材料力学:弯曲应力

合集下载

材料力学弯曲应力_图文

材料力学弯曲应力_图文

§5-3 横力弯曲时的正应力
例题6-1
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBY
C 截面的曲率半径ρ y
解:1. 求支反力
x 90kN M
x
(压应力)
目录
目录
§5-2 纯弯曲时的正应力
正应力分布
z
M
C
zzy
x
dA σ
y
目录
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
目录
§5-3 横力弯曲时的正应力
横力弯曲
6-2
目录
§5-3 横力弯曲时的正应力
横力弯曲正应力公式
弹性力学精确分析表明 ,当跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时 ,纯弯曲正应力公式对于横 力弯曲近似成立。 横力弯曲最大正应力
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
2. C 截面最大正应力
B
x
180
K
30 C 截面弯矩 z
FBY
y
C 截面惯性矩
x 90kN M
x
目录
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m

材料力学5弯曲应力_图文

材料力学5弯曲应力_图文
(1)合理安排载荷 (2)分散载荷(从使用方案考虑) (3)调整支座位置(从设计角度)
1、合理安排梁的受力
(1)合理安排载荷
P
(降低最大弯矩)
P
a
b
l
1、合理安排梁的受力(降低最大弯矩)
(2)分散载荷(从使用方面考虑)
P P
P
若:
l
1、合理安排梁的受力(降低最大弯矩)
(3)调整支座位置(从设计角度)
aP
q
A
C
E
l
P
B D
弯曲切应力强度校核
一般而言,对于等直梁,梁上的最大切应力发生在剪力最大 截面的中性轴上,且
是中性轴一侧的面积对中性轴的静矩 。
型钢可查表
切应力强度条件:
梁上的最大切应力max≤[]
例题4-10 图示梁为工字型截面,跨长2a=4 m、 q=25 KN/m;材
料许用应力[]=160 MPa,[]=100 MPa。试选择工字钢型号。
3950
(3)合理截面要符合材料的力学性能
塑性材料
z
z
采用关于中性轴对称的截面
y
y
脆性材料
z
采用关于中性轴不对称的截面
y
理想情况: 可调整各部分尺寸,使
z
y
y1 z
y2 y
3、采用变截面梁
以危险截面的弯矩设计梁的截面,而在其
他截面的弯矩较小,材料不能被充分利用。
从强度的角度来看,如果在弯矩大的部位采用较大的截面,弯矩较 小的部位采用较小的截面,就比较合理。截面尺寸沿梁轴线变化的梁 叫变截面梁。 若各个截面上的最大应力都等于材料的许用应力,这种梁叫等强度梁。
正应力大小与其到中 性轴距离成正比;

材料力学——弯曲应力

材料力学——弯曲应力

公式推导
线应变的变化规律 与纤维到中性层的距离成正比。
从横截面上看: 点离开中性轴越远,该点的线应变越大。
2、物理关系
当σ<σP时 虎克定律
E
E
y
y
弯曲正应力的分布规律 a、与点到中性轴的距离成正比; 沿截面高度 线性分布; b、沿截面宽度 均匀分布; c、正弯矩作用下, 上压下拉; d、危险点的位置, 离开中性轴最远处.
M max ymax IZ
x
67.5 103 90 103 5.832 105
104.17MPa
6、已知E=200GPa,C 截面的曲率半径ρ q=60KN/m A FAY B 1m C 3m FBY
M C 60kN m
I z 5.832 105 m 4
M EI
4 103 88 103 46.1MPa 6 7.64 10
9KN
4KN
C截面应力计算
A FA
M 1m
C 1m
B
1m FB
C截面应力分布 应用公式
t ,max
My Iz
2.5KNm
2.5 103 88 103 28.8MPa 6 7.64 10
Fb Fa
C截面: max M C Fb3 62.5 160 32 46.4MPa d W 3
zC
2
0.13
32
(5)结论 轮轴满足强度条件
一简支梁受力如图所示。已知 [ ] 12MPa ,空心圆截面 的内外径之比 一倍,比值不变,则载荷 q 可增加到多大? q=0.5KN/m A B
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式

材料弯曲应力

材料弯曲应力

材料弯曲应力
在材料力学中,弯曲应力是指在横截面上的一个点上由于外部载荷而引起的正应力(垂直于横截面的方向)。

弯曲应力的大小取决于材料的弯曲形状、外部载荷的大小和分布、以及材料的截面性质。

弯曲应力(σb)可以用以下的公式表示:
其中:
•σb是弯曲应力;
•Mc是在横截面上的一个点上的弯矩;
•S是该点处横截面的静力矩。

弯曲应力的单位通常是帕斯卡(Pascal,Pa)或兆帕(Megapascal,MPa)。

弯曲应力会导致材料产生弯曲变形。

对于均匀材料的简单弯曲梁,弯曲应力在横截面上是不均匀的,最大的弯曲应力通常出现在横截面的最外层纤维,而中性轴上的应力为零。

了解弯曲应力是设计和分析工程结构、梁、梁板等零件的重要因素。

在工程实践中,通常需要考虑弯曲应力来确保结构的安全性和稳定性。

材料力学梁的应力解读

材料力学梁的应力解读

材料力学梁的应力解读
梁是结构分析中最基本的问题之一,也是材料力学中一个重要的概念。

梁的应力解读,就是对梁结构中的应力的分析。

一般来说,在材料力学中,梁的应力解读可以从下面几个方面来进行:
(1)弯曲应力:弯曲应力是指当梁在受到外力的作用下发生偏移或
沿着其中一轴线变形时,梁中钢材筋的纵向应力称为弯曲应力。

根据梁的
预定约束方式,可以分为受自重弯曲的应力和受外力弯曲的应力。

受自重
弯曲的应力大小由梁的自重和梁的几何形态所决定,一般情况下,斜梁的
自重弯曲应力会比悬臂梁的自重弯曲应力大。

受外力弯曲的应力大小取决
于受力梁的拉张性和刚度,以及施加外力的位置,大小和作用方向等因素,其中最重要的是材料的弹性模量。

(2)剪切应力:梁结构的剪切应力,是指梁受到外力作用时,对面
两侧的钢材筋之间的剪切应力。

由于受力面两端受非对称分布的外力作用,使得受力面的梁结构受到剪切应力的作用,一般情况下,受力面梁结构分
布的剪切应力会在受力面的两端有最大值,随着回头距离变小而逐渐减小。

(3)压应力:梁受外力所产生的压应力,是指受力面角支撑点处承
受拉力的钢材筋之间的应力,称为压应力。

材料力学-弯曲应力

材料力学-弯曲应力

对于宽为b高为h的矩形截面:
W
bh3 12
bh2
h
6
2
对于直径为d的圆形截面:
W d 4 64 d 3
d
32
2
限定最大弯曲正应力不得超过许用应力,于是强度条件为:
max
M max W
设σt 表示拉应力,σc 表示压应力,则:
t max t
cmax c
塑性材料, [σt]= [σc]= [σ];
所以由(1)式:
A
d
A
A E
y
d
A
E
A y d
A
E
Sz
0
由(2)式:
说明中性轴过形心
A z
d
A
A zE
y
d
A
E
A
yz d
A
E
I yz
0
由于y轴是对称轴,此 式自然满足。
由(3)式:
A
y
d
A
A
yE
y
d
A
E
A
y2
d
A
E
Iz
M
1 M
EI z
1 为梁轴线变形后的曲率 ;
由变形几何关系得到 y
由物理关系得到
bh2 2b3 W
63
故: b 121.6 mm
h 2b 243.2 mm
选取截面为: 125 250 mm 2
e.g.3 已知:l=1.2m,[σ]=170MPa, 18号工字钢,不计自重。
求:P 的最大许可值。
P A
解:作弯矩图, 由图可得:
M
| M |max Pl 1.2P N m

材料力学第六章弯曲应力

材料力学第六章弯曲应力

但相应的最大弯矩值变为
Fl ql2
M max
4
8
375 kN m 13 kN m 388 kN m
而危险截面上的最大正应力变为
max
388103 N m 2342106 m3
165.7106
Pa
165.7
MPa
显然,梁的自重引起的最大正应力仅为
165.7 160 MPa 5.7 MPa
<2>. 相邻横向线mm和nn,在梁弯曲后仍为直线,只是
相对旋转了一个角度,且与弧线aa和bb保持正交。
根据表面变形情况,并设想梁的侧面上的横向线mm和 nn是梁的横截面与侧表面的交线,可作出如下推论(假设):
平面假设 梁在纯弯曲时,其原来的横截面仍保持为平面, 只是绕垂直于弯曲平面(纵向平面)的某一轴转动,转动后 的横截面与梁弯曲后的轴线保持正交。
力的值max为
max
M ym a x Iz
M
Iz ymax
M Wz
式中,Wz为截面的几何性质,称为弯曲截面系数(对Z轴)
(section modulus in bending),其单位为m3。
b
h d
o
z
o
z
y
y
中性轴 z 不是横截面的对称轴时(参见图c),其横截面 上最大拉应力值和最大压应力值为
A
r
(b)
M z
y d A E
A
r
y2 d A EI z M
A
r
(c)
由于式(a),(b)中的
E
r
不可能等于零,因而该两式要求:
1. 横截面对于中性轴 z 的静矩等于零,A y d A 0 ;显

弯曲应力—纯弯曲时的正应力(材料力学)

弯曲应力—纯弯曲时的正应力(材料力学)

§5-2 正应力计算公式
3、物理关系
σ Eε
M
?
所以 σ E y
z
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。待解决问题中性轴的位置?
中性层的曲率半径
§5-2 正应力计算公式
4、静力关系
横截面上内力系为垂直于横截面的空 间平行力系,这一力系简化得到三个内力分 M 量。
y t max
M
z
y
σtmax
σ cmax My cmax Iz
§5-2 正应力计算公式
二、横力弯曲时梁横截面上的正应力
实际工程中的梁,其横截面上大多同时存在着弯矩和剪力,为横 力弯曲。但根据实验和进一步的理论研究可知,剪力的存在对正应力 分布规律的影响很小。因此对横力弯曲的情况,前面推导的正应力公 式也适用。
(2)最大正应力发生在横截面上离中性轴最远的点处。
σ max M y max Iz
引用记号
Wz
Iz ymax
—抗弯截面系数
则公式改写为
σ max
M Wz
§5-2 正应力计算公式
对于中性轴为对称轴的横截面
矩形截面
Wz
Iz h/2
bh3 / 12 h/2
bh2 6
实心圆截面
Wz
Iz d /2
πd 4 / 64 d /2
推论:必有一层变形前后长度不变的纤维—中性层
⊥ 中性轴 横截面对称轴
中性层
中性轴
横截面对称轴
§5-2 正应力计算公式
2、变形几何关系
d
dx
图(a)
O’
b’ z

弯曲应力-材料力学

弯曲应力-材料力学

弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
另外,根据不同的弯曲形式和受力情 况,还可以采用其他计算公式来求解 弯曲应力,如均布载荷下的简支梁、 集中载荷下的悬臂梁等。
弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
弯曲应力可能导致材料发生弯曲变形,影响结构的稳定性和精度。
弯曲应力对材料刚度的影响
弯曲应力对材料的刚度有影响,材料的刚度随着弯曲应力的增大而 减小。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
弯曲应力
材料的韧性和强度都会影响其弯曲应力的大小和分布。韧性好的材料能够更好地分散和 吸收弯曲应力,而高强度的材料则能够承受更大的弯曲应力而不发生断裂。
材料韧性、强度与弯曲应力的关系
韧性
是指材料在受到外力作用时吸收能量的能力。韧性好的材料能够吸收更多的能量,从而 减少因弯曲应力而产生的脆性断裂。
强度
剪切应力的分布
剪切应力在材料截面的边缘最大,向中性轴方向 逐渐减小。
3
剪切应力和弯曲应力的关系
剪切应力和弯曲应力共同作用,影响梁的承载能 力和稳定性,在设计时需要考虑两者的相互作用。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。

材料力学第5章弯曲应力

材料力学第5章弯曲应力
3 R2
4)
最大切应力: max
k
FS A
矩形:k =3/2 工字形:k =1 圆形:k =4/3
5)
切应力强度条件: max
F S* S max z max Izb
[
]
梁的强度条件小结:
1)应力公式:
正应力: My
Iz
最大值在距中 性轴最远处 max
M W
切应力:
FS Sz* Izb
最大值在 中性轴处
。 F位于跨中时,M最大
FRA
F
FRB
Mmax=Fl/4 F靠近支座时,FS最大 Qmax=F 按弯曲正应力强度条件选择截面
Wz
Fl
4
3.0 104 m3
300cm 3
max
FS z max Izd
14.11MPa
选择 22a工字钢
Iz / Szmax 18.9cm
d=7.5mm
5.16 铸铁梁的载荷及横截面尺寸如图所示。许用 拉应力[ t ] 40,MP许a 用压应力 [ c ] 。 1试60按MP正a 应力
My Iz
My
zdA
E
yzdA
E
I yz
0——y为主惯轴
总结: • 应力应变沿高度线性变化,中间有零应力应变层
• 应力应变公式的适用范围 • 最大应力、应变点在哪里
§5.3 横力弯曲时的正应力
1)横力弯曲时的正应力公式
横力弯曲时,基本假设不成立,但
My 满足精度要求,可使用。
Iz
max
Mmax ymax Iz
应变: (bb bb) / bb
(
y)d d
d
y
2)物理方程: E Ey /

材料力学-弯曲应力

材料力学-弯曲应力
超静定梁
超静定梁
q
Hale Waihona Puke L/2L/2q
L
M
M
*
5-6 提高梁强度的主要措施
合理设计截面
合理放置截面
增大 WZ
*
5-6 提高梁强度的主要措施
合理放置截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
充分利用材料特性合理设计截面
脆性材料:
宜上下不对称截面:
T 形,不等边工字型,不等边矩形框等;
中性轴偏向受拉区的一侧
理想的中性轴的位置: 应是最大拉应力和最大压应力同时达到许用应力。
*
讨论:钢筋混凝土楼板,钢筋应该铺设在哪一边?
等强梁的概念与应用
等截面梁WZ为常数,横力弯曲时弯矩M是随截面位置变化的。只有|M|max位置的横截面上应力达到[]。 不合理!
某车间欲安装简易吊车,大梁选用工字钢。已知电葫芦自重
材料的许用应力
起重量
跨度
试选择工字钢的型号。
例题
(4)选择工字钢型号
(5)讨论
(3)根据
计算
(1)计算简图
(2)绘弯矩图
解:
36c工字钢
*
作弯矩图,寻找需要校核的截面
要同时满足
分析:
非对称截面,要寻找中性轴位置
T型截面铸铁梁,截面尺寸如图示。
强度条件
h
max
*
叠合梁问题
悬臂梁由三块木板粘接而成。跨度为1m。胶合面的许可切应力为0.34MPa,木材的〔σ〕= 10 MPa,[τ]=1MPa,求许可载荷
1.画梁的剪力图和弯矩图

弯曲应力-材料力学

弯曲应力-材料力学
已知:弯矩M、横截面的惯性矩Iz、许用应力[]。求:判断不等号。
max
Mymax Iz
工程力学 Engineering Mechanics
典型例题
例1 图示矩形截面梁,梁上载荷q=100kN/m,梁跨度l=6m,截面尺寸:
b=400mm,h=600mm,材料许用应力[]=100MPa,试判断该梁是否安全。
弹性力学精确分析表明,当跨度l与横截面高度h之比l/h>5(细长梁)时, 纯弯曲正应力公式对于横力弯曲近似成立。
横力弯曲最大正应力
max
M max ymax Iz
弯曲正应力适用范围 细长梁的纯弯曲或横力弯曲 横截面惯性积Iyz=0 弹性变形阶段
工程力学 Engineering Mechanics
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
My Iz
惯性矩
Iz
1 12
50 903
3.0375106 mm4
弯矩
M 10kN.m
典型例题
例1 求图示矩形截面梁指定截面上对应点的正内力。
10kN
1
A
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
M max
1 8
ql 2
1 8
q
62
q
533.3kN/m
练习1
受均布载荷作用的简支梁如图,求 ① 1-1截面上1、2两点的正应力; ② 1-1截面上的最大正应力; ③ 全梁的最大正应力; ④ 已知E=200GPa,求1-1截面的曲率半径。

材料力学第5章弯曲应力

材料力学第5章弯曲应力
材料力学第5章弯曲应力
欢迎来到材料力学第5章弯曲应力的世界!在本章中,我们将深入探讨什么是 弯曲应力,并研究其在不同形状截面中的计算方法和应用。
弯曲应力的定义和概念
什么是弯曲应力?
弯曲应力是物体受到外力作用时,在横截面上产生的力分布状态。
应变张量与应力张量
了解应变张量和应力张量的关系是理解弯曲应力的基础。
应力-应变曲线与弯曲应力
探索材料的应力-应变曲线与弯曲应力之间的关系。
弯曲应力在工程中的应用
建筑结构
了解弯曲应力在建筑结构中的应 用,如桥梁和楼梯等。
机械设计
探索弯曲应力在机械设计中的重 要性,如机械零件和工具。
航空航天工程
了解弯曲应力在航空航天工程中 的关键应用,如飞机和火箭。
梯形截面
探索梯形截面的弯曲应力计算方法。
弯曲应力的影响因素
1 外力
外力的大小和方向将直接影响到物体的弯曲应力。
2 截面形状
不同形状的截面将对弯曲应力的分布产生影响。
3 材料的力学性质
材料的弯曲应力极限和应力-应变关系是必须考虑的因素。
材料的弯曲应力极限
如何确定材料的弯曲应力极限
了解如何通过实验和模拟来确定材料的弯曲应力极限。
材料力学中的弯曲应力方程
一般弯曲应力方程
通过一般弯曲应力方程,我们可以计算出材料在弯曲时 的应力。
悬臂梁的弯曲应力
悬臂梁的弯曲应力方程与一般情况下的方程有所不同, 的弯曲应力计算方法
1
圆形截面
2
了解计算圆形截面的弯曲应力的公式和步骤。
3
矩形截面
学习如何计算矩形截面的弯曲应力。

材料力学弯曲应力

材料力学弯曲应力

六. 弯曲应力
从变形特点分析,到材料本构关系,到静力平衡
1、研究对象:等直、细长、对称截面梁
细长梁:长度比其高度大许多倍的梁, 一般来讲长高比 L/h > 20
有关细长梁的理论:经典梁理论, 或叫 Euler-Bernoulli 梁理论
2、基本假设:
(a) 小变形——在弹性变形范围内,
(b) 满足平面弯曲条件, (c) 纯弯曲。
dA
x
s
y
I yz 0
(d)
即:y -轴,z -轴为截面的形心主惯性轴
材料力学
六. 弯曲应力
§6.1 纯弯曲时梁横截面上的正应力
对于实心截面,若截面无对称轴,要使梁产生平面弯曲,
亦必须满足 I yz 。0即 y、z 轴为截面的形心主惯性轴。
所以只要外力作用在形心主惯性平面内同样可产生平面弯曲。
中性轴的特点:
q=0.5KN/m
D
A
B
d
z
L= 4m
1 qL2 8
(+)
M 图
M
max
1 8
qL2
材料力学
§6.3 弯曲正应力强度条件
解:
M max
1 8
qL2
1.0
103
N.m
由强度条件
Wz
D3(1 4 )
32
M max
[s ]
D 0.113m
六. 弯曲应力
1 qL2 8
(+)
M 图
若外径 D增加一倍,则 D 0.226m, 仍由强度条件,得
(x) EI
正应力计算公式为
s (x) M (x) y
I
材料力学
六. 弯曲应力

材料力学 第5章 弯曲应力

材料力学 第5章 弯曲应力

材料力学
(三)静力学关系
FN x
dA 0
A
Mz A (dA) y M
1 Mz
EI z
由(2)(3)两式可得
… …(3)
x
M y Iz
z x
y
EIz ——抗弯刚度
...... (4)
材料力学
(四)最大正应力
… …(5)
z x
Wz
Iz ymax
——抗弯截面系数
y
z
D
z b
实心圆截面
Pa
92.6MPa
④全梁最大正应力
max
M max Wz
67.5103 6.48 104
Pa
104
.2MPa
材料力学
5.4 弯曲切应力
一、 矩形截面梁横截面上的切应力
x dx 图a
M(x) Fs(x)
Fs(x) y
x 图b
dx M(x)+d M(x)
z
t1
x
b FN1
t
y FN2 图c
1、两点假设: ①切应力与剪力平行; ②距中性轴等距离处,切应力 相等。 2、研究方法:分离体平衡。
60
103 (60 10 3 ) 5.832 10 5
Pa
61.7MPa
材料力学
1 q=60kN/m
A
B
1m
2m
1
180 30
12 z
120 y
qL2
M
8
+
M1 Mmax
x
③1-1截面上的最大正应力
Wz
Iz y
Iz h2
6.48 10 4 m3
1max

材料力学07弯曲应力ppt课件

材料力学07弯曲应力ppt课件
分离部分 ——平衡分析……
x
y 26
dA1
s
, b s
顶面有 ,存在.
两截面M 不等—— s 不等
(X 0)
左侧面
dx
N1
M
A1 sdA1 I z
A1 ydA1
右侧面
MS
z
Iz
dM
S
* z
, b( dx ) 0
Iz
FS
,
dM dx
S
z
Izb
FS
S
z
Izb
(∵切应力互等 )
2s
h
2 ( bdy )y s
bh2
M
0
4
s
4M bh2
2. 按沿梁高线性分布:
s max
M h2 Iz
s
6M bh2
s1 2 s2 3
(相差三分之一)
13
[例2]:
15KN
6KN
求B截面K点应力
B
1m
1m
解: M
3
6kNm
s
My Iz
90
K 90
60
120 ( 拉? 压应力? )
IZ
bh3 12
第七章 弯曲应力
§1 弯曲正应力 §2 正应力强度条件 §3 弯曲剪应力 §4 剪应力强度条件 梁的合理截面 §5 非对称截面梁弯曲弯曲中心 §6 考虑塑性的极限弯矩
1
概述

-F
Q
Fa

M
CD段:只有弯矩没有剪力- 纯弯曲
AC和BD段:既有弯矩又有剪力- 剪切弯曲
2
剪力FS
弯矩M
切应力τ
正应力s
先分析纯弯梁横截面的正应力s ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弯 曲 应 力
对称弯曲的概念及计算简图
梁的剪力和弯矩 • 剪力图和弯矩图
平面刚架和曲杆的内力图
梁横截面上的正应力 • 梁的正应力强度条件
梁横截面上的切应力 • 梁的切应力强度条件 梁的合理设计
§4-1 对称弯曲的概念及梁的计算简图
一、弯曲的概念 1. 弯曲变形 受力特征: 外力是作用线垂直于杆轴线的平衡力系 (有时还包括力偶)。 变形特征:梁变形前为直线的轴线 ,变形后成为曲线。
,YC
反向,
并分别加在主梁 AC 的 C 点处,求出 AC 的约束力。
P=50kN
q 20kN m
M=5kN.m
A 1m
E
C
D 3m
K 1m
B
0.5m 1m
xC
C D
q 20kN m
K
M=5kN.m
B
yC
RB
xC
D
q 20kN m
K
M=5kN.m
B
yC
RB
解:(1)研究CB梁,由平衡方程
C
P2
D
RB
B
假设 FsE 和弯矩 ME 均为 正值。
F
d
l
FsE
E
C
RA
A
ME
b
F
y
0,
RA FsE 0
RA
A
a E
P1
C
P2
D
RB
B
M
E
0,
M E RA c 0
F
d
解得
c
l
FsE RA
+
RA
FsE
E
C
M E RA c
ME
+
A
b
取右段为研究对象
RA
A
F
x
0,
XA 0
F
y
0,
RA 50 31 81kN
m
A
0,
mA 311.5 50 1 96.5kN m
§4-2
梁的剪力和弯矩 • 剪力图和弯矩图
一、梁的剪力( Fs )和弯矩 ( M ) 的定义与计算 1. 用截面法求横截面上的内力
a
m
F
A
m x
FB
非对称弯曲 :梁不具有纵向对称面,或具有纵向对称面,
但外力并不作用在纵向对称面内这种弯
曲称为非对称弯曲。
三、梁的计算简图 1. 支座的简化 在梁的计算简图中用梁的轴线代表梁 R H (2)固定铰支座
H
(1) 固定端
m
R
(3) 可动铰支座
R
2. 工程中常用到的静定梁
悬臂梁
简支梁
外伸梁
3. 几种超静定梁
m
Fs
C
x
M
A
x
m
a
F
结论 梁在弯曲变形时, 横截面上的内力有 两个,即,
A
m
B
m x
剪力 Fs
弯矩 M
FA
y
m
Fs
C
x
M
A
x
m
取右段梁为研究对象。
其上剪力的指向和弯矩
y
FA
m
Fs
C
x M F
FB
的转向则与取右段梁为
研究对象所示相反。
A
x
m
m
M Fs
m
B
2. Fs 和 M 的正负号的规定 (1)剪力 Fs 的符号 使dx 微段有 左端向上而右端向下 的相对错动时,横截面 m-m 上 的剪力为 正 。
FsE RA
梁: 以弯曲变形为主的杆件。
二、对称弯曲 纵向对称面 :包含梁横截面的一个对称轴及其梁轴线的平面 称为纵向对称面。 对称弯曲 :作用于梁上的所有外力都在纵向对称面内, 弯曲变形后的轴线是一条在该纵向对称面内的平面曲线, 这种弯曲称为对称弯曲。
纵向对称面
横截面的对称轴
F1
F2
梁的轴线
A
B
FA
变形后的轴线与外力 在同一平面内
例题1:
计算悬臂梁的约束力。
q A C
F
B
l 2
l 2
l
mR
RA
A C
q
F
B
l
解: 求梁的约束力 RA 和 mR 。
由平衡方程得:
解得:
F
y
0,
ql RA F 0 2
mR ql 3l Fl 0 2 4
M A 0,
ql F 2 3ql 2 mR Fl 8 RA
a E c
P1
C
P2
D
RB
B
F
d
l
RA
A
C
FsE
E
ME
FsE
P1
c
a- c b- c
P2
D
RB
B
E
ME
l- c
RA
AE
P1
c
a- c b- c
P2
D
RB
B
E
ME
l- c
F
y
0
FsE RB P 1P 2 0
M E 0
解得:
R B (l c) P1 (a c) P2 (b c) M E 0
B
用截面法假想地在 横截面mm处把梁分
a
m
F
为两段,先分析梁左段。
由平衡方程得
A
m x
B
F
y
0,
FA Fs 0
Fs = FA
FA
y
m
可得
Fs
C
x
A
Fs 称为 剪力
x
m
a
由平衡方程
F
m
mC 0
M FA x 0
可得 M = FAx
y A
m x
B
内力偶 M 称为 弯矩
FA
例题2:计算图所示多跨静定梁的约束力。
F=50kN
q 20kN m
M=5kN.m
A
1m
E
C
D
3m
K
1m
B
0.5m 1m
F=50kN
q 20kN m
M=5kN.m
A 1m
E
C
D 3m
K 1m
B
0.5m 1m
分析:先将中间铰 C 拆开,并通过平衡方程求出副梁 CB 的约束力。 再将副梁 CB 的两个约束力 XC
+
m
Fs
Fs
m
dx
或使 dx 微段有顺时针转动趋势的剪力为 正。
使 dx 微段有 左端向下而右端向上
的相对错动时,横截面 m-m 上
-
m
的剪力为负 。
m
或使 dx 微段有逆时针转动趋势的剪力
dx
为 负。
(2)弯矩符号 当 dx 微段的弯曲下凸
+
M m
M
(即该段的下半部受拉 )时,
m
横截面m-m 上的弯矩为 正; 当 dx 微段的弯曲上凸 (即该段的下半部受拉压)时, 横截面m-m 上的弯矩为为负。
F
F
x
0,
XC 0
m B 0,
y
yC 5 20 3 2.5 5 0
RB 20 3 yC 0
0,
X C 0,
yC 31kN,
RB 29kN
F=50kN
' yc yc
mA
XA
A E
C
' xc xc
RA
(2)研究 AC 梁,由平衡方程
m
(受拉)
_
m
(受压)
例题3: 为图示梁的计算简图。已知 P1、P2,且 P2 > P1 ,尺寸 a、b、c 和 l 亦均为已知。试求梁在 E 、 F 点处横截面处的 剪力和弯矩。
b
a
A
P1
C
P2
D B
E c l
F
d
b
RA
A
a E c
P1
C
P2
D
RB
B
F
d
l
解:
mA 0
mB 0
RB l P 1a P 2b 0
RAl P 1 (l a ) P 2 (l b) 0
b
RA
A
a
P1
C
P2
D
RB
B
E
c l
F
d
解得:
P 1 (l a ) P 2 (l b) RA l P 1a P 2b RB l
b
记 E 截面处的剪力 为 FsE 和弯矩 ME 。
RA
A
a E c
P1
相关文档
最新文档