z 0
所以f (z) 2z.
• 例2.函数f (z) z x iy是否可导?
解:f (z z) f (z) z z z z z z z x iy
2020/10/11
9
4.微分的概念
复变函数的微分在形式上与一元实函数的微分概念一样,因此类似有:
w f (z0 z) f (z0) f (z0)z o z , z 0 称f (z)在z0处可微, 而f (z0 )z是w f (z)改变量w主要部分,称f (z0 )z是函数w f (z)在Leabharlann 2020/10/112
目录
➢第一章 复数与复变函数 ➢第二章 解析函数 ➢第三章 复变函数的积分 ➢第四章 解析函数的级数表示 ➢第五章 留数及其应用 ➢第六章 傅立叶变换 ➢第七章 拉普拉斯变换
2020/10/11
3
第二章 解析函数
▪ 内容提要:解析函数是复变函数研究的主 要对象.在理论和实际问题中有着广泛的 应用,本章在介绍复变函数导数的概念和 求导法则的基础上,着重讲解析函数的概 念,判别方法及重要性质.
2020/10/11
4
第二章 解析函数
➢2.1 解析函数的概念 ➢2.2 解析函数和调和函数的关系 ➢2.3 初等函数 ➢本章小结 ❖ 思考题
2020/10/11
5
第一节 解析函数的概念
➢ 一、复变函数的导数与微分
1.导数定义
定义1.设函数w f (z)在点z0的某邻域内有定义,z0 z是该邻域内任意一点,
点z0处的微分,记作dw f (z0 )z.
结论:函数f (z)在z0处可微 f (z)在z0处可导.
证明: 设函数w f (z)在z0处可导,则
w
f (z0
z)
f (z0 )
f
(
z0
)z
(z
)z,
其中 lim z0
(z)
0,
因此 (z)z 是 z 的高阶无穷小量
w f (z0 z) f (z0) f (z0)z o z , z 0
(5)
f (z)
g(
z)
1 [ g ( z )]2
[
f
(z) g(z)
f
(z) g(z)], g(z)
0
(6) { f [g(z)]} f (w)g(z), w g(z)
(7) f (z) 1 , w f (z)与z (w)是互为反函数且单值函数,(w) 0. (w)
结论:由于复变函数中导数的定义与一元实函数中导数 在形式上完全相同,而且极限的运算法则也一样,因而 实函数中的求导法则可推广到复变函数中去.
(3)若f (z)在z0处不解析,那么称z0为函数f (z)的奇点. 注意:(1)函数在区域内解析与在区域内可导是等价的;
(2)函数在一点处解析和可导是两个不等价的概念,即在一 点处可导不一定在该点解析;反之函数在z0点解析,必在z0处可导.
2020/10/11
11
• 例3.研究函数f (z) z2,g(z) x iy,h(z) | z |2 的解析性.
大学数学多媒体课件
复变函数
与积分变换
主讲:王兴波教授
佛山科学技术学院
参考用书
➢ 《复变函数与积分变换》, 华中科技大学数学系, 高等教育出版社, 2003.6 ➢ 《复变函数与积分变换学习辅导与习题全解》, 华中科大, 高等教育出版社 ➢ 《复变函数》, 西安交通大学高等数学教研室, 高等教育出版社, 1996.5
函数的增量w
f (z0 z)
f
(
z0
),如果极限
lim
z 0
f (z0
z) z
f
(z0 ) 存在,
则称函数f (z)在z0处可导,此极限值称为f (z)在z0处的导数,
即:f (z0 )
dw dz |zz0
lim
z 0
f
(z z) z
f
(z0 )
2020/10/11
6
• 例1.求函数f (z) z2的导数.
lim
z 0
f
(z z) z
f
(z0 ) 存在
0, ( ) 0,当0
z
时,都有
f (z0 z) z
f (z0 ) f (z0 )
令(z)
f (z0 z) z
f (z0 )
f (z0 )
那么lim (z) 0 z0
f (z0 z) f (z0 ) f (z0 )z (z)z
z
z
z z x iy
(1)若z z沿平行于实轴方向趋向于z,即y 0,而x 0,
则有 lim f (z z) f (z) lim x iy 1
z 0
z
x0,y0 x iy
(2)若z z沿平行于虚轴方向趋向于z,即x 0,而y 0,
则有 lim f (z z) f (z) lim x iy 1
所以 lim z0
f
(z0
z)
f
(z0 )
即函数f (z)在点z0处连续.
2020/10/11
8
3.求导法则
(1) (C) 0(, 其中C为常数)
(2) (zn ) nzn1(, 其中n为正整数)
(3) [ f (z) g(z)] f (z) g(z)
(4) [ f (z) g(z)] f (z) g(z) f (z) g(z)
解:(1)前面章节中已经讨论过函数f (z) z2在整个复平面上处处可导,
所以在整个复平面处处解析.
(2)已经讨论过函数g(z) x iy在整个复平面上处处不可导, 所以在整个复平面处处不解析.
相关文档
最新文档