北师大版六年级上册数学知识点总结
新北师大版六年级数学上册各单元知识点
新北师大版六年级数学上册各单元知识点研究必备,欢迎下载六年级数学上册必背知识。
一、圆的知识1.圆是由曲线围成的平面封闭图形,圆心用字母O表示。
连接圆心和圆上任意一点的线段叫半径,用字母r表示。
连接圆心并且两端都在圆上的线段叫直径,用字母d表示。
2.圆有无数条半径和直径。
圆心决定圆的位置,半径决定圆的大小。
3.在同一个圆中,所有的半径都相等,所有的直径都相等。
直径是半径的2倍,半径是直径的一半。
4.车轮为什么是圆的?因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。
5.圆内最长的线段是直径,圆规两脚之间的距离是半径。
6.在一个正方形里画一个最大的圆,圆的直径就是正方形的边长。
在一个长方形里画一个最大的圆,圆的直径就是长方形的宽。
7.把圆对折,再对折(对折2次)就能找到圆心。
因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。
半圆只有1条对称轴。
8.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也说这个图形关于这条直线的轴对称。
对称轴是一条直线。
9.常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。
10.圆一周的长度就是圆的周长。
圆的周长总是直径的3倍多一些,圆的周长除以直径的商(圆的周长与直径的比值)是一个固定的数,我们把它叫做圆周率,用字母π表示,π是一个无限不循环小数,为了计算简便,通常取近似值3.14.11.圆的周长=πd=2πr。
12.圆所占平面的大小叫圆的面积。
把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。
13.如果用S表示圆的面积,r表示圆的半径,那么圆的面积公式:S圆=πr²。
北师大版六年级上册数学全册知识点归纳整理
北师大版小学六年级数学上册知识点整理一、圆的知识1、圆是由曲线围成的平面封闭图形。
圆中心的一点叫圆心,用字母O 表示。
以某一点为圆心,可以画无数个圆。
连接圆心和圆上任意一点的线段叫半径,用字母r 表示。
连接圆心并且两端都在圆上的线段叫直径,用字母d 表示。
2、圆有无数条半径,有无数条直径。
圆心决定圆的位置,半径决定圆的大小。
3、在同一个圆中,所有的半径都相等,所有的直径都相等。
在同一个圆中,直径是半径的2倍,半径是直径的12。
4、①车走一圈的距离,相当于车轮的周长。
车走的距离=车轮的周长×走的圈数②把一条线围成一个图形,那么这么线的长度相当于这个图形的周长5、圆内最长的线段是直径,圆规两脚之间的距离是半径。
6、在一个正方形里画一个最大的圆,圆的直径就是正方形的边长。
在一个长方形里画一个最大的圆,圆的直径就是长方形的宽7、把圆对折,再对折(对折2次)就能找到圆心。
因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。
半圆只有1条对称轴。
8、如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫轴对称图形,这条直线叫做对称轴,这时,我们也说这个图形关于这条直线的轴对称。
对称轴是一条直线。
9、常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。
10、圆一周的长度就是圆的周长。
圆的周长总是直径的3倍多一些,圆的周长除以直径的商(圆的周长与直径的比值)是一个固定的数,我们把它叫做圆周率,用字母π表示, π是一个无限不循环小数,为了计算简便,通常取近似值3.14。
11、圆的周长=圆周率×直径 即 C 圆=πd =2πr 。
12、圆所占平面的大小叫圆的面积。
把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。
(完整版)北师大版六年级数学上册知识点汇总
北师大版六年级数学上册知识点汇总第一单元圆1.圆的定义:由曲线围成的封闭图形,且圆上任意一点到中心点(圆心)的距离都相等。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd或C=2πr圆周长=π×直径或圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr² 或者S=π(d/2)² 或者15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形(圆环),外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr² 或 S=π(R²-r²)。
北师大版六年级上册数学知识点归纳总结
北师大版六年级上册数学知识点归纳总结一、分数乘法1. 分数乘法的意义:乘法的意义:求几个相同加数的和的简便运算。
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2. 分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分数的分子和分母都不能为0。
3. 分数与整数相乘的计算方法:分数与整数相乘就是分数的分子和整数相乘,用分数的分母不变。
计算时能约分的要先约分再计算。
4. 分数与小数相乘的计算方法:一个数与小数相乘时,可以把小数看成是分数(不含小数位)与纯小数相乘,然后再约分。
如:可以看成是15/100,然后再约分。
二、分数除法1. 分数除法的意义:分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
2. 分数除法的计算方法:除以一个数(0除外),等于乘这个数的倒数。
被除数不变,除数扩大(或缩小)几倍(0除外),商就缩小(或扩大)相同的倍数;被除数和除数同时扩大或者缩小相同的倍数(0除外),商不变。
三、分数四则混合运算1. 分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同。
2. 运算定律在分数四则混合运算同样适用。
加法结合律、加法交换律、乘法交换律、乘法结合律、乘法分配律。
四、百分数1. 百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫做百分率或百分比。
2. 百分数与分数的互化:把百分数化成分数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
如:%=375/1000=75/200=3/8;百分数的小数点向右移动两位就是分数,向右移动两位小数点就是除以100。
如:=375/1000=3/8。
六年级上册数学知识点北师大版
六年级上册数学知识点北师大版一、圆。
1. 圆的认识。
- 圆是由一条曲线围成的封闭图形。
圆心用字母O表示,半径用字母r表示,直径用字母d表示。
- 在同圆或等圆中,d = 2r,r=(d)/(2)。
2. 圆的周长。
- 圆的周长C = 2π r或C=π d(π是圆周率,通常取3.14)。
- 半圆的周长C=π r + 2r=( π + 2)r。
3. 圆的面积。
- 圆的面积S=π r^2。
- 圆环的面积S = π R^2-π r^2=π(R^2-r^2)(R为外圆半径,r为内圆半径)。
二、分数混合运算。
1. 分数混合运算顺序。
- 与整数混合运算顺序相同,先算乘除,后算加减,有括号的先算括号里面的。
2. 解决问题。
- 连续求一个数的几分之几是多少,用乘法计算。
例如:求a的(b)/(c)的(d)/(e)是多少,列式为a×(b)/(c)×(d)/(e)。
- 已知一个数比另一个数多(少)几分之几,求这个数。
- 单位“1”已知,用乘法。
如:已知a,比a多(b)/(c)的数是a×(1+(b)/(c));比a少(b)/(c)的数是a×(1-(b)/(c))。
- 单位“1”未知,用除法或列方程。
设单位“1”为x,若已知数比单位“1”多(b)/(c),则x×(1+(b)/(c))=已知数;若已知数比单位“1”少(b)/(c),则x×(1 -(b)/(c))=已知数。
三、观察物体。
1. 观察的范围。
- 观察点的位置越低,观察到的范围越小;观察点的位置越高,观察到的范围越大。
- 观察点离障碍物越近,观察到的范围越小;观察点离障碍物越远,观察到的范围越大。
2. 天安门广场。
- 根据照片或画面判断拍摄的位置与画面的相互关系。
四、百分数。
1. 百分数的认识。
- 百分数表示一个数是另一个数的百分之几。
百分数也叫百分率或百分比。
百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”。
新北师大版六年级数学上册各单元知识点
六年级数学上册必背知识一、圆的知识1、圆是由曲线围成的平面封闭图形。
圆中心的一点叫圆心,用字母O 表示。
以某一点为圆心,可以画无数个圆。
连接圆心和圆上任意一点的线段叫半径,用字母r 表示。
连接圆心并且两端都在圆上的线段叫直径,用字母d 表示。
2、圆有无数条半径,有无数条直径。
圆心决定圆的位置,半径决定圆的大小。
3、在同一个圆中,所有的半径都相等,所有的直径都相等。
在同一个圆中,直径是半径的2倍,半径是直径的12。
4、车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。
5、圆内最长的线段是直径,圆规两脚之间的距离是半径。
6、在一个正方形里画一个最大的圆,圆的直径就是正方形的边长。
在一个长方形里画一个最大的圆,圆的直径就是长方形的宽。
7、把圆对折,再对折(对折2次)就能找到圆心。
因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。
半圆只有1条对称轴。
8、如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也说这个图形关于这条直线的轴对称。
对称轴是一条直线。
9、常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。
10、圆一周的长度就是圆的周长。
圆的周长总是直径的3倍多一些,圆的周长除以直径的商(圆的周长与直径的比值)是一个固定的数,我们把它叫做圆周率,用字母π表示, π是一个无限不循环小数,为了计算简便,通常取近似值3.14。
11、圆的周长=圆周率×直径 即 C 圆=πd =2πr 。
12、圆所占平面的大小叫圆的面积。
把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。
13、如果用S 表示圆的面积, r 表示圆的半径,那么圆的面积公式:S 圆=πr 2 。
北师大版小学数学六年级上册知识点整理
第一单元 圆圆概念总结1、圆的定义:由一条曲线围成的封闭图形。
圆是平面上的一种曲线图形。
2、圆的中心叫圆心。
圆心一般用字母O 表示。
将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r 表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d 表示。
5、圆心确定圆的位置,半径确定圆的大小。
6、圆内最长的线段是直径,圆规两脚之间的距离是半径。
7、在同一个圆内,所有的半径都相等,所有的直径都相等。
8、在同一个圆内,有无数条半径,有无数条直径。
9、在同一个圆内,直径的长度是半径的2倍,用字母表示为:d =2r用文字表示为:直径=半径×2半径的长度是直径的一半,用字母表示为: r = d 。
12用文字表示为:半径=直径÷210、圆的周长:围成圆的曲线的长度叫做圆的周长。
11、圆的周长总是直径的3倍多一些,周长除以直径的商是一个固定的数。
我们把它叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,通常取π3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
π≈12、圆的周长公式:C= d 或C=2rππ圆周长=×直径 圆周长=×半径×2ππ13、圆的面积:圆所占面积的大小叫圆的面积。
14、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半, 用字母(r )表示,宽相当于圆的半径,用字母(r )表示,因为长方形的面积=长π×宽,所以圆的面积= r ×r 。
π圆的面积公式:S=r²。
π15、圆的面积公式:S=r²或者S=(d 2)²ππ÷或者S=(C 2)²π÷π÷16、在正方形里画一个最大的圆,圆的直径等于正方形的边长。
北师大版六年级上册数学期末复习(全册知识点汇总)
北师大版六年级上册数学全册知识点汇编第一单元圆圆概念总结1.圆的定义:圆是由曲线围成的平面封闭图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
圆内最长的线段是直径6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r r =12d用文字表示为:半径=直径÷2 直径=半径×2车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。
9.圆的周长:围成圆的曲线的长度叫做圆的周长。
或者,圆一周的长度就是圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C圆=πd =2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13、圆所占平面的大小叫圆的面积。
把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。
如果用S表示圆的面积, r表示圆的半径,那么圆的面积公式:S圆=πr2 14.圆的面积公式:S=πr²或者S=π(d÷2)² 或者S=π(C÷π÷2)²15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
北师大版六年级数学上册全册知识点梳理
北师大版六年级数学上册知识点梳理第一单元圆圆概念总结1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d 表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
d用字母表示为:d=2r r =12用文字表示为:半径=直径÷2 直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr²或者S=π(d÷2)²或者S=π(C÷π÷2)²15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是:S=πR²-πr²或S=π(R²-r²)。
北师大版六年级上册数学知识点整理
第一单元圆1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等。
3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2rr=1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积=πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr²或者S=π(d/2)²15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
北师大版小学六年级数学上册知识点归纳
北师大版小学六年级数学上册知识点归纳第一单元圆1、使学生认识圆的特征:圆的半径、直径、圆心。
认识在同圆内半径和直径的关系。
知道圆是轴对称图形,有无数条对称轴,而这些对称轴都过圆心。
知道生活中有了圆才使我们的生活更美好。
2、认识同心圆、等圆。
知道圆的位置由圆心决定,圆的大小由半径或直径决定。
等圆的半径相等,位置不同;而同心圆的半径不同,位置相同。
3、使学生知道圆的周长和圆周率的含义,掌握圆的周长的计算公式,能够正确地计算圆的周长.介绍祖冲之在圆周率研究上的成就,渗透爱国主义教育。
在运用上,要能根据圆的周长算直径或半径,会算半圆的周长:圆的周长×1/2+直径。
会求组合图形的周长。
4、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
5、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
会灵活运用圆的面积公式。
已知圆的周长会算圆的面积,会求组合图形的面积。
会算圆环的面积,并且知道在周长相等的情况下,正方形、长方形、圆三种图形中,圆的面积。
6、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
第二单元百分数的应用本单元重点讲解百分数在生活中的应用,知识点为:1、知道百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
百分数通常不写成分数形式,而用百分号“%”表示;百分数有时也定义为分母是100的分数,但百分数与分数是有区别的:分数既可表示具体的量,又可表示两个数量间的倍比关系;然而百分数只能表示两个数量间的倍比关系;所以是不名数,也就是不能带单位的数。
2、在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
3、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
4、知道出勤率、出粉率、成活率等百分数的意义及在实际生活中的应用,会计算这种百分数。
北师大版数学六年级上册知识点归纳
北师大版数学六年级上册知识点归纳北师大版数学六年级上册内容涉及了很多数学知识点,今天我将对它们进行一个系统的归纳总结。
下面将按照不同的章节进行分类,简要概括每个章节的核心知识点,并提供一些例题帮助读者更好地理解和掌握这些知识。
第一章:整数和有理数本章主要介绍了整数和有理数的概念及其运算。
学习重点包括:- 整数的概念和表示方法;- 整数的加法和减法运算;- 有理数的概念和性质。
例如,对于整数的加法和减法运算,有以下例题:1. 计算:(-5) + 8 - (-3) = ?2. 简化:(-7) - 4 + 3 = ?第二章:图形的认识本章主要介绍了几何图形的基本概念和性质。
学习重点包括:- 点、线、线段、射线和平面的概念;- 三角形、四边形、平行四边形和正方形的性质;- 角的概念和分类;- 直角、钝角和锐角的判断。
例如,对于三角形的性质,有以下例题:1. 若一条边都相等的三角形有两个直角角度,它是什么形状的三角形?2. 若一条边都相等的三角形没有直角角度,它又是什么形状的三角形?第三章:计算方法初步本章主要介绍了数的认识和初步计算方法。
学习重点包括:- 十进制数的认识和读法;- 加法和减法的口诀及其运算;- 乘法和除法的口诀及其运算。
例如,对于加法和减法运算,有以下例题:1. 318 + 406 = ?2. 708 - 402 = ?第四章:分数本章主要介绍了分数的概念、性质及其运算。
学习重点包括:- 分数的概念和表示方法;- 分数的化简和比较大小;- 分数的加法、减法和乘法运算。
例如,对于分数的加法和减法运算,有以下例题:1. 1/2 + 1/3 = ?2. 2/3 - 1/4 = ?第五章:长度、面积和体积本章主要介绍了长度、面积和体积的概念、计算方法及其运用。
学习重点包括:- 长度、面积和体积的单位;- 长度、面积和体积的估算和测量;- 长度、面积和体积的换算;- 长方体和正方体的性质。
例如,对于面积的计算,有以下例题:1. 若一个正方形的边长为3cm,它的面积是多少?2. 若一个长方形的长为5cm,宽为2cm,它的面积是多少?以上只是对每个章节核心知识点进行的简要概括,并提供了一些例题作为辅助。
知识总结(知识点)-2023-2024学年六年级上册数学北师大版
第一单元 圆1、圆是平面内封闭曲线围成的平面图形.2、圆心O :圆多次对折之后,折痕的相交于圆的中心即圆心.圆心确定圆的位置.半径r :连接圆心到圆上任意一点的线段叫做半径.在同一个圆里,有无数条半径,且所有的半径都相等.半径确定圆的大小.直径d :通过圆心且两端都在圆上的线段叫做直径.在同一个圆里,有无数条直径,且所有的直径都相等.直径是圆内最长的线段.3、同圆或等圆内直径是半径的2倍:d =2r 或 r =d ÷2判断:直径是半径的2倍.(×)4、等圆:半径相等的圆叫做等圆,等圆通过平移可以完全重合.同心圆:圆心重合、半径不等的两个圆叫做同心圆.5、圆是轴对称图形,直径所在的直线是圆的对称轴.圆有无数条对称轴,半圆只有1条对称轴.6、画圆:(1)圆规两脚间的距离是圆的半径.(2)画圆步骤:定半径、定圆心、旋转一周.7、圆周长的测量方法:滚圆法、绕绳法.8、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示. 即:圆周率π = 周长÷直径≈3.14.圆周率π是一个无限不循环小数,3.14是近似值.判断:圆的周长是直径的3.14倍.(×)9、圆的周长公式:圆的周长=直径×圆周率,用字母表示:C d π=或2C r π=例:自行车后轮轮胎的半径大约是33cm ,这辆自行车后轮转1圈,大约可以走多远?小明家离学校1km ,后轮转480圈够吗?转1圈,即为后轮的周长:2×3.14×33=207.24(cm )≈2.07(m )1km =1000m 1000÷2.07≈483(圈) 483>480,所以转480圈不够.例:下面图形的周长是多少厘米?图形的周长包括:一个半径为5cm 的半圆弧和2个直径为5cm 的半圆弧所以图形的周长是:2×3.14×5÷2+5×3.14=31.4(cm )10、圆面积公式的推导如右图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近平行四边形.平行四边形面积=底×高S =πr × r所以,圆的面积:2S r π=例:喷水半径是3m ,喷水头转动一周,能浇灌多大面积的农田?3.14×32=28.26(m 2)例:圆形羊圈的周长是125.6m ,这个羊圈的面积是多少平方米?半径:125.6÷3.14÷2=20(m ) 面积:3.14×202=1256(m 2)11、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小.12、半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍.13、半圆周长=圆周长的一半+直径=21πd +d =πr +2r 半圆面积=圆面积的一半=21πr 214、环形面积=大圆面积-小圆面积=()2222R r R r πππ-=-15、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽.补充:1、方中圆: 圆中方:()22220.86S r r r π=-阴正圆=S -S = 22122 1.142S r r r r π⨯⨯⨯=⎛⎫- ⎪⎝⎭阴圆正=S -S = 2、如右图,圆上A 、B 两点之间的部分叫做弧,读作“弧AB ” .一条弧和经过弧两端的两条半径所围成的图形叫做扇形(涂色部分).像∠AOB 这样,顶点在圆心的角叫做圆心角.扇形的大小与这个扇形的圆心角大小有关.3、扇形的弧长:2360l n r π=︒⨯︒(n °表示圆心角度数) 扇形的周长:C =l +2r 扇形的面积:2360S n r π=︒⨯︒例:如图,OA =OB =6cm ,∠AOB =90°,求阴影部分的面积.解析:如右图,对图形进行割补使其变为规则图形。
六年级上册数学北师大版知识点归纳总结
一、圆1. 圆的认识圆是由曲线围成的封闭图形。
圆中心的一点叫做圆心,一般用字母 O 表示。
连接圆心和圆上任意一点的线段叫做半径,一般用字母 r 表示。
通过圆心并且两端都在圆上的线段叫做直径,一般用字母 d 表示。
2. 圆的特征在同一个圆中,有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度都相等。
直径的长度是半径的 2 倍,用字母表示为:d = 2r 或 r = d÷23. 圆的周长围成圆的曲线的长度叫做圆的周长。
圆的周长计算公式:C = πd 或C = 2πr (其中 C 表示圆的周长,π是圆周率,通常取值 3.14,d 表示圆的直径,r 表示圆的半径)4. 圆的面积圆所占平面的大小叫做圆的面积。
圆的面积计算公式:S = πr² (其中 S 表示圆的面积)二、分数混合运算1. 分数混合运算的顺序与整数混合运算的顺序相同。
先算乘除法,后算加减法;有括号的,先算括号里面的,再算括号外面的。
2. 分数乘法的运算定律乘法交换律:a×b = b×a乘法结合律:(a×b)×c = a×(b×c)乘法分配律:(a + b)×c = a×c + b×c3. 分数除法除以一个数(0 除外),等于乘这个数的倒数。
三、观察物体1. 从不同方向观察物体,看到的形状可能不同。
2. 观察多个立体图形组成的组合体,要根据所给的平面图形,想象从不同方向看到的形状,然后进行判断。
四、百分数1. 百分数的意义表示一个数是另一个数的百分之几的数叫做百分数,也叫百分比或百分率。
百分数通常不写成分数形式,而在原来的分子后面加上“%”来表示。
2. 百分数与分数、小数的互化小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
百分数化成小数:把百分号去掉,同时把小数点向左移动两位。
分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
北师大版数学六年级上册知识点归纳
北师大版六年级上册数学知识点归纳第一单元 圆圆概念总结1.圆的定义:圆是由曲线围成的平面封闭图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O 表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r 表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d 表示。
圆内最长的线段是直径6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d =2r r = d 12用文字表示为:半径=直径÷2 直径=半径×2车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。
9.圆的周长:围成圆的曲线的长度叫做圆的周长。
或者,圆一周的长度就是圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值是一个固定的数,我们把它叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
π在计算时,取 3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
π≈11.圆的周长公式:C 圆=πd =2πr圆周长=×直径 圆周长=×半径×2ππ12、圆的面积:圆所占面积的大小叫圆的面积。
13、圆所占平面的大小叫圆的面积。
把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。
如果用S 表示圆的面积, r 表示圆的半径,那么圆的面积公式:S 圆=πr 214.圆的面积公式:S=r² 或者S=(d 2)² 或者S=(C 2)²ππ÷π÷π÷15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版六年级上册数学知识点总结北师大版六年级上册数学知识点总结【篇一:北师大版六年级上册数学知识点总结】2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母o表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
(其中r=r+环的宽度.)19.半圆的周长等于圆的周长的一半加直径。
半圆的周长与圆周长的一半的区别在于,半圆有直径,而圆周长的一半没有直径。
例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。
22.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。
28.有一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。
29.直径所在的直线是圆的对称轴。
第二单元分数混合运算1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
学习推荐:233网校小学采用孩子喜欢的色彩,高清视频显示,确保每堂课程生动有趣,让孩子在快乐中学习。
本资料为word文档,请点击下载地址下载文章来源课件w w3、比的意义:两个数相除又叫做两个数的比。
4、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
5、根据比与除法、分数的关系,可以理解比的后项不能为0。
6、比和除法、分数的联系:比前项比号“:”后项比值分数分子分数线“—”分母分数值比表示一种关系;除法是一种运算;分数是一个数。
1、(1)商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
(2)分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
(3)比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母o表示。
它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d 表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有直径都相等。
7、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。
用字母表示为:d=2r或r=d/28、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
2、圆周率:三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。
用字母s表示。
3、环形的面积:一个环形,外圆的半径是r,内圆的半径是r。
(r =r+环的宽度.))4、5、两个圆:半径比= 直径比= 周长比;而面积比等于这些比的平方。
6、确定起跑线:5、常用的分数、小数及百分数的互化12 =0.5=50% 14 =0.25=25% 34 =0.75=75%15 =0.2=20% 25 =0.4=40% 35 =0.6=60%45 =0.8=80% 13 = 0.3 23 = 0.616 = 0.16 56 = 0.8318 =0.125=12.5% 58 =0.625=62.5%38 =0.375=37.5% 78 =0.875=87.5%被减数=差+减数减数=被减数—差源课件w ww.5 y k j.co m相关教案:上一篇教案:下一篇教案:【篇三:北师大版六年级上册数学知识点总结】1、圆有无数条半径,有无数条直径。
圆心决定圆的位置,半径决定圆的大小。
2、在同一个圆中,所有的半径都相等,所有的直径都相等。
在同一个圆中,直径是半径的2 倍,半径是直径的3、圆内最长的线段是直径,圆规两脚之间的距离是半径。
4、在一个正方形里画一个最大的圆,圆的直径就是正方形的边长。
在一个长方形里画一个最大的圆,圆的直径就是长方形的宽。
5、常见的轴对称图形:等腰三角形(1 条)、等边三角形(3 条)、等腰梯形(1 条)、长方形(2 条)、正方形(4 条)、圆(无数条)、半圆(1 7(理解)、圆所占平面的大小叫圆的面积。
把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;长方形的长相当于圆周长的一半,宽相当于圆的半径。
11、一个圆的半径扩大(缩小)几倍,直径就扩大(缩小)几倍,周长也扩大(缩小)几倍,面积就扩大(缩小)几的平方倍,但圆周率永远不变。
14、背诵:3.141=3.14 3.142=6.28 3.143=9.42 3.144=12.56 3.145=15.7 3.146=18.84 3.147=21.98 3.148=25.12 3.149=28.263.1410=31.4 15、圆的面积:3.141 =3.143.142 =12.563.143 =28.263.144 =50.243.145 =78.53.146 =113.04二、分数混合运算1(计算题,一定注意运算顺序)分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。
如果是同一级运算,按照从左到右的顺序依次计算。
如果是分数连乘,可先进行约分,再进行计算;如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。
2、解决问题(1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的实际问题,方法:单位“1”已知用乘法,多用“+”,少用“-” (2)“已知甲与乙的和为40,其中甲占和的5 分之3,求乙数是多少?” 第种方法:首先明确谁占单位“1”的几分之几,求出甲数,再用单位“1”减去甲数,求出乙数。
40 =24,40-24=16 第种方法:先用单位“1”减去已知甲数所占和的几分之几,即得未知乙数所占和的几分之几,再求出乙数。
40(1- )=16 (3)用方程解决稍复杂的分数应用题的步骤:要找准单位“1”。
确定好其他量和单位“1”的量有什么关系,画出关系图,写出等量关系式。
设未知量为x,根据等量关系式,列出方程。
解答方程。
(4)要记住以下几种算术解法解应用题:对应数量对应分率=单位“1” 求一个数的几分之几是多少,用乘法计算。
已知一个数的几分之几是多少,求这个数,用除法计算,还可以用列方程解答。
3、要记住以下的解方程定律:加数和–另一个加数。
被减数–减数减数;减数被减数–差。
因数因数积另一个因数。
被除数除数商除数;除数5、绘制简单线段图的方法:分数应用题,分两种类型,一种是知道单位“1”的量用乘法,另一种是求单位“1”的量,用除法。
这两种类型应用题的数量关系可以分成三种:(一)一种量是另一种量的几分之几。
(二)一种量比另一种量多几分之几。
(三)一种量比另一种量少几分之几。
绘制时关键处理好量与量之间的关系,在审题确定单位“1”的量。
绘制步骤:首先用线段表示出这个单位“1”的量,画在最上面,用直尺画。
分率的分母是几就把单位“1”的量平均分成几份,用直尺画出平均的等分。
标出相关的量。
再绘制与单位“1”有关的量,根据实际是上面的三种关系中的哪一种再画。
标出相关的量。
问题所求要标出“?”号和单位。
6:工程问题:一项工程,甲单独完成需要8 小时,乙单独完成需要10 小时。
分析:工作总量:“1” 工作时间:甲:8 乙:10 工作效率:甲:7:打折:打八折表示:现价是原价的80%(或8/10),即:原价8/10=现价。
已知原价求现价,用乘法;已知现价求原价用除法。
表示:便宜了20%.已知原价求便宜多少钱:原价20%(或2/10);已知便宜多少钱求原价:便宜的钱20% (或2/10)。
8:理解下面的例子:妈妈今年30 岁,小红今年10 妈妈比小红大20岁,小红比妈妈小20 妈妈比小红大几分之几?(30-10)10;小红比妈妈小几分之几?(30-10)30。
三、观察物体1、观察物体一般从正面、上面、左面或右面来观察。
2、同样高度的物体,在同一光源的照射下,离光源越近,这个物体的影子就越短;离光源越远,这个物体的影子就越长。