递推最小二乘法
递推最小二乘法原理
递推最小二乘法原理递推最小二乘法(Recursive Least Squares, 简称RLS)是一种经典的参数估计方法,广泛应用于信号处理、通信系统、自适应滤波等领域。
它通过不断迭代更新参数,逐步逼近最优解,具有快速收敛、适应性强的特点。
本文将从最小二乘法出发,介绍递推最小二乘法的原理及其应用。
最小二乘法(Least Squares)是一种常见的参数估计方法,用于寻找一组参数,使得模型预测值与观测值之间的误差平方和最小。
对于线性模型,最小二乘法可以通过求解正规方程或者利用矩阵运算的方式得到最优参数。
然而,在实际应用中,数据通常是逐步到来的,因此需要一种能够动态更新参数的方法,于是递推最小二乘法应运而生。
递推最小二乘法的基本原理是利用递推的方式不断更新参数,以逼近最优解。
在每一时刻,根据当前的观测数据和先前的参数估计,通过递推公式计算出新的参数估计值,从而实现参数的动态更新。
这样的方法不仅能够适应数据的动态变化,还能够实现快速的收敛,适用于实时系统和非平稳环境下的参数估计。
递推最小二乘法的核心思想是利用指数加权的方式对历史数据进行处理,赋予近期数据更大的权重,从而更好地适应数据的变化。
通过引入遗忘因子(Forgetting Factor),可以控制历史数据对参数估计的影响程度,使得算法更具灵活性和适应性。
同时,递推最小二乘法还可以结合正交分解等技术,进一步提高计算效率和数值稳定性。
在实际应用中,递推最小二乘法被广泛应用于自适应滤波、信道均衡、系统辨识等领域。
例如,在自适应滤波中,递推最小二乘法可以根据接收信号的实际情况,动态调整滤波器的参数,实现信号的实时去噪和增强。
在通信系统中,递推最小二乘法可以用于自适应调制解调器的设计,提高系统的抗干扰能力和适应性。
此外,递推最小二乘法还被广泛应用于雷达跟踪、无线定位等领域,发挥着重要作用。
总之,递推最小二乘法作为一种经典的参数估计方法,具有快速收敛、适应性强的特点,在信号处理、通信系统、自适应滤波等领域有着重要的应用。
递推最小二乘法_协方差矩阵_概述说明以及解释
递推最小二乘法协方差矩阵概述说明以及解释1. 引言1.1 概述在统计学和计量经济学中,递推最小二乘法(Recursive Least Squares,简称RLS)是一种常用的参数估计方法。
它通过不断更新样本数据进行参数的估计,并且可以适用于非静态数据场景。
协方差矩阵是统计分析中重要的概念,它描述了变量之间的线性关系强度和方向,并且在许多领域具有广泛应用。
1.2 文章结构本文首先介绍递推最小二乘法的定义和原理,在此基础上详细解释算法的步骤以及其应用领域。
接着,我们将引入协方差矩阵的概念并介绍其计算方法,同时探讨了它在实际问题中所起到的作用和应用场景。
最后,我们将对递推最小二乘法与协方差矩阵之间的关系进行解释,并通过实例分析来说明它们如何相互影响。
1.3 目的本文旨在全面介绍递推最小二乘法和协方差矩阵,并深入探讨它们之间的联系。
通过对这两个概念及其应用的理解,我们可以更好地理解参数估计方法和变量间关系的描述与分析。
此外,我们还将展望相关领域未来可能的研究方向,以促进学术和实践的进一步发展。
2. 递推最小二乘法2.1 定义和原理:递推最小二乘法是一种用于估计线性模型参数的方法。
它可以通过历史数据的不断更新来逐步拟合模型,以使得估计值与观测值之间的误差达到最小化。
该方法可以被形式化地描述为以下步骤:1. 初始化模型参数的初始值。
2. 从历史数据中选择一个样本,并使用当前参数估计出该样本对应的输出值。
3. 计算该样本的预测误差。
4. 根据预测误差对参数进行调整,使得预测误差尽量减小。
5. 重复步骤2至4,直到所有样本都被处理过一遍,或者满足终止条件。
递推最小二乘法是基于最小二乘原理,即将真实观测值与模型预测值之间的差异平方求和并最小化这个目标函数。
通过迭代地更新参数,递推最小二乘法可以逐渐优化模型,并获得更准确的参数估计。
2.2 算法步骤:具体而言,在每次迭代中,递推最小二乘法按照以下步骤进行操作:1. 根据历史数据选择一个样本,并根据当前的参数估计出预测值。
递推最小二乘法推导
递推最小二乘法推导递推最小二乘法是一种经典的数学方法,用于解决数据拟合问题。
它通过最小化误差平方和的方法,寻找最佳的拟合曲线或平面,从而对数据进行预测和分析。
本文将详细介绍递推最小二乘法的原理和推导过程。
一、引言在现实生活和科学研究中,我们经常需要通过已知的数据来拟合一个函数,以便对未知的数据进行预测或分析。
而最小二乘法就是一种常用的数据拟合方法,它的基本思想是通过最小化误差的平方和,找到最佳的拟合函数。
二、最小二乘法的基本原理最小二乘法的基本原理是通过最小化残差平方和来确定拟合函数的参数。
残差指的是每个数据点的观测值与拟合函数预测值之间的差异。
最小二乘法的目标是找到使得残差平方和最小的参数值,从而得到最佳的拟合曲线或平面。
三、递推最小二乘法的推导过程递推最小二乘法是最小二乘法的一种改进方法,它能够更加高效地进行参数估计。
下面将结合一个简单的一元线性回归问题,来详细介绍递推最小二乘法的推导过程。
假设我们有一组样本数据(x₁, y₁), (x₂, y₂), …, (xₙ, yₙ),需要找到一条直线y = ax + b 来拟合这些数据。
我们可以定义残差eᵢ= yᵢ- (axᵢ + b),其中 eᵢ表示第 i 个数据点的残差。
我们的目标是通过最小化残差平方和来确定直线的参数a 和b。
即最小化损失函数 S = Σ(eᵢ²)。
我们需要计算一些中间变量,包括样本数据的均值xₙ和yₙ,以及样本数据的协方差 sₓy 和方差 sₓ²。
其中,xₙ = (x₁ + x₂ + … + xₙ) / n,yₙ = (y₁ + y₂ + … + yₙ) / n,sₓy = (Σ(xᵢ - xₙ)(yᵢ - yₙ)) / (n - 1),sₓ² = (Σ(xᵢ - xₙ)²) / (n - 1)。
接下来,我们可以通过递推公式来更新参数 a 和 b 的估计值。
首先,我们初始化a₀和 b₀的估计值为0。
递推最小二乘估计
当C=I 时, [A+BD]-1 = A-1 -A-1B[I +DA-1B]-1DA-1
理论。 • 高斯仅用1小时就算出了谷神星的
轨道形状,并进行了预测
•1794年,高斯提出了最小二乘的思想。
1:引言
最小二乘法(Least Square)Gauss 1795年提出 在预测卫星和彗星运动的轨道时,需要处理由望远镜获得的观测数 据,以估计天体运动的六个参数。
Gauss在《天体运动理论》一书中写道:“未知量的最大概值是这 样的数值,它使各实测值与计算值之差的平方乘以度量其精度的数 值后,所得的和值达到最小。” ——著名的最小二乘思想 在系统辨识中,LS已成功应用于系统参数估计。 在自校正控制中,LS是应用最广泛的算法之一。
2:原理
2:原理
2:原理
2:原理
2:原理
3:特点
3:特点
(1):无需存储全部数据,取得一组观测数据便 可估计一次参数,而且都能在一个采样周期中完 成,所需计算量小,占用的存储空间小。
(2):具有一定的实时处理能力
谢谢
递推最小二乘估计(RLS)
董博南
一:最小二乘法回顾
二:递推最小二乘估计
一:最小二乘法回顾
1:引言 2:原理
3:特点
1:引言
• 1801年初,天文学家皮亚齐发现了谷神星。
•1801年末,天文爱好者奥博斯,在高斯预 言的时间里,再次发现谷神星。 •1802年又成功地预测了智神星的轨道。
递推最小二乘法原理
递推最小二乘法原理递推最小二乘法(Recursive Least Squares, 简称RLS)是一种经典的自适应滤波算法,它在信号处理、通信系统、控制系统等领域得到了广泛的应用。
本文将介绍递推最小二乘法的原理及其在实际应用中的一些特点。
首先,让我们来了解一下最小二乘法。
最小二乘法是一种数学优化方法,用于寻找一组参数,使得给定的模型与观测数据之间的误差平方和最小。
在线性回归问题中,最小二乘法可以用来拟合一个线性模型,以最小化观测数据与模型预测值之间的差异。
最小二乘法的基本思想是通过最小化误差的平方和来寻找最优的参数。
递推最小二乘法是最小二乘法的一种变种,它的特点在于可以实时地更新参数估计,适用于需要动态调整的系统。
在实际应用中,由于系统参数可能随时间变化,传统的最小二乘法在每次参数更新时都需要重新计算整个数据集,计算复杂度较高,不适合实时性要求高的场景。
而递推最小二乘法则可以通过递推的方式,实时地更新参数估计,适用于动态环境下的参数估计问题。
递推最小二乘法的原理可以用数学公式来描述。
假设我们有一个线性模型,\[y_k = \theta^T x_k + e_k\]其中\(y_k\)是观测数据,\(x_k\)是输入向量,\(\theta\)是待估计的参数,\(e_k\)是噪声。
我们的目标是通过观测数据\(y_k\)和输入向量\(x_k\)来估计参数\(\theta\)。
递推最小二乘法的核心思想是通过递推的方式,实时地更新参数\(\theta\)的估计值。
具体来说,我们可以通过以下递推公式来更新参数\(\theta\)的估计值,\[\theta_k =\theta_{k-1} + \frac{P_{k-1}x_k}{1 + x_k^T P_{k-1} x_k}(y_k x_k^T \theta_{k-1})\]其中\(\theta_k\)是第\(k\)次的参数估计值,\(\theta_{k-1}\)是第\(k-1\)次的参数估计值,\(P_{k-1}\)是第\(k-1\)次的参数估计误差的协方差矩阵。
几种最小二乘法递推算法的小结
一、 递推最小二乘法递推最小二乘法的一般步骤:1. 根据输入输出序列列出最小二乘法估计的观测矩阵ϕ:] )(u ... )1( )( ... )1([)(T b q n k k u n k y k y k ------=ϕ没有给出输出序列的还要先算出输出序列。
本例中, 2)]-u(k 1),-u(k 2),-1),-y(k -[-y(k )(T =k ϕ。
2. 给辨识参数θ和协方差阵P 赋初值。
一般取0θ=0或者极小的数,取σσ,20I P =特别大,本例中取σ=100。
3. 按照下式计算增益矩阵G :)()1()(1)()1()(k k P k k k P k G T ϕϕϕ-+-= 4. 按照下式计算要辨识的参数θ:)]1(ˆ)()()[()1(ˆ)(ˆ--+-=k k k y k G k k T θϕθθ5. 按照下式计算新的协方差阵P :)1()()()1()(---=k P k k G k P k P T ϕ6. 计算辨识参数的相对变化量,看是否满足停机准那么。
如满足,那么不再递推;如不满足,那么从第三步开场进展下一次地推,直至满足要求为止。
停机准那么:εϑϑϑ<--)(ˆ)1(ˆ)(ˆmax k k k i i i i 本例中由于递推次数只有三十次,故不需要停机准那么。
7. 别离参数:将a 1….a na b 1….b nb 从辨识参数θ中别离出来。
8. 画出被辨识参数θ的各次递推估计值图形。
为了说明噪声对递推最小二乘法结果的影响,程序5-7-2在计算模拟观测值时不加噪声, 辨识结果为,,,b ,与真实值2,5,,b5相差无几。
程序5-7-2-1在计算模拟观测值时参加了白噪声序列,由于噪声的影响,此时的结果为变值,但变化范围较小,现任取一组结果作为辨识结果。
辨识结果为a1 =, a2 =,756,b378。
程序5-7-2-2在计算模拟观测值时参加了有色噪声,有色噪声为E(k)+1.642E(k-1)+0.715E(k-2),E(k)是白噪声序列,由于有色噪声的影响,此时的辨识结果变动范围远比白噪声时大,任取一组结果作为辨识结果。
递推最小二乘法
取二 E ( ) 为 的 合目 函 相 的 的 合目 函 : =, j 作 新 拟 标 数, 应 新 拟 标 数为 Dw
jO ( ) J 艺z艺:( 】 习回 ) Q 加 司一 一 e } j = 。+ G 阶川 = D叭
权最小二乘拟合。 (3 ) (3 0 把式( .和( .) 3 9 3 1 代入式(3 3 . . ( .) 3 1 则有: .
度函数。 下面仅举出第一种计算相关函数法的计算过程。 用这个方法进行相关分析辨识
系统模型的计算分为三个步骤:
1 根 输 和 出 随 数 计 相 函 R )互 关 数 = ) ) 据 入 输 的 机 据 算自 关 数 , 和 相 函 R令; , 卜 r
2 求 ,) R(的 立 变 Sj 凡行) ) *: s)傅 叶 换 x 、 (和 3 , r () 。; ) 0 和
把 宪G 做型,把一实值模值差 “ O 模值并每点测与型之 j 州 ( )
: E . = J j() =( , - + , j )P ( Q. -
( ..1 331 )
称为拟合误 差,再取全部采样频率。上的 拟合误差s 平方和厂作为 , 的 拟合目 标函数。
,rn 、。、下不二不} '-厂 J ‘ Bol }. v\ 、 G , l . W厂 _ _ : Vw } k 一YE t-L]1 G ) ' 二 ' U i - -, ' i
二 ( + ( v } jr ) u mm )
( ..0 33 1 )
现要定数, 以d2 由j(所示频特 在 参bi, i., ’ j 表的率性 确 p. 及, 使 ( . bm . 得 劣 ) . . b dn . 0 d
函 与 验 得 频 特 加 + ) 接 如 把P 和Q , 做 测 而 数 实 求 的 率 性p ) .最 近。 果 阮) () 实 值, M .叫
递推最小二乘法
线性方程组的最优求解方法一.递推最小二乘法设线性方程组b Ax = (1)则有k b k =x :A ),(, (n k Λ,2,1=) (2)其中,[]kn k k a a a k ,,,:),(21Λ=A ,[]Tn x x x ,,,21Λ=x 。
设x :A ),()(k k f = (3)下面采用基于递推最小二乘法(RLS)的神经网络算法来训练权值向量x ,以获得线性方程组(1)的解x 。
由式(3)可知,若以)(k f 为神经网络输出,以k b 为神经网络训练样本,以x 为神经网络权值向量,[]kn k k a a a k ,,,:),(21Λ=A 为神经网络输入向量,则解线性方程组的神经网络模型如同1所示。
图1 神经网络模型采用RLS 算法训练神经网络权值向量x ,其算法如下: (1)神经网络输出:x :A ),()(k k f = (4)(2)误差函数:)()(k f b k e k -= (5)(3)性能指标:∑==n k k e J 12)(21 (6)(4)使min =J 的权值向量x ,即为所求的神经网络权值向量x ,这是一个多变量线性优化问题,为此,由0=∂∂xJ可得最小二乘递推法(RLS ):]),([1k k k k k k b x :A Q x x -+=+ (7)),(),(1),(:A P :A :A P Q k k k T k T k k+= (8)k k k k P :A Q I P )],([1-=+ (9)()n k ,,2,1Λ=随机产生初始权值向量)1,(0n rand =x ,设nn ⨯∈=R I P α0(α是足够大的正数(一般取10610~10=α),nn ⨯∈R I 是单位矩阵),通过对样本数据训练,即可获得神经网络权值向量x ,此即为线性方程组(1)的解。
二.具有遗忘因子的递推最小二乘估计公式为:]),([1k k k k k k b x :A Q x x -+=+ (10)),(),(),(:A P :A :A P Q k k k Tk T k k+=λ (11) k k k k P :A Q I P )],([11-=+λ(12)式中,1:)],(:),([)(-=k A k A k TW P ,W 为加权对角阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=--10021λλλOn n W(nn ⨯∈=R I P α0,10610~10=α)。
递推的最小二乘法
1
说明: 公式①的物理意义
( N 1) WLS ( N ) 在以前观测的基础上对本次观测值的预测
T 0 y ( N 1) ( N 1) WLS ( N ) 预测误差,说明 WLS ( N )与实际参数(N)的偏差 T
进行递推,起动问题:
. 一般选 WLS (0)=0,相应的P(0) I = = 0
递推的最小二乘法
最小二乘估计:
LS ( ) Y
T 1 T
加权的最小二乘估计:
WLS ( W ) WY
T 1 T
Y:所有观测数据的全体,所以以上都是成批处理观测数据的一次完成算法,是离 线辨识方法。优点:辨识精度高;缺点:计算量大(特别是高阶矩阵求逆),对 计算机内存要求高,不能在线辨识!
从
WLS ( N )
到
WLS ( N 1)
的递推公式过程(略P191)
递推公式:
T ★ ① WLS ( N 1) WLS ( N ) L( N 1) y ( N 1) ( N 1) WLS ( N ) ② L( N 1) P( N 1) ( N 1) ( N 1)
1、递推的最小二乘法基本思想:
• 本次(新)的估计值
(k )
=上次(老)的估计值
(k 1)
+修正项
•
可以观察随着时间的推移,新的输入、输出信息不断增加的情况下,参数估计的变化情况,特别适用于 在线实时辨识。
设原先得到的参数估计用 WLS ( N ) 表示,则
WLS ( N ) ( T ( N )W ( N ) ( N )) 1 T ( N )W ( N )Y ( N )
递推最小二乘法
递推最小二乘法递推最小二乘法是一种避免精度损失的迭代计算方法,在最小二乘法的基础上加以改进,主要用于拟合复杂的数据,解决拟合时出现精度下降问题。
一、什么是递推最小二乘法递推最小二乘法是一种迭代计算方法,利用多项式曲线拟合曲线数据,对于某个曲线,只需要实施最小二乘法的迭代计算,而不需要考虑精度的损失。
递推最小二乘法的主要工作是根据给定的拟合曲线,把它拟合到数据集中,从而使数据集距离拟合曲线最小。
二、递推最小二乘法的原理递推最小二乘法的核心原理是,利用多项式拟合曲线,按照“最小二乘法”的原理,以当前拟合曲线为参照,不断进行前进和后退,以达到拟合曲线将数据集中的数据最佳拟合的目的。
这个最佳拟合目标就是实现拟合曲线与数据集之间的最小误差,其中,最小误差就是拟合曲线与实际数据集之间的最小差值。
递推最小二乘法的实现方式主要有两种,一种是基于递推的方式,另一种是基于函数的方式。
前者大致的实现方法是:先计算出多项式拟合曲线的每一个系数,然后再利用这些系数计算出多项式拟合曲线的最终拟合曲线,最后比较拟合曲线与实际数据集之间的实际差异,根据差异再调整系数,不断循环,直到最后拟合曲线与实际数据集之间的实际差异达到预期值为止。
函数的实现方式也很类似,只是在计算过程中,会使用函数的方式,将拟合曲线的系数表示为函数的形式,然后再比较拟合曲线与实际数据集之间的实际差异,根据差异再调整函数系数,最后实现拟合曲线与实际数据集之间的最小差异。
三、应用递推最小二乘法在实际应用中可以用来拟合复杂的数据曲线,以求得更好的拟合效果,解决拟合时出现精度下降问题。
它具有计算量小、运算简单、拟合结果较好的优点,因此在实际应用中得到了广泛的使用,比如在众多植物物种的遗传分析中,用递推最小二乘法来拟合植物的遗传规律,以获得更准确的估计结果;在探测地球大气层时,也可以用最小二乘法来拟合大气层中的湿度数据,以获取更加准确的湿度数据;在搜索引擎中,对查询结果也可以用最小二乘法拟合出来,以获得更准确的查询结果等等。
递推最小二乘法原理
递推最小二乘法原理递推最小二乘法是一种用于估计参数的统计方法,它可以帮助我们通过观测数据来拟合模型,从而预测未来的结果。
在实际应用中,我们经常会遇到数据量大、模型复杂的情况,这时候传统的最小二乘法可能会面临计算量大、求解困难的问题。
而递推最小二乘法则可以通过递推的方式,逐步更新参数估计,从而减小计算量,提高效率。
递推最小二乘法的原理主要基于最小二乘法和递推算法。
最小二乘法是一种常用的参数估计方法,它通过最小化观测值与模型预测值之间的误差平方和来求解参数。
而递推算法则是一种通过递推更新参数的方法,可以在每次新的数据到来时,不必重新计算所有参数,而是通过已有的参数估计值和新的数据进行递推更新,从而减小计算量。
在实际应用中,递推最小二乘法可以应用于时间序列分析、信号处理、机器学习等领域。
它可以帮助我们更好地处理大规模数据,提高模型的拟合精度和预测能力。
同时,递推最小二乘法也具有较好的稳定性和收敛性,能够有效应对数据变化和噪声干扰。
递推最小二乘法的核心思想是通过递推更新参数,不断优化模型的拟合效果。
在实际应用中,我们可以通过以下步骤来实现递推最小二乘法:1. 初始化参数,首先,我们需要初始化模型的参数估计值,可以根据经验值或者随机值来初始化。
2. 递推更新参数,当新的数据到来时,我们可以利用已有的参数估计值和新的数据,通过递推算法来更新参数。
这样就可以不断优化模型的拟合效果。
3. 模型预测,通过不断更新参数,我们可以得到更加准确的模型,从而可以用于预测未来的结果。
递推最小二乘法的优点在于它能够有效地处理大规模数据和复杂模型,同时具有较好的稳定性和收敛性。
它在实际应用中具有广泛的应用前景,可以帮助我们更好地分析数据、预测结果。
总之,递推最小二乘法是一种重要的参数估计方法,它通过递推更新参数的方式,可以有效地处理大规模数据和复杂模型,提高模型的拟合精度和预测能力。
在实际应用中,我们可以根据具体的问题和数据特点,选择合适的递推最小二乘法模型,从而更好地分析数据、预测结果。
matlab递推最小二乘法函数
一、介绍在数学和工程领域中,最小二乘法是一种常见的参数估计方法,用于寻找一组参数使得观测数据和模型预测值之间的误差最小。
而在matlab中,递推最小二乘法函数是指使用递推方式来实现最小二乘法计算的函数。
本文将介绍matlab中如何编写递推最小二乘法函数,并对其原理和应用进行详细讲解。
二、递推最小二乘法的原理递推最小二乘法是一种迭代方法,通过不断更新参数来逼近最优解。
其原理可以简单描述为以下几个步骤:1. 初始化参数:首先需要初始化参数向量,通常可以使用随机数或者某些先验知识来确定初始参数值。
2. 迭代更新:接下来进入迭代更新阶段,根据当前参数值和观测数据,更新参数向量以降低误差。
3. 判断停止条件:迭代更新的过程中需要设立停止条件,当满足某个条件时停止迭代,可以是达到一定的迭代次数或者参数变化小于某个阈值等。
三、matlab编写递推最小二乘法函数在matlab中,编写递推最小二乘法函数可以通过以下步骤实现:1. 编写初始化函数:首先需要编写一个初始化函数来初始化参数向量,该函数可以接受观测数据和模型的输入,并返回初始参数向量。
2. 编写更新函数:接下来需要编写一个更新函数来进行参数的迭代更新,该函数也可以接受观测数据和当前参数向量的输入,并返回更新后的参数向量。
3. 编写停止条件函数:最后需要编写一个停止条件函数来判断迭代是否应该停止,该函数可以接受当前参数向量和更新前的参数向量的输入,并返回是否停止的逻辑值。
四、matlab递推最小二乘法函数的应用递推最小二乘法函数在matlab中的应用非常广泛,特别是在参数估计、信号处理、系统识别等领域。
通过使用递推最小二乘法函数,可以快速准确地估计出模型参数,从而提高算法的精度和效率。
由于递推最小二乘法具有较好的收敛性和稳定性,因此在实际工程中也得到了广泛的应用。
五、总结通过本文的介绍,读者可以了解到matlab中递推最小二乘法函数的编写和应用。
递推最小二乘法作为一种迭代方法,能够快速准确地估计出模型参数,并在各种工程领域中得到了广泛的应用。
递推最小二乘法[整理版]
线性方程组的最优求解方法一.递推最小二乘法设线性方程组b Ax = (1)则有k b k =x :A ),(, (n k ,2,1=) (2)其中,[]kn k k a a a k ,,,:),(21 =A ,[]Tn x x x ,,,21 =x 。
设x :A ),()(k k f = (3)下面采用基于递推最小二乘法(RLS)的神经网络算法来训练权值向量x ,以获得线性方程组(1)的解x 。
由式(3)可知,若以)(k f 为神经网络输出,以k b 为神经网络训练样本,以x 为神经网络权值向量,[]kn k k a a a k ,,,:),(21 =A 为神经网络输入向量,则解线性方程组的神经网络模型如同1所示。
图1 神经网络模型采用RLS 算法训练神经网络权值向量x ,其算法如下:(1)神经网络输出:x :A ),()(k k f = (4)(2)误差函数:)()(k f b k e k -= (5)(3)性能指标:∑==n k k e J 12)(21 (6)(4)使min =J 的权值向量x ,即为所求的神经网络权值向量x ,这是一个多变量线性优化问题,为此,由0=∂∂xJ可得最小二乘递推法(RLS ):]),([1k k k k k k b x :A Q x x -+=+ (7)),(),(1),(:A P :A :A P Q k k k Tk T k k+= (8)k k k k P :A Q I P )],([1-=+ (9)()n k ,,2,1 =随机产生初始权值向量)1,(0n rand =x ,设n n ⨯∈=R I P α0(α是足够大的正数(一般取10610~10=α),n n ⨯∈R I 是单位矩阵),通过对样本数据训练,即可获得神经网络权值向量x ,此即为线性方程组(1)的解。
二.具有遗忘因子的递推最小二乘估计公式为:]),([1k k k k k k b x :A Q x x -+=+ (10)),(),(),(:A P :A :A P Q k k k Tk T k k+=λ (11)k k k k P :A Q I P )],([11-=+λ(12)式中,1:)],(:),([)(-=k A k A k T W P ,W 为加权对角阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=--10021λλλn n W(nn ⨯∈=R I P α0,10610~10=α)。
预测控制算法范文
预测控制算法范文预测控制算法是一种基于过去的观测数据来预测未来系统行为的控制方法。
它可以用于各种领域,如工业控制、金融市场预测、天气预报等。
本文将介绍几种常用的预测控制算法,包括递推最小二乘法、基于神经网络的算法和基于深度学习的算法。
1. 递推最小二乘法(Recursive Least Squares, RLS):递推最小二乘法是一种经典的预测控制算法。
它通过不断更新一个递推系数来预测未来系统行为。
具体而言,它通过最小化观测数据与预测输出之间的误差平方和来更新递推系数。
递推最小二乘法在实际应用中被广泛使用,因为它具有较好的收敛性和计算效率。
2.基于神经网络的算法:基于神经网络的预测控制算法基于一种称为前馈神经网络的模型,该模型可以学习和预测复杂的非线性系统行为。
算法首先使用一组历史观测数据来训练神经网络模型,然后使用该模型来预测未来系统行为。
该算法的优点是能够处理复杂系统并具有较高的预测精度,但需要大量的训练数据和计算资源。
3.基于深度学习的算法:基于深度学习的预测控制算法是近年来新兴的算法。
它使用一种称为深度神经网络的模型来学习和预测系统行为。
与传统的神经网络不同,深度神经网络拥有多个隐藏层,可以学习更加复杂的系统关系。
该算法在处理大规模数据集和高维数据方面具有很大优势,并在图像识别、语音识别等领域取得了显著的成果。
4.其他预测控制算法:除了上述提到的算法外,还有许多其他预测控制算法可供选择。
例如,基于卡尔曼滤波的算法可以处理系统中的噪声和不确定性,并提供准确的预测。
遗传算法可以通过模拟进化过程来最优的控制参数。
模糊控制算法可以处理模糊和模糊输入,适用于复杂和不确定的系统。
综上所述,预测控制算法在实际应用中起到了重要的作用。
根据不同的应用场景和需求,我们可以选择合适的算法来进行预测和控制。
未来随着科技的发展和算法的改进,预测控制算法将能够更好地处理复杂系统和大规模数据,并提供更准确的预测和控制结果。
递推最小二乘法
递推最小二乘法递推最小二乘法是用于拟合函数的一种最广泛和有效的方法。
递推最小二乘法(RecursiveLeastSquares,RLS)是针对给定样本进行线性拟合的一种机器学习算法,它在求解具有最小均方差的最优参数时用于模型的更新。
递推最小二乘法以更新参数的方式估计参数,从而将当前参数和新数据结合起来。
它可以用来求解给定样本具有最小平均方差的最优参数表达式,以解决传统最小二乘法的计算开销大的问题。
递推最小二乘法的基本原理是求解通过要拟合的数据图形的几何图案的最小二乘参数,并逐渐拟合出数据图形的最小二乘参数。
它使用一种迭代计算的方法,用新的样本点替换旧的样本点,以不断更新拟合函数参数。
该方法有利于跟踪变化快的参数。
递推最小二乘法的思想很简单:从给定的样本中求出最小二乘拟合参数,并以迭代和递推的方式求解最优拟合参数,不断地更新最小二乘拟合参数,以达到拟合数据的最优状态。
此外,递推最小二乘法也可以利用状态空间表示来改进拟合性能,尤其是在模型存在时滞性和高阶非线性性质时,能更好地拟合函数从而获得更详细的函数图形。
在应用递推最小二乘法时,我们需要注意它存在的一些局限性。
首先,它要求拟合的模型必须是线性的,这意味着参数的变化关系必须是线性的。
其次,它的迭代方式容易出现收敛速度慢的问题。
在实际应用中,一般用共轭梯度法或牛顿法加速收敛速度。
最后,它只能处理维度为n的数据,而不能处理大规模的数据。
因此,在实际应用中,在使用递推最小二乘法之前,需要结合其他方法,以减少数据维度,从而提高计算效率。
总之,递推最小二乘法是一种应用广泛、计算量小、拟合效果好的数据拟合算法,它主要用于模型参数在时间上有变化,并且有高阶非线性特性时,拟合函数参数的更新。
由于这种算法的收敛速度慢,因此,在实际应用中,一般要结合其他方法或技术进行优化,以进一步提高拟合的准确性和稳定性。
递推最小二乘法python
递推最小二乘法python递推最小二乘法是一种求解线性回归问题的方法,可以逐步地加入数据,并且不需要存储全部数据,省去了处理大量数据的繁琐过程。
以下是递推最小二乘法的Python实现。
步骤如下:1. 初始化参数:设初始的拟合直线为y=a*x+b,初始数据点个数为0,初始误差为0。
2. 逐步加入新的数据点:每次加入一个新的数据点(x,y),首先计算它和当前拟合直线的误差e,即y-(a*x+b),然后更新误差平方和SSE=SSE+e^2。
3. 更新拟合直线的参数:根据新加入的数据点,使用最小二乘法更新拟合直线的参数a和b。
4. 返回结果:重复步骤2和3,直至所有数据点都被加入。
最终得到的拟合直线就是最小二乘法的解。
代码实现如下:```import numpy as npclass RecursiveLS(object):def __init__(self):self.x = 0self.y = 0self.x2 = 0self.xy = 0self.n = 0self.a = 0self.b = 0def update(self, x, y):self.n += 1self.x += xself.y += yself.x2 += x**2self.xy += x*yif self.n > 1:denom = self.n*self.x2-self.x**2self.a = (self.n*self.xy-self.x*self.y)/denom self.b = (self.y*self.x2-self.x*self.xy)/denomdef predict(self, x):return self.a*x + self.b```其中,update()函数用于加入新的数据点,predict()函数用于预测新的x值对应的y值。
递推最小二乘法原理
递推最小二乘法原理递推最小二乘法(Recursive Least Squares, 简称RLS)是一种常用的自适应滤波算法,广泛应用于信号处理、通信系统、控制系统等领域。
它通过不断更新模型参数,逐步逼近最优解,具有较好的收敛性能和适应性。
本文将介绍递推最小二乘法的原理及其应用。
首先,我们来了解一下最小二乘法(Least Squares, 简称LS)的基本原理。
最小二乘法是一种数学优化方法,用于估计模型参数使得观测数据和模型预测之间的误差平方和最小。
对于线性回归模型,最小二乘法可以通过求解正规方程或者利用矩阵运算来得到最优参数。
但是,对于动态系统或者非线性系统,参数可能会随时间变化,这时候就需要使用递推最小二乘法来动态更新参数。
递推最小二乘法的核心思想是不断更新模型参数,使得最小化误差平方和。
它采用递推的方式,每次接收到新的数据就更新一次参数,从而实现动态适应。
递推最小二乘法可以通过递推公式来更新参数,其中包括增益矩阵、误差协方差矩阵等重要参数。
通过不断迭代更新,可以逐步逼近最优解。
在实际应用中,递推最小二乘法常用于自适应滤波器的设计。
自适应滤波器可以根据环境变化自动调整滤波器参数,从而更好地适应不断变化的信号特性。
递推最小二乘法作为自适应滤波器设计的核心算法之一,具有较好的性能和稳定性,被广泛应用于信号去噪、信道均衡、自适应控制等领域。
除了自适应滤波器,递推最小二乘法还可以用于系统辨识、参数估计等问题。
在系统辨识中,递推最小二乘法可以根据系统的输入输出数据,动态地估计系统的参数,从而实现对系统的建模和预测。
在参数估计中,递推最小二乘法可以根据观测数据不断更新参数,从而实现对参数的实时估计。
总之,递推最小二乘法作为一种自适应算法,具有较好的性能和适应性,被广泛应用于信号处理、通信系统、控制系统等领域。
通过动态更新参数,递推最小二乘法可以实现对动态系统的建模和预测,具有重要的理论和应用价值。
希望本文的介绍能够帮助读者更好地理解递推最小二乘法的原理及其应用。
递推最小二乘法
1
最小二乘法辨识
回顾
考虑系统模型:
y(k) a1y(k 1) a2 y(k 2) L an y(k n)
b0u(k) b1u(k 1) L bnu(k n) (k)
2
最小二乘法:
a1
2n+1维 参数向量
N维输出向量
y
y(n 1)
y(n
2)
,
M
y(n
4
递推最小二乘 参数辨识算法
u(k)
y(k)
动态系统模型
反馈控制律
图4.1 动态系统递推最小二乘在线辨识过程原理图
2020/6/27
5
递推最小二乘法
令 PN (TN N )1 ,则递推最小二乘算法
) )
)
θN 1 θN K N 1 ynN 1 ψTN 1θN
K N1 PN ψN1
ψ
T N
1PN
ψN
1
1
PN 1
1
PN
PN ψN 1
ψTN 1PN ψN 1
1
ψTN
1PN
2ΦTNΦN
N
1
T N
1
1
1
2
ΦTN ΦN
1 1
2
ΦTN Φ N
1
N 1
1
T N 1
1
2
ΦTN ΦN
1
N 1
1
T N 1
1
2
ΦTN ΦN
1
1
2
ΦTN ΦN
1 1
)
N
ΦTN ΦN
1 N 1
2
T N
1
ΦTN ΦN
1
递推最小二乘辨识
ˆ (1) 选取 (0)各元素为零或较小的参数,P(0)=I,其中为 充分大的实数(105~1010);
(2) 先将大于所需辨识的参数个数的L组数据,利用成批 型的LS法求取参数估计值LS和协方差阵P(L),并将这 些量作为递推估计的初值.
y N 1 原 有 信 息 ˆ
N
N 1
ˆ (k ) (ΦΦ )1 ΦY θ k k k k
Yk=[y(1), y(2), ..., y(k)]T=[Yk y(k)]T 1
仔细考察上述LS法,可以知道,该算法进行递推化的关键是算法中的矩 阵求逆的递推计算问题. 因此,下面先讨论该逆矩阵的递推计算.
P(k ) (ΦΦk )-1 k
首先,假定在第k-1次递推中,我们已计算好参数估计值 在第k次递推时,我们已获得新的观测数据向量(k-1)和 y(k),则记 Φ k-1=[(0), (1), ..., (k-2)]T Φ k=[(0), (1), ..., (k-1)]T=[φ (k-1)T φ (k-1)]T Yk-1=[y(1), y(2), ..., y(k-1)]T
1.2递推算法的思想 * 递推辨识算法的思想可以概括成 新的参数估计值=旧的参数估计值+修正项 即新的递推参数估计值是在旧的递推估计值的基础上而成, 这就是递推的概念. 递推算法不仅可减少计算量和存储量,而且能实现在线 实时辨识. * 递推算法是依时间顺序,每获得一次新的观测数据就修 正一次参数估计值,随着时间的推移,便能获得满意的辨 识结果. RLS法即为成批型LS算法的递推化,即将成批型LS算法 化成依时间顺序递推计算即可。 该工作是1950年由Plackett完成的。
将Φ k展开,故有
(2)
P (k ) ([Φ-1 (k -1)][Φ-1 (k -1)] )-1 k k
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T 2 T 3 N 1 T N 1
4.7最小二乘估计的性质
4.7.1 最小二乘估计的特点 1) 唯一性 2)适用范围广 3)应用简单,鲁棒性好
1
1 1 T T PN 1 PN PN ψ N 1 ψ N 1PN ψ N 1 ψ N 1PN
其中,λ称为“遗忘因子”。选择不同的λ就得到不 同的遗忘效果。 λ越小,遗忘的速度越快。 λ =1:无遗忘; λ =0:全遗忘 一般来说, λ必须选择接近于1的正数,对于线性系 统,应选择0.95≤λ≤1。
2n+1维 参数向量
则可写为
y
3
e y y y
最小二乘估计要求残差的平方和为最小,即按照指 标函数 为最小来确定估值 。求J对 的偏导数并令其等于0
J e e ( y ) ( y )
T T
可得 的最小二乘估计
( ) y
YN YN 1 y ( n N 1)
10
YN YN 1 y ( n N 1)
此时,由n+N+1个观测数据获得 的最小二乘估计为
1 T N 1 (T ) N 1YN 1 N 1 N 1
N T N 1
T N 1 N
2 1 令 PN (T , ) N N
则得渐消记忆的递推最小二乘算法
渐消记忆递推最小二乘算法
θ N 1 θ N K N 1 yn N 1 ψ T N 1θ N
K N 1 PN ψ N 1 ψ
T N 1 N
P ψ N 1
1
1 1 T PN 1 PN PN ψ N 1 ψ N 1PN ψ N 1 ψ T P N 1 N
2 T T Φ Φ N N N 1 N 1 1 1
1
2
1
Φ
T N
ΦN
1 1
1
2018/9/28 18
最小二乘估计法的缺陷
y
( ) y
T 1 T
最小二乘估计的无偏性、一致性等概率性质,都是 在ξ(k)为零均值、不相关随机序列的前提下得到的。 但实际系统中ξ(k)往往是相关的,有些系统即使外 加干扰为不相关的随机序列,但在参数估计过程中,也 变成相关的随机序列了。
1
T T N 1 Φ N Φ N
1 T ) NYN ,则上式变为 又因为 N (T N N
N 1 N Φ Φ N N 1
T N 1 2
Φ
T N
Φ N N 1
1 2 T N 1
T N 1 1
Φ
T N
Φ N N 1
1
T N 1 2
Φ
T N
Φ N N 1
1
T N 1 N
1
y (n N 1)
N Φ Φ N N 1
T N 1
Φ
T N
Φ N N 1
1
1
y(n N 1)
最小二乘估计法的缺陷
系统 B(z-1)/A(z-1)
+
x(k ) a1 x(k 1) b0 u (k )
an x(k n)
bn u (k n), k 1, 2,3
y(k ) x(k ) (k )
y (k ) a1 y (k 1) b0 u (k )
1
2
T N
ΦN
1
1
2
T N
Φ N N 1
1 2
T N 1
Φ
T N
Φ N N 1
1
1
T N 1
Φ
T N
ΦN
1
将上面的结果带入(*)式,并展开得
2 T T 2 T N 1 Φ Φ Φ N YN N 1 y (n N 1) N N N 1 N 1 1
T N 1 N
P ψ N 1 ψ T N 1PN
1
6
该递推公式有明显的物理意义:
θ N 1 θ N K N 1 yn N 1 ψ T N 1θ N
K N 1 PN ψ N 1 1 ψ T N 1PN ψ N 1
1
θN 1 θN θN
2
1
Φ
T N
ΦN
1
1 1 1 T T T T N 1 1 N 1 2 Φ N Φ N N 1 N 1 2 Φ N Φ N 1
Φ ΦN 2
T N
Φ Φ N N 1 2
T N 1 2
T 1 T
J为极小值的充分条件是
2 J T 2 0 2
4
即矩阵 T 为正定矩阵。
递推最小二乘 参数辨识算法 u(k) y(k)
动态系统模型
反馈控制律
图4.1 动态系统递推最小二乘在线辨识过程原理图
2018/9/28 5
递推最小二乘法
1 ) 令 PN (T ,则递推最小二乘算法 N N
PN 1 PN PN ψ N 1 1 ψ PN PN 1 PN ψ N 1 1 ψ
T N 1 N
P ψ N 1 ψ T N 1PN
1 1
T N 1 N
P ψ N 1 ψ T N 1PN
ψ N 1ψ T N 1 PN PN 1 PN PN 0 T 1 ψ N 1PN ψ N 1
2 T N
T
T N N T T N 1 N 1
1 T N 1
1
YN y (n N 1)
Φ Φ N N 1
2 T Φ N YN N 1 y (n N 1)
2018/9/28
1
最小二乘法辨识
回顾
考虑系统模型:
y(k ) a1 y(k 1) a2 y(k 2)
an y(k n)
b0u(k ) b1u(k 1)
bnu(k n) (k )
2
最小二乘法:
a1 N维噪声向量 ( n 1) y (n 1) N维输出向量 y (n 2) (n 2) an , , y b0 (n N ) N×(2n+1)维 y (n N ) 测量矩阵 b n y (1) u (n 1) u (1) y ( n) y (n 1) y (2) u ( n 2) u (2) y ( N ) u (n N ) u( N ) y (n N 1)
(*)
( A BBT )1 A1 A1B( I BT A1B)1 BT A1
2 T T Φ Φ N N N 1 N 1 1 1
1
2
Φ Φ
T N
ΦN
1
1
2
Φ Φ
T N
ΦN
1
1 1 1 1 T T T T N 1 1 N Φ Φ Φ Φ 1 N N N 1 N 1 N N 2 2
为了克服数据饱和现象,可以用降低旧数据影响 的办法来修改算法。
9
4.6 渐消记忆递推算法 渐消记忆法是对每个数据按指数加权,老的数据 作用逐渐减弱。 由n+N个观测数据获得 的最小二乘估计为
1 T N (T ) NYN N N
u (n N 1) 如果再获得一对新的观测值 y(n N 1) , 则有 N N N 1 T N 1 T N 1 N 1 0 1
2018/9/28
17
4.7.2 最小二乘估计的概率性质 如果ξ(k)是不相关随机序列,且均值为0。 1) 无偏性
辅助变量法、广义最小二乘法、增广矩阵法
2)一致性
ˆ 以概率1趋近于。 当N 时,θ
3) 有效性
在众多无偏估计中,方差最小。
4) 渐进正态性
如果ξ是均值为0且服从正态分布的白噪声向量,则最小 二乘参数估计值服从正态分布。
θ N 1 θ N K N 1 yn N 1 ψ T N 1θ N
K N 1 PN ψ N 1 1 ψ
T N 1 N
P ψ N 1
1
PN 1 PN PN ψ N 1 1 ψ ( I K N 1ψ T N 1 )PN
2018/9/28
an y (k n) an (k n)
bn u (k n) (k ) a1 (k 1)
最小二乘估计法的缺陷
(k ) (k ) a1 (k 1)
an (k n)
E (k ) (k j) 0
可见ξ(k)是相关序列,进而得到的最小二乘参数估 计不是无偏、一致估计。 因而,LS估计方法的应用受到一定限制,下面介绍 在LS基础上加以改进的方法。
限定记忆法
思路:限定每次估计都用最新的n+N个数据,增加 一个新数据就去掉一个老数据。 y (n 2) y (n 1) y (n 3) y (n 2) YN 1 YN y ( n N 1) y ( n N )