化工原理课程设计填料塔

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

第1章概述 (3)

1.1吸收技术概况 (3)

1.2吸收设备的发展 (3)

1.3吸收在工业生产中的应用 (4)

1.4丙酮的性质 (5)

第2章方案比选 (7)

2.1方案选择与对比 (7)

2.2吸收剂的比选 (8)

2.3填料的作用以及选择 (9)

2.4操作参数的选择 (12)

2.5流向选择 (12)

2.6吸收剂再生方法的选择 (12)

2.7操作参数的选择 (13)

第3章吸收塔的工艺计算 (14)

3.1基础物性数据 (14)

3.1.1 气液相物性数据 (14)

3.1.2物料计算 (14)

3.2塔径计算 (15)

3.3填料层高度确定 (18)

3.3.1. 传质单元数计算 (18)

3.3.2 传质单元高度计算 (18)

3.3.3填料层高度的计算 (20)

第四章塔的结构设计 (21)

4.1筒体的设计 (21)

4.2封头设计 (21)

4.3除沫器设计 (21)

4.4液体进料管的设计 (22)

4.5液体出料管的设计 (22)

4.6气体进料管的设计 (22)

4.7气体出料管的设计 (23)

4.8填料支撑板设计 (23)

4.9填料压板 (23)

4.10体分布装置 (23)

4.11再分布器 (24)

4.12气体入塔分布器 (24)

4.13法兰的设计 (25)

4.14手孔的设计 (25)

4.15吸收塔支座的设计 (25)

4.16泵的选择 (26)

4.17吸收塔高度的计算 (26)

填料吸收塔主要尺寸 (27)

课程设计心得 (28)

参考文献 (29)

第1章概述

1.1吸收技术概况

气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用气体混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。

在化工生产中,原料气的净化,气体产品的精制,治理有害气体保护环境等方面得到了广泛的应用。在研究和开发吸收过程中,在方法上多从吸收过程的传质速率着手,希望在整个设备中,气液两相为连续微分接触过程,这一特点则与填料塔得到了较好的结合。由于填料塔的通量大,阻力小,使得其在某些处理量大要求压降小的分离过程中备受亲睐。尤其今年高效填料塔的开发,使得填料塔在分离过程中占据了重要的地位。

丙酮是一种重要的基本有机化工原料,它是制造丙酮氰醇,双酚A等化工产品的原料,也用于制造维生素C,此外还作为溶剂广泛用于醋酸纤维素胶片、塑料、涂料、医药及炼油等工业部门。气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。

实际生产中,吸收过程所用的吸收剂常需回收利用,故一般来说,完整的吸收过程应包括吸收和解吸两部分,因而在设计上应将两部分综合考虑,才能得到较为理想的设计结果。作为吸收过程的工艺设计,其一般性问题是在给定混合气体处理量、混合气体组成、温度、压力以及分离要求的条件下,完成以下工作:(1)根据给定的分离任务,确定吸收方案;

(2)根据流程进行过程的物料和热量衡算,确定工艺参数;

(3)依据物料及热量衡算进行过程的设备选型或设备设计;

(4)绘制工艺流程图及主要设备的工艺条件图;

(5)编写工艺设计说明书。

吸收剂将混合气体中溶质组分吸收后所得到的溶液是混合溶液,在生产中常需要使溶质从吸收后的溶液中重新释放出来,实现最终分离,而液相的吸收剂又可得以再生重新使用。这种使溶质组分从溶液中脱出的过程称为解吸,是吸收的逆过程,也是一种通过相际间传质而实现物质分离的单元操作。在化工生产中,吸收和解吸是常用的联合操作,共同构成了一个完整的工艺流程。

1.2吸收设备的发展

吸收设备是化工、石油化工、生物化工等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可氛围板式塔和填料塔两大类。

过去由于填料本体及塔内构件的不完善,填料塔大多局限于处理腐蚀性介质或不适宜安装塔板的小直径塔。近年来由于填料结构的改进,新型的高效、高负荷填料的开发,既提高了塔的通过能力和分离效能,又保持了压力降小的特点,因此填料塔已被推广到所有大型气液操作中。在某些场合,还代替了传统的板式塔。随着对填料塔的研究和开发,性能优良的填料塔已大量地用于工业生产中。

由于填料塔通量大,阻力小,压降低,填料易用耐腐蚀材料制造,结构简单,效率高,有利于过程节能。所以对于吸收过程来说,以采用填料塔居多。

填料塔约有100年的发展史,1914年拉西环的出现使填料塔进入了科学发展的轨道,至50年代取得了很大的发展,但由于填料塔的“放大效应”,50年代后填料塔进入了缓慢发展时期,而板式塔应运而生。70年代由于世界性的能源危机后,为了节能,填料塔得到了蓬勃发展,规整填料的出现和塔内件的改进使“放大效应”问题基本解决。

填料塔的特点:

1.生产能力大

2.分离效率高

3.压力降小

4.操作弹性大

5 . 持液量小

对于吸收过程,能够完成分离任务的塔设备有多种,如何从众多的塔设备中选择合适类型是进行工艺设计的首要任务。而进行这一项工作则需对吸收过程进行充分的研究后,并经多方面对比方能得到满意的结果。一般而言,吸收用塔设备与精馏过程所需要的塔设备具有相同的原则要求,用较小直径的塔设备完成规定的处理量,塔板或填料层阻力要小,具有良好的传质性能,具有合适的操作弹性,结构简单,造价低,便于安装、操作和维修等。

但是吸收过程,一般具有液气比大的特点,因而更适用填料塔。此外,填料塔阻力小,效率高,有利于过程节能。所以对于吸收过程来说,以采用填料塔居多。近年来随着化工产业的发展,大规模的吸收设备已经广泛用于实际生产当中。具有了很高的吸收效率,以及在节能方面也日趋完善。填料塔的工艺设计内容是在明确了装置的处理量,操作温度及操作压力及相应的相平衡关系的条件下,完成填料塔的工艺尺寸及其他塔内件设计。在今后的化学工业的生产中,对吸收设备的要求及效率将会有更高的要求,所以日益完善的吸收设备会逐渐应用于实际的工业生产中。

1.3吸收在工业生产中的应用

气体吸收在化工生产中的应用大致有以下几种。

(1) 净化或精制气体。混合气的净化或精制常采用吸收的方法。如在合成氨工艺中,采用碳酸丙烯酯(或碳酸钾水溶液)脱除合成气中的二氧化碳等。

相关文档
最新文档