二次函数动点问题典型例题

合集下载

二次函数的动点问题(含答案)

二次函数的动点问题(含答案)

72x =B(0,4)A(6,0)EFxyO 二次函数与四边形一.二次函数与四边形的形状例1.(浙江义乌市) 如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.练习1.(河南省实验区) 23.如图,对称轴为直线72x =的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.(1)求抛物线2l 的函数关系式;(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形?(3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30的直角三角形?若存,求出点M 的坐标;若不存在,说明理由.A5-4- 3-2-1- 1 2 3 455 4 3 2 1 A EBC '1- O 2l 1lx y练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.二.二次函数与四边形的面积例1.(资阳市)25.如图10,已知抛物线P :y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点(点A 在x 轴的正半轴上),与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下:x … -3 -2 1 2 … y…-52-4-52…(1) 求A 、B 、C 三点的坐标;(2) 若点D 的坐标为(m ,0),矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围;(3) 当矩形DEFG 的面积S 取最大值时,连接DF 并延长至点M ,使FM=k ·DF ,若点M 不在抛物线P 上,求k 的取值范围.练习1.(辽宁省十二市第26题).如图,平面直角坐标系中有一直角梯形OMNH ,点H 的坐标为(-8,0),点N 的坐标为(-6,-4).(1)画出直角梯形OMNH 绕点O 旋转180°的图形OABC ,并写出顶点A ,B ,C 的坐标(点M 的对应点为A , 点N 的对应点为B , 点H 的对应点为C );(2)求出过A ,B ,C 三点的抛物线的表达式;(3)截取CE =OF =AG =m ,且E ,F ,G 分别在线段CO ,OA ,AB 上,求四边形BEFG 的面积S 与m 之间的函数关系式,并写出自变量m 的取值范围;面积S 是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG 是否存在邻边相等的情况,若存在,请直接写出此时m 的值,并指出相等的邻边;若不存在,说明理由.图10练习3.(吉林课改卷)如图,正方形ABCD 的边长为2cm ,在对称中心O 处有一钉子.动点P ,Q 同时从点A 出发,点P 沿A B C →→方向以每秒2cm 的速度运动,到点C 停止,点Q 沿A D →方向以每秒1cm 的速度运动,到点D 停止.P ,Q 两点用一条可伸缩的细橡皮筋联结,设x 秒后橡皮筋扫过的面积为2cm y .(1)当01x ≤≤时,求y 与x 之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x 值;(3)当12x ≤≤时,求y 与x 之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时POQ ∠的变化范围;(4)当02x ≤≤时,请在给出的直角坐标系中画出y 与x 之间的函数图象.练习4.(四川资阳卷)如图,已知抛物线l 1:y =x 2-4的图象与x 轴相交于A 、C 两点,B 是抛物线l 1上的动点(B 不与A 、C 重合),抛物线l 2与l 1关于x 轴对称,以AC 为对角线的平行四边形ABCD 的第四个顶点为D .(1) 求l 2的解析式;(2) 求证:点D 一定在l 2上;(3) □ABCD 能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值.三.二次函数与四边形的动态探究例1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合.(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.B CPO D QA BPCO DQ A y321 O1 2 x例2.已知抛物线y =ax2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.例3..(湖南省郴州)如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线A 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积.(1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ∆是等腰三角形.练习1.如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自 变量t 的取值范围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,图2 OC A Bxy DPE F 图1 FE PD y xBA C OxN MQ PHGFEDCBA图11QPN M HGFED CBA图10图12yxP QBCNMOA若不存在,说明理由.练习2..(江西省) 25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是(52),, , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.yC()A(40)D ,(12)B ,O x图1yC()A(0)D e ,()B c d ,O x图2yC()A a b , ()D e b ,()B c d ,Ox图3yC()A a b ,()D e f ,()B c d ,Ox图472x =B(0,4)A(6,0)EFxyO答案:一.二次函数与四边形的形状例1.解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0);将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x-1), E (2(,23)x x x --∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++ ∴当12x =时,PE 的最大值=94(3)存在4个这样的点F ,分别是1234(1,0),(3,0),(470),(47,0)F F F F -+-, 练习 1.解:(1)由抛物线的对称轴是72x =,可设解析式为27()2y a x k =-+.把A 、B 两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725()326y x =--,顶点为725(,).26-(2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725()326y x =--,∴y<0,即 -y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线, ∴2172264()2522OAES SOA y y ==⨯⨯⋅=-=--+.因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的 取值范围是1<x <6. ①根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4). 点E 1(3,-4)满足OE = AE ,所以OEAF 是菱形; 点E 2(4,-4)不满足OE = AE ,所以OEAF 不是菱形. ② 当OA ⊥EF ,且OA = EF 时,OEAF 是正方形,此时点E 的 坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E , 使OEAF 为正方形.5-4- 3- 2- 1- 12 3 4 554321 A EBC '1- O 2l1lxy5-4-3-2-1-12 3D554 32 1 ACEM BC '1-O 2l 1l xy练习2.解:(1)由题意知点C '的坐标为(34)-,.设2l 的函数关系式为2(3)4y a x =--. 又点(10)A ,在抛物线2(3)4y a x =--上,2(13)40a ∴--=,解得1a =.∴抛物线2l 的函数关系式为2(3)4y x =--(或265y x x =-+).(2)P 与P '始终关于x 轴对称, PP '∴与y 轴平行.设点P 的横坐标为m ,则其纵坐标为265m m -+,4OD =,22654m m ∴-+=,即2652m m -+=±.当2652m m -+=时,解得36m =±.当2652m m -+=-时,解得32m =±.∴当点P 运动到(362)-,或(362)+,或(322)--,或(322)+-,时, P P OD ' ∥,以点D O P P ',,,为顶点的四边形是平行四边形.(3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则90AMB ∠=,30BAM ∠=(或30ABM ∠=),114222BM AB ∴==⨯=.过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠=.112122EB BM ∴==⨯=,3EM =,4OE =. ∴点M 的坐标为(43)-,. 但是,当4x =时,246451624533y =-⨯+=-+=-≠-.∴不存在这样的点M 构成满足条件的直角三角形.练习3. [解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,. 设抛物线2C 的解析式是2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,.解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-.(2)由(1)可计算得点(31)(31)M N --,,,. 过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+.根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形.所以2ADN S S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. (3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤). 所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得126262t t =-=--,(舍). 所以在运动过程中四边形MDNA 可以形成矩形,此时62t =-.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

二次函数动点问题典型例题

二次函数动点问题典型例题

二次函数动点问题典型例题等腰三角形问题1.如图,在平面直角坐标系中,已知抛物线y=ax2+bx的对称轴为x=1,且经过点A (2, 1), 点P是抛物线上的动点,P的横坐标为m (0<m<2),过点P作PB±x轴,垂足为B, PB 交OA于点C,点O关于直线PB的对称点为D,连接CD, AD,过点A作AE±x轴,垂足为E.(1)求抛物线的解析式;(2)填空:①用含m的式子表示点C, D的坐标:C (, ),D (, );②当m=一时,^ACD的周长最小;(3)若4ACD为等腰三角形,求出所有符合条件的点P的坐标.面积最大1.如图,抛物线丫=-3x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点口,已知A (- 1, 0), C (0, 2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使4PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2 .已知:如图,直线y=3x+3与x 轴交于C 点,与y 轴交于A 点,B 点在x 轴上,△OAB 是 等腰直角三角形.(1)求过A 、B 、C 三点的抛物线的解析式; (2)若直线CDMB 交抛物线于D 点,求D 点的坐标;(3)若P 点是抛物线上的动点,且在第一象限,那么0PAB 是否有最大面积?若有,求出此时P 点的坐标和^PAB 的最大面积;若没有,请说明理由.3 . (2015•黔西南州)(第26题)如图,在平面直角坐标系中,平行四边形ABOC 如图放置, 将此平行四边形绕点O 顺时针旋转90°得到平行四边形A'B'OC'.抛物线y= - x 2+2x+3经过点A 、C 、A'三点.求平行四边形ABOC 和平行四边形A‘B‘OC'重叠部分400口的面积;(1) 求A 、A’、C 三点的坐标;(2) (3)点M是第一象限内抛物线上的一动点,问点M在何处时,^AMA’的面积最大?最大最短路径1.(2014绵阳)3口图,抛物线y=ax2+bx+c (a/0)的图象过点M (-2, \月),顶点坐标为N (-1, W),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使4QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.2.(2014•泸州)如图,已知一次函数y1=1x+b的图象l与二次函数y2=-x2+mx+b的图象C' 都经过点B (0, 1)和点C,且图象C’过点A (2-.:亏0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程(1+■上)篁上邑=0的根,求a的值;_(3)若点F、G在图象C'上,长度为巧的线段DE在线段BC上移动,EF与DG始终平行于y 面积是多少?并写出此时M的坐标.轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.平行四边形1.(2015•贵州省贵阳,第24题9分)如图,经过点C (0, -4)的抛物线y=ax2+bx+c (aN0) 与x轴相交于A (-2, 0), B两点.(1) a > 0, b2-4ac > 0 (填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC, E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A, C, E, F为顶点所组成的四边形是平行四边形?若存在,2.(14分)(2015•葫芦岛)(第26题)如图,直线y=-^ x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+^x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当^BEC面积最大时,请求出点E的坐标和4BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.管用图3.(2015•辽宁抚顺)(第26题,14分))已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(-6, 0), B点坐标为(4, 0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图①,将4BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.图①图②4.(2015•梧州,第26题12分)如图,抛物线y=ax2+bx+2与坐标轴交于A、B、C三点,其中B (4, 0)、C (- 2, 0),连接AB、AC,在第一象限内的抛物线上有一动点D,过D作DE±x轴,垂足为E,交AB于点F.(1)求此抛物线的解析式;(2)在DE上作点G,使G点与D点关于F点对称,以G为圆心,GD为半径作圆,当。

二次函数动点问题

二次函数动点问题

5.如图,等腰直角三角形ABC以2m/s的速度沿直线L向 正方形移动,直到AB与CD重合。设xs时,三角形与正 方形重叠部分的面积为ym² 。 (1)写出y与x的函数关系式; (2)当x=2,3.5时,y分别是多少?
(3)当重叠部分的面积是正方形的面积的一半时, 三角形移动了多长时间?
动面问题
6.如图(1)等腰直角三角形ABC以2m/s的速度沿矩形 DEFG的GF边向右移动,直到BC与GF重合。已知 BC=GF=12m,EF=6m,设xs时,三角形与矩形重叠部分的 面积为ym² (1)参考图②,图③写出y与x之间的关系式; (2)当x1=2.5,x2=5时,y分别是多少? 7 (3)当重叠部分的面积为矩形面积的 时,三角形 18 移动了多长时间?
图(1)
图(2)
图(3)
P
B
Q
C
3.在梯形ABCD,AD∥BC,AB=BC=10cm,CD=6cm ∠c=90°,点P从A点出发沿线段AB以每秒Icm/s的速 度向终B点运动;动点Q同时从B点出发沿线段BC以每 秒2cm/s的速度向终点C运动.设运动的时间为t秒 (0<t<5). (1)求AD的长. (2)t为何值时,△PBQ为直角三角形. (3)设△PBQ的面积为y,求y与t之间的函数关系式 (4)是否存在某一时刻t,使△PБайду номын сангаасQ面积等于梯形形 ABCD面积的2/5?若存在, 求出此时的t值;若不存在, 说明理由;
A
P BP=12-2t,BQ=4t △PBQ的面积: S=1/2(12-2t) •4t B 即S=- 4t² +24t=- 4(t-3)² +36
Q
C
2.已知:如图,△ABC是边长3cm的等边三角形, 动点P、Q同时从A、B两点出发,分别沿AB、 BC方向匀速移动,它们的速度都是1cm/s,当点 P到达点B时,P、Q两点停止运动.设点P的运动 时间为t(s), (1)当t为何值时,△PBQ是直角三角形? (2)设四边形APQC的面积为y(cm2),求y与t 的关系式; (3)是否存在某一时刻t,使四边形APQC的面积 是△ABC面积的三分之二?若存在求出t的值,若 不存在说明理由 A

二次函数动点专项练习30题(有答案)

二次函数动点专项练习30题(有答案)

二次函数动点专项练习30题(有答案)1.在平面直角坐标系xOy中,二次函数y=﹣x2+x+2的图象与x轴交于点A,B(点B在点A的左侧),与y 轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=﹣x2+x+2的图象相交于点D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由.2.如图,已知抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D 分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连接EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.3.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.4.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.5.如图,已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A 在y轴上,P为线段AB上一动点(除A,B两端点外),过P作x轴的垂线与二次函数的图象交于点Q设线段PQ 的长为l,点P的横坐标为x.(1)求二次函数的解析式;(2)求l与x之间的函数关系式,并求出l的取值范围;(3)线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标;若不存在,请说明理由.6.如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=﹣2x+7经过抛物线上一点B(5,m),且与直线x=2交于点E.(1)求m的值及该抛物线的函数关系式;(2)若点D是x轴上一动点,当△DCB∽△ECB时,求点D的坐标;(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PC?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.7.矩形OABC在平面直角坐标系中的位置如图所示,其中OA=5,AB=2,抛物线y=﹣x 2+3x的图象与BC交于D、E两点.(1)求DE的长_________;(2)M是BC上的动点,若OM⊥AM,求点M的坐标;(3)在抛物线上是否存在点Q,使以D、O、Q、M为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.8.如图,已知抛物线与x轴交于A(﹣4,0)和B(1,0)两点,与y轴交于C(0,﹣2)点.(1)求此抛物线的解析式;(2)设G是线段BC上的动点,作GH∥AC交AB于H,连接CH,当△BGH的面积是△CGH面积的3倍时,求H点的坐标;(3)若M为抛物线上A、C两点间的一个动点,过M作y轴的平行线,交AC于N,当M点运动到什么位置时,线段MN的值最大,并求此时M点的坐标.9.如图,抛物线y=ax 2+bx+3(a≠0)的图象经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)直接写出点C的坐标;(2)试求抛物线y=ax2+bx+3(a≠0)的函数关系式;(3)连接AC,点E为线段AC上的动点(不与A、C重合),经过A、E、O三点的圆交直线AB于点F.当△OEF 的面积取得最小值时,请求出点E的坐标.10.抛物线y=a(x+6)2﹣3与x轴相交于A,B两点,与y轴相交于C,D为抛物线的顶点,直线DE⊥x轴,垂足为E,AE2=3DE.(1)求这个抛物线的解析式;(2)P为直线DE上的一动点,以PC为斜边构造直角三角形,使直角顶点落在x轴上.若在x轴上的直角顶点只有一个时,求点P的坐标;(3)M为抛物线上的一动点,过M作直线MN⊥DM,交直线DE于N,当M点在抛物线的第二象限的部分上运动时,是否存在使点E三等分线段DN的情况?若存在,请求出所有符合条件的M的坐标;若不存在,请说明理由.11.如图,已知抛物线y=ax 2+bx+c经过点A(2,3),B(6,1),C(0,﹣2).(1)求此抛物线的解析式,并用配方法把解析式化为顶点式;(2)点P是抛物线对称轴上的动点,当AP⊥CP时,求点P的坐标;(3)设直线BC与x轴交于点D,点H是抛物线与x轴的一个交点,点E(t,n)是抛物线上的动点,四边形OEDC 的面积为S.当S取何值时,满足条件的点E只有一个?当S取何值时,满足条件的点E有两个?12.如图,抛物线的对称轴是直线x=1,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(﹣1,0)、(0,3)(1)求此抛物线对应的函数解析式;(2)若点P是抛物线上位于x轴上方的一个动点,求△ABP面积的最大值;(3)若过点A(﹣1,0)的直线AD与抛物线的对称轴和x轴围成的三角形的面积为6,求此直线的解析式.13.已知抛物线y=ax 2+bx+c的对称轴为直线x=2,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P在抛物线上运动(点P异于点A).①如图1.当△PBC面积与△ABC面积相等时.求点P的坐标;②如图2.当∠PCB=∠BCA时,求直线CP的解析式.14.如图,平面直角坐标系xOy中,点A的坐标为(﹣2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.15.如图,抛物线y=ax2+bx+(a≠0)经过A(﹣3,0)、C(5,0)两点,点B为抛物线的顶点,抛物线的对称轴与x轴交于点D.(1)求此抛物线的解析式;(2)动点P从点B出发,沿线段BD向终点D作匀速运动,速度为每秒1个单位长度,运动时间为ts,过点P作PM⊥BD交BC于点M,过点M作MN∥BD,交抛物线于点N.①当t为何值时,线段MN最长;②在点P运动的过程中,是否有某一时刻,使得以O、P、M、C为顶点的四边形为等腰梯形?若存在,求出此刻的t值;若不存在,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是.16.如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,0)和B.(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q 的坐标;(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.17.在平面直角坐标系xOy中,抛物线y=ax2++c与x轴交于点(﹣1,0)和点B,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)若P是抛物线上一点,且△ABP的面积是,求P点的坐标;(3)若D是线段BC上的一个动点,过点D作DE⊥BC,交OC于E点.设CD的长为t,四边形DEOB的周长为l,求l与t之间的函数关系式,并写出t的取值范围.18.(2011?宝安区三模)如图,在直角坐标系中,点A(2,0),点B(0,4),AB的垂直平分线交AB于C,交x 轴于D,(1)求点C、D的坐标;(2)求过点B、C、D的抛物线的解析式;(3)点P为CD间的抛物线上一点,求当点P在何处时,以P,C,D,B为顶点的四边形的面积最大?19.(2010?菏泽)如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.(1)求直线与抛物线的解析式;(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的?若存在,请求出点P的坐标;若不存在,请说明理由.20.已知抛物线y=ax 2+bx+c的顶点为A(3,﹣3),与x轴的一个交点为B(1,0).(1)求抛物线的解析式.(2)P是y轴上一个动点,求使P到A、B两点的距离之和最小的点P0的坐标.(3)设抛物线与x轴的另一个交点为C.在抛物线上是否存在点M,使得△MBC的面积等于以点A、P0、B、C 为顶点的四边形面积的三分之一?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.21.如图,已知抛物线y=+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,﹣1).(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连接DC,当△DCE的面积最大时,求点D的坐标;(3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,求点P的坐标;若不存在,说明理由.22.如图,已知抛物线y=ax 2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.23.如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a﹣b=﹣1.(1)求a,b,c的值;(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E 到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.①试求出S与t之间的函数关系式,并求出S的最大值;②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.24.如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是(1)中抛物线AB段上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△ACO相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.25.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.26.如图1,在平面直角坐标系xOy中,已知A、B两点的坐标分别为(4,0)、(0,2),将△OAB绕点O逆时针旋转90°后得到△OCD,抛物线y=ax2﹣2ax+4经过点A.(1)求抛物线的函数表达式,并判断点D是否在该抛物线上;(2)如图2,若点P是抛物线对称轴上的一个动点,求使|PC﹣PD|的值最大时点P的坐标;(3)设抛物线上是否存在点E,使△CDE是以CD为直角边的直角三角形?若存在,请求出所有点E的坐标;若不存在,请说明理由.27.已知抛物线y=x2+bx+1的顶点在x轴上,且与y轴交于A点.直线y=kx+m经过A、B两点,点B的坐标为(3,4).(1)求抛物线的解析式,并判断点B是否在抛物线上;(2)如果点B在抛物线上,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长h,点P的横坐标为x,当x为何值时,h取得最大值,求出这时的h值.28.如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;(3)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标.29.阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)是否存在抛物线上一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.30.如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2﹣2x﹣8=0的两个根.(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.二次函数动点30题参考答案:1.解:(1)当y=0时,有,解得:x1=4,x2=﹣1,∴A、B两点的坐标分别为(4,0)和(﹣1,0).(2)∵⊙Q与x轴相切,且与交于D、E两点,∴圆心Q位于直线与抛物线对称轴的交点处,∵抛物线的对称轴为,⊙Q的半径为H点的纵坐标m(m>0),∴D、E两点的坐标分别为:(﹣m,m),(+m,m)∵E点在二次函数的图象上,∴,解得或(不合题意,舍去).(3)存在.①如图1,当∠ACF=90°,AC=FC时,过点F作FG⊥y轴于G,∴∠AOC=∠CGF=90°,∵∠ACO+∠FCG=90°,∠GFC+∠FCG=90°,∴∠ACO=∠CFG,∴△ACO≌△CFG,∴CG=AO=4,∵CO=2,∴m=OG=2+4=6;反向延长FC,使得CF=CF′,此时△ACF′亦为等腰直角三角形,易得y C﹣y F′=CG=4,∴m=CO﹣4=2﹣4=﹣2.②如图2,当∠CAF=90°,AC=AF时,过点F作FP⊥x轴于P,∵∠AOC=∠APF=90°,∠ACO+∠OAC=90°,∠FAP+∠OAC=90°,∴∠ACO=∠FAP,∴△ACO≌△∠FAP,∴FP=AO=4,∴m=FP=4;反向延长FA,使得AF=AF′,此时△ACF’亦为等腰直角三角形,易得y A﹣y F′=FP=4,∴m=0﹣4=﹣4.③如图3,当∠AFC=90°,FA=FC时,则F点一定在AC的中垂线上,此时存在两个点分别记为F,F′,分别过F,F′两点作x轴、y轴的垂线,分别交于E,G,D,H.∵∠DFC+∠CFE=∠CFE+∠EFA=90°,∴∠DFC=∠EFA,∵∠CDF=∠AEF,CF=AF,∴△CDF≌△AEF,∴CD=AE,DF=EF,∴四边形OEFD为正方形,∴OA=OE+AE=OD+AE=OC+CD+AE=OC+2CD,∴4=2+2?CD,∴CD=1,∴m=OC+CD=2+1=3.∵∠HF′C+∠CGF′=∠CF′G+∠GF′A,∴∠HF′C=∠GF′A,∵∠HF′C=∠GF′A,CF′=AF′,∴△HF′C≌△GF′A,∴HF′=GF′,CH=AG,∴四边形OHF′G为正方形,∴OH=CH﹣CO=AG﹣CO=AO﹣OG﹣CO=AO﹣OH﹣CO=4﹣OH﹣2,∴OH=1,∴m=﹣1.∵y=﹣x2+x+2=﹣(x﹣)2+,∴y的最大值为.∵直线l与抛物线有两个交点,∴m<.∴m可取值为:﹣4、﹣2、﹣1或3.综上所述,直线l上存在一点F,使得△ACF是等腰直角三角形,m的值为﹣4、﹣2、﹣1或3 2.(1)∵抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点,∴根据题意,得,解得,所以抛物线的解析式为:;(2)①证明:∵把C(m,m﹣1)代入得∴,解得:m=3或m=﹣2,∵C(m,m﹣1)位于第一象限,∴,∴m>1,∴m=﹣2舍去,∴m=3,∴点C坐标为(3,2),过C点作CH⊥AB,垂足为H,则∠AHC=∠BHC=90°,由A(﹣1,0)、B(4,0)、C(3,2)得AH=4,CH=2,BH=1,AB=5∵,∠AHC=∠BHC=90°∴△AHC∽△CHB,∴∠ACH=∠CBH,∵∠CBH+∠BCH=90°∴∠ACH+∠BCH=90°∴∠ACB=90°,∵DE∥BC,DF∥AC,∴四边形DECF是平行四边形,∴?DECF是矩形;②存在;连接CD∵四边形DECF是矩形,∴EF=CD,当CD⊥AB时,CD的值最小,∵C(3,2),∴DC的最小值是2,∴EF的最小值是2;3. (1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).此时点Q坐标为(3,1)或(,)4.解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y=ax2+bx+2.将A(﹣1,0),B(4,0)代入,得,解得,∴抛物线的解析式为:y=﹣x2+x+2.(2)存在.由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.在Rt△BOC中,OC=2,OB=4,∴BC==.在Rt△BOC中,设BC边上的高为h,则×h=×2×4,∴h=.∵△BEA∽△COB,设E点坐标为(x,y),∴=,∴y=±2将y=2代入抛物线y=﹣x2+x+2,得x1=0,x2=3.当y=﹣2时,不合题意舍去.∴E点坐标为(0,2),(3,2).(3)如图2,连结AC,作DE⊥x轴于点E,作BF⊥AD于点F,∴∠BED=∠BFD=∠AFB=90°.设BC的解析式为y=kx+b,由图象,得,∴,y BC=﹣x+2.由BC∥AD,设AD的解析式为y=﹣x+n,由图象,得0=﹣×(﹣1)+n∴n=﹣,y AD=﹣x﹣.∴﹣x2+x+2=﹣x﹣,解得:x1=﹣1,x2=5∴D(﹣1,0)与A重合,舍去;∴D(5,﹣3).∵DE⊥x轴,∴DE=3,OE=5.由勾股定理,得BD=.∵A(﹣1,0),B(4,0),C(0,2),∴OA=1,OB=4,OC=2.∴AB=5在Rt△AOC中,Rt△BOC中,由勾股定理,得AC=,BC=2,∴AC2=5,BC2=20,AB2=25,∴AC2+BC2=AB2∴△ACB是直角三角形,∴∠ACB=90°.∵BC∥AD,∴∠CAF+∠ACB=180°,∴∠CAF=90°.∴∠CAF=∠ACB=∠AFB=90°,∴四边形ACBF是矩形,∴AC=BF=,在Rt△BFD中,由勾股定理,得DF=,∴DF=BF,∴∠ADB=45°5.解:(1)依题意,设二次函数的解析式为y=a(x﹣2)2,由于直线y=x+2与y轴交于(0,2),∴x=0,y=2满足y=a(x﹣2)2,于是求得a=,二次函数的解析式为y=(x﹣2)2;(2)∵PQ⊥x轴且横坐标为x,∴l=(x+2)﹣(x﹣2)2=﹣x2+3x,由得点B的坐标为B(6,8),∵点p在线段AB上运动,∴0<x<6.∵,∴当x=3时,.∴0<l<;(3)作MQ∥AP.过M作MD∥PQ,MD交AB于N,则四边形PQMD为平行四边形.∴MD=PQ,∵M(2,0),∴D(2,4),∴MD=4.∴.∴x2﹣6x+8=0,∴x1=2,x2=4.∵2<x<6,∴x=4.∴P(4,6),Q(4,2).即P点的坐标为:(4,6)6.:(1)∵点B(5,m)在直线y=﹣2x+7上,∴m=﹣5×2+7=﹣3,∴B(5,﹣3),∵抛物线经过原点O和点A,对称轴为x=2,∴点A的坐标为(4,0)设所求的抛物线对应函数关系式为y=a(x﹣0)(x﹣4),将点B(5,﹣3)代入上式,得﹣3=a(5﹣0)(5﹣4),∴a=﹣,∴所求的抛物线对应的函数关系式为y=﹣x(x﹣4),即y=﹣x2+x.(2)∵点A(4,0),B(5,﹣3),C(2,0),∴AC=4﹣2=2,BC==3,当点D在直线x=2的右侧时,当△DCB∽△ECB,∴=,即=,解得:CD=9,∴点D的坐标为:(11,0),当点D在直线x=2的左侧时,∵∠ACB=∠CDB+∠CBA,且∠ACB<∠DCB,∴在△DCB中不可能存在与∠DCB相等的角,即此时不存在点使三角形相似;综上所述,存在点D的坐标是(11,0),使三角形相似;(3)存在符合条件的点P使PB=PC,∵C(2,0),B(5,﹣3),∴∠ACB=45°,BC垂直平分线的解析式为:y=x﹣5,∴,∴解得:,,∴符合条件的点P的坐标为(,)或(,).7.解:(1)由图知:点D、E的纵坐标为2,依题意,有:﹣x2+3x=2,解得:x1=1、x2=2∴D(1,2)、E(2,2),DE=1.(2)如右图;矩形OABC中,∠OMA=90°,∴∠CMO=∠MAB=90°﹣∠AMB,又∠OCM=∠MBA=90°,∴△OCM∽△MBA,有:=设点M(m,2),则:CM=m,BM=5﹣m∴=,解得m1=1,m2=4∴点M的坐标为(1,2)或(4,2).(3)若以D、O、Q、M为顶点的四边形是平行四边形,那么点D、M不共点,所以点M取(4,2);①当DM为平行四边形的对角线时,点O、Q关于DM的中点对称,即点Q的纵坐标为4,由图知,点Q必不在抛物线图象上,不合题意;②当DM为平行四边形的边时,OM∥OQ,且OM=OQ;∵D(1,2)、M(4,2)∴OQ=DM=3,即Q(﹣3,0)或(3,0);经验证,点(﹣3,0)不在抛物线图象上;点(3,0)在抛物线图象上;综上,存在符合条件的点Q,且坐标为(3,0)8. 解:(1)设抛物线的解析式:y=a(x+4)(x﹣1),代入C(0,﹣2),得:﹣2=a(0+4)(0﹣1),解得:a=故抛物线的解析式:y=(x+4)(x﹣1)=x2+x﹣2.(2)∵当△BGH的面积是△CGH面积的3倍,∴BG:CG=3:1,即BG:BC=3:4;∵GH∥AC,∴==;易知:BA=OB+OA=5,则BH=AB=,∴OH=BH﹣OB=﹣1=,即H(﹣,0).(3)设直线AC:y=kx+b,代入A(﹣4,0)、C(0,﹣2),得:,解得故直线AC:y=﹣x﹣2;设M(x,x2+x﹣2),则N(x,﹣x﹣2),则:MN=(﹣x﹣2)﹣(x2+x﹣2)=﹣x2﹣2x=﹣(x+2)2+2因此当M运动到OA的中垂线上,即M(﹣2,﹣3)时,线段MN的长最大.9.(1)令x=0,可得y=3,故点C的坐标为(0,3);(2)将点A(3,0),B(4,1)代入可得:,解得:,故函数解析式为y=x2﹣x+3;(3)如图,∵点A(3,0),点B(4,1),∴直线AB的解析式为:y=x﹣3,∵A(3,0),C(0,3),∴OA=3,OC=3,∴tan∠OAC===1,∴∠OAC=45°,∴∠OAC=∠OAF=45°,∵∠OEF=∠OAF=45°,∠OFE=∠OAE=45°,∴OE=OF,∠EOF=180°﹣45°×2=90°,∴△OEF是等腰直角三角形,∴S△OEF=×OE×OF=OE2,当OE最小时,S△FEO最小,根据等腰直角三角形的性质,当OE⊥AC时,OE最小,此时点E为AC的中点,故点E的坐标为(,).10.解:(1)易知抛物线的顶点D(﹣6,﹣3),则DE=3,OE=6;∵AE2=3DE=9,∴AE=3,即A(﹣3,0);将A点坐标代入抛物线的解析式中,得:a(﹣3+6)2﹣3=0,即a=,即抛物线的解析式为:y=(x+6)2﹣3=x2+4x+9.(2)设点P(﹣6,t),易知C(0,9);则PC的中点Q(﹣3,);易知:PC=;若以PC为斜边构造直角三角形,在x轴上的直角顶点只有一个时,以PC为直径的圆与x轴相切,即:||=,解得t=1,故点P(﹣6,1),当点P与点E重合时,由抛物线的解析式可知,A(﹣3,0),B(﹣9,0).所以P(﹣6,0),故点P的坐标为(﹣6,1)或(﹣6,0),(3)设点M(a,b)(a<0,b>0),分两种情况讨论:①当NE=2DE时,NE=6,即N(﹣6,6),已知D(﹣6,﹣3),则有:直线MN的斜率:k1=,直线MD的斜率:k2=;由于MN⊥DM,则k1?k2==﹣1,整理得:a2+b2+12a﹣3b+18=0…(△),由抛物线的解析式得:a2+4a+9=b,整理得:a2+12a﹣3b+27=0…(□);(△)﹣(□)得:b2=9,即b=3(负值舍去),将b=3代入(□)得:a=﹣6+3,a=﹣6﹣3,故点M(﹣6+3,3)或(﹣6﹣3,3);②当2NE=DE时,NE=,即N(﹣6,),已知D(﹣6,﹣3),则有:直线MN的斜率:k1=,直线DM的斜率:k2=;由题意得:k1?k2==﹣1,整理得:a2+b2+b+12a+=0,而a2+12a﹣3b+27=0;两式相减,得:2b2+9b+9=0,解得b=﹣2,b=﹣,(均不符合题意,舍去);综上可知:存在符合条件的M点,且坐标为:M(﹣6+3,3)或(﹣6﹣3,3).11.(1)将A,B,C三点坐标代入y=ax2+bx+c中,得,解得,∴y=﹣x2+x﹣2=﹣(x﹣)2+;(2)设点P(,m),分别过A、C两点作对称轴的垂线,垂足为A′,C′,∵AP⊥CP,∴△AA′P∽△PC′C,可得=,即=,解得m1=,m2=﹣,∴P(,)或(,﹣);(3)①由B(6,1),C(0,﹣2),得直线BC的解析式为y=x﹣2,∴D(4,0),当E点为抛物线顶点时,满足条件的点E只有一个,此时S=×4×2+×4×=,∵S△BOC=×2×6=6,∴当6≤S<时,满足条件的点E有两个.②当4<S<6时,﹣x2+x﹣2=0的△>0,方程有两个不相等的实数根,此时0<n<1,需满足的条件点E只能在点H与点B之间的抛物线上,故此时满足条件的点E只有一个.12. 解:(1)∵抛物线的对称轴是直线x=1,设抛物线的解析式是y=a(x﹣1)2+k,∴解得:,∴y=﹣(x﹣1)2+4即y=﹣x2+2x+3(2)∵y=﹣x2+2x+3,当y=0时,∴x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴B(3,0),A(﹣1,0)∴AB=4.设P(a,﹣a2+2a+3)∴S△ABP==﹣2(a﹣1)2+8,∴△ABP面积的最大值为8(3)设D的坐标为(1,b),∴=6,∴b=±6,∴D(1,6)或(1,﹣6),设AD的解析式为y=kx+b,得或解得:或∴直线AD的解析式为:y=3x+3或y=﹣3x﹣313. 解:(1)由题意,得,解得∴抛物线的解析式为y=﹣x2+4x﹣3;(2)①令﹣x2+4x﹣3=0,解得x1=1,x2=3,∴B(3,0),当点P在x轴上方时,如图1,过点A作直线BC的平行线交抛物线于点P,易求直线BC的解析式为y=x﹣3,∴设直线AP的解析式为y=x+n,∵直线AP过点A(1,0),代入求得n=﹣1.∴直线AP的解析式为y=x﹣1解方程组,得,∴点P1(2,1)当点P在x轴下方时,如图1:设直线AP1交y轴于点E(0,﹣1),把直线BC向下平移2个单位,交抛物线于点P2,P3,得直线P2P3的解析式为y=x﹣5,解方程组,得,∴P2(,),P3(,),综上所述,点P的坐标为:P1(2,1),P2(,),P3(,),②∵B(3,0),C(0,﹣3)∴OB=OC,∴∠OCB=∠OBC=45°设直线CP的解析式为y=kx﹣3如图2,延长CP交x轴于点Q,设∠OCA=α,则∠ACB=45°﹣α,∵∠PCB=∠BCA,∴∠PCB=45°﹣α,∴∠OQC=∠OBC﹣∠PCB=45°﹣(45°﹣α)=α,∴∠OCA=∠OQC又∵∠AOC=∠COQ=90°∴Rt△AOC∽Rt△COQ∴,∴,∴OQ=9,∴Q(9,0)∵直线CP过点Q(9,0),∴9k﹣3=0∴∴直线CP的解析式为.其它方法略.114.解:(1)设直线AB解析式为y=kx+b,将A(﹣2,2),B(6,6)代入,得,解得,∴y=x+3,令x=0,∴E(0,3);(2)设抛物线解析式为y=ax2+bx+c,将A(﹣2,2),B(6,6),O(0,0)三点坐标代入,得,解得,∴y=x2﹣x(3)依题意,得直线OB的解析式为y=x,设过N点且与直线OB平行的直线解析式为y=x+m,联立,得x2﹣6x﹣4m=0,当△=36+16m=0时,过N点与OB平行的直线与抛物线有唯一的公共点,则点N到BO的距离最大,所以△BON面积最大,解得m=﹣,x=3,y=,即N(3,);此时△BON面积=×6×6﹣(+6)×3﹣××3=;(4)过点A作AS⊥GQ于S,∵A(﹣2,2),B(6,6),N(3,),∵∠AOE=∠OAS=∠BOH=45°,OG=3,NG=,NS=,AS=5,在Rt△SAN和Rt△NOG中,∴tan∠SAN=tan∠NOG=,∴∠SAN=∠NOG,∴∠OAS﹣∠SAN=∠BOG﹣∠NOG,∴∠OAN=∠NOB,∴ON的延长线上存在一点P,使得△BOP∽△OAN,∵A(﹣2,2),N(3,),∵△BOP与△OAN相似(点B、O、P分别与点O、A、N对应),即△BOP∽△OAN,∴BO:OA=OP:AN=BP:ON又∵A(﹣2,2),N(3,),B(6,6),∴BO=6,OA=2,AN=,ON=,∴OP=,BP=,设P点坐标为(4x,x),∴16x2+x2=()2,解得x=,4x=15,∵P、P′关于直线y=x轴对称,∴P点坐标为(15,)或(,15).15.解:(1)∵抛物线y=ax2+bx+与x轴交于点A(﹣3,0),C(5,0)∴解得.∴抛物线的函数关系式为y=﹣x2+x+.(2)①延长NM 交AC 于E ,∵B 为抛物线y=﹣x 2+x+的顶点,∴B (1,8).(5分)∴BD=8,OD=1.∵C (5,0),∴CD=4.∵PM ⊥BD ,BD ⊥AC ,∴PM ∥AC .∴∠BPM=∠BDC=90°,∠BMP=∠BCD .∴△BPM ∽△BDC .∴=.根据题意可得BP=t ,∴=.∴PM=t .∵MN ∥BD ,PM ∥AC ,∠BDC=90°,∴四边形PMED 为矩形.∴DE=PM=t .∴OE=OD+DE=1+t .∴E (1+t ,0).∵点N 在抛物线上,横坐标为1+t ,∴点N 的纵坐标为﹣(1+t )2+(1+t )+.∴NE=﹣(1+t )2+(1+t )+=﹣t 2+8.∵PB=t ,PD=ME ,∴EM=8﹣t .∴MN=NE ﹣EM=﹣t 2+8﹣(8﹣t )=﹣(t ﹣4)2+2.当t=4时,MN 最大=2.②存在符合条件的t 值.连接OP ,如图(2).若四边形OPMC 是等腰梯形,只需OD=EC .∵OD=1,DE=PM=t ,∴EC=5﹣(t+1).∴5﹣(t+1)=1.解得t=6.∴当t=6时,四边形OPMC是等腰梯形16.(1)由题意,得:,解得:,∴所求抛物线的解析式为:y=﹣x2﹣x+4.(2)设点Q的坐标为(m,0),过点E作EG⊥x轴于点G.由﹣x2﹣x+4=0,得x1=2,x2=﹣4,∴点B的坐标为(2,0),∴AB=6,BQ=2﹣m,∵QE∥AC,∴△BQE∽△BAC,∴,即,∴EG=(2﹣m),∴S△CQE=S△CBQ﹣S△EBQ=BQ?CO﹣BQ?EG=(2﹣m)[4﹣(2﹣m)]=﹣(m+1)2+3又∵﹣4≤m≤2,∴当m=﹣1时,S△CQE有最大值3,此时Q(﹣1,0).(3)存在.在△ODF中.(ⅰ)若DO=DF,∵A(﹣4,0),D(﹣2,0)∴AD=OD=DF=2,又在Rt△AOC中,OA=OC=4,∴∠OAC=45°,∴∠DFA=∠OAC=45°,∴∠ADF=90°.此时,点F的坐标为(﹣2,2)(ⅱ)若FO=FD,过点F作FM⊥x轴于点M由等腰三角形的性质得:OM=MD=1,∴AM=3,∴在等腰直角△AMF中,MF=AM=3,∴F(﹣1,3);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=4,∴点O到AC的距离为2,而OF=OD=2<2,∴此时不存在这样的直线l,使得△ODF是等腰三角形,综上所述,存在这样的直线l,使得△ODF是等腰三角形,所求点F的坐标为:F(﹣2,2)或(﹣1,3).17.解:(1)∵抛物线y=ax2++c与x轴交于点(﹣1,0)和点B,与y轴交于点C(0,4).∴,解得:,∴y=﹣x2++4;(2)令y=0,可得x1=﹣1,x2=3,∴B点坐标为:(3,0),设P点坐标为(x,y),依据题意得出:×4×|y|=,∴|y|=,∵y=﹣x2++4;=﹣(x﹣1)2+,∴抛物线开口向下,顶点坐标为(1,),∴纵坐标最大值为:,∴y=﹣,∴﹣=﹣x2++4;解得:x1=﹣2,x2=4,∴P点的坐标为:(4,﹣),(﹣2,﹣);(3)如图所示:在△ABC中,OB=3,CO=4,∠BOC=90°,由勾股定理得BC=5,∵DE⊥BC,∴∠EDC=∠BOC=90°,∵∠DCE=∠OCB,∴△DCE∽△OCB,∴==,∵CD=t,∴==,∴CE=t,DE=t,∴四边形DEOB的周长为l=EO+BO+DB+DE=4﹣t+3+t+5﹣t=12﹣t,t的取值范围是:0<t<.18.:(1)过C作CD⊥x轴于G,∵点C为线段AB的中点,∴CG是△OAB的中位线,∴点C的坐标是(1,2),┅┅┅┅┅┅┅┅(1分)又∵OA=2,OB=4,∴AB=,AC=,显然△ABO∽△ADC,∴,即,┅┅┅┅┅┅┅┅┅┅┅(2分)∴AD=5OD=AD﹣OA=3,∴点D的坐标是(﹣3,0);┅┅┅┅┅┅┅┅┅(3分)(2)解:设过B(0,4),C(1,2),D(﹣3,0)的抛物线的关系式为y=ax2+bx+c,∴,┅┅┅┅┅┅(4分)解得:,┅┅┅┅┅┅┅┅┅┅┅┅(5分)∴抛物线的关系式为;┅┅┅┅┅┅┅┅┅(6分)(3)解:设点P的坐标为(x,y)连BD,过点P作PH⊥x轴于H,交BD于E,S四边形PBCD=S△BCD+S△PBD,∵S△BCD=S△ACD为定值,∴要使四边形PBCD的面积最大就是使△PBD的面积最大,①当P在BD间的抛物线上时,即﹣3<x<0,S△PBD=S△PBE+S△PED=PE×DH+PE×OH=PE×OD=PE,∵PE=PH﹣EH=y P﹣y E,┅┅┅┅┅┅┅┅(7分)直线BD的关系式为y=,∴PE=,=,当x=时,PE最大为,∴点P的坐标(,),┅┅┅┅┅┅┅┅┅┅(8分)②当P在BC间的抛物线上时,即0<x<1,同理可求出四边形PBCD的面积,很显然,此时四边形PBCD的面积要小于点P在BD间的抛物线上时的四边形PBCD的面积,故P点的坐标是(,).┅┅┅┅┅┅┅┅┅(9分)19.解:(1)将点C(2,2)代入直线y=kx+4,可得k=﹣1所以直线的解析式为y=﹣x+4当x=1时,y=3,所以B点的坐标为(1,3)将B、C、O三点的坐标分别代入抛物线y=ax2+bx+c,可得解得,所以所求的抛物线为y=﹣2x2+5x.(2)因为ON的长是一定值,所以当点P为抛物线的顶点时,△PON的面积最大,又该抛物线的顶点坐标为(),此时tan∠PON=.(3)存在;把x=0代入直线y=﹣x+4得y=4,所以点A(0,4)把y=0代入抛物线y=﹣2x2+5x得x=0或x=,所以点N(,0)设动点P坐标为(x,y),其中y=﹣2x2+5x (0<x<)则得:S△OAP=|OA|?x=2xS△ONP=|ON|?y=?(﹣2x2+5x)=(﹣2x2+5x)由S△OAP=S△ONP,即2x=?(﹣2x2+5x)解得x=0或x=1,舍去x=0得x=1,由此得y=3所以得点P存在,其坐标为(1,3)20.解:(1)设抛物线的解析式为:y=a(x﹣3)2﹣3,依题意有:a(1﹣3)2﹣3=0,a=,∴该抛物线的解析式为:y=(x﹣3)2﹣3=x2﹣x+.(2)设B点关于y轴的对称点为B′,则B′(﹣1,0);设直线AB′的解析式为y=kx+b,则有:,解得;∴y=﹣x﹣;故P0(0,﹣).(3)由(1)的抛物线知:y=x 2﹣x+=(x﹣1)(x﹣5),故C(5,0);∵S四边形AP0BC=S△AB′C﹣S△BB′P0=×6×3﹣×2×=;∴S△BCM=S四边形AP0BC=;易知BC=4,则|y M|=;当M的纵坐标为时,x2﹣x+=,解得x=3+,x=3﹣;当M的纵坐标为﹣时,x2﹣x+=﹣,解得x=3+,x=3﹣;故符合条件的M点有四个,它们的坐标分别是:M1(3+,),M2(3﹣,),M3(3+,﹣),M4(3﹣,﹣).21.:(1)由于抛物线经过A(2,0),C(0,﹣1),则有:,解得;∴抛物线的解析式为:y=﹣x﹣1.(2)∵A(2,0),C(0,﹣1),∴直线AC:y=x﹣1;设D(x,0),则E(x,x﹣1),故DE=0﹣(x﹣1)=1﹣x;∴△DCE的面积:S=DE×|x D|=×(1﹣x)×x=﹣x2+x=﹣(x﹣1)2+,因此当x=1,即D(1,0)时,△DCE的面积最大,且最大值为.(3)由(1)的抛物线解析式易知:B(﹣1,0),可求得直线BC的解析式为:y=﹣x﹣1;设P(x,﹣x﹣1),因为A(2,0),C(0,﹣1),则有:AP2=(x﹣2)2+(﹣x﹣1)2=2x2﹣2x+5,AC2=5,CP2=x2+(﹣x﹣1+1)2=2x2;①当AP=CP时,AP2=CP2,有:2x2﹣2x+5=2x2,解得x=2.5,∴P1(2.5,﹣3.5);②当AP=AC时,AP2=AC2,有:2x2﹣2x+5=5,解得x=0(舍去),x=1,∴P2(1,﹣2);③当CP=AC时,CP2=AC2,有:2x2=5,解得x=±,∴P3(,﹣﹣1),P4(﹣,﹣1);综上所述,存在符合条件的P点,且P点坐标为:P1(2.5,﹣3.5)、P2(1,﹣2)、P3(,﹣﹣1)、P4(﹣,﹣1).22.解:(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:3=a(0﹣2)2﹣1,a=1;∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)分两种情况:①当点P1为直角顶点时,点P1与点B重合;令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;∵点A在点B的右边,∴B(1,0),A(3,0);∴P1(1,0);②当点A为△AP2D2的直角顶点时;∵OA=OC,∠AOC=90°,∴∠OAD2=45°;当∠D2AP2=90°时,∠OAP2=45°,∴AO平分∠D2AP2;又∵P2D2∥y轴,∴P2D2⊥AO,∴P2、D2关于x轴对称;设直线AC的函数关系式为y=kx+b(k≠0).将A(3,0),C(0,3)代入上式得:,解得;∴y=﹣x+3;设D2(x,﹣x+3),P2(x,x2﹣4x+3),则有:(﹣x+3)+(x2﹣4x+3)=0,即x2﹣5x+6=0;解得x1=2,x2=3(舍去);∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).∴P点坐标为P1(1,0),P2(2,﹣1);(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;当点P的坐标为P2(2,﹣1)(即顶点Q)时,平移直线AP交x轴于点E,交抛物线于F;∵P(2,﹣1),∴可设F(x,1);∴x2﹣4x+3=1,解得x1=2﹣,x2=2+;∴符合条件的F点有两个,即F1(2﹣,1),F2(2+,1).23.解:(1)由已知A(0,6),B(6,6)在抛物线上,得方程组,(1分)解得.(3分)(2)①运动开始t秒时,EB=6﹣t,BF=t,S=EB?BF=(6﹣t)t=﹣t2+3t,(4分)以为S=﹣t2+3t=﹣(t﹣3)2+,所以当t=3时,S有最大值.(5分)②当S取得最大值时,∵由①知t=3,∴BF=3,CF=3,EB=6﹣3=3,若存在某点R,使得以E,B,R,F为顶点的四边形是平行四边形,则FR1=EB且FR1∥EB,。

二次函数--动点问题--压轴题(包参考答案)

二次函数--动点问题--压轴题(包参考答案)

1、(2009年湖南长沙)如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(0C ,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标; (3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.提示:第(2)问发现特殊角∠CAB=30°,∠CBA=60°特殊图形四边形BNPM 为菱形; 第(3)问注意到△ABC 为直角三角形后,按直角位置对应分类;先画出与△ABC 相似的△BNQ ,再判断是否在对称轴上。

2、(2009眉山)如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

⑴求该抛物线的解析式;⑵动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标P 。

⑶在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标。

提示:第(2)问按直角位置分类讨论后画出图形----①P 为直角顶点AE 为斜边时,以AE 为直径画圆与x 轴交点即为所求点P ,②A 为直角顶点时,过点A 作AE 垂线交x 轴于点P ,③E 为直角顶点时,作法同②;第(3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。

(二次函数的应用)30道中考动点压轴题和函数压轴题

(二次函数的应用)30道中考动点压轴题和函数压轴题

(二次函数)二次函数30道中考动点压轴题和函数压轴题1如图1,在直角坐标系中,已知△AOC的两个顶点坐标分别为A(2,0),C(0,2).(1)请你以AC的中点为对称中心,画出△AOC的中心对称图形△ABC,此图与原图组成的四边形OABC的形状是,请说明理由;(2)如图2,已知D(12-,0),过A,C,D的抛物线与(1)所得的四边形OABC的边BC交于点E,求抛物线的解析式及点E的坐标;(3)在问题(2)的图形中,一动点P由抛物线上的点A开始,沿四边形OABC的边从A ﹣B﹣C向终点C运动,连接OP交AC于N,若P运动所经过的路程为x,试问:当x为何值时,△AON为等腰三角形(只写出判断的条件与对应的结果)?2如图,在平面直角坐标系中,直线1y=x+12与抛物线2y=ax+bx3-交于A,B两点,点A在x轴上,点B的纵坐标为3。

点P是直线AB下方的抛物线上一动点(不与A,B重合),过点P作x轴的垂线交直线AB与点C,作PD⊥AB于点D(1)求a,b及sin ACP∠的值(2)设点P的横坐标为m①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m值,使这两个三角形的面积之比为9:10?若存在,直接写出m值;若不存在,说明理由.3.已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.(1)当k=-1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).①直接写出t=1秒时C、Q两点的坐标;②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.(2)当k =-34时,设以C 为顶点的抛物线y =(x +m)2+n 与直线AB 的另一交点为D (如图2).① 求CD 的长;② 设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大?4.已知二次函数的图象经过A (2,0)、C (0,12)两点,与x 轴的另一交点为点B ,且对称轴为直线x =4,设顶点为点D .(1)求二次函数的解析式及顶点D 的坐标;(2)如图1,在直线y =2x 上是否存在点E ,使四边形ODBE 为等腰梯形?若存在,求出点E 的坐标;若不存在,请说明理由;(3)如图2,点P 是线段OD 上的一个动点(不与O 、D 重合),以每秒 2 个单位长度的速度由点D 向点O 运动,过点P 作直线PQ ∥x 轴,交BD 于点Q ,将△DPQ 沿直线PQ 对折,得到△D 1PQ .在点P 运动的过程中,设△D 1PQ 与梯形OPQB 的重叠部分的面积为S ,运动时间为t 秒,求S 关于t 的函数关系式.5.A 、C 上,抛物线y =-2 3). (1)求抛物线的表达式;(2)如果点P 由点A 出发,沿AB 边以2cm /s 的速度向点B 运动,同时点Q 由点B 出发,沿BC 边以1cm /s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动.设S =PQ2(cm 2).①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围;②当S 取54时,在抛物线上是否存在点R ,使得以点P 、B 、Q 、R 为顶点的四边形是平行图1图2图2 图1四边形?如果存在,求出R 点的坐标;如果不存在,请说明理由;(3)在抛物线的对称轴上求点M ,使得M 到D 、A 的距离之差最大,求出点M 的坐标.6.在梯形OABC 中,CB ∥OA ,∠AOC =60°,∠OAB =90°,OC =2,BC =4,以O 点为原点,OA 所在的直线为x 轴,建立平面直角坐标系,另有一边长为2的等边△DEF ,DE 在x 轴上(如图1),如果让△DEF 以每秒1个单位的速度向左作匀速直线运动,开始时点D 与点A 重合,当点D 到达坐标原点时运动停止.(1)设△DEF 运动时间为t ,△DEF 与梯形OABC 重叠部分的面积为S ,求S 关于t 的函数关系式;(2)探究:在△DEF 运动过程中,如果射线DF 交经过O 、C 、B 三点的抛物线于点G ,是否存在这样的时刻t ,使得△OAG 的面积与梯形OABC 的面积相等?若存在,求出t 的值;若不存在,请说明理由.7.已知二次函数y =ax2+bx -2的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当x =-2和x =5时二次函数的函数值y 相等. (1)求实数a 、b 的值;(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒 5个单位长度的速度沿射线AC 方向运动.当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将△AEF 沿EF 翻折,使点A 落在点D 处,得到△DEF .①当t 为何值时,线段DF 平分△ABC 的面积?②是否存在某一时刻t ,使得△DCF 为直角三角形?若存在,求出t 的值;若不存在,请说明理由.③设△DEF 与△ABC 重叠部分的面积为S ,求S 关于t 的函数关系式;(3)如图2,点P 在二次函数图象上运动,点Q 在二次函数图象的对称轴上运动,四边形PQBC 能否成为以PQ 为底的等腰梯形?如果能,直接写出P 、Q 两点的坐标;如果不能,请说明理由.8.如图,直线y=-43x+4与x轴交于点B,与y轴交于点C,二次函数的图象经过A(-1,0)、B、C三点.(1)求二次函数的表达式;(2)设二次函数图象的顶点为D,求四边形OCDB的面积;(3)若动点E、F同时从O点出发,其中点E以每秒32个单位长度的速度沿折线OBC按O→B→C的路线运动,点F以每秒4个单位长度的速度沿折线OCB按O→C→B的路线运动,当E、F两点相遇时,整个运动随之结束.设运动时间为t(秒),△OEF的面积为S(平方单位).①在E、F两点运动过程中,是否存在EF∥OC?若存在,求出此时t的值;若不存在,请说明理由;②求S关于t的函数关系式,并求S的最大值.9.已知抛物线y=4,0)点B作BC∥x轴交抛物线于点C.动点E、F分别从O、A两点同时出发,其中点E沿线段OA以每秒1个单位长度的速度向A点运动,点F沿折线A→B→C以每秒1个单位长度的速度向C点运动.设动点运动的时间为t(秒).(1)求抛物线的解析式;(2)记△EF A的面积为S,求S关于t的函数关系式,并求S的最大值,指出此时△EF A的形状;(3)是否存在这样的t值,使△EF A、F两点的坐标;若不存在,请说明理由.10.如图,抛物线y=ax2+bx+4与x轴交于A(-2,0)、B(4,0)两点,与y轴交于C 点.(1)求抛物线的解析式;(2)T是抛物线对称轴上的一点,且△ATC是以AC为底的等腰三角形,求点T的坐标;(3)M、Q两点分别从A、B点以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M 到达原点时,点Q 立刻掉头并以每秒32个单位长度的速度向点B 方向移动,当点M 到达抛物线的对称轴时,两点停止运动.过点M 的直线l ⊥x 轴交AC 或BC 于点P .求点M 的运动时间t 与△APQ 面积S 的函数关系式,并求出S 的最大值.11.如图,对称轴为直线x =-1的抛物线经过点A (-3,0)和点C (0,3),与x 轴的另一交点为B .点P 、Q 同时从B 点出发,均以每秒1个单位长度的速度分别沿BA 、BC 边运动,其中一个点到达终点时,另一点也随之停止运动.设运动时间为t (秒). (1)求抛物线的解析式;(2)连接PQ ,将△BPQ 沿PQ 翻折,所得的△B ′PQ 与△ABC 重叠部分的面积记为S ,求S 与t 之间的函数关系式,并求S 的最大值; (3)若点D 的坐标为(-4,3),当点B ′ 恰好落在抛物线上时,在抛物线的对称轴时是否存在点M ,使四边形MADB ′的周长最小,若存在,求出这个最小值;若不存在,请说明理由.12.如图,抛物线y =ax2+bx +152(a ≠0)经过A (-3,0)、C (5,0)两点,点B 为抛物线的顶点,抛物线的对称轴与x 轴交于点D . (1)求此抛物线的解析式;(2)动点P 从点B 出发,沿线段BD 向终点D 作匀速运动,速度为每秒1个单位长度,运动时间为t s ,过点P 作PM ⊥BD 交BC 于点M ,过点M 作MN ∥BD ,交抛物线于点N . ①当t 为何值时,线段MN 最长;②在点P 运动的过程中,是否有某一时刻,使得以O 、P 、形?若存在,求出此刻的t 值;若不存在,请说明理由.13.如图,抛物线y =-x2-2x +3与x 轴相交于点A 、B (A 在B 的左侧),与y 轴交于点C . (1)求线段AC 所在直线的解析式;(2)点M 是第二象限内抛物线上的一点,且S △MAC=12S △MAB,求点M 的坐标; (3)点P 以每秒1个单位长度的速度,沿线段BA 由B 向A 运动,同时,点Q 以每秒2个单位长度的速度,从A 开始沿射线AC 运动,当P 到达A 时,整个运动随即结束.设运动的时间为t 秒.①求△APQ 的面积S 与t 的函数关系式,并求当t 为何值时,△APQ 的面积最大,最大面积是多少?②在整个运动过程中,以PQ 为直径的圆能否与直线BC 相切?若能,请直接写出相应的t 值;若不能,请说明理由;③直接写出线段PQ 的中点在整个运动过程中所经过路径的长.14.如图,二次函数c x y +-=221的图象经过点D ⎪⎭⎫ ⎝⎛-29,3,与x 轴交于A 、B 两点. ⑴求c 的值;⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)15.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EFBC;(2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值;(3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式.16.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =16x 2+bx +c 过O 、A 两点.(1)求该抛物线的解析式;(2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由; (3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由17.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别为(-4,0)和(2,0),BC=设直线AC 与直线x =4交于点E .(1)求以直线x =4为对称轴,且过C 与原点O 的抛物线的函数关系式,并说明此抛物线一定过点E ;(2)设(1)中的抛物线与x 轴的另一个交点为N ,M 是该抛物线上位于C 、N 之间的一动点,求△CMN 面积的最大值.(第2题)(图1) (图2)18.(2010湖南邵阳)如图,抛物线y =2134x x -++与x 轴交于点A 、B ,与y 轴相交于点C ,顶点为点D ,对称轴l 与直线BC 相交于点E ,与x 轴交于点F 。

九年级数学二次函数动点问题

九年级数学二次函数动点问题

九年级数学二次函数动点问题
1、已知抛物线$y = ax^{2} + bx + c$经过点$(1,2)$,若$a = 1$,抛物线的对称轴为直线$x = - 1$,求抛物线的解析式.
2、已知二次函数$y = ax^{2} + bx + c$的图象经过点$( - 1,0)$,$(3,0)$,且与$y$轴交于点$(0, - 3)$.
(1)求二次函数的解析式;
(2)若该二次函数的图象与$x$轴的另一个交点为B,且满足$\angle AOB = 90^{\circ}$,求点B的坐标.
3、已知二次函数$y = ax^{2} + bx + c$的图象经过原点及点$( - 2, - 2)$,且图象与$x$轴的另一个交点到原点的距离为$4$,那么该二次函数的解析
式为____.
4、已知抛物线$y = ax^{2} + bx + c$经过点$(1, - 1)$和$( - 1,3)$.
(1)求该抛物线的对称轴;
(2)若抛物线与坐标轴的交点为A、B、C,求$\bigtriangleup ABC$的面积.5、已知抛物线$y = ax^{2} + bx + c$经过点$(1,0)$和$(3,0)$,且与直线$y = 3x - 3$相切,求二次函数的解析式.。

二次函数动点问题类型

二次函数动点问题类型

二次函数动点问题类型一、求解动点坐标问题:1.已知二次函数的图像经过特定点,求该点的坐标。

例如,已知二次函数y=ax^2+bx+c的图像过点(2,5),求a、b、c的值。

解:由于(2,5)是曲线上的一点,所以满足曲线上的点的坐标满足函数的定义关系式,即:y=ax^2+bx+c代入已知点的坐标,得到:5=4a+2b+c再结合二次函数的性质,无论a、b、c取何值,都可以确定一个二次函数,因此需要再提供其他的条件才能完全确定a、b、c的值。

2.已知二次函数的顶点坐标,求顶点坐标与对称轴的方程。

例如,已知二次函数y=ax^2+bx+c的顶点坐标为(2,3),求对称轴的方程和a、b、c的值。

解:根据二次函数的性质,二次函数的顶点坐标位于对称轴上,所以对称轴的方程可以通过已知的顶点坐标得到。

对称轴的方程为x=顶点的横坐标,即x=2然后,再结合二次函数顶点坐标的性质,即顶点坐标(2,3)满足a*(2^2)+b*2+c=3,代入这个关系式,可以求解出a、b、c的值。

3.已知二次函数的零点,求函数的表达式。

例如,已知二次函数y=ax^2+bx+c的零点为x=1和x=3,求函数的表达式。

解:已知x=1和x=3是函数的零点,代入函数的定义关系式,得到a*(1^2)+b*1+c=0和a*(3^2)+b*3+c=0。

进一步整理就可以得到一个由a、b、c构成的方程组,解这个方程组就可以确定a、b、c的值,从而得到二次函数的表达式。

二、研究动点运动规律问题:1.如何通过二次函数的图像研究点的运动规律?二次函数可以表示一个抛物线的图像,通过分析二次函数的各项系数可以得到抛物线的开口方向、顶点坐标等信息,从而研究点的运动规律。

例如,当二次函数的a大于0时,抛物线开口向上,顶点坐标为最低点,点的运动趋势是从下往上;当二次函数的a小于0时,抛物线开口向下,顶点坐标为最高点,点的运动趋势是从上往下。

2.如何通过已知条件研究点的运动规律?已知的条件可以包括点的初始位置、速度、加速度等信息,将这些信息转化成数学问题,从而得到二次函数的各项系数,进而通过研究二次函数的图像研究点的运动规律。

二次函数动点问题专题

二次函数动点问题专题

二次函数动点问题专题一、因动点产生的面积问题1、如图,抛物线与x轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由. (3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.cbxxy++-=2ABC2、如图,抛物线y=12x2+b x-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0)。

(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上一个动点,当CM+DM的值最小时,求m的值;(4)点P为直线BC下方抛物线上一动点,问当P在什么位置时,四边形ACPB 的面积最大,求出此时的P点坐标及最大面积。

3.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方抛物线上的动点.(1)求这个二次函数表达式;(2)连接PO、PC,并将△POC沿y轴对折,得到四边形POP′C,那么是否存在点P,使得四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.4、(2015中大附中一模)如图,已知抛物线c bx ax y ++=2过点A (6,0),B (-2,0),C (0,-3).(1)求此抛物线的解析式;(2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积;(3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠GQA =45º,求点Q 的坐标.5、(2016•越秀区一模)如图,已知抛物线y=x 2﹣(m +3)x +9的顶点C 在x 轴正半轴上,一次函数y=x +3与抛物线交于A 、B 两点,与x 、y 轴分别交于D 、E 两点.(1)求m 的值;(2)求A 、B 两点的坐标;(3)当﹣3<x <1时,在抛物线上是否存在一点P ,使得△PAB 的面积是△ABC 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.二、因动点产生的等腰三角形存在性问题1、已知:如图抛物线a x x y +-=421过点A (0,3),抛物线1y 与抛物线2y 关于y 轴对称,抛物线2y 的对称轴交x 轴于点B ,点P 是x 轴上的一个动点,点Q 是第四象限内抛物线1y 上的一点。

二次函数与动点问题

二次函数与动点问题

二次函数的动点问题1.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. (1)求正方形ABCD 的边长.(2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度.(3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标.(4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =∠的点P 有 个.(抛物线()20y ax bx c a =++≠的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.[解] (1)作BF y ⊥轴于F .()()01084A B ,,,,86FB FA ∴==,.10AB ∴=.(2)由图②可知,点P 从点A 运动到点B 用了10秒.又1010101AB =÷=,.图①图②P Q ∴,两点的运动速度均为每秒1个单位.(3)方法一:作PG y ⊥轴于G ,则PG BF ∥.GA AP FA AB ∴=,即610GA t=. 35GA t ∴=.3105OG t ∴=-.4OQ t =+,()113410225S OQ OG t t ⎛⎫∴=⨯⨯=+- ⎪⎝⎭.即231920105S t t =-++.19195323210b a -=-=⎛⎫⨯- ⎪⎝⎭,且190103≤≤, ∴当193t =时,S 有最大值.此时4763311051555GP t OG t ===-=,, 点P 的坐标为7631155⎛⎫⎪⎝⎭,.方法二:当5t =时,1637922OG OQ S OG OQ ====,,.设所求函数关系式为220S at bt =++.抛物线过点()63102852⎛⎫⎪⎝⎭,,,,1001020286325520.2a b a b ++=⎧⎪∴⎨++=⎪⎩,31019.5a b ⎧=-⎪⎪∴⎨⎪=⎪⎩,231920105S t t ∴=-++. 19195323210b a -=-=⎛⎫⨯- ⎪⎝⎭,且190103≤≤,∴当193t =时,S 有最大值. 此时7631155GP OG ==,,∴点P 的坐标为7631155⎛⎫ ⎪⎝⎭,. (4)2.2.如图①,Rt ABC △中,90B ∠=,30CAB ∠=.它的顶点A 的坐标为(100),,顶点B 的坐标为(5,10AB =,点P 从点A 出发,沿A B C →→的方向匀速运动,同时点Q 从点(02)D ,出发,沿y 轴正方向以相同速度运动,当点P 到达点C 时,两点同时停止运动,设运动的时间为t 秒.(1)求BAO ∠的度数.(2)当点P 在AB 上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分,(如图②),求点P 的运动速度.(3)求(2)中面积S 与时间t 之间的函数关系式及面积S 取最大值时点P 的坐标. (4)如果点P Q ,保持(2)中的速度不变,那么点P 沿AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小,当点P 沿这两边运动时,使90OPQ ∠=的点P 有几个?请说明理由.602个单位/秒. (01(22)(10)2t t =+-2912124t ⎛⎫=--+ ⎪⎝⎭.∴当92t =时,S 有最大值为1214,此时112P ⎛ ⎝⎭. (4)当点P 沿这两边运动时,90OPQ =∠的点P 有2个.①当点P 与点A 重合时,90OPQ <∠,当点P 运动到与点B 重合时,OQ 的长是12单位长度,作90OPM =∠交y 轴于点M ,作PH y ⊥轴于点H , 由OPH OPM △∽△得:11.53OM ==,所以OQ OM >,从而90OPQ >∠. 所以当点P 在AB 边上运动时,90OPQ =∠的点P 有1个. ②同理当点P 在BC 边上运动时,可算得1217.83OQ =+=. 而构成直角时交y 轴于03⎛ ⎝⎭,,20.217.83=>,所以90OCQ <∠,从而90OPQ =∠的点P 也有1个. 所以当点P 沿这两边运动时,90OPQ =∠的点P 有2个.(第29题图①)x t (第29题图②)第29题图①3.如图12,直线434+-=x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B .(1)求该二次函数的关系式;(2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积;(3)有两动点D 、E 同时从点O 出发,其中点D 以每秒23个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C →A 的路线运动,当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ∆的面积为S . ①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由;②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围; ③设0S 是②中函数S 的最大值,那么0S =.解:(1)令0=x ,则4=y ;令0=y 则3=x .∴()30A ,.()04C , ∵二次函数的图象过点()04C ,,∴可设二次函数的关系式为42++=bx ax y又∵该函数图象过点()30A ,.()10B -,∴093404a b a b =++⎧⎨=-+⎩,.解之,得34-=a ,38=b . ∴所求二次函数的关系式为438342++-=x x y(2)∵438342++-=x x y=()3161342+--x ∴顶点M 的坐标为1613⎛⎫ ⎪⎝⎭,过点M 作MF x ⊥轴于F ∴AFM AOCM FOCM S S S =+△四边形梯形=()1013164213161321=⨯⎪⎭⎫⎝⎛+⨯+⨯-⨯∴四边形AOCM (3)①不存在DE ∥OC∵若DE ∥OC ,则点D ,E 应分别在线段OA ,CA 上,此时12t <<,在Rt AOC △中,5AC =. 设点E 的坐标为()11x y ,∴54431-=t x ,∴512121-=t x ∵DE OC ∥,∴t t 2351212=-∴38=t ∵38=t >2,不满足12t <<.∴不存在DE OC ∥.②根据题意得D ,E 两点相遇的时间为1124423543=+++(秒)现分情况讨论如下: ⅰ)当01t <≤时,2134322S t t t =⨯=;ⅱ)当12t <≤时,设点E 的坐标为()22x y , ∴()544542--=t y ,∴516362t y -=∴t t t t S 5275125163623212+-=-⨯⨯=ⅲ)当2 <t <1124时,设点E 的坐标为()33x y ,,类似ⅱ可得516363ty -=设点D 的坐标为()44,y x∴532344-=t y , ∴51264-=t y∴AOE AOD S S S =-△△512632151636321-⨯⨯--⨯⨯=t t =572533+-t③802430=S4.关于x 的二次函数22(4)22y x k x k =-+-+-以y 轴为对称轴,且与y 轴的交点在x 轴上方. (1)求此抛物线的解析式,并在下面的直角坐标系中画出函数的草图;(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作AB 垂直于x 轴于点B ,再过点A 作x 轴的平行线交抛物线于点D ,过点D 作DC 垂直于x 轴于点C ,得到矩形ABCD .设矩形ABCD 的周长为l ,点A 的横坐标为x ,试求l 关于x 的函数关系式;(3)当点A 在y 轴右侧的抛物线上运动时,矩形ABCD 能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.参考资料:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,,对称轴是直线2bx a=-. 解:(1)据题意得:240k -=,2k ∴=±.当2k =时,2220k -=>. 当2k =-时,2260k -=-<.又抛物线与y 轴的交点在x 轴上方,2k ∴=.∴抛物线的解析式为:22y x =-+.函数的草图如图所示.(只要与坐标轴 的三个交点的位置及图象大致形状正确 即可)(2)解:令220x -+=,得x =不0x <<112A D x =,2112A B x =-+,211112()244l A B A D x x ∴=+=-++.当x >222A D x =,2222(2)2A B x x =--+=-. 222222()244l A D A B x x ∴=+=+-. l ∴关于x 的函数关系是:当0x <<2244l x x =-++;当x >2244l x x =+-.(3)解法一:当0x <<1111A B A D =,得2220x x +-=.解得1x =-1x =-.将1x =-代入2244l x x =-++, 得8l =.当x >2222A B A D =,得2220x x --=.解得1x =1x =1x =2244l x x =+-,得8l =. 综上,矩形ABCD 能成为正方形,且当1x =时正方形的周长为8;当1x =时,正方形的周长为8.解法二:当0x <<1x =-.∴正方形的周长11488l A D x ===.当x >1x =∴正方形的周长22488l A D x ===.综上,矩形ABCD 能成为正方形,且当1x =时正方形的周长为8;当1x =时,正方形的周长为8.解法三:点A 在y 轴右侧的抛物线上,0x ∴>,且点A 的坐标为2(2)x x -+,. 令AB AD =,则222x x -+=.∴222x x -+=,①或222x x-+=-②由①解得1x =-1x =-;由②解得1x =1x =又8l x =,∴当1x =-8l =;当1x =+8l =.综上,矩形ABCD 能成为正方形,且当1x =时正方形的周长为8;当1x =时,正方形的周长为8.5.已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E 作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.解:(1)解方程x2-10x+16=0得x1=2,x2=8∵点B在x轴的正半轴上,点C在y轴的正半轴上,且OB<OC∴点B的坐标为(2,0),点C的坐标为(0,8)又∵抛物线y=ax2+bx+c的对称轴是直线x=-2∴由抛物线的对称性可得点A的坐标为(-6,0)(2)∵点C(0,8)在抛物线y=ax2+bx+c的图象上∴c=8,将A(-6,0)、B(2,0)代入表达式,得第26题图⎩⎪⎨⎪⎧0=36a -6b +80=4a +2b +8解得⎩⎪⎨⎪⎧a =-23b =-83∴所求抛物线的表达式为y =-23x 2-83x +8(3)依题意,AE =m ,则BE =8-m , ∵OA =6,OC =8,∴AC =10 ∵EF ∥AC ∴△BEF ∽△BAC ∴EFAC =BEAB即EF 10=8-m8∴EF =40-5m4过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =45∴FG EF =45 ∴FG =45·40-5m4=8-m ∴S =S △BCE -S △BFE =12(8-m )×8-12(8-m )(8-m )=12(8-m )(8-8+m )=12(8-m )m =-12m 2+4m 自变量m 的取值范围是0<m <8 (4)存在. 理由:∵S =-12m 2+4m =-12(m -4)2+8且-12<0,∴当m =4时,S 有最大值,S 最大值=8 ∵m =4,∴点E 的坐标为(-2,0)∴△BCE 为等腰三角形.6.(14分)如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1)求抛物线的解析式.(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。

二次函数动点专项练习30题(有问题详解)ok

二次函数动点专项练习30题(有问题详解)ok

实用文档二次函数动点专项练习30题(有答案)1.在平面直角坐标系xOy中,二次函数y=﹣x2+x+2的图象与x轴交于点A,B(点B在点A的左侧),与y 轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=﹣x2+x+2的图象相交于点D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由.2.如图,已知抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D 分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连接EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.3.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.4.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.5.如图,已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A 在y轴上,P为线段AB上一动点(除A,B两端点外),过P作x轴的垂线与二次函数的图象交于点Q设线段PQ 的长为l,点P的横坐标为x.(1)求二次函数的解析式;(2)求l与x之间的函数关系式,并求出l的取值范围;(3)线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标;若不存在,请说明理由.6.如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=﹣2x+7经过抛物线上一点B(5,m),且与直线x=2交于点E.(1)求m的值及该抛物线的函数关系式;(2)若点D是x轴上一动点,当△DCB∽△ECB时,求点D的坐标;(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PC?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.7.矩形OABC在平面直角坐标系中的位置如图所示,其中OA=5,AB=2,抛物线y=﹣x2+3x的图象与BC交于D、E两点.(1)求DE的长_________;(2)M是BC上的动点,若OM⊥AM,求点M的坐标;(3)在抛物线上是否存在点Q,使以D、O、Q、M为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.8.如图,已知抛物线与x轴交于A(﹣4,0)和B(1,0)两点,与y轴交于C(0,﹣2)点.(1)求此抛物线的解析式;(2)设G是线段BC上的动点,作GH∥AC交AB于H,连接CH,当△BGH的面积是△CGH面积的3倍时,求H点的坐标;(3)若M为抛物线上A、C两点间的一个动点,过M作y轴的平行线,交AC于N,当M点运动到什么位置时,线段MN的值最大,并求此时M点的坐标.9.如图,抛物线y=ax2+bx+3(a≠0)的图象经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)直接写出点C的坐标;(2)试求抛物线y=ax2+bx+3(a≠0)的函数关系式;(3)连接AC,点E为线段AC上的动点(不与A、C重合),经过A、E、O三点的圆交直线AB于点F.当△OEF 的面积取得最小值时,请求出点E的坐标.10.抛物线y=a(x+6)2﹣3与x轴相交于A,B两点,与y轴相交于C,D为抛物线的顶点,直线DE⊥x轴,垂足为E,AE2=3DE.(1)求这个抛物线的解析式;(2)P为直线DE上的一动点,以PC为斜边构造直角三角形,使直角顶点落在x轴上.若在x轴上的直角顶点只有一个时,求点P的坐标;(3)M为抛物线上的一动点,过M作直线MN⊥DM,交直线DE于N,当M点在抛物线的第二象限的部分上运动时,是否存在使点E三等分线段DN的情况?若存在,请求出所有符合条件的M的坐标;若不存在,请说明理由.11.如图,已知抛物线y=ax2+bx+c经过点A(2,3),B(6,1),C(0,﹣2).(1)求此抛物线的解析式,并用配方法把解析式化为顶点式;(2)点P是抛物线对称轴上的动点,当AP⊥CP时,求点P的坐标;(3)设直线BC与x轴交于点D,点H是抛物线与x轴的一个交点,点E(t,n)是抛物线上的动点,四边形OEDC 的面积为S.当S取何值时,满足条件的点E只有一个?当S取何值时,满足条件的点E有两个?12.如图,抛物线的对称轴是直线x=1,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(﹣1,0)、(0,3)(1)求此抛物线对应的函数解析式;(2)若点P是抛物线上位于x轴上方的一个动点,求△ABP面积的最大值;(3)若过点A(﹣1,0)的直线AD与抛物线的对称轴和x轴围成的三角形的面积为6,求此直线的解析式.13.已知抛物线y=ax2+bx+c的对称轴为直线x=2,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C (0,﹣3).(1)求抛物线的解析式;(2)若点P在抛物线上运动(点P异于点A).①如图1.当△PBC面积与△ABC面积相等时.求点P的坐标;②如图2.当∠PCB=∠BCA时,求直线CP的解析式.14.如图,平面直角坐标系xOy中,点A的坐标为(﹣2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.15.如图,抛物线y=ax2+bx+(a≠0)经过A(﹣3,0)、C(5,0)两点,点B为抛物线的顶点,抛物线的对称轴与x轴交于点D.(1)求此抛物线的解析式;(2)动点P从点B出发,沿线段BD向终点D作匀速运动,速度为每秒1个单位长度,运动时间为ts,过点P作PM⊥BD交BC于点M,过点M作MN∥BD,交抛物线于点N.①当t为何值时,线段MN最长;②在点P运动的过程中,是否有某一时刻,使得以O、P、M、C为顶点的四边形为等腰梯形?若存在,求出此刻的t值;若不存在,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是.16.如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,0)和B.(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q 的坐标;(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.17.在平面直角坐标系xOy中,抛物线y=ax2++c与x轴交于点(﹣1,0)和点B,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)若P是抛物线上一点,且△ABP的面积是,求P点的坐标;(3)若D是线段BC上的一个动点,过点D作DE⊥BC,交OC于E点.设CD的长为t,四边形DEOB的周长为l,求l与t之间的函数关系式,并写出t的取值范围.18.(2011•宝安区三模)如图,在直角坐标系中,点A(2,0),点B(0,4),AB的垂直平分线交AB于C,交x 轴于D,(1)求点C、D的坐标;(2)求过点B、C、D的抛物线的解析式;(3)点P为CD间的抛物线上一点,求当点P在何处时,以P,C,D,B为顶点的四边形的面积最大?19.(2010•菏泽)如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.(1)求直线与抛物线的解析式;(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的?若存在,请求出点P的坐标;若不存在,请说明理由.20.已知抛物线y=ax2+bx+c的顶点为A(3,﹣3),与x轴的一个交点为B(1,0).(1)求抛物线的解析式.(2)P是y轴上一个动点,求使P到A、B两点的距离之和最小的点P0的坐标.(3)设抛物线与x轴的另一个交点为C.在抛物线上是否存在点M,使得△MBC的面积等于以点A、P0、B、C 为顶点的四边形面积的三分之一?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.21.如图,已知抛物线y=+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,﹣1).(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连接DC,当△DCE的面积最大时,求点D的坐标;(3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,求点P的坐标;若不存在,说明理由.22.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.23.如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a﹣b=﹣1.(1)求a,b,c的值;(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E 到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.①试求出S与t之间的函数关系式,并求出S的最大值;②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.24.如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是(1)中抛物线AB段上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△ACO相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.25.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.26.如图1,在平面直角坐标系xOy中,已知A、B两点的坐标分别为(4,0)、(0,2),将△OAB绕点O逆时针旋转90°后得到△OCD,抛物线y=ax2﹣2ax+4经过点A.(1)求抛物线的函数表达式,并判断点D是否在该抛物线上;(2)如图2,若点P是抛物线对称轴上的一个动点,求使|PC﹣PD|的值最大时点P的坐标;(3)设抛物线上是否存在点E,使△CDE是以CD为直角边的直角三角形?若存在,请求出所有点E的坐标;若不存在,请说明理由.27.已知抛物线y=x2+bx+1的顶点在x轴上,且与y轴交于A点.直线y=kx+m经过A、B两点,点B的坐标为(3,4).(1)求抛物线的解析式,并判断点B是否在抛物线上;(2)如果点B在抛物线上,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长h,点P的横坐标为x,当x为何值时,h取得最大值,求出这时的h值.28.如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;(3)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标.29.阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)是否存在抛物线上一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.30.如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2﹣2x﹣8=0的两个根.(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.二次函数动点30题参考答案:1.解:(1)当y=0时,有,解得:x1=4,x2=﹣1,∴A、B两点的坐标分别为(4,0)和(﹣1,0).(2)∵⊙Q与x轴相切,且与交于D、E两点,∴圆心Q位于直线与抛物线对称轴的交点处,∵抛物线的对称轴为,⊙Q的半径为H点的纵坐标m(m>0),∴D、E两点的坐标分别为:(﹣m,m),(+m,m)∵E点在二次函数的图象上,∴,解得或(不合题意,舍去).(3)存在.①如图1,当∠ACF=90°,AC=FC时,过点F作FG⊥y轴于G,∴∠AOC=∠CGF=90°,∵∠ACO+∠FCG=90°,∠GFC+∠FCG=90°,∴∠ACO=∠CFG,∴△ACO≌△CFG,∴m=OG=2+4=6;反向延长FC,使得CF=CF′,此时△ACF′亦为等腰直角三角形,易得y C﹣y F′=CG=4,∴m=CO﹣4=2﹣4=﹣2.②如图2,当∠CAF=90°,AC=AF时,过点F作FP⊥x轴于P,∵∠AOC=∠APF=90°,∠ACO+∠OAC=90°,∠FAP+∠OAC=90°,∴∠ACO=∠FAP,∴△ACO≌△∠FAP,∴FP=AO=4,∴m=FP=4;反向延长FA,使得AF=AF′,此时△ACF’亦为等腰直角三角形,易得y A﹣y F′=FP=4,∴m=0﹣4=﹣4.③如图3,当∠AFC=90°,FA=FC时,则F点一定在AC的中垂线上,此时存在两个点分别记为F,F′,分别过F,F′两点作x轴、y轴的垂线,分别交于E,G,D,H.∵∠DFC+∠CFE=∠CFE+∠EFA=90°,∴∠DFC=∠EFA,∵∠CDF=∠AEF,CF=AF,∴△CDF≌△AEF,∴CD=AE,DF=EF,∴四边形OEFD为正方形,∴CD=1,∴m=OC+CD=2+1=3.∵∠HF′C+∠CGF′=∠CF′G+∠GF′A,∴∠HF′C=∠GF′A,∵∠HF′C=∠GF′A,CF′=AF′,∴△HF′C≌△GF′A,∴HF′=GF′,CH=AG,∴四边形OHF′G为正方形,∴OH=CH﹣CO=AG﹣CO=AO﹣OG﹣CO=AO﹣OH﹣CO=4﹣OH﹣2,∴OH=1,∴m=﹣1.∵y=﹣x2+x+2=﹣(x﹣)2+,∴y的最大值为.∵直线l与抛物线有两个交点,∴m<.∴m可取值为:﹣4、﹣2、﹣1或3.综上所述,直线l上存在一点F,使得△ACF是等腰直角三角形,m的值为﹣4、﹣2、﹣1或3 2.(1)∵抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点,∴根据题意,得,解得,所以抛物线的解析式为:;(2)①证明:∵把C(m,m﹣1)代入得∴,解得:m=3或m=﹣2,∵C(m,m﹣1)位于第一象限,∴,∴m>1,∴m=﹣2舍去,∴m=3,∴点C坐标为(3,2),过C点作CH⊥AB,垂足为H,则∠AHC=∠BHC=90°,由A(﹣1,0)、B(4,0)、C(3,2)得AH=4,CH=2,BH=1,AB=5∴△AHC∽△CHB,∴∠ACH=∠CBH,∵∠CBH+∠BCH=90°∴∠ACH+∠BCH=90°∴∠ACB=90°,∵DE∥BC,DF∥AC,∴四边形DECF是平行四边形,∴▱DECF是矩形;②存在;连接CD∵四边形DECF是矩形,∴EF=CD,当CD⊥AB时,CD的值最小,∵C(3,2),∴DC的最小值是2,∴EF的最小值是2;3. (1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).此时点Q坐标为(3,1)或(,)4.解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y=ax2+bx+2.将A(﹣1,0),B(4,0)代入,解得,∴抛物线的解析式为:y=﹣x2+x+2.(2)存在.由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.在Rt△BOC中,OC=2,OB=4,∴BC==.在Rt△BOC中,设BC边上的高为h,则×h=×2×4,∴h=.∵△BEA∽△COB,设E点坐标为(x,y),∴=,∴y=±2将y=2代入抛物线y=﹣x2+x+2,得x1=0,x2=3.当y=﹣2时,不合题意舍去.∴E点坐标为(0,2),(3,2).(3)如图2,连结AC,作DE⊥x轴于点E,作BF⊥AD于点F,∴∠BED=∠BFD=∠AFB=90°.设BC的解析式为y=kx+b,由图象,得,∴,y BC=﹣x+2.由BC∥AD,设AD的解析式为y=﹣x+n,由图象,得0=﹣×(﹣1)+n∴n=﹣,y AD=﹣x﹣.∴﹣x2+x+2=﹣x﹣,解得:x1=﹣1,x2=5∴D(﹣1,0)与A重合,舍去;∴D(5,﹣3).∵DE⊥x轴,∴DE=3,OE=5.由勾股定理,得BD=.∵A(﹣1,0),B(4,0),C(0,2),∴OA=1,OB=4,OC=2.∴AB=5在Rt△AOC中,Rt△BOC中,由勾股定理,得AC=,BC=2,∴AC2=5,BC2=20,AB2=25,∴AC2+BC2=AB2∴△ACB是直角三角形,∴∠ACB=90°.∵BC∥AD,∴∠CAF+∠ACB=180°,∴∠CAF=90°.∴∠CAF=∠ACB=∠AFB=90°,∴四边形ACBF是矩形,∴AC=BF=,在Rt△BFD中,由勾股定理,得DF=,∴DF=BF,∴∠ADB=45°5.解:(1)依题意,设二次函数的解析式为y=a(x﹣2)2,由于直线y=x+2与y轴交于(0,2),∴x=0,y=2满足y=a(x﹣2)2,于是求得a=,二次函数的解析式为y=(x﹣2)2;(2)∵PQ⊥x轴且横坐标为x,∴l=(x+2)﹣(x﹣2)2=﹣x2+3x,由得点B的坐标为B(6,8),∵点p在线段AB上运动,∴0<x<6.∵,∴当x=3时,.∴0<l<;(3)作MQ∥AP.过M作MD∥PQ,MD交AB于N,则四边形PQMD为平行四边形.∴MD=PQ,∵M(2,0),∴D(2,4),∴MD=4.∴.∴x2﹣6x+8=0,∴x1=2,x2=4.∵2<x<6,∴x=4.∴P(4,6),Q(4,2).即P点的坐标为:(4,6)6.:(1)∵点B(5,m)在直线y=﹣2x+7上,∴m=﹣5×2+7=﹣3,∴B(5,﹣3),∵抛物线经过原点O和点A,对称轴为x=2,∴点A的坐标为(4,0)设所求的抛物线对应函数关系式为y=a(x﹣0)(x﹣4),将点B(5,﹣3)代入上式,得﹣3=a(5﹣0)(5﹣4),∴a=﹣,∴所求的抛物线对应的函数关系式为y=﹣x(x﹣4),即y=﹣x2+x.(2)∵点A(4,0),B(5,﹣3),C(2,0),∴AC=4﹣2=2,BC==3,当点D在直线x=2的右侧时,当△DCB∽△ECB,∴=,即=,解得:CD=9,∴点D的坐标为:(11,0),当点D在直线x=2的左侧时,∵∠ACB=∠CDB+∠CBA,且∠ACB<∠DCB,∴在△DCB中不可能存在与∠DCB相等的角,即此时不存在点使三角形相似;综上所述,存在点D的坐标是(11,0),使三角形相似;(3)存在符合条件的点P使PB=PC,∵C(2,0),B(5,﹣3),∴∠ACB=45°,BC垂直平分线的解析式为:y=x﹣5,∴,∴解得:,,∴符合条件的点P的坐标为(,)或(,).7.解:(1)由图知:点D、E的纵坐标为2,依题意,有:﹣x2+3x=2,解得:x1=1、x2=2∴D(1,2)、E(2,2),DE=1.(2)如右图;矩形OABC中,∠OMA=90°,∴∠CMO=∠MAB=90°﹣∠AMB,又∠OCM=∠MBA=90°,∴△OCM∽△MBA,有:=设点M(m,2),则:CM=m,BM=5﹣m∴=,解得m1=1,m2=4∴点M的坐标为(1,2)或(4,2).(3)若以D、O、Q、M为顶点的四边形是平行四边形,那么点D、M不共点,所以点M取(4,2);①当DM为平行四边形的对角线时,点O、Q关于DM的中点对称,即点Q的纵坐标为4,由图知,点Q必不在抛物线图象上,不合题意;②当DM为平行四边形的边时,OM∥OQ,且OM=OQ;∵D(1,2)、M(4,2)∴OQ=DM=3,即Q(﹣3,0)或(3,0);经验证,点(﹣3,0)不在抛物线图象上;点(3,0)在抛物线图象上;综上,存在符合条件的点Q,且坐标为(3,0)8. 解:(1)设抛物线的解析式:y=a(x+4)(x﹣1),代入C(0,﹣2),得:﹣2=a(0+4)(0﹣1),解得:a=故抛物线的解析式:y=(x+4)(x﹣1)=x2+x﹣2.(2)∵当△BGH的面积是△CGH面积的3倍,∴BG:CG=3:1,即BG:BC=3:4;∵GH∥AC,∴==;易知:BA=OB+OA=5,则BH=AB=,∴OH=BH﹣OB=﹣1=,即H(﹣,0).(3)设直线AC:y=kx+b,代入A(﹣4,0)、C(0,﹣2),得:,解得故直线AC:y=﹣x﹣2;设M(x,x2+x﹣2),则N(x,﹣x﹣2),则:MN=(﹣x﹣2)﹣(x2+x﹣2)=﹣x2﹣2x=﹣(x+2)2+2因此当M运动到OA的中垂线上,即M(﹣2,﹣3)时,线段MN的长最大.9.(1)令x=0,可得y=3,故点C的坐标为(0,3);(2)将点A(3,0),B(4,1)代入可得:,解得:,故函数解析式为y=x2﹣x+3;(3)如图,∵点A(3,0),点B(4,1),∴直线AB的解析式为:y=x﹣3,∵A(3,0),C(0,3),∴OA=3,OC=3,∴tan∠OAC===1,∴∠OAC=45°,∴∠OAC=∠OAF=45°,∵∠OEF=∠OAF=45°,∠OFE=∠OAE=45°,∴OE=OF,∠EOF=180°﹣45°×2=90°,∴△OEF是等腰直角三角形,∴S△OEF=×OE×OF=OE2,当OE最小时,S△FEO最小,根据等腰直角三角形的性质,当OE⊥AC时,OE最小,此时点E为AC的中点,故点E的坐标为(,).10.解:(1)易知抛物线的顶点D(﹣6,﹣3),则DE=3,OE=6;∵AE2=3DE=9,∴AE=3,即A(﹣3,0);将A点坐标代入抛物线的解析式中,得:a(﹣3+6)2﹣3=0,即a=,即抛物线的解析式为:y=(x+6)2﹣3=x2+4x+9.(2)设点P(﹣6,t),易知C(0,9);则PC的中点Q(﹣3,);易知:PC=;若以PC为斜边构造直角三角形,在x轴上的直角顶点只有一个时,以PC为直径的圆与x轴相切,即:||=,解得t=1,故点P(﹣6,1),当点P与点E重合时,由抛物线的解析式可知,A(﹣3,0),B(﹣9,0).所以P(﹣6,0),故点P的坐标为(﹣6,1)或(﹣6,0),(3)设点M(a,b)(a<0,b>0),分两种情况讨论:①当NE=2DE时,NE=6,即N(﹣6,6),已知D(﹣6,﹣3),则有:直线MN的斜率:k1=,直线MD的斜率:k2=;由于MN⊥DM,则k1•k2==﹣1,整理得:a2+b2+12a﹣3b+18=0…(△),由抛物线的解析式得:a2+4a+9=b,整理得:a2+12a﹣3b+27=0…(□);(△)﹣(□)得:b2=9,即b=3(负值舍去),将b=3代入(□)得:a=﹣6+3,a=﹣6﹣3,故点M(﹣6+3,3)或(﹣6﹣3,3);②当2NE=DE时,NE=,即N(﹣6,),已知D(﹣6,﹣3),则有:直线MN的斜率:k1=,直线DM的斜率:k2=;由题意得:k1•k2==﹣1,整理得:a2+b2+b+12a+=0,而a2+12a﹣3b+27=0;两式相减,得:2b2+9b+9=0,解得b=﹣2,b=﹣,(均不符合题意,舍去);综上可知:存在符合条件的M点,且坐标为:M(﹣6+3,3)或(﹣6﹣3,3).11.(1)将A,B,C三点坐标代入y=ax2+bx+c中,得,解得,∴y=﹣x2+x﹣2=﹣(x﹣)2+;(2)设点P(,m),分别过A、C两点作对称轴的垂线,垂足为A′,C′,∵AP⊥CP,∴△AA′P∽△PC′C,可得=,即=,解得m1=,m2=﹣,∴P(,)或(,﹣);(3)①由B(6,1),C(0,﹣2),得直线BC的解析式为y=x﹣2,∴D(4,0),当E点为抛物线顶点时,满足条件的点E只有一个,此时S=×4×2+×4×=,∵S△BOC=×2×6=6,∴当6≤S<时,满足条件的点E有两个.②当4<S<6时,﹣x2+x﹣2=0的△>0,方程有两个不相等的实数根,此时0<n<1,需满足的条件点E只能在点H与点B之间的抛物线上,故此时满足条件的点E只有一个.12. 解:(1)∵抛物线的对称轴是直线x=1,设抛物线的解析式是y=a(x﹣1)2+k,∴解得:,∴y=﹣(x﹣1)2+4即y=﹣x2+2x+3(2)∵y=﹣x2+2x+3,当y=0时,∴x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴B(3,0),A(﹣1,0)∴AB=4.设P(a,﹣a2+2a+3)∴S△ABP==﹣2(a﹣1)2+8,∴△ABP面积的最大值为8(3)设D的坐标为(1,b),∴=6,∴b=±6,∴D(1,6)或(1,﹣6),设AD的解析式为y=kx+b,得或解得:或∴直线AD的解析式为:y=3x+3或y=﹣3x﹣313. 解:(1)由题意,得,解得∴抛物线的解析式为y=﹣x2+4x﹣3;(2)①令﹣x2+4x﹣3=0,解得x1=1,x2=3,∴B(3,0),当点P在x轴上方时,如图1,过点A作直线BC的平行线交抛物线于点P,易求直线BC的解析式为y=x﹣3,∴设直线AP的解析式为y=x+n,∵直线AP过点A(1,0),代入求得n=﹣1.∴直线AP的解析式为y=x﹣1解方程组,得,∴点P1(2,1)当点P在x轴下方时,如图1:设直线AP1交y轴于点E(0,﹣1),把直线BC向下平移2个单位,交抛物线于点P2,P3,得直线P2P3的解析式为y=x﹣5,解方程组,得,∴P2(,),P3(,),综上所述,点P的坐标为:P1(2,1),P2(,),P3(,),②∵B(3,0),C(0,﹣3)∴OB=OC,∴∠OCB=∠OBC=45°设直线CP的解析式为y=kx﹣3如图2,延长CP交x轴于点Q,设∠OCA=α,则∠ACB=45°﹣α,∵∠PCB=∠BCA,∴∠PCB=45°﹣α,∴∠OQC=∠OBC﹣∠PCB=45°﹣(45°﹣α)=α,∴∠OCA=∠OQC又∵∠AOC=∠COQ=90°∴Rt△AOC∽Rt△COQ∴,∴,∴OQ=9,∴Q(9,0)∵直线CP过点Q(9,0),∴9k﹣3=0∴∴直线CP的解析式为.其它方法略.114.解:(1)设直线AB解析式为y=kx+b,将A(﹣2,2),B(6,6)代入,得,解得,∴y=x+3,令x=0,∴E(0,3);(2)设抛物线解析式为y=ax2+bx+c,将A(﹣2,2),B(6,6),O(0,0)三点坐标代入,得,解得,∴y=x2﹣x(3)依题意,得直线OB的解析式为y=x,设过N点且与直线OB平行的直线解析式为y=x+m,联立,得x2﹣6x﹣4m=0,当△=36+16m=0时,过N点与OB平行的直线与抛物线有唯一的公共点,则点N到BO的距离最大,所以△BON面积最大,解得m=﹣,x=3,y=,即N(3,);此时△BON面积=×6×6﹣(+6)×3﹣××3=;(4)过点A作AS⊥GQ于S,∵A(﹣2,2),B(6,6),N(3,),∵∠AOE=∠OAS=∠BOH=45°,OG=3,NG=,NS=,AS=5,在Rt△SAN和Rt△NOG中,∴tan∠SAN=tan∠NOG=,∴∠SAN=∠NOG,∴∠OAS﹣∠SAN=∠BOG﹣∠NOG,∴∠OAN=∠NOB,∴ON的延长线上存在一点P,使得△BOP∽△OAN,∵A(﹣2,2),N(3,),∵△BOP与△OAN相似(点B、O、P分别与点O、A、N对应),即△BOP∽△OAN,∴BO:OA=OP:AN=BP:ON又∵A(﹣2,2),N(3,),B(6,6),∴BO=6,OA=2,AN=,ON=,∴OP=,BP=,设P点坐标为(4x,x),∴16x2+x2=()2,解得x=,4x=15,∵P、P′关于直线y=x轴对称,∴P点坐标为(15,)或(,15).15.解:(1)∵抛物线y=ax2+bx+与x轴交于点A(﹣3,0),C(5,0)∴解得.(2)①延长NM交AC于E,∵B为抛物线y=﹣x2+x+的顶点,∴B(1,8).(5分)∴BD=8,OD=1.∵C(5,0),∴CD=4.∵PM⊥BD,BD⊥AC,∴PM∥AC.∴∠BPM=∠BDC=90°,∠BMP=∠BCD.∴△BPM∽△BDC.∴=.根据题意可得BP=t,∴=.∴PM=t.∵MN∥BD,PM∥AC,∠BDC=90°,∴四边形PMED为矩形.∴DE=PM=t.∴OE=OD+DE=1+t.∴E(1+t,0).∵点N在抛物线上,横坐标为1+t,∴点N的纵坐标为﹣(1+t)2+(1+t)+.∴NE=﹣(1+t)2+(1+t)+=﹣t2+8.∵PB=t,PD=ME,∴EM=8﹣t.∴MN=NE﹣EM=﹣t2+8﹣(8﹣t)=﹣(t﹣4)2+2.当t=4时,MN最大=2.②存在符合条件的t值.连接OP,如图(2).若四边形OPMC是等腰梯形,只需OD=EC.∵OD=1,DE=PM=t,∴5﹣(t+1)=1.解得t=6.∴当t=6时,四边形OPMC是等腰梯形16.(1)由题意,得:,解得:,∴所求抛物线的解析式为:y=﹣x2﹣x+4.(2)设点Q的坐标为(m,0),过点E作EG⊥x轴于点G.由﹣x2﹣x+4=0,得x1=2,x2=﹣4,∴点B的坐标为(2,0),∴AB=6,BQ=2﹣m,∵QE∥AC,∴△BQE∽△BAC,∴,即,∴EG=(2﹣m),∴S△CQE=S△CBQ﹣S△EBQ=BQ•CO﹣BQ•EG=(2﹣m)[4﹣(2﹣m)]=﹣(m+1)2+3又∵﹣4≤m≤2,∴当m=﹣1时,S△CQE有最大值3,此时Q(﹣1,0).(3)存在.在△ODF中.(ⅰ)若DO=DF,∵A(﹣4,0),D(﹣2,0)∴AD=OD=DF=2,又在Rt△AOC中,OA=OC=4,∴∠OAC=45°,∴∠DFA=∠OAC=45°,∴∠ADF=90°.此时,点F的坐标为(﹣2,2)(ⅱ)若FO=FD,过点F作FM⊥x轴于点M由等腰三角形的性质得:OM=MD=1,∴AM=3,∴在等腰直角△AMF中,MF=AM=3,∴F(﹣1,3);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=4,∴点O到AC的距离为2,而OF=OD=2<2,∴此时不存在这样的直线l,使得△ODF是等腰三角形,综上所述,存在这样的直线l,使得△ODF是等腰三角形,所求点F的坐标为:F(﹣2,2)或(﹣1,3).17.解:(1)∵抛物线y=ax2++c与x轴交于点(﹣1,0)和点B,与y轴交于点C(0,4).∴,解得:,∴y=﹣x2++4;(2)令y=0,可得x1=﹣1,x2=3,∴B点坐标为:(3,0),设P点坐标为(x,y),依据题意得出:×4×|y|=,∴|y|=,∵y=﹣x2++4;=﹣(x﹣1)2+,∴抛物线开口向下,顶点坐标为(1,),∴纵坐标最大值为:,∴y=﹣,∴﹣=﹣x2++4;解得:x1=﹣2,x2=4,∴P点的坐标为:(4,﹣),(﹣2,﹣);(3)如图所示:在△ABC中,OB=3,CO=4,∠BOC=90°,由勾股定理得BC=5,∵DE⊥BC,∴∠EDC=∠BOC=90°,∵∠DCE=∠OCB,∴△DCE∽△OCB,∴==,∵CD=t,∴==,∴CE=t,DE=t,∴四边形DEOB的周长为l=EO+BO+DB+DE=4﹣t+3+t+5﹣t=12﹣t,t的取值范围是:0<t<.18.:(1)过C作CD⊥x轴于G,∵点C为线段AB的中点,∴CG是△OAB的中位线,∴点C的坐标是(1,2),┅┅┅┅┅┅┅┅(1分)又∵OA=2,OB=4,∴AB=,AC=,显然△ABO∽△ADC,∴,即,┅┅┅┅┅┅┅┅┅┅┅(2分)∴AD=5OD=AD﹣OA=3,∴点D的坐标是(﹣3,0);┅┅┅┅┅┅┅┅┅(3分)(2)解:设过B(0,4),C(1,2),D(﹣3,0)的抛物线的关系式为y=ax2+bx+c,∴,┅┅┅┅┅┅(4分)解得:,┅┅┅┅┅┅┅┅┅┅┅┅(5分)∴抛物线的关系式为;┅┅┅┅┅┅┅┅┅(6分)(3)解:设点P的坐标为(x,y)连BD,过点P作PH⊥x轴于H,交BD于E,S四边形PBCD=S△BCD+S△PBD,∵S△BCD=S△ACD为定值,∴要使四边形PBCD的面积最大就是使△PBD的面积最大,①当P在BD间的抛物线上时,即﹣3<x<0,S△PBD=S△PBE+S△PED=PE×DH+PE×OH=PE×OD=PE,∵PE=PH﹣EH=y P﹣y E,┅┅┅┅┅┅┅┅(7分)直线BD的关系式为y=,∴PE=,=,当x=时,PE最大为,∴点P的坐标(,),┅┅┅┅┅┅┅┅┅┅(8分)②当P在BC间的抛物线上时,即0<x<1,同理可求出四边形PBCD的面积,很显然,此时四边形PBCD的面积要小于点P在BD间的抛物线上时的四边形PBCD的面积,故P点的坐标是(,).┅┅┅┅┅┅┅┅┅(9分)19.解:(1)将点C(2,2)代入直线y=kx+4,可得k=﹣1所以直线的解析式为y=﹣x+4当x=1时,y=3,所以B点的坐标为(1,3)将B、C、O三点的坐标分别代入抛物线y=ax2+bx+c,可得解得,所以所求的抛物线为y=﹣2x2+5x.(2)因为ON的长是一定值,所以当点P为抛物线的顶点时,△PON的面积最大,又该抛物线的顶点坐标为(),此时tan∠PON=.(3)存在;把x=0代入直线y=﹣x+4得y=4,所以点A(0,4)把y=0代入抛物线y=﹣2x2+5x得x=0或x=,所以点N(,0)设动点P坐标为(x,y),其中y=﹣2x2+5x (0<x<)则得:S△OAP=|OA|•x=2xS△ONP=|ON|•y=•(﹣2x2+5x)=(﹣2x2+5x)由S△OAP=S△ONP,即2x=•(﹣2x2+5x)解得x=0或x=1,舍去x=0得x=1,由此得y=3所以得点P存在,其坐标为(1,3)20.解:(1)设抛物线的解析式为:y=a(x﹣3)2﹣3,依题意有:a(1﹣3)2﹣3=0,a=,∴该抛物线的解析式为:y=(x﹣3)2﹣3=x2﹣x+.(2)设B点关于y轴的对称点为B′,则B′(﹣1,0);设直线AB′的解析式为y=kx+b,则有:,解得;∴y=﹣x﹣;故P0(0,﹣).(3)由(1)的抛物线知:y=x2﹣x+=(x﹣1)(x﹣5),故C(5,0);∵S四边形AP0BC=S△AB′C﹣S△BB′P0=×6×3﹣×2×=;∴S△BCM=S四边形AP0BC=;易知BC=4,则|y M|=;当M的纵坐标为时,x2﹣x+=,解得x=3+,x=3﹣;当M的纵坐标为﹣时,x2﹣x+=﹣,解得x=3+,x=3﹣;故符合条件的M点有四个,它们的坐标分别是:M1(3+,),M2(3﹣,),M3(3+,﹣),M4(3﹣,﹣).21.:(1)由于抛物线经过A(2,0),C(0,﹣1),则有:,解得;∴抛物线的解析式为:y=﹣x﹣1.(2)∵A(2,0),C(0,﹣1),∴直线AC:y=x﹣1;设D(x,0),则E(x,x﹣1),故DE=0﹣(x﹣1)=1﹣x;∴△DCE的面积:S=DE×|x D|=×(1﹣x)×x=﹣x2+x=﹣(x﹣1)2+,因此当x=1,即D(1,0)时,△DCE的面积最大,且最大值为.(3)由(1)的抛物线解析式易知:B(﹣1,0),可求得直线BC的解析式为:y=﹣x﹣1;设P(x,﹣x﹣1),因为A(2,0),C(0,﹣1),则有:AP2=(x﹣2)2+(﹣x﹣1)2=2x2﹣2x+5,AC2=5,CP2=x2+(﹣x﹣1+1)2=2x2;①当AP=CP时,AP2=CP2,有:2x2﹣2x+5=2x2,解得x=2.5,∴P1(2.5,﹣3.5);②当AP=AC时,AP2=AC2,有:2x2﹣2x+5=5,解得x=0(舍去),x=1,∴P2(1,﹣2);③当CP=AC时,CP2=AC2,有:2x2=5,解得x=±,∴P3(,﹣﹣1),P4(﹣,﹣1);综上所述,存在符合条件的P点,且P点坐标为:P1(2.5,﹣3.5)、P2(1,﹣2)、P3(,﹣﹣1)、P4(﹣,﹣1).22.解:(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:3=a(0﹣2)2﹣1,a=1;∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)分两种情况:①当点P1为直角顶点时,点P1与点B重合;令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;∵点A在点B的右边,∴B(1,0),A(3,0);∴P1(1,0);②当点A为△AP2D2的直角顶点时;∵OA=OC,∠AOC=90°,∴∠OAD2=45°;当∠D2AP2=90°时,∠OAP2=45°,∴AO平分∠D2AP2;又∵P2D2∥y轴,∴P2D2⊥AO,∴P2、D2关于x轴对称;设直线AC的函数关系式为y=kx+b(k≠0).将A(3,0),C(0,3)代入上式得:,解得;∴y=﹣x+3;设D2(x,﹣x+3),P2(x,x2﹣4x+3),则有:(﹣x+3)+(x2﹣4x+3)=0,即x2﹣5x+6=0;解得x1=2,x2=3(舍去);∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).∴P点坐标为P1(1,0),P2(2,﹣1);(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;当点P的坐标为P2(2,﹣1)(即顶点Q)时,平移直线AP交x轴于点E,交抛物线于F;∵P(2,﹣1),∴可设F(x,1);∴x2﹣4x+3=1,解得x1=2﹣,x2=2+;∴符合条件的F点有两个,即F1(2﹣,1),F2(2+,1).23.解:(1)由已知A(0,6),B(6,6)在抛物线上,得方程组,(1分)解得.(3分)(2)①运动开始t秒时,EB=6﹣t,BF=t,S=EB•BF=(6﹣t)t=﹣t2+3t,(4分)以为S=﹣t2+3t=﹣(t﹣3)2+,所以当t=3时,S有最大值.(5分)②当S取得最大值时,∵由①知t=3,∴BF=3,CF=3,EB=6﹣3=3,若存在某点R,使得以E,B,R,F为顶点的四边形是平行四边形,则FR1=EB且FR1∥EB,。

二次函数动点问题压轴题专题汇编(含答案)

二次函数动点问题压轴题专题汇编(含答案)

二次函数动点问题压轴题专题汇编(含答案)二次函数的动态问题(动点)正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限。

点P从点A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动。

当点P到达点C时,P,Q两点同时停止运动,设运动的时间为t秒。

1) 求正方形ABCD的边长。

解:作BF⊥y轴于F。

则FB=8,FA=6,AB=10.2) 当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分。

求P,Q两点的运动速度。

解:由图可知,点P从点A运动到点B用了10秒。

又AB=10,故P,Q两点的运动速度均为每秒1个单位。

3) 求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积S取最大值时点P的坐标。

解:方法一:作PG⊥y轴于G,则PG∥BF。

由相似三角形可得:GA/AP=FA/AB,即6/10=t/AP,故GA=3/5t。

又OG=10-3/5t,OQ=4+t。

则S=1/2×OQ×OG=1/2×(t+4)×(10-3/5t)=-3/10t²+19/5t+20.对XXX求导得:S'=(-6/5)t+19/5,令其为0,解得t=19/3.此时S有最大值。

此时GP=76/15,OG=31/5,P的坐标为(76/15,31/5)。

方法二:当t=5时,OG=7,OQ=9,S=63/2.设所求函数关系式为S=at²+bt+20.抛物线过点(5,63/2),则a=-3/10,b=19/2.代入可得S=-3/10t²+19/2t+20.同样可得最大值时t=19/3,P的坐标为(76/15,31/5)。

4) 若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠XXX的大小随着时间t的增大而增大;沿着BC边运动时,∠XXX的大小随着时间t的增大而减小。

中考压轴:二次函数的动点问题

中考压轴:二次函数的动点问题

中考压轴题型:二次函数的动点问题(学生篇)一 、动点成平行四边形问题 分类标准:讨论对角线例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况(1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC //例题1:在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.练习1:如图,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m .①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?②设△BCF 的面积为S ,求S 与m 的函数关系.例2.如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.练习2.如图,对称轴为直线72x =的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.72x =B(0,4)A(6,0)EFxyOA练习3:如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.(1)求抛物线2l 的函数关系式;(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形?(3)在2l 上是否存在点M ,使ABM △是以AB形?若存,求出点M 的坐标;若不存在,说明理由.练习4.如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式;(2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.二、图形折叠、运动中的二次函数问题例1. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△P AB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合.(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式; (3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.例2.已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由. .练习:如图, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自变量t 的取值范围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM在,说明理由.三、动点成直角三角形分类标准:讨论直角的位置或者斜边的位置例如:请在抛物线上找一点p 使得P B A 、、三点构成直角三角形,则可分成以下几种情况(1)当A ∠为直角时,AB AC ⊥ (2)当B ∠为直角时,BA BC ⊥ (3)当C ∠为直角时,CB CA ⊥例题:如图1,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式; (2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段34PQ AB =时,求tan ∠CED 的值;②当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标..练习:如图直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.四、 动点成等腰三角形分类标准:讨论顶角的位置或者底边的位置例如:请在抛物线上找一点p 使得P B A 、、三点构成等腰三角形,则可分成以下几种情况(1)当A ∠为顶角时,AB AC = (2)当B ∠为顶角时,BA BC = (3)当C ∠为顶角时,CB CA =例题:已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;A B C O P QDyx (3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.练习:已知抛物线y =ax 2+bx +c (a >0)经过点B (12,0)和C (0,-6),对称轴为x =2. (1)求该抛物线的解析式.(2)点D 在线段AB 上且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一个动点Q 以某一速度从C 出发沿线段CB 匀速运动,问是否存在某一时刻,使线段PQ 被直线CD 垂直平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度;若存在,请说明理由.(3)在(2)的结论下,直线x =1上是否存在点M ,使△MPQ 为等腰三角形?若存在,请求出所有点M 的坐标;若不存在,请说明理由.五、动点成相似三角形突破口:寻找比例关系以及特殊角例3:在梯形ABCD 中,AD ∥BC ,BA ⊥AC ,∠B = 450,AD = 2,BC = 6,以BC 所在直线为x 轴,建立如图所示的平面直角坐标系,点A 在y 轴上。

二次函数动点问题(提高篇)(最新整理)

二次函数动点问题(提高篇)(最新整理)

数学压轴题 二次函数动点问题1.如图,抛物线y =ax2+bx +c (a ≠0)与x 轴交于A (-3,0)、B 两点,与y 轴相交于点C (0,).当x =-4和x =2时,二次函数y =ax 2+bx +c (a ≠0)的函数值y 相等,连结AC 、3BC .(1)求实数a ,b ,c 的值;(2)若点M 、N 同时从B 点出发,均以每秒1个单位长度的速度分别沿BA 、BC 边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将△BMN 沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点Q ,使得以B ,N ,Q 为顶点的三角形与△ABC 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.解:(1)由题意得⎪⎩⎪⎨⎧++=+-==+-c b a c b a c c b a 244163039 解得a =-,b =-,c =.333323(2)由(1)知y =-x 2-x +,令y =0,得-x 2-x +=0.333323333323解得x 1=-3,x 2=1.∵A (-3,0),∴B (1,0).又∵C (0,),∴OA =3,OB =1,OC =,33∴AB =4,BC =2.∴tan ∠ACO ==,∴∠ACO =60°,∴∠CAO =30°.OCOA3同理,可求得∠CBO =60°,∠BCO =30°,∴∠ACB =90°.∴△ABC 是直角三角形.又∵BM =BN =t ,∴△BMN 是等边三角形.∴∠BNM =60°,∴∠PNM =60°,∴∠PNC =60°.∴Rt △PNC ∽Rt △ABC ,∴=.NC PN BCAB由题意知PN =BN =t ,NC =BC -BN =2-t ,∴=.t t 224∴t =.∴OM =BM -OB =-1=.343431如图1,过点P 作PH ⊥x 轴于H ,则PH =PM ·sin60°=×=.3423332MH =PM ·cos60°=×=.∴OH =OM +MH =+=1.3421323132∴点P 的坐标为(-1,).332(3)存在.由(2)知△ABC 是直角三角形,若△BNQ 与△ABC 相似,则△BNQ 也是直角三角形.∵二次函数y =-x 2-x +的图象的对称轴为x =-1.∴点P 在对称轴上.333323∵PN ∥x 轴,∴PN ⊥对称轴.又∵QN ≥PN ,PN =BN ,∴QN ≥BN .∴△BNQ 不存在以点Q 为直角顶点的情形.①如图2,过点N 作QN ⊥对称轴于Q ,连结BQ ,则△BNQ 是以点N 为直角顶点的直角三角形,且QN >PN ,∠MNQ =30°.∴∠PNQ =30°,∴QN ===.o 30cos PN 2334938∴==.∵=tan60°=,∴≠.BN QN 34938332BC AC 3BN QN BC AC ∴当△BNQ 以点N 为直角顶点时,△BNQ 与△ABC 不相似.②如图3,延长NM 交对称轴于点Q ,连结BQ ,则∠BMQ =120°.∵∠AMP =60°,∠AMQ =∠BMN =60°,∴∠PMQ =120°.∴∠BMQ =∠PMQ ,又∵PM =BM ,QM =QM .∴△BMQ ≌△PMQ ,∴∠BQM =∠PQM =30°.∵∠BNM =60°,∴∠QBN =90°.∵∠CAO =30°,∠ACB =90°.∴△BNQ ∽△ABC .∴当△BNQ 以点B 为直角顶点时,△BNQ ∽△ABC .设对称轴与x 轴的交点为D .∵∠DMQ =∠DMP =60°,DM =DM ,∴Rt △DMQ ≌Rt △DMP .∴DQ =PD ,∴点Q 与点P 关于x 轴对称.∴点Q 的坐标为(-1,-).332综合①②得,在抛物线的对称轴上存在点Q (-1,-),使得以B ,N ,Q 为顶点的三角332形与△ABC 相似.2.如图①,已知抛物线y =ax 2+bx +3(a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由;(3)如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.解:(1)由题意得解得⎩⎨⎧033903=+=++-b a b a ⎩⎨⎧21--==b a ∴所求抛物线的解析式为y =-x 2-2x +3;(2)存在符合条件的点P ,其坐标为P (-1,)或P (-1,)1010-或P (-1,6)或P (-1,);35(3)解法一:过点E 作EF ⊥x 轴于点F ,设E (m ,-m 2-2m +3)(-3< a <0)则EF =-m 2-2m +3,BF =m +3,OF =-m .∴S 四边形BOCE =S △BEF +S 梯形FOCE =BF ·EF +(EF +OC )·OF 2121=(m +3)(-m 2-2m +3)+(-m 2-2m +6)(-m ).2121=-m 2-m +=-(m +)2+2329292323863∴当m =-时,S 四边形BOCE 最大,且最大值为.23863此时y =-(-)2-2×(-)+3=∴此时E 点的坐标为(-,).232341523415解法二:过点E 作EF ⊥x 轴于点F ,设E (x ,y )(-3< x <0)则S 四边形BOCE =S △BEF +S 梯形FOCE =BF ·EF +(EF +OC )·OF 2121=(3+x )· y +(3+y )(-x )=(y -x )=(-x 2-3x +3)21212323=-(x +)2+2323863∴当x =-时,S 四边形BOCE 最大,且最大值为.23863此时y =-(-)2-2×(-)+3=∴此时E 点的坐标为(-,).2323415234153.如图,已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C .其中点A 在x 轴的负半轴上,点C 在y 轴的负半轴上,线段OA 、OC 的长(OA <OC )是方程x 2-5x +4=0的两个根,且抛物线的对称轴是直线x =1.(1)求A 、B 、C 三点的坐标;(2)求此抛物线的解析式;(3)若点D 是线段AB 上的一个动点(与点A 、B 不重合),过点D 作DE ∥BC 交AC 于点E ,连结CD ,设BD 的长为m ,△CDE 的面积为S ,求S 与m 的函数关系式,并写出自变量m 的取值范围.S 是否存在最大值?若存在,求出最大值并求此时D 点坐标;若不存在,请说明理由.解:(1)∵OA 、OC 的长是方程x 2-5x +4=0的两个根,OA <OC .∴OA =1,OC =4.∵点A 在x 轴的负半轴,点C 在y 轴的负半轴∴A (-1,0),C (0,-4).∵抛物线y =ax 2+bx +c 的对称轴为x =1∴由对称性可得B 点坐标为(3,0).∴A 、B 、C 三点的坐标分别是:A (-1,0),B (3,0),C (0,-4).(2)∵点C (0,-4)在抛物线y =ax 2+bx +c 图象上,∴c =-4.4分将A (-1,0),B (3,0)代入y =ax 2+bx -4得 解得⎩⎨⎧043904=+=---b a b a ⎪⎪⎩⎪⎪⎨⎧3834-==b a ∴此抛物线的解析式为y =x 2-x -4.3438(3)∵BD =m ,∴AD =4-m .在Rt △BOC 中,BC 2=OB 2+OC 2=3 2+4 2=25,∴BC =5.∵DE ∥BC ,∴△ADE ∽△ABC .∴=,即=.∴DE =.BC DE AB AD 5DE 44m-4520m -过点E 作EF ⊥AB 于点F ,则sin ∠EDF =sin ∠CBA ==.BC OC 54∴=,∴EF =DE =×=4-m .DE EF 5454544520m -∴S =S △CDE =S △ADC -S △ADE =(4-m )×4-(4-m )(4-m )=-m 2+2m 212121=-(m -2)2+2(0<m <4).21∵-<0 ∴当m =2时,S 有最大值2.21此时OD =OB -BD =3-2=1.∴此时D 点坐标为(1,0).4.如图,抛物线y =a (x +3)(x -1)与x 轴相交于A 、B 两点(点A 在点B 右侧),过点A 的直线交抛物线于另一点C ,点C 的坐标为(-2,6).(1)求a 的值及直线AC 的函数关系式;(2)P 是线段AC 上一动点,过点P 作y 轴的平行线,交抛物线于点M ,交x 轴于点N .①求线段PM 长度的最大值;②在抛物线上是否存在这样的点M ,使得△CMP 与△APN 相似?如果存在,请直接写出所有满足条件的点M 的坐标(不必写解答过程);如果不存在,请说明理由.解:(1)由题意得6=a (-2+3)(-2-1),∴a =-2∴抛物线的解析式为y =-2(x +3)(x -1),即y =-2x 2-4x +6令-2(x +3)(x -1)=0,得x 1=-3,x 2=1∵点A 在点B 右侧,∴A (1,0),B (-3,0)设直线AC 的函数关系式为y =kx +b ,把A (1,0)、C (-2,6)代入,得 解得⎩⎨⎧620=+=+-b k b k ⎩⎨⎧22==-b k ∴直线AC 的函数关系式为y =-2x +2(2)①设P 点的横坐标为m (-2≤ m ≤1),则P (m ,-2m +2),M (m ,-2m 2-4m +6)∴PM =-2m 2-4m +6-(-2m +2)=-2m 2-2m +4=-2(m +)2+2129∴当m =-时,线段PM 长度的最大值为2129②存在. M 1(0,6), M 2(-,)41855ⅰ)如图1,当M 为直角顶点时,连结CM ,则CM ⊥PM ,△CMP ∽△ANP ∵点C (-2,6),∴点M 的纵坐标为6,代入y =-2x 2-4x +6得-2x 2-4x +6=6,∴x =-2(舍去)或x =0∴M 1(0,6)(此时点M 在y 轴上,即抛物线与y 轴的交点,此时直线MN 与y 轴重合,点N 与原点O 重合)ⅱ)如图2,当C 为直角顶点时,设M (m ,-2m 2-4m +6)(-2≤ m ≤1)过C 作CH ⊥MN 于H ,连结CM ,设直线AC 与y 轴相交于点D 则△CMP ∽△NAP又∵△HMC ∽△CMP ,△NAP ∽△OAD ,∴△HMC ∽△OAD ∴=OD CH OAMH∵C (-2,6),∴CH =m +2,MH =-2m 2-4m +6-6=-2m 2-4m 在y =-2x +2中,令x =0,得y =2∴D (0,2),∴OD =2 ∴=22+m 1422m m --整理得4m 2+9m +2=0,解得m =-2(舍去)或m =-41当m =-时,-2m 2-4m +6=(-)2-4×(-)+6= ∴M 2(-,)41414185541855。

九年级数学 二次函数动点问题 专题练习

九年级数学 二次函数动点问题 专题练习

∴ 所求的抛物线对应的函数关系式为 y 1 x(x 4) ,即 y 1 x 2 x .
4
4
(2)①直线 y=-2x-1 与 y 轴、直线 x=2 的交点坐标分别为 D(0,-1) E(2,-5).
过点 B 作 BG∥ x 轴,与 y 轴交于 F、直线 x=2 交于 G,则点 G 坐标为(2,3)
二次函数的动点问题
1 如图,已知抛物线经过原点 O 和 x 轴上另一点 A,它的对称轴 x=2 与 x 轴 交于点 C,直线 y=-2x-1 经过抛物线上一点 B(-2,m),且与 y 轴、直线 x=2 分别交于点 D、E.
(1)求 m 的值及该抛物线对应的函数关系式; (2)求证:① CB=CE ;② D 是 BE 的中点; (3)若 P(x,y)是该抛物线上的一个动点,是否存在这样的点 P,使得 PB=PE,若存在,试求出所有符合 条件的点 P 的坐标;若不存在,请说明理由
BG⊥直线 x=2,BG=4.在 Rt△ BGC 中,BC= CG 2 BG 2 32 42 5 . ∵ CE=5,∴ CB=CE=5.
②过点 E 作 EH∥ x 轴,交 y 轴于 H,则点 H 的坐标为 H(0,-5).
又点 FD=DH=4,BF=EH=2,∠ BFD=∠ EHD=90°.
∴ △ DFB≌ △ DHE (SAS),∴ BD=DE. 即 D 是 BE 的中点.
(3)由于 PB=PE,∴ 点 P 必在线段 BE 的中垂线 CD 上, 又点 P 在抛物线 y 1 x 2 x 上,
4 ∴ 符合条件的点 P 应是直线 CD 与该抛物线的交点.
设直线 CD 对应的函数关系式为 y=kx+b.
其中 C 点的横坐标为 2. (1)求 A、B 两点的坐标及直线 AC 的函数表达式; (2)P 是线段 AC 上的一个动点,过 P 点作 y 轴的平行线交抛物线于 E 点,求线段 PE 长度的最大值; (3)点 G 抛物线上的动点,在 x 轴上是否存在点 F,使 A、C、F、G 这样的四个点为顶点的四边形是

动点问题解析(二次函数与动点1)

动点问题解析(二次函数与动点1)

动点问题解析(二次函数与动点)1.如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.&2.如图,抛物线y =12x 2+bx -2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (-1,0). (1)求抛物线的解析式及顶点D 的坐标;(2)判断△ABC 的形状,证明你的结论; (3)点M (m ,0)是x 轴上的一个动点,当MC +MD 的值最小时,求m 的值.3如图,抛物线2y ax bx c =++交x 轴于点(3,0)A -,点(1,0)B ,交y 轴于点(0,3)E -.点C是点A 关于点B 的对称点,点F 是线段BC 的中点,直线l 过点F 且与y 轴平行.直线y x m =-+过点C ,交y 轴于点D .(1)求抛物线的函数表达式;(2)点K 为线段AB 上一动点,过点K 作x 轴的垂线与直线CD 交于点H ,与抛物线交于点G ,求线段HG 长度的最大值;(3)在直线l 上取点M ,在抛物线上取点N ,使以点A ,C ,M ,N 为顶点的四边是平行四边形,求点N 的坐标.题图264.抛物线y =ax 2+bx+c 与x 轴的交点为A (m -4,0)和B(m ,0),与直线y =-x +p 相交于点A 和点C(2m -4,m -6).(1)求抛物线的解析式;(2)若点P 在抛物线上,且以点P 和A,C 以及另一点Q 为顶点的平行四边形ACQP 面积为12,求点P,Q 的坐标;#(3)在(2)条件下,若点M 是x 轴下方抛物线上的动点,当⊿PQM 的面积最大时,请求出⊿PQM 的最大面积及点M 的坐标。

【经典】二次函数的动点问题(各类题型含答案解析)

【经典】二次函数的动点问题(各类题型含答案解析)

【精编版】二次函数的动态问题1.如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,.(1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.[解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,.设抛物线2C 的解析式是2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,. 解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-. (2)由(1)可计算得点(31)(31)M N --,,,.过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+.根据中心对称的性质OA ODOM ON ==,,所以四边形MDNA 是平行四边形.所以2ADN S S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. (3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤). 所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形.由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得1222t t =,(舍). 所以在运动过程中四边形MDNA可以形成矩形,此时2t =.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数动点问题典型例题等腰三角形问题1. 如图,在平面直角坐标系中,已知抛物线y=ax2+bx的对称轴为x=,且经过点A(2,1),点P是抛物线上的动点,P的横坐标为m(0<m<2),过点P作PB⊥x轴,垂足为B,PB 交OA于点C,点O关于直线PB的对称点为D,连接CD,AD,过点A作AE⊥x轴,垂足为E.(1)求抛物线的解析式;(2)填空:①用含m的式子表示点C,D的坐标:C(,),D(,);②当m=时,△ACD的周长最小;(3)若△ACD为等腰三角形,求出所有符合条件的点P的坐标.面积最大1. 如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2.已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形.(1)求过A、B、C三点的抛物线的解析式;(2)若直线CD∥AB交抛物线于D点,求D点的坐标;(3)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB的最大面积;若没有,请说明理由.3. (2015•黔西南州)(第26题)如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形A′B′OC′.抛物线y=﹣x2+2x+3经过点A、C、A′三点.(1)求A、A′、C三点的坐标;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△C′OD的面积;(3)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M的坐标.最短路径1.(2014绵阳)如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.2. (2014•泸州)如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣,0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程=0的根,求a的值;(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.平行四边形1. (2015•贵州省贵阳,第24题9分)如图,经过点C(0,﹣4)的抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣2,0),B两点.(1)a>0,b2﹣4ac>0(填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.2. (14分)(2015•葫芦岛)(第26题)如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.3.(2015•辽宁抚顺)(第26题,14分))已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图①,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.4.(2015•梧州,第26题12分)如图,抛物线y=ax2+bx+2与坐标轴交于A、B、C三点,其中B(4,0)、C(﹣2,0),连接AB、AC,在第一象限内的抛物线上有一动点D,过D作DE⊥x轴,垂足为E,交AB于点F.(1)求此抛物线的解析式;(2)在DE上作点G,使G点与D点关于F点对称,以G为圆心,GD为半径作圆,当⊙G 与其中一条坐标轴相切时,求G点的横坐标;(3)过D点作直线DH∥AC交AB于H,当△DHF的面积最大时,在抛物线和直线AB上分别取M、N两点,并使D、H、M、N四点组成平行四边形,请你直接写出符合要求的M、N 两点的横坐标.5. (2015•甘南州第28题12分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c,经过A(0,﹣4),B(x1,0),C (x2,0)三点,且|x2﹣x1|=5.(1)求b,c的值;(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.角度问题1. (2015•宁德第24题14分)已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3).(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和∠ABC的度数;(3)P为线段BC上一点,连接AC,AP,若∠ACB=∠PAB,求点P的坐标.函数应用1. (2015•广东茂名23,8分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)1 3 6 10 …日销售量(m件)198 194 188 180 …②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<50 50≤x≤90销售价格(元/件)x+60 100(1)求m关于x的一次函数表达式;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格﹣每件成本)】(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.相似三角形1. (2015•辽宁铁岭)(第26题)如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A(﹣3,0),B(1,0)两点.与y轴交于点C,点D与点C关于抛物线的对称轴对称.(1)求抛物线的解析式,并直接写出点D的坐标;(2)如图1,点P从点A出发,以每秒1个单位长度的速度沿A→B匀速运动,到达点B时停止运动.以AP为边作等边△APQ(点Q在x轴上方),设点P在运动过程中,△APQ与四边形AOCD重叠部分的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式;(3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC 相似.请直接写出所有符合条件的点M坐标.解析式的应用1. (2015•天津,第25题10分)(2015•天津)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=l的怙况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.综合练习1. (2015•辽宁阜新)(第18题,12分)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.2. (2015•黑龙江省大庆,第28题9分)已知二次函数y=x2+bx﹣4的图象与y轴的交点为C,与x轴正半轴的交点为A,且tan∠ACO=(1)求二次函数的解析式;(2)P为二次函数图象的顶点,Q为其对称轴上的一点,QC平分∠PQO,求Q点坐标;(3)是否存在实数x1、x2(x1<x2),当x1≤x≤x2时,y的取值范围为≤y≤?若存在,直接写在x1,x2的值;若不存在,说明理由.3. (2015•北海,第26题14分)如图1所示,已知抛物线y=﹣x2+4x+5的顶点为D,与x轴交于A、B两点,与y轴交于C 点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上.(1)直接写出D点和E点的坐标;(2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,S△HGF:S△BGF=5:6?(3)图2所示的抛物线是由y=﹣x2+4x+5向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.。

相关文档
最新文档