2020年中考数学分类汇编(数与式).doc
2019、2020年山东中考数学试题分类(1)——数与式
2019、2020年山东中考数学试题分类(1)——数与式一.有理数的加减混合运算(共1小题) 1.(2019•德州)已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x }=x ﹣[x ],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= . 二.科学记数法—表示较大的数(共5小题) 2.(2020•日照)“扶贫”是新时期党和国家的重点工作之一,为落实习近平总书记提出的“精准扶贫”战略构想,某省预计三年内脱贫1020000人,数字1020000用科学记数法可表示为( ) A .1.02×106 B .1.02×105 C .10.2×105 D .102×104 3.(2020•潍坊)今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为( ) A .1.109×107 B .1.109×106 C .0.1109×108 D .11.09×106 4.(2020•泰安)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为( ) A .4×1012元 B .4×1010元 C .4×1011元 D .40×109元 5.(2020•烟台)5G 是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB 以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为 . 6.(2019•济南)2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为( ) A .0.1776×103 B .1.776×102 C .1.776×103 D .17.76×102 三.科学记数法—表示较小的数(共2小题) 7.(2020•威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为( )A .10×10﹣10B .1×10﹣9C .0.1×10﹣8 D .1×109 8.(2019•烟台)某种计算机完成一次基本运算的时间约为1纳秒(ns ),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为( )A .1.5×10﹣9秒B .15×10﹣9秒C .1.5×10﹣8秒D .15×10﹣8秒 四.计算器—基础知识(共1小题)9.(2020•东营)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( ) A .﹣2 B .2 C .±2 D .4五.实数的性质(共1小题) 10.(2020•济南)﹣2的绝对值是( ) A .2 B .﹣2 C .±2 D .√2六.实数大小比较(共1小题) 11.(2020•菏泽)下列各数中,绝对值最小的数是( ) A .﹣5B .12C .﹣1D .√2七.规律型:数字的变化类(共4小题) 12.(2020•淄博)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是 个. 13.(2019•济宁)已知有理数a ≠1,我们把11−a称为a 的差倒数,如:2的差倒数是11−2=−1,﹣1的差倒数是11−(−1)=12.如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( ) A .﹣7.5 B .7.5C .5.5D .﹣5.514.(2020•泰安)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=.15.(2020•滨州)观察下列各式:a1=23,a2=35,a3=107,a4=159,a5=2611,…,根据其中的规律可得a n=(用含n的式子表示).八.规律型:图形的变化类(共3小题)16.(2020•聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①①①…的次序铺设地砖,把第n个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是()A.150B.200C.355D.50517.(2019•青岛)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图①是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图①中,使它恰好盖住图①中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,在3×2的方格纸中,共可以找到2个位置不同的2×2方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图①是一个由4个棱长为1的小立方体构成的几何体,图①是一个长、宽、高分别为a,b,c(a ≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图①的不同位置共可以找到个图①这样的几何体.18.(2020•日照)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.71九.完全平方公式(共2小题)19.(2019•烟台)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128B.256C.512D.102420.(2020•济南)下列运算正确的是( ) A .(﹣2a 3)2=4a 6 B .a 2•a 3=a 6 C .3a +a 2=3a 3 D .(a ﹣b )2=a 2﹣b 2 一十.整式的混合运算(共1小题) 21.(2020•东营)下列运算正确的是( ) A .(x 3)2=x 5 B .(x ﹣y )2=x 2+y 2 C .﹣x 2y 3•2xy 2=﹣2x 3y 5 D .﹣(3x +y )=﹣3x +y 一十一.提公因式法与公式法的综合运用(共1小题) 22.(2019•临沂)将a 3b ﹣ab 进行因式分解,正确的是( ) A .a (a 2b ﹣b ) B .ab (a ﹣1)2C .ab (a +1)(a ﹣1)D .ab (a 2﹣1) 一十二.分式的混合运算(共3小题) 23.(2019•青岛)(1)化简:a −aa ÷(a 2+a 2a−2n );(2)解不等式组{1−15a ≤653a −1<8,并写出它的正整数解.24.(2020•青岛)(1)计算:(1a+1a)÷(a a−a a);(2)解不等式组:{2a −3≥−5,13a +2<a .25.(2020•泰安)(1)化简:(a ﹣1+1a −3)÷a 2−4a −3;(2)解不等式:a +13−1<a −14.一十三.分式的化简求值(共12小题) 26.(2020•烟台)先化简,再求值:(aa −a−a 2a 2−a 2)÷aaa +a 2,其中x =√3+1,y =√3−1.27.(2019•日照)(1)计算:|√3−2|+π0+(﹣1)2019﹣(12)﹣1;(2)先化简,再求值:1−a +3a 2−1÷a +3a −1,其中a =2;(3)解方程组:{2a −a =5,3a +4a =2.28.(2019•菏泽)先化简,再求值:1a −a (2aa +a−1)÷1a 2−a 2,其中x =y +2019.29.(2019•枣庄)先化简,再求值:a 2a 2−1÷(1a −1+1),其中x 为整数且满足不等式组{a −1>1,5−2a ≥−2.30.(2019•滨州)先化简,再求值:(a 2a −1−a 2a 2−1)÷a 2−aa 2−2a +1,其中x 是不等式组{a −3(a −2)≤4,2a −33<5−a 2的整数解.31.(2019•泰安)先化简,再求值:(a ﹣9+25a +1)÷(a ﹣1−4a −1a +1),其中a =√2. 32.(2019•德州)先化简,再求值:(2a−1a)÷(a 2+a 2aa−5a a)•(a2a+2a a+2),其中√a +1+(n ﹣3)2=0.33.(2020•东营)(1)计算:√27+(2cos60°)2020﹣(12)﹣2﹣|3+2√3|;(2)先化简,再求值:(x −2aa −a 2a )÷a 2−a2a 2+aa,其中x =√2+1,y =√2. 34.(2020•潍坊)先化简,再求值:(1−a +1a 2−2a +1)÷a −3a −1,其中x 是16的算术平方根.35.(2020•菏泽)先化简,再求值:(2a −12a a +2)÷a −4a 2+4a +4,其中a 满足a 2+2a ﹣3=0. 36.(2020•德州)先化简:(a −1a −2−a +2a )÷4−aa 2−4a +4,然后选择一个合适的x 值代入求值.37.(2020•滨州)先化简,再求值:1−a −a a +2a ÷a 2−a 2a 2+4aa +4a 2;其中x =cos30°×√12,y =(π﹣3)0﹣(13)﹣1.一十四.最简二次根式(共1小题) 38.(2020•济宁)下列各式是最简二次根式的是( ) A .√13B .√12C .√a 3D .√53一十五.二次根式的加减法(共1小题) 39.(2020•日照)下列各式中,运算正确的是( ) A .x 3+x 3=x 6 B .x 2•x 3=x 5 C .(x +3)2=x 2+9 D .√5−√3=√2 一十六.二次根式的混合运算(共6小题) 40.(2019•聊城)下列各式不成立的是( ) A .√18−√89=73√2B .√2+23=2√23C .√8+√182=√4+√9=5D .√3+√2=√3−√241.(2020•菏泽)计算(√3−4)(√3+4)的结果是 . 42.(2020•青岛)计算:(√12−√43)×√3= . 43.(2019•临沂)计算:√12×√6−tan45°= .44.(2019•青岛)计算:√24+√8√2−(√3)0= . 45.(2020•临沂)计算:√(13−12)2+√221√6−sin60°.2019、2020年山东中考数学试题分类(1)——数与式参考答案与试题解析一.有理数的加减混合运算(共1小题) 1.【解答】解;根据题意可得原式=(3.9﹣3)+[(﹣1.8)﹣(﹣2)]﹣(1﹣1)=0.9+0.2=1.1; 故答案为:1.1二.科学记数法—表示较大的数(共5小题) 2.【解答】解:1020000=1.02×106. 故选:A . 3.【解答】解:∵1109万=11090000, ∴11090000=1.109×107. 故选:A . 4.【解答】解:4000亿=4000×108=4×1011, 故选:C . 5.【解答】解:将数据1300000用科学记数法可表示为:1.3×106. 故答案为:1.3×106. 6.【解答】解:177.6=1.776×102. 故选:B .三.科学记数法—表示较小的数(共2小题) 7.【解答】解:∵十亿分之一=11000000000=1×10﹣9,∴十亿分之一用科学记数法可以表示为:1×10﹣9. 故选:B .8.【解答】解:所用时间=15×0.000 000 001=1.5×10﹣8. 故选:C .四.计算器—基础知识(共1小题)9.【解答】解:表示“√4=”即4的算术平方根,∴计算器面板显示的结果为2, 故选:B .五.实数的性质(共1小题) 10.【解答】解:﹣2的绝对值是2; 故选:A .六.实数大小比较(共1小题)11.【解答】解:∵|﹣5|=5,|12|=12,|﹣1|=1,|√2|=√2, ∴绝对值最小的数是12.故选:B .七.规律型:数字的变化类(共4小题) 12.【解答】解:当一辆快递货车停靠在第x 个服务驿站时,快递货车上需要卸下已经通过的(x ﹣1)个服务驿站发给该站的货包共(x ﹣1)个, 还要装上下面行程中要停靠的(n ﹣x )个服务驿站的货包共(n ﹣x )个. 根据题意,完成下表:服务驿站序号 在第x 服务驿站启程时快递货车货包总数1 n ﹣12 (n ﹣1)﹣1+(n ﹣2)=2(n ﹣2)3 2(n ﹣2)﹣2+(n ﹣3)=3(n ﹣3)4 3(n ﹣3)﹣3+(n ﹣4)=4(n ﹣4)5 4(n ﹣4)﹣4+(n ﹣5)=5(n ﹣5)……n 0由上表可得y =x (n ﹣x ).当n =29时,y =x (29﹣x )=﹣x 2+29x =﹣(x ﹣14.5)2+210.25, 当x =14或15时,y 取得最大值210. 故答案为:210. 13.【解答】解:∵a 1=﹣2,∴a 2=11−(−2)=13,a 3=11−13=32,a 4=11−32=−2,…… ∴这个数列以﹣2,13,32依次循环,且﹣2+13+32=−16,∵100÷3=33…1,∴a 1+a 2+…+a 100=33×(−16)﹣2=−152=−7.5,故选:A .14.【解答】解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.15.【解答】解:由分析可得a n =a 2+(−1)a +12a +1.故答案为:a 2+(−1)a +12a +1.八.规律型:图形的变化类(共3小题) 16.【解答】解:由图形可知:第1个图形12块白色小正方形,第2个图形19个白色小正方形,第3个图形26个白色小正方形则图ⓝ的白色小正方形地砖有(7n +5)块, 当n =50时,7n +5=350+5=355. 故选:C . 17.【解答】解:探究三:根据探究二,a ×2的方格纸中,共可以找到(a ﹣1)个位置不同的 2×2方格, 根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a ×2的方格纸中,共可以找到(a ﹣1)×4=(4a ﹣4)种不同的放置方法; 故答案为a ﹣1,4a ﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a ,有(a ﹣1)条边长为2的线段, 同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a ×3的方格中,可以找到2(a ﹣1)=(2a ﹣2)个位置不同的2×2方格,根据探究一,在在a ×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a ﹣2)×4=(8a ﹣8)种不同的放置方法.故答案为2a ﹣2,8a ﹣8;问题解决:在a ×b 的方格纸中,共可以找到(a ﹣1)(b ﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a ×b 的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a ﹣1)(b ﹣1)种不同的放置方法;问题拓展:发现图①示是棱长为2的正方体中的一部分,利用前面的思路, 这个长方体的长宽高分别为a 、b 、c ,则分别可以找到(a ﹣1)、(b ﹣1)、(c ﹣1)条边长为2的线段,所以在a ×b ×c 的长方体共可以找到(a ﹣1)(b ﹣1)(c ﹣1)位置不同的2×2×2的正方体, 再根据探究一类比发现,每个2×2×2的正方体有8种放置方法, 所以在a ×b ×c 的长方体中共可以找到8(a ﹣1)(b ﹣1)(c ﹣1)个图①这样的几何体; 故答案为8(a ﹣1)(b ﹣1)(c ﹣1). 18.【解答】解:根据图中圆点排列,当n =1时,圆点个数5+2;当n =2时,圆点个数5+2+3;当n =3时,圆点个数5+2+3+4;当n =4时,圆点个数5+2+3+4+5,…∴当n =10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=4+12×11×(11+1)=70. 故选:C .九.完全平方公式(共2小题) 19.【解答】解:由“杨辉三角”的规律可知,(a +b )9展开式中所有项的系数和为(1+1)9=29=512 故选:C . 20.【解答】解:∵(﹣2a 3)2=4a 6,故选项A 正确; ∵a 2•a 3=a 5,故选项B 错误;∵3a +a 2不能合并,故选项C 错误;∵(a ﹣b )2=a 2﹣2ab +b 2,故选项D 错误; 故选:A .一十.整式的混合运算(共1小题) 21.【解答】解:A 、原式=x 6,不符合题意; B 、原式=x 2﹣2xy +y 2,不符合题意; C 、原式=﹣2x 3y 5,符合题意; D 、原式=﹣3x ﹣y ,不符合题意. 故选:C .一十一.提公因式法与公式法的综合运用(共1小题) 22.【解答】解:a 3b ﹣ab =ab (a 2﹣1)=ab (a +1)(a ﹣1), 故选:C .一十二.分式的混合运算(共3小题)23.【解答】解:(1)原式=a −a a ÷a 2+a 2−2aaa=a −a a ×a (a −a )2=1a −a; (2){1−15a ≤65a 3a −1<8a 由①,得x ≥﹣1, 由①,得x <3.所以该不等式组的解集为:﹣1≤x <3. 所以满足条件的正整数解为:1、2.24.【解答】解:(1)原式=(a aa+aaa)÷(a 2aa−a 2aa)=a +a aa ÷a 2−a 2aa=a +aaa •aa (a +a )(a −a ) =1a −a ;(2)解不等式2x ﹣3≥﹣5,得:x ≥﹣1, 解不等式13x +2<x ,得:x >3, 则不等式组的解集为x >3.25.【解答】解:(1)原式=[(a −1)(a −3)a −3+1a −3]÷(a +2)(a −2)a −3=(a 2−4a +3a −3+1a −3)•a −3(a +2)(a −2)=(a −2)2a −3•a −3(a +2)(a −2)=a −2a +2;(2)去分母,得:4(x +1)﹣12<3(x ﹣1), 去括号,得:4x +4﹣12<3x ﹣3, 移项,得:4x ﹣3x <﹣3﹣4+12, 合并同类项,得:x <5.一十三.分式的化简求值(共12小题) 26.【解答】解:(aa −a −a 2a 2−a 2)÷aaa +a 2,=[a (a +a )(a +a )(a −a )−a 2(a +a )(a −a )]÷a a (a +a ), =aa (a +a )(a −a )×a (a +a )a , =a 2a −a ,当x =√3+1,y =√3−1时,原式=(√3−1)22=2−√3. 27.【解答】解:(1)|√3−2|+π0+(﹣1)2019﹣(12)﹣1=2−√3+1+(﹣1)﹣2 =−√3; (2)1−a +3a 2−1÷a +3a −1 =1−a +3(a +1)(a −1)⋅a −1a +3=1−1a +1 =a +1−1a +1=a a +1当a =2时,原式=22+1=23;(3){2a −a =5a3a +4a =2a ,①×4+①,得 11x =22, 解得,x =2,将x =2代入①中,得 y =﹣1,故原方程组的解是{a =2a =−1.28.【解答】解:1a −a (2aa +a−1)÷1a 2−a 2=1a −a ⋅2a −(a +a )a +a⋅(a +a )(a −a )=﹣(2y ﹣x ﹣y ) =x ﹣y ,∵x =y +2019,∴原式=y +2019﹣y =2019.29.【解答】解:原式=a 2(a +1)(a −1)÷(1a −1+a −1a −1)=a 2(a +1)(a −1)•a −1a=a a +1,解不等式组{a −1>1,5−2a ≥−2.得2<x ≤72,则不等式组的整数解为3,当x =3时,原式=33+1=34. 30.【解答】解:原式=[a 3+a 2(a +1)(a −1)−a 2(a +1)(a −1)]•(a −1)2a (a −1)=a 3(a +1)(a −1)•(a −1)2a (a −1) =a 2a +1,解不等式组{a −3(a −2)≤4,2a −33<5−a 2得1≤x <3, 则不等式组的整数解为1、2, 又x ≠±1且x ≠0, ∴x =2, ∴原式=43.31.【解答】解:原式=(a 2−8a −9a +1+25a +1)÷(a 2−1a +1−4a −1a +1)=a 2−8a +16a +1÷a 2−4a a +1 =(a −4)2a +1•a +1a (a −4)=a −4a ,当a =√2时, 原式=√2−4√2=1﹣2√2.32.【解答】解:(2a −1a )÷(a 2+a 2aa −5aa)•(a2a+2a a+2)=2a −a aa ÷a 2+a 2−5a 2aa •a 2+4a 2+4aa 2aa=2a −aaa •aa (a +2a )(a −2a )•(a +2a )22aa=−a +2a 2aa .∵√a +1+(n ﹣3)2=0.∴m +1=0,n ﹣3=0, ∴m =﹣1,n =3.∴−a +2a2aa =−−1+2×32×(−1)×3=56. ∴原式的值为56.33.【解答】解:(1)原式=3√3+(2×12)2020﹣22﹣(3+2√3) =3√3+1﹣4﹣3﹣2√3 =√3−6;(2)原式=a 2−2aa +a 2a •a 2+aa a 2−a 2 =(a −a )2a •a (a +a )(a +a )(a −a )=x ﹣y .当x =√2+1,y =√2时,原式=√2+1−√2=1.34.【解答】解:原式=(a 2−2a +1a 2−2a +1−a +1a 2−2a +1)÷a −3a −1, =(a 2−3a a 2−2a +1)×a −1a −3, =a (a −3)(a −1)2×a −1a −3, =a a −1. ∵x 是16的算术平方根,∴x =4,当x =4时,原式=43. 35.【解答】解:原式=(2a 2+4a a +2−12a a +2)÷a −4(a +2)2 =2a 2−8a a +2•(a +2)2a −4 =2a (a −4)a +2•(a +2)2a −4 =2a (a +2)=2(a 2+2a )∵a 2+2a ﹣3=0,∴a 2+2a =3,则原式=2×3=6.36.【解答】解:(a −1a −2−a +2a )÷4−aa 2−4a +4=[a (a −1)a (a −2)−(a −2)(a +2)a (a −2)]×(a −2)24−a=4−a a (a −2)⋅(a −2)24−a=a −2a , ∵x 不能取0,2,4把x =1代入a −2a =1−21=−1.37.【解答】解:原式=1−a −a a +2a ÷(a +a )(a −a )(a +2a )2=1+a −a a +2a •(a +2a )2(a +a )(a −a ) =1+a +2a a +a=a +a +a +2a a +a =2a +3a a +a ,∵x =cos30°×√12=√32×2√3=3,y =(π﹣3)0﹣(13)﹣1=1﹣3=﹣2,∴原式=2×3+3×(−2)3−2=0. 一十四.最简二次根式(共1小题)38.【解答】解:A 、√13是最简二次根式,符合题意;B 、√12=2√3,不是最简二次根式,不符合题意;C 、√a 3=a √a ,不是最简二次根式,不符合题意;D 、√53=√153,不是最简二次根式,不符合题意. 故选:A .一十五.二次根式的加减法(共1小题)39.【解答】解:A 、x 3+x 3=2x 3,故选项A 不符合题意;B 、x 2•x 3=x 5计算正确,故选项B 符合题意;C 、(x +3)2=x 2+6x +9,故选项C 不符合题意;D 、二次根式√5与√3不是同类二次根式故不能合并,故选项D 不符合题意. 故选:B .一十六.二次根式的混合运算(共6小题)40.【解答】解:√18−√89=3√2−2√23=7√23,A 选项成立,不符合题意; √2+23=√83=2√23,B 选项成立,不符合题意; √8+√182=2√2+3√22=5√22,C 选项不成立,符合题意; √3+√2=√3−√2(√3+√2)(√3−√2)=√3−√2,D 选项成立,不符合题意; 故选:C .41.【解答】解:原式=(√3)2﹣42 =3﹣16=﹣13.故答案为:﹣13.42.【解答】解:原式=(2√3−2√33)×√3 =4√33×√3=4, 故答案为:4.43.【解答】解:√12×√6−tan45°=√12×6−1=√3−1, 故答案为:√3−1.44.【解答】解:√24+√8√2−(√3)0=2√3+2﹣1=2√3+1, 故答案为:2√3+1. 45.【解答】解:原式=12−13+23−√32 =16+√36−√32=1−2√36.。
2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)
2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。
2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。
★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
数轴 1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。
2020年中考数学数与式专题卷(附答案)
2020年中考数学数与式专题卷(附答案)一、选择题1.在实数,- ,,中,是无理数的是()A. ,B. - ,C.D.2.下列所示的数轴中,画得正确的是()A. B. C. D.3.下列说法正确的是( )A. 的系数是3B. 2m2n的次数是2次C. 是多项式D. x2-x-1的常数项是14.若数a的近似数为1.6,则下列结论正确的是()A. a=1.6B. 1.55≤a<1.65C. 1.55<a≤1.56D. 1.55≤a<1.565.把代数式3x3-6x2y+3xy2分解因式,结果正确的是()A. x(3x+y)(x-3y)B. 3x(x2-2xy+y2)C. x(3x-y)2D. 3x(x-y)26.要使式子﹣有意义,字母x的取值必须满足()A. x≤B. x≥﹣C. x≥且x≠3D. x≥7.下列各式中,是最简分式的是()A. B. C. D.8.实数的值在( )A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间9.用加减法解方程组中,消x用____法,消y用____法()A. 加,加B. 加,减C. 减,加D. 减,减10.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是A. 1B. 2C. -1D. -211.已知:,,那么的值为()A. 3或-3B. 0C. 0或3D. 312.观察一串数:0,2,4,6,….第n个数应为()A. 2(n-1)B. 2n-1C. 2(n+1)D. 2n+113.如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x等于().A. B. 3 C. 4 D. 514.某商店在甲批发市场以每包m元的价格进了20包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的40包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店().A. 盈利了B. 亏损了C. 不赢不亏D. 盈亏不能确定二、填空题15.若|2x﹣y|+(y﹣2)2=0,则x+y=________ .16.若是一个完全平方公式,则m的值为________17.计算﹣(﹣1)2=________18.已知=2,则=________.19.使代数式有意义的x取值范围是________.20. 5x+9的立方根是4,则2x+3的平方根是________.21.使有意义的x的取值范围是________.22.当x变化时,|x-4|+|x-t|有最小值5,则常数t的值为________.三、解答题23.综合题。
2024年全国中考数学试题分类汇编——数与式之计算题(文字版,含答案)
4.
5.【答案】 ,
6.【答案】-1
7.【答案】从第②步开始出现错误,正确过程如下:
解: ①
10.【详解】解:
,
当 时,原式 .
11.解:
;
12.解:
.
13.
14.
.
15. 16.
17. 18.
19.
20.
第三组数与式计算题 专题分类汇编
1.(内蒙古赤峰市卷)计算: ;
2.(内蒙古赤峰市卷)已知 ,求代数式 的值.
3.(吉林省长春市卷)先化简,再求值: ,其中 .
4.(吉林省卷)先化简,再求值: ,其中 .
5.(江苏省常州市卷)先化简,再求值: ,其中 .
6.(江苏省连云港市卷)17.计算 .
7.(江苏省连云港市卷)19.下面是某同学计算 解题过程:
解: ①
②
③
上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.
解: …①
…②
…③
…④
…⑤
当 时,原式 .
(1)小乐同学的解答过程中,第______步开始出现了错误;
(2)请帮助小乐同学写出正确的解答过程.
17.(黑龙江省齐齐哈尔市卷)计算:
18.(黑龙江省齐齐哈尔市卷)分解因式:
19.(湖北省卷)计算:
20.(湖南省长沙市卷)计算: .
第一组 中考 数与式计算题 试题汇编答案
【一】
1.【详解】解:原式
,
∵ ,
∴ ,
∴原式 .
2.【详解】解:原式 .
3.
6.解:原式=|﹣2|﹣3+1
=2﹣3+1
=2+1﹣3
6.(四川省广安市卷)计算: .
专题01 数与式-2020年中考数学真题分专题训练(四川专版)(教师版含解析)
专题01 数与式类型一实数1.(2020•成都)﹣2的绝对值是()A.﹣2B.1C.2D.12【答案】C【解析】﹣2的绝对值为2.故选:C.2.(2020•达州)下列各数中,比3大比4小的无理数是()A.3.14B.103C.√12D.√17【答案】C【解析】3=√9,4=√16,A、3.14是有理数,故此选项不合题意;B、103是有理数,故此选项不符合题意;C、√12是比3大比4小的无理数,故此选项符合题意;D、√17比4大的无理数,故此选项不合题意;故选:C.3.(2020•徐州)3的相反数是()A.﹣3B.3C.−13D.13【答案】A【解析】根据相反数的含义,可得3的相反数是:﹣3.故选:A.4.(2020•甘孜州)气温由﹣5℃上升了4℃时的气温是()A.﹣1℃B.1℃C.﹣9℃D.9℃【答案】A【解析】根据题意得:﹣5+4=﹣1,则气温由﹣5℃上升了4℃时的气温是﹣1℃.故选:A.5.(2020•乐山)12的倒数是()A.−12B.12C.﹣2D.2【答案】D【解析】根据倒数的定义,可知12的倒数是2.故选:D.6.(2020•凉山州)﹣12020=()A.1B.﹣1C.2020D.﹣2020【答案】B【解析】﹣12020=﹣1.故选:B.7.(2020•凉山州)下列等式成立的是()A.√81=±9B.|√5−2|=−√5+2C.(−12)﹣1=﹣2D.(tan45°﹣1)0=1【答案】C【解析】A.√81=9,此选项计算错误;B.|√5−2|=√5−2,此选项错误;C.(−12)﹣1=﹣2,此选项正确;D.(tan45°﹣1)0无意义,此选项错误;故选:C.8.(2020•乐山)数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4B.﹣4或10C.﹣10D.4或﹣10【答案】D【解析】点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,点A表示的数是﹣3,右移7个单位,得﹣3+7=4.所以点B表示的数是4或﹣10.故选:D.9.(2020•泸州)2的倒数是()A.12B.−12C.2D.﹣2【答案】A【解析】2的倒数是12.故选:A.10.(2020•南充)若1x=−4,则x的值是()A.4B.14C.−14D.﹣4【答案】C【解析】∵1x =−4,∴x=−14,故选:C.11.(2020•甘孜州)计算:|﹣5|=5.【答案】5【解析】|﹣5|=5.故答案为:512.(2020•自贡)与√14−2最接近的自然数是2.【答案】2【解析】∵3.5<√14<4,∴1.5<√14−2<2,∴与√14−2最接近的自然数是2.故答案为:2.13.(2020•乐山)用“>”或“<”符号填空:﹣7>﹣9.【答案】>【解析】∵|﹣7|=7,|﹣9|=9,7<9,∴﹣7>﹣9,故答案为:>.14.(2020•南充)2020年南充市各级各类学校在校学生人数约为1150000人,将1150000用科学记数法表示为(A)A.1.15×106B.1.15×107C.11.5×105D.0.115×107【答案】A【解析】1150000=1.15×106,故选:A.15.(2020•泸州)将867000用科学记数法表示为()A.867×103B.8.67×104C.8.67×105D.8.67×106【答案】C【解析】867000=8.67×105,故选:C.16.(2020•攀枝花)中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒命名为2019﹣nCoV.该病毒的直径在0.00000008米﹣0.000000012米,将0.000000012用科学记数法表示为a×10n的形式,则n为() A.﹣8B.﹣7C.7D.8【答案】A【解析】0.000000012用科学记数法表示为1.2×10﹣8,∴n=﹣8,故选:A.17.(2020•自贡)5月22日晚,中国自贡第26届国际恐龙灯会开启网络直播,有着近千年历史的自贡灯会进入“云游”时代,70余万人通过“云观灯”感受了“天下第一灯”的璀璨.人数700000用科学记数法表示为() A.70×104B.0.7×107C.7×105D.7×106【答案】【解析】700000用科学记数法表示为7×105,故选:C.18.(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为()A.3.6×103B.3.6×104C.3.6×105D.36×104【答案】B【解析】36000=3.6×104,故选:B.19.(2020•达州)人类与病毒的斗争是长期的,不能松懈.据中央电视台报道,截止北京时间2020年6月30日凌晨,全球新冠肺炎患者确诊病例达到1002万.1002万用科学记数法表示,正确的是()A.1.002×107B.1.002×106C.1002×104D.1.002×102万【答案】A【解析】1002万用科学记数法表示为1.002×107,故选:A.20.(2020•甘孜州)月球与地球之间的平均距离约为38.4万公里,38.4万用科学记数法表示为() A.38.4×104B.3.84×105C.0.384×106D.3.84×106【答案】B【解析】38.4万=384000=3.84×105,故选:B.21.已知a=7﹣3b,则代数式a2+6ab+9b2的值为49.【答案】49【解析】∵a=7﹣3b,∴a+3b=7,∴a2+6ab+9b2=(a+3b)2=72=49,故答案为:49.22.(2020•甘孜州)若m2﹣2m=1,则代数式2m2﹣4m+3的值为5.【答案】5【解析】∵m2﹣2m=1,∴原式=2(m2﹣2m)+3=2+3=5.故答案为:5.23.(2020•南充)计算:|1−√2|+20=√2.【答案】√2.【解析】原式=√2−1+1=√2.故答案为:√2.24.(9分)(2020•乐山)计算:|﹣2|﹣2cos60°+(π﹣2020)0.+1解:原式=2−2×12=2.25.(2020•泸州)计算:|﹣5|﹣(π﹣2020)0+2cos60°+(1)﹣1.3+3解:原式=5﹣1+2×12=5﹣1+1+3=8.26.(2020•自贡)计算:|﹣2|﹣(√5+π)0+(−1)﹣1.6解:原式=2﹣1+(﹣6)=1+(﹣6)=﹣5.类型二整式1.(2020•攀枝花)下列式子中正确的是()A.a2﹣a3=a5B.(﹣a)﹣1=a C.(﹣3a)2=3a2D.a3+2a3=3a3【答案】D【解析】a2和a3不是同类项,不能合并,因此选项A不正确;(−a)−1=−1,因此选项B不正确;a(﹣3a)2=9a2,因此选项C不正确;a3+2a3=3a3,因此选项D正确;故选:D.2.(2020•成都)下列计算正确的是()A.3a+2b=5ab B.a3•a2=a6C.(﹣a3b)2=a6b2D.a2b3÷a=b3【答案】C【解析】A、3a与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、a3•a2=a5,原计算错误,故此选项不符合题意;C、(﹣a3b)2=a6b2,原计算正确,故此选项符合题意;D、a2b3÷a=ab3,原计算错误,故此选项不符合题意.故选:C.3.(2020•南充)下列运算正确的是()A.3a+2b=5ab B.3a•2a=6a2C.a3+a4=a7D.(a﹣b)2=a2﹣b2【答案】B【解析】A、原式不能合并,不符合题意;B、原式=6a2,符合题意;C、原式不能合并,不符合题意;D、原式=a2﹣2ab+b2,不符合题意.故选:B.4.(2020•甘孜州)下列运算中,正确的是()A.a4•a4=a16B.a+2a2=3a3C.a3÷(﹣a)=﹣a2D.(﹣a3)2=a5【答案】C【解析】A.a4•a4=a8,故本选项不合题意;B.a与2a2不是同类项,所以不能合并,故本选项不合题意;C.a3÷(﹣a)=﹣a2,故本选项符合题意;D.(﹣a3)2=a6,故本选项不合题意;故选:C.5.(2020•乐山)已知3m=4,32m﹣4n=2.若9n=x,则x的值为()A.8B.4C.2√2D.√2【答案】C【解析】∵3m=4,32m﹣4n=(3m)2÷(3n)4=2.∴42÷(3n)4=2,∴(3n)4=42÷2=8,又∵9n=32n=x,∴(3n)4=(32n)2=x2,∴x2=8,∴x=√8=2√2.故选:C.6.(2020•泸州)下列各式运算正确的是()A.x2+x3=x5B.x3﹣x2=x C.x2•x3=x6D.(x3)2=x6【答案】D【解析】A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.x3与﹣x2不是同类项,所以不能合并,故本选项不合题意;C.x2•x3=x5,故本选项不合题意;D.(x3)2=x6,故本选项符合题意.故选:D.7.(2020•攀枝花)因式分解:a﹣ab2=a(1+b)(1﹣b).【答案】a(1+b)(1﹣b)【解析】原式=a(1﹣b2)=a(1+b)(1﹣b),故答案为:a(1+b)(1﹣b) 8.(2020•自贡)分解因式:3a2﹣6ab+3b2=3(a﹣b)2.【答案】3(a﹣b)2【解析】3a2﹣6ab+3b2=3(a2﹣2ab+b2)=3(a﹣b)2.故答案为:3(a﹣b)2.9.(2020•凉山州)因式分解:a3﹣ab2=a(a+b)(a﹣b).【答案】a(a+b)(a﹣b).【解析】a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).10.(2020•泸州)若x a+1y3与12x4y3是同类项,则a的值是3.【答案】3【解析】∵x a+1y3与12x4y3是同类项,∴a+1=4,解得a=3,故答案为:3.11.(2020•成都)分解因式:x2+3x=x(x+3).【答案】x(x+3).【解析】x2+3x=x(x+3).12.(2020•乐山)已知y≠0,且x2﹣3xy﹣4y2=0.则xy的值是4或﹣1.【答案】4或﹣1.【解析】∵x2﹣3xy﹣4y2=0,即(x﹣4y)(x+y)=0,可得x=4y或x=﹣y,∴xy=4或xy=−1,即xy的值是4或﹣1;故答案为:4或﹣1.13.(2020•攀枝花)已知x=3,将下面代数式先化简,再求值.(x﹣1)2+(x+2)(x﹣2)+(x﹣3)(x﹣1).解:(x﹣1)2+(x+2)(x﹣2)+(x﹣3)(x﹣1)=x2+1﹣2x+x2﹣4+x2﹣x﹣3x+3=3x2﹣6x将x=3代入,原式=27﹣18=9.14.(5分)(2020•凉山州)化简求值:(2x+3)(2x﹣3)﹣(x+2)2+4(x+3),其中x=√2.解:原式=4x2﹣9﹣(x2+4x+4)+4x+12=4x2﹣9﹣x2﹣4x﹣4+4x+12=3x2﹣1,当x=√2时,原式=3×(√2)2﹣1=3×2﹣1=6﹣1=5.类型三分式1.(2020•成都)已知x=2是分式方程kx +x−3x−1=1的解,那么实数k的值为()A.3B.4C.5D.6【答案】B【解析】把x=2代入分式方程得:k2−1=1,解得:k=4.故选:B.2.(2020•甘孜州)分式方程3x−1−1=0的解为()A.x=1B.x=2C.x=3D.x=4【答案】D【解析】分式方程3x−1−1=0,去分母得:3﹣(x﹣1)=0,去括号得:3﹣x+1=0,解得:x=4,经检验x=4是分式方程的解.故选:D.3.(2020•泸州)已知关于x的分式方程mx−1+2=−31−x的解为非负数,则正整数m的所有个数为()A .3B .4C .5D .6【答案】B 【解析】去分母,得:m +2(x ﹣1)=3, 移项、合并,得:x =5−m 2,∵分式方程的解为非负数,∴5﹣m ≥0且5−m 2≠1,解得:m ≤5且m ≠3,∴正整数解有1,2,4,5共4个, 故选:B .4.(2020•南充)若x 2+3x =﹣1,则x −1x+1= ﹣2 . 【答案】-2【解析】x −1x+1=x(x+1)−1x+1 =x 2+x−1x+1,∵x 2+3x =﹣1,∴x 2=﹣1﹣3x ,∴原式=−1−3x+x−1x+1=−2x−2x+1=−2(x+1)x+1=−2,故答案为:﹣2.5.(2020•自贡)先化简,再求值:x+1x 2−4•(1x+1+1),其中x 是不等式组{x +1≥05−2x >3的整数解. 解:x+1x 2−4•(1x+1+1)=x+1(x+2)(x−2)⋅1+x+1x+1 =x+2(x+2)(x−2)=1x−2,由不等式组{x +1≥05−2x >3,得﹣1≤x <1, ∵x 是不等式组{x +1≥05−2x >3的整数解,∴x =﹣1,0,∵当x =﹣1时,原分式无意义, ∴x =0,当x =0时,原式=10−2=−12. 6.(2020•甘孜州)化简:(3a−2−1a+2)•(a 2﹣4). 解:(3a−2−1a+2)•(a 2﹣4)=3(a+2)−(a−2)(a+2)(a−2)•(a +2)(a ﹣2)=3a +6﹣a +2=2a +8.6.(2020•南充)先化简,再求值:(1x+1−1)÷x 2−x x+1,其中x =√2+1. 解:(1x+1−1)÷x 2−x x+1 =1−(x+1)x+1⋅x+1x(x−1) =1−x−1x(x−1)=−x x(x−1) =11−x ,当x =√2+1时,原式=1−√2−1=−√22. 7.(2020•泸州)化简:(x+2x +1)÷x 2−1x . 解:原式=2x+2x ×x (x+1)(x−1)=2(x+1)x ×x (x+1)(x−1)=2x−1.16.(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2.解:原式=x+3−1x+3•(x−3)(x+3)x+2 =x ﹣3,当x =3+√2时,原式=√2. 8.(2020•达州)求代数式(2x−1x−1−x ﹣1)÷x−2x 2−2x+1的值,其中x =√2+1.解:原式=(2x−1x−1−x 2−1x−1)÷x−2(x−1)2 =−x 2+2x x−1)÷x−2(x−1)2 =−x(x−2)x−1•(x−1)2x−2=﹣x (x ﹣1)当x =√2+1时,原式=﹣(√2+1)(√2+1﹣1)=﹣(√2+1)×√2=﹣2−√2.9.(2020•乐山)已知y =2x ,且x ≠y ,求(1x−y+1x+y )÷x 2y x 2−y 2的值. 解:原式=2x (x+y)(x−y)÷x 2y x 2−y 2=2x x 2−y 2×x 2−y 2x 2y =2xy ,∵y =2x ,∴原式=2x⋅2x =1 解法2:同解法1,得原式=2xy ,∵y =2x ,∴xy =2,∴原式=22=1.类型四 二次根式1.(2020•攀枝花)下列说法中正确的是( ) A .0.09的平方根是0.3B .√16=±4C .0的立方根是0D .1的立方根是±1 【答案】C【解析】A .0.09的平方根是±0.3,故此选项错误;B .√16=4,故此选项错误;C .0的立方根是0,故此选项正确;D .1的立方根是1,故此选项错误;故选:C .2.(2020•攀枝花)实数a 、b 在数轴上的位置如图所示,化简√(a +1)2+√(b −1)2−√(a −b)2的结果是( )A .﹣2B .0C .﹣2aD .2b【答案】A【解析】由数轴可知﹣2<a <﹣1,1<b <2, ∴a +1<0,b ﹣1>0,a ﹣b <0,∴√(a +1)2+√(b −1)2−√(a −b)2=|a +1|+|b ﹣1|﹣|a ﹣b |=﹣(a +1)+(b ﹣1)+(a ﹣b )=﹣a ﹣1+b ﹣1+a ﹣b=﹣2故选:A .3.(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−√3|−√9;解:(1)原式=2×√32+4+2−√3−3 =√3+4+2−√3−3=3;4.(2020•达州)计算:﹣22+(13)﹣2+(π−√5)0+√−1253. 解:原式=﹣4+9+1﹣5=1.5.(2020•甘孜州)(1)计算:√12−4sin60°+(2020﹣π)0. 解:(1)原式=2√3−4×√32+1 =2√3−2√3+1=1;。
2020年浙江省中考数学分类汇编专题02 数与式(2)
2020年浙江省中考数学分类汇编专题02 数与式(2)一、单选题(共8题;共16分)1.(2020·衢州)要使二次根式有意义,则x的值可以是()A. 0B. 1C. 2D. 42.(2020·衢州)计算(a²)3,正确的结果是()A. a5B. a6C. a8D. a93.(2020·台州)计算2a2·3 a4的结果是()A. 5a6B. 5a8C. 6a6D. 6a84.(2020·杭州)× =( )A. B. C. 2 D. 35.(2020·宁波)二次根式中字母x的取值范围是()A. B. C. D.6.(2020·金华·丽水)下列多项式中,能运用平方差公式分解因式的是()A. B. C. D.7.(2020·金华·丽水)分式的值是零,则x的值为()A. 5B. 2C. -2D. -58.(2020·杭州)(1+y)(1-y)=( )A. 1+y²B. -1-y²C. 1-y²D. -1+y二、填空题(共9题;共9分)9.(2020·台州)因式分解:x2-9=________.10.(2020·台州)计算的结果是________.11.(2020·绍兴)分解因式:1-x2=________ 。
12.(2020·宁波)分解因式:________.13.(2020·衢州)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8,则(x-1)※x的结果为________。
14.(2020·温州)分解因式:m²-25=________。
15.(2020·湖州)化简:=________.16.(2020·嘉兴·舟山)分解因式:x²-9=________。
2020年全国各地中考数学解析汇编1 有理数.doc
2020年全国各地中考数学解析汇编1 有理数1.1 正数和负数1.(2020浙江丽水3分,1题)如果零上2℃记作+2℃,那么零下3℃记作( )A.-3℃B.-2℃C.+3℃D.+2℃【解析】根据相反意义的量可知,零上2℃记作“+2℃”,则零下3℃记作“-3℃”,故选A.【答案】A【点评】本题考查相反意义的量.2.(2020山东德州中考,9,4,)-1, 0, 0.2,71 , 3 中正数一共有 个. 【解析】由题意知2,17,3是正数,共有三个. 【答案】3.【点评】有理数的分类方法有2种:①正有理数、0、负有理数;②整数和分数.3.(2020安徽,1,4分)下面的数中,与-3的和为0的是 ( ) A.3 B.-3 C.31 D.31- 【解析】根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A 符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3.【答案】A .【点评】本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础.4.(2020山东泰安,1,3分)下列各数比-3小的数是( )A. 0B. 1C.-4D.-1【解析】根据正数大于0,0大于负数,两个负数绝对值大的反而小可得,比-3小的数是-4.【答案】C【点评】本题考查了实数大小的比较.要掌握实数大小的比较:正数大于0,负数小于0,正数大于负数;数轴上表示的两个数,右边的比左边的大.5.(2020浙江省衢州,1,3分)下列四个数中,最小的数是( )A.2B.-2C.0D. 21- 【解析】根据有理数比较大小的法则进行判断,有-2<12-<0<2. 【答案】B【点评】本题考查了有理数大小的比较,①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.6.(2020重庆,1,4分)在一3,一1,0,2这四个数中,最小的数是()A.一3 B.一1 C.0 D.2【解析】正数大于0,负数小于0,两个负数绝对值大的反而小。
2019-2020年中考数学汇编数与式人教新课标版.docx
2019-2020 年中考数学汇编数与式人教新课标版1.选择题1.(连云港市 2010 中考题) 1.下面四个数中比- 2 小的数是()A . 1B. 0C.- 1D.-32.(连云港市 2010 中考题)下列计算正确的是()A . a+ a= x2B. a· a2=a2C.( a2) 3= a5D. a2 (a+ 1)= a3+ 13.(连云港市2010 中考题)今年 1 季度,连云港市高新技术产业产值突破110 亿元,同比增长59%.数据“ 110 亿”用科学记数可表示为()A . 1. 1×1010B. 11×1010C. 1. 1×109 D . 11×109( 1)( 2010 年福建德化)2的3倍是()A 、6B 、1C、6 D 、5答案: A( 2)( 2010 年福建德化)下列计算正确的是()A、20 =2 10B、2 36C、422D、( 3)23答案: B1.( 2010 安徽芜湖)-6 的绝对值是()11A . 6B.- 6C.6D.-62.( 2010 安徽芜湖) 2010 年芜湖市承接产业转移示范区建设成效明显,一季度完成固定资产投资238 亿元,用科学记数法可记作()A . 238×108元B .23. 8× 109元C. 2. 38× 1010元 D . 0. 238× 1011元5.( 2010 安徽芜湖)要使式子a+2有意义, a 的取值范围是()aA . a≠ 0B. a>- 2 且 a≠ 0C. a>- 2 或 a≠ 0 D . a≥- 2 且 a≠01.( 2010北京) 2 的倒数是 (A)112(D) 2。
(B)(C)222. ( 2010北京) 2010 年 6 月 3 日,人类首次模拟火星载人航天飞行试验“火星 -500 ”正式启动。
包括中国志愿者王跃在内的 6 名志愿者踏上了为期12480 小时的“火星之旅”。
专题01 数与式-2020年中考数学真题分专题训练(湖南专版)(教师版含解析)
2020年中考数学真题分项汇编(湖南专版)专题01 数与式1. (2020年湖南长沙中考)(-2)3的值等于( )A . -6B . 6C . 8D . -8【答案】D【解析】(-2)3的含义为3个-2的乘积,故选D 2. (2020年湖南常德中考)4的倒数为( )A .41 B .2 C .1 D .﹣4【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,求倒数的方法,是把一个数的分子和分母互换位置即可,是带分数的化成假分数,再把分子分母互换位置,据此解答. 解:4的倒数为41. 故选:A .3. (2020年湖南株洲中考)a 的相反数为-3,则a 等于( )A . -3B . 3C . 3±D .13【答案】B【分析】根据相反数的定义解答即可.【详解】解:因为3的相反数是﹣3,所以a =3. 4. (2020年湖南张家界市中考)12020的倒数是( ) A . 12020- B . 12020 C . 2020D . 2020-【答案】C【解析】根据倒数的定义解答即可. 【详解】解:∵12020×2020=1,∵12020的倒数是2020. 故答案为C .5. (2020年湖南怀化中考)下列数中,是无理数的是( )A . 3-B . 0C .13D .【答案】D【分析】根据无理数的三种形式求解即可.【详解】解:-3,0,13故选:D .6. (2020年湖南岳阳中考)-2020的相反数是( )A . 2020B . -2020C .12020D . -12020【答案】A【分析】根据相反数直接得出即可. 【详解】-2020的相反数是2020, 故选A .7. (2020年湖南湘西中考)下列各数中,比2-小的数是( )A . 0B . 1-C . 3-D . 3【答案】C【解析】根据大于0的数是正数,而负数小于0,排除A 、D ,而-1>-2,排除B ,而-3<-2,从而可得答案. 【详解】根据正负数的定义,可知-2<0,-2<3,故A 、D 错误; 而-2<-1,B 错误;-3<-2,C 正确; 故选C .8. (2020年湖南株洲中考)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【解析】分别求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可. 【详解】∵|+1.2|=1.2,|-2.3|=2.3, |+0.9|=0.9,|-0.8|=0.8, 0.8<0.9<1.2<2.3,∵从轻重的角度看,最接近标准的是选项D 中的元件9. (2020年湖南省衡阳市中考)-3相反数是( )A . 3B . -3C .13D . 13-【答案】A【解析】根据相反数的定义可得答案. 【详解】解:3-的相反数是3.故选A .10. (2020年湖南湘潭中考)-6的绝对值是( )A . -6B . 6C . -16D .16【答案】B【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值. 【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6 故选B11. (2020年湖南长沙中考)下列运算正确的是 ( ) A .523=+ B . 628x x x =÷ C . 523=⨯ D . 725a a =)(【答案】B【解析】A 选项,非同类二次根式不能直接相加,错误; B 选项,同底数幂相除,底数不变,指数相减,正确; C 选项,623=⨯,错误;D 选项,幂的乘方,底数不变,指数相乘,应为1025a a =)(,错误。
2020年浙江省中考数学分类汇编专题01 数与式(1)解析版
【分析】用科学记数法表示绝对值较大的数,一般表示为 a×10n 的形式,其中 1≤|a|<10,n 等于原数的 整数位数-1. 15.【解析】【解答】解:3 的相反数是-3. 故答案为:A. 【分析】只有符号不同的两个数互为相反数,据此判断即可. 二、填空题
【分析】根据正数都大于 0 和负数,可得已知数中最大的数。
6.【解析】【解答】解:
,
故答案为:B.ຫໍສະໝຸດ 【分析】根据科学记数法的表示形式为:a×10n。其中 1≤|a|<10,此题是绝对值较大的数,因此 n=整数数
位-1。
7.【解析】【解答】解:实数 2,0, , 中,为负数的是 ,
故答案为:C.
【分析】负数就是在正数的前面添上“-”号的数,据此可得答案。
12.(2020·宁波)-3 的相反数为( )
A. -3
B.
C.
D. 3
13.(2020·宁波)下列计算正确的是( )
A.
B.
C.
D.
14.(2020·宁波)2019 年宁波舟山港货物吞吐量为 1 120 000 000 吨,比上年增长 3.3%,连续 11 年蝉联世
界首位.数 1 120 000 000 用科学记数法表示为( )
A.
B.
C.
D.
9.(2020·湖州)数 4 的算术平方根是( )
A. 2
B. ﹣2
C. ±2
D.
10.(2020·嘉兴·舟山)2020 年 3 月 9 日,中国第 54 颗北斗导航卫星成功发射,其轨道高度约为 36000000m
。数 36000000 用科学记数法表示为( )
A. 0.36×108
8.【解析】【解答】将 991000 用科学记数法表示为:
2020中考数学 计算专题:数与式(含答案)
2020中考数学计算专题:数与式(含答案)一、选择题(本大题共6道小题)1. -2的相反数是()A. 2B. -22 C. - 2 D. -22. 下列分式中,最简分式是()A. x2-1x2+1B.x+1x2-1C.x2-2xy+y2x2-xyD.x2-362x+123. 计算(√12-3)0+√27--√33-1的结果是()A.1+83√3B.1+2√3C.√3D.1+4√34. 在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环.下面选项一定不是..该循环的是()A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,15. 南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将下表称为“杨辉三角”.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A .128B .256C .512D .10246. a是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数为11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,以此类推,a 2019的值是 ( )A .5B .-14C .43D .45二、填空题(本大题共6道小题)7. 如果a -b -2=0,那么代数式1+2a -2b 的值是 .8. 64的立方根为 .9. 化简:x +3x 2-4x +4÷x 2+3x (x -2)2=________.10. 计算:x x -1-1x -1=________.11. 定义运算a ⊗b =a(1-b),下面给出了关于这种运算的几个结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③若a +b =0,则(a ⊗a)+(b ⊗b)=2ab ;④若a ⊗b =0,则a =0. 其中正确结论的序号是________.(在横线上填上你认为所有正确结论的序号)12. 已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .三、解答题(本大题共5道小题)13. 先化简,再求值:3x+2+x -2÷x 2-2x+1x+2,其中|x|=2.14. 化简(x -1x )÷x 2-2x +1x 2-x.15. 先化简,再求值:a a -b (1b -1a)+a -1b ,其中a =2,b =13.16. 老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了如图所示一个二次三项式,形式如下:-3x =x 2-5x +1.(1)求所捂的二次三项式;(2)若x =6+1,求所捂二次三项式的值.17. 分解因式:()()22114m n mn --+2020中考数学 计算专题:数与式-答案一、选择题(本大题共6道小题)1. 【答案】A 【解析】直接利用相反数的概念:只有符号不同的两个数互为相反数.- 2 的相反数是2.2. 【答案】A 【解析】A.x 2-1x 2+1分子分母中无公因式,是最简分式;B.x +1x 2-1=x +1(x +1)(x -1)=1x -1,故不是最简分式;C.x 2-2xy +y 2x 2-xy =(x -y )2x (x -y )=x -y x ,故不是最简分式;D.x 2-362x +12=(x +6)(x -6)2(x +6)=x -62,故不是最简分式. 3. 【答案】D4. 【答案】D 【解析】A.4输入后得到的值为42=2,再将2循环输入得到22=1,再将1循环输入得到3×1+1=4,∴输入4,结果依次是4,2,1;B 和D 中将2输入后得到的值为22=1,再将1循环代入得到3×1+1=4,∴输入2的结果依次是2,1,4,故D 错误;C.1输入后得到的值为3×1+1=4,再将4循环代入得到42=2,∴输入1结果依次是1,4,2.故选D.5. 【答案】C [解析]由“杨辉三角”的规律可知,(a +b )9展开式中所有项的系数和为29=512.6. 【答案】D [解析]∵a 1=5,∵a 2=11-a 1=11-5=-14,a 3=11-a 2=11-(-14)=45,a 4=11-a 3=11-45=5,… ∵这些数以5,-14,45三个数依次不断循环.∵2019÷3=673,∵a 2019=a 3=45,故选D .二、填空题(本大题共6道小题)7. 【答案】58. 【答案】4 9. 【答案】1x 【解析】原式=x +3(x -2)2·(x -2)2x (x +3)=1x. 10. 【答案】1 【解析】原式=x -1x -1=1. 11. 【答案】①③ 【解析】本题考查新定义、求代数式的值、代数式的化简和解12. 【答案】1.1[解析]根据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=1.1,故答案为:1.1.三、解答题(本大题共5道小题)13. 【答案】解:原式=x 2-1x+2÷(x-1)2x+2=(x+1)(x-1)x+2·x+2(x-1)2=x+1x-1.∵|x|=2,∴x=±2,由分式有意义的条件可知:x=2,∴原式=3.14. 【答案】解:原式=x2-1x·x2-xx2-2x+1(2分)=(x+1)(x-1)x·x(x-1)(x-1)2(3分)=x+1.(5分) 15. 【答案】解:原式=aa-b·a-bba+a-1b=1b+a-1b=ab.(4分)故当a=2,b=13时,原式=ab=2×3=6.(6分)16. 【答案】解:(1)x2-5x+1+3x=x2-2x+1(2)x2-2x+1=(x-1)2,当x=6+1时,原式=(6)2=6.17. 【答案】(1)(1)mn m n mn m n+-+++-【解析】()()2222222222 1141421(2) m n mn m n m n mn m n mn m n mn --+=--++=++-+-22(1)()(1)(1)mn m n mn m n mn m n=+--=+-+++-。
2020年中考数学第一轮复习 第三节 整式 知识点+真题(后含答案)
2020年中考数学第一轮复习第一章数与式第三节整式【基础知识回顾】一、整式的有关概念:单项式:。
1、整式:多项式:。
单项式中的叫做单项式的系数,所有字母的叫做单项式的次数。
组成多项式的每一个单项式叫做多项式的,多项式的每一项都要带着前面的符号。
2、同类项:①定义:所含相同,并且相同字母的也相同的项叫做同类项,常数项都是同类项。
②合并同类项法则:把同类项的相加,所得的和作为合并后的,不变。
【注意:1、单独的一个数字或字母都是式。
2、判断同类项要抓住两个相同:一是相同,二是相同,与系数的大小和字母的顺序无关。
】二、整式的运算:1、整式的加减:①去括号法则:a+(b+c)=a+ ,a-(b+c)=a- .②添括号法则:a+b+c= a+( ),a-b-c= a-( )③整式加减的步骤是先,再。
【注意:在整式的加减过程中有括号时一般要先去括号,特别强调:括号前是负号去括号时括号内每一项都要。
】2、整式的乘法:①单项式乘以单项式:把它们的系数、相同字母分别,对于只在一个单项式里含有的字母,则连同它的作为积的一个因式。
②单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积,即m(a+b+c)= 。
③多项式乘以多项式:先用第一个多项式的每一项去乘另一个多项式的每一项,再把所得的积,即(m+n)(a+b)= 。
④乘法公式:Ⅰ、平方差公式:(a+b)(a—b)=,Ⅱ、完全平方公式:(a±b)2 = 。
【注意:1、在多项式的乘法中有三点注意:一是避免漏乘项,二是要避免符号的错误,三是展开式中有同类项的一定要。
2、两个乘法公式在代数中有着非常广泛的应用,要注意各自的形式特点,灵活进行运用。
】3、整式的除法:①单项式除以单项式,把、分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
②多项式除以单项式,先用这个多项式的每一项 这个单项式,再把所得的商 。
即(am+bm )÷m= 。
2020年数学中考试题分类汇编(阅读、规律、代数式).doc
以下是河北省柳超的分类(2020年贵阳市)13.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122f ⎛⎫=⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,…利用以上规律计算:1(2008)2008f f ⎛⎫-= ⎪⎝⎭.(2020年贵阳市)10.根据如图2所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )A .3nB .3(1)n n +C .6nD .6(1)n n +(2020年遵义市)16.如图是与杨辉三角形有类似性质的三角形数垒,a b ,是某行的前两个数,当7a =时,b = .以下是江西康海芯的分类:1. (2020年郴州市)因式分解:24x -=____________ ()()22x x +-辽宁省 岳伟 分类2020年桂林市(图2)……(1)(2) (3)1 2 2 3 4 3 4 7 7 4 5 11 14 11 5· · · · · · · · · a b · · · · · · · · (16题图)如图,矩形1111ABCD的面积为4,顺次连结各边中点得到四边形2222ABCD,再顺次连结四边形2222ABCD四边中点得到四边形3333ABCD,依此类推,求四边形n n n n ABCD的面积是 。
18.(2020年湖州市)将自然数按以下规律排列,则2020所在的位置是第 行第 列.10. ( 2020年杭州市) 如图, 记抛物线12+-=x y 的图象与x 正半轴的交点为A , 将线段OA 分成n 等份, 设分点分别为121,,,-n P P P Λ, 过每个分点作x 轴的垂线, 分别与抛物线交于点121,,,-n Q Q Q Λ, 再记直角三角形Λ,,22111Q P P Q OP 的面积分别为Λ,,21S S ,这样就有,24,21322321n n S n n S -=-=… ; 记21S S W += 1-++n S Λ, 当n 越来越大时, 你猜想W 最接近的常数是( C ) (A) 32 (B)21 (C)31(D) 41(第10题)16. ( 2020年杭州市) 如图, 一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形, 那么一个5×3的矩形用不同的方式分割后, 小正方形的个数可以是 ________________ .以下是安徽省马鞍山市成功中学的汪宗兴老师的分类1.(2020年·东莞市)(本题满分9分)(1)解方程求出两个解1x 、2x ,并计算两个解的方程1x2x21x x +1x .2x0292=-x0322=-x x 0232=+-x x关于x 的方程02=++c bx ax (a 、b 、c 为常数,且04,02≥-≠ac b a )a acb b 242-+- aacb b 242---写出你的结论.24.(2020年双柏县)(本小题9分)依法纳税是每个公民应尽的义务.从2020年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:级别 全月应纳税所得额 税率(%) 1 不超过500元的 5 2 超过500元至2 000元的部分 10 3 超过2 000元至5 000元的部分 15 4 超过5 000元至20 000元的部分 20 … … …(1)某工厂一名工人2020年3月的收入为2 400元,问他应交税款多少元? (2)设x 表示公民每月收入(单位:元),y 表示应交税款(单位:元),(第16题)当2500≤x ≤4000时,请写出y 关于x 的函数关系式;(3)某公司一名职员2020年4月应交税款120元,问该月他的收入是多少元?(08年宁夏回族自治区)商场为了促销,推出两种促销方式:方式①:所有商品打7.5折销售:方式②:一次购物满200元送60元现金.(1)杨老师要购买标价为628元和788元的商品各一件,现有四种购买方案:方案一:628元和788元的商品均按促销方式①购买;方案二:628元的商品按促销方式①购买,788元的商品按促销方式②购买; 方案三:628元的商品按促销方式②购买,788元的商品按促销方式①购买; 方案四:628元和788元的商品均按促销方式②购买. 你给杨老师提出的最合理购买方案是.(2)通过计算下表中标价在600元到800元之间商品的付款金额,你总结出商品的购买规律是 。
2020年广东数学中考考点复习第一章数与式——第三节 代数式、整式与因式分解
A. x2-6x+9 B. -x2+y2 C. x2+2x D. -x2+2xy-y2
8. 观察下列各数:0,3,8,15,24,…,根据该组数的规律,可推出第n个数是
__n_2_-__1__.
第三节 代数式、整式与因式分解
返回目录
玩转广东8年中考真题
命题点 1 列代数式及求值(8年6考,仅2019.16与规律探索题结合考查)
运算
相加,如3a(5a-2b+3)=___1_5_a_2-__6_a_b_+__9_a____ 多项式乘多项式:先用一个多项式的每一项乘另一个多项式的每
一项,再把所得的积, 相加,如(3x+1)(x+2)=_3_x_2_+__7_x_+__2_
乘法公式 平方差公式:__(_a_+__b_)_(a_-__b_)_=__a_2_-__b_2 _ 完全平方公式:__(a_±__b_)_2_=__a_2±__2_a_b_+__b_2__
返回目录
第三节 代数式、整式与因式分解
命题点 4 因式分解(8年6考)
18. (2014广东4题3分)把x3-9x分解因式,结果正确的是( D )
A. x(x2-9)
B. x(x-3)2
C. x(x+3)2
D. x(x+3)(x-3)
19. (2017广东11题4分)分解因式:a2+a=__a_(a_+__1_)_.
示出来 直接代入法:将已知字母的值代入代数式,并按原来的运算顺序
计算求值
代数式 代数式 整体代入法:把已知代数式看成一个整体代入所求代数式中求值
求值
1.常见的三种非负数的类型:a2、|a|、 a(a≥0),最小的非负
数是___0___ 非负数 2.若几个非负数的和为0,则每个非负数的值均为0.如a2+|b|+
2020年江苏省中考复习数学试题分类(1)——数与式(含答案)
2020年江苏省中考数学试题分类(1)——数与式一.相反数(共2小题)1.(2020•盐城)2020的相反数是( )A .﹣2020B .2020C .12020D .−120202.(2020•常州)2的相反数是( )A .﹣2B .−12C .12D .2 二.倒数(共2小题)3.(2020•无锡)﹣7的倒数是( )A .7B .17C .−17D .﹣7 4.(2020•镇江)23的倒数等于 .三.有理数的减法(共2小题)5.(2020•南通)计算|﹣1|﹣3,结果正确的是( )A .﹣4B .﹣3C .﹣2D .﹣16.(2020•连云港)我市某天的最高气温是4℃,最低气温是﹣1℃,则这天的日温差是 ℃.四.科学记数法—表示较大的数(共3小题)7.(2020•盐城)2019年7月盐城黄海湿地申遗成功,它的面积约为400000万平方米.将数据400000用科学记数法表示应为( )A .0.4×106B .4×109C .40×104D .4×1058.(2020•宿迁)2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地球36000千米的地球同步轨道上,请将36000用科学记数法表示为 .9.(2020•常州)地球的半径大约为6400km .数据6400用科学记数法表示为 .五.科学记数法—表示较小的数(共2小题)10.(2020•徐州)原子很小,1个氧原子的直径大约为0.000000000148m ,将0.000000000148用科学记数法表示为 .11.(2020•南京)纳秒(ns )是非常小的时间单位,1ns =10﹣9s .北斗全球导航系统的授时精度优于20ns .用科学记数法表示20ns 是 s .六.平方根(共2小题)12.(2020•南京)3的平方根是( )A .9B .√3C .−√3D .±√313.(2020•泰州)9的平方根等于 .七.立方根(共1小题)14.(2020•常州)8的立方根为( )A .2√2B .±2√2C .2D .±2八.实数的性质(共2小题)15.(2020•扬州)实数3的相反数是( )A .﹣3B .13C .3D .±316.(2020•连云港)3的绝对值是( )A .﹣3B .3C .√3D .13 九.实数与数轴(共1小题)17.(2020•盐城)实数a ,b 在数轴上表示的位置如图所示,则( )A .a >0B .a >bC .a <bD .|a |<|b |一十.实数大小比较(共1小题)18.(2020•苏州)在下列四个实数中,最小的数是( )A .﹣2B .13C .0D .√3一十一.估算无理数的大小(共1小题)19.(2020•南通)若m <2√7<m +1,且m 为整数,则m = .一十二.实数的运算(共5小题)20.(2020•常州)计算:|﹣2|+(π﹣1)0= .21.(2020•宿迁)计算:(﹣2)0+(13)﹣1−√9. 22.(2020•盐城)计算:23−√4+(23−π)0. 23.(2020•连云港)计算(﹣1)2020+(15)﹣1−√643. 24.(2020•苏州)计算:√9+(﹣2)2﹣(π﹣3)0.一十三.代数式求值(共1小题)25.(2020•连云港)按照如图所示的计算程序,若x =2,则输出的结果是 .一十四.同类项(共1小题)26.(2020•苏州)若单项式2x m ﹣1y 2与单项式13x 2y n +1是同类项,则m +n = . 一十五.同底数幂的除法(共5小题)27.(2020•镇江)下列计算正确的是( )A .a 3+a 3=a 6B .(a 3)2=a 6C .a 6÷a 2=a 3D .(ab )3=ab 328.(2020•宿迁)下列运算正确的是( )A .m 2•m 3=m 6B .m 8÷m 4=m 2C .3m +2n =5mnD .(m 3)2=m 629.(2020•常州)计算m 6÷m 2的结果是( )A .m 3B .m 4C .m 8D .m 1230.(2020•淮安)计算t 3÷t 2的结果是( )A .t 2B .tC .t 3D .t 531.(2020•扬州)下列各式中,计算结果为m 6的是( )A .m 2•m 3B .m 3+m 3C .m 12÷m 2D .(m 2 )3一十六.完全平方公式(共2小题)32.(2020•徐州)下列计算正确的是( )A .a 2+2a 2=3a 4B .a 6÷a 3=a 2C .(a ﹣b )2=a 2﹣b 2D .(ab )2=a 2b 233.(2020•宿迁)已知a +b =3,a 2+b 2=5,则ab = .一十七.平方差公式(共1小题)34.(2020•淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是( )A .205B .250C .502D .520一十八.因式分解-提公因式法(共2小题)35.(2020•南通)分解因式:xy ﹣2y 2= .36.(2020•宿迁)分解因式:a 2+a = .一十九.因式分解-运用公式法(共2小题)37.(2020•盐城)因式分解:x 2﹣y 2= .38.(2020•徐州)分解因式:m 2﹣4= .二十.提公因式法与公式法的综合运用(共2小题)39.(2020•无锡)因式分解:ab 2﹣2ab +a = .40.(2020•扬州)分解因式:a 3﹣2a 2+a = .二十一.分式的乘除法(共1小题)41.(2020•扬州)计算或化简:(1)2sin60°+(12)﹣1−√12. (2)x−1x ÷x 2−1x 2+x .二十二.分式的加减法(共1小题)42.(2020•无锡)计算:(1)(﹣2)2+|﹣5|−√16;(2)a−1a−b −1+b b−a .二十三.分式的混合运算(共3小题)43.(2020•南通)计算:(1)(2m +3n )2﹣(2m +n )(2m ﹣n );(2)x−y x ÷(x +y 2−2xy x). 44.(2020•徐州)计算:(1)(﹣1)2020+|√2−2|﹣(12)﹣1; (2)(1−1a )÷a 2−2a+12a−2.45.(2020•淮安)计算:(1)|﹣3|+(π﹣1)0−√4;(2)x+12x ÷(1+1x). 二十四.负整数指数幂(共1小题)46.(2020•镇江)根据数值转换机的示意图,输出的值为 .二十五.二次根式有意义的条件(共3小题)47.(2020•扬州)代数式√x+23在实数范围内有意义,则实数x 的取值范围是 . 48.(2020•苏州)使√x−13在实数范围内有意义的x 的取值范围是 . 49.(2020•镇江)使√x −2有意义的x 的取值范围是 .二十六.二次根式的混合运算(共1小题)50.(2020•泰州)下列等式成立的是( )A .3+4√2=7√2B .√3×√2=√5C .√31√6=2√3D .√(−3)2=32020年江苏省中考数学试题分类(1)——数与式参考答案与试题解析一.相反数(共2小题)1.【解答】解:2020的相反数是﹣2020.故选:A .2.【解答】解:2的相反数是﹣2.故选:A .二.倒数(共2小题)3.【解答】解:﹣7的倒数是−17.故选:C .4.【解答】解:∵23×32=1,∴23的倒数是32, 故答案为:32. 三.有理数的减法(共2小题)5.【解答】解:原式=1﹣3=﹣2.故选:C .6.【解答】解:4﹣(﹣1)=4+1=5.故答案为:5.四.科学记数法—表示较大的数(共3小题)7.【解答】解:400000=4×105.故选:D .8.【解答】解:36000=3.6×104.故答案为:3.6×104.9.【解答】解:将6400用科学记数法表示为6.4×103.故答案为:6.4×103.五.科学记数法—表示较小的数(共2小题)10.【解答】解:0.000000000148=1.48×10﹣10. 故答案为:1.48×10﹣10.11.【解答】解:20ns =20×10﹣9s =2×10﹣8s ,故答案为:2×10﹣8. 六.平方根(共2小题)∴3的平方根±√3.故选:D .13.【解答】解:∵(±3)2=9,∴9的平方根是±3.故答案为:±3.七.立方根(共1小题)14.【解答】解:8的立方根是√83=√233=2,故选:C .八.实数的性质(共2小题)15.【解答】解:实数3的相反数是:﹣3.故选:A .16.【解答】解:|3|=3,故选:B .九.实数与数轴(共1小题)17.【解答】解:根据实数a ,b 在数轴上表示的位置可知:a <0,b >0, ∴a <b .故选:C .一十.实数大小比较(共1小题)18.【解答】解:将﹣2,13,0,√3在数轴上表示如图所示:于是有﹣2<0<13<√3,故选:A .一十一.估算无理数的大小(共1小题)19.【解答】解:2√7=√28,∵√25<√28<√36,∴5<2√7<6,又∵m <2√7<m +1,∴m =5,故答案为:5.一十二.实数的运算(共5小题)=2+1=3,故答案为:3.21.【解答】解:(﹣2)0+(13)﹣1−√9, =1+3﹣3,=1.22.【解答】解:原式=8﹣2+1=7.23.【解答】解:原式=1+5﹣4=2.24.【解答】解:√9+(﹣2)2﹣(π﹣3)0.=3+4﹣1,=6.一十三.代数式求值(共1小题)25.【解答】解:把x =2代入程序中得:10﹣22=10﹣4=6>0,把x =6代入程序中得:10﹣62=10﹣36=﹣26<0,∴最后输出的结果是﹣26.故答案为:﹣26.一十四.同类项(共1小题)26.【解答】解:∵单项式2x m ﹣1y 2与单项式13x 2y n +1是同类项, ∴{m −1=2n +1=2, ∴m +n =4,故答案为:4.一十五.同底数幂的除法(共5小题)27.【解答】解:a 3+a 3=2a 3,因此选项A 不正确;(a 3)2=a 3×2=a 6,因此选项B 正确;a 6÷a 2=a 6﹣2=a 4,因此选项C 不正确; (ab )3=a 3b 3,因此选项D 不正确;故选:B .28.【解答】解:m 2•m 3=m 2+3=m 5,因此选项A 不正确;m8÷m4=m8﹣4=m4,因此选项B不正确;3m与2n不是同类项,因此选项C不正确;(m3)2=m3×2=m6,因此选项D正确;故选:D.29.【解答】解:m6÷m2=m6﹣2=m4.故选:B.30.【解答】解:t3÷t2=t.故选:B.31.【解答】解:A、m2•m3=m5,故此选项不合题意;B、m3+m3=2m3,故此选项不合题意;C、m12÷m2=m10,故此选项不合题意;D、(m2 )3=m6,故此选项符合题意.故选:D.一十六.完全平方公式(共2小题)32.【解答】解:a2+2a2=3a2,因此选项A不符合题意;a6÷a3=a6﹣3=a3,因此选项B不符合题意;(a﹣b)2=a2﹣2ab+b2,因此选项C不符合题意;(ab)2=a2b2,因此选项D符合题意;故选:D.33.【解答】解:∵a+b=3,a2+b2=5,∴(a+b)2﹣(a2+b2)=2ab=32﹣5=4,∴ab=2.故答案为:2.一十七.平方差公式(共1小题)34.【解答】解:设较小的奇数为x,较大的为x+2,根据题意得:(x+2)2﹣x2=(x+2﹣x)(x+2+x)=4x+4,若4x+4=205,即x=2014,不为整数,不符合题意;若4x+4=250,即x=2464,不为整数,不符合题意;若4x+4=502,即x=4984,不为整数,不符合题意;若4x+4=520,即x=129,符合题意.故选:D.一十八.因式分解-提公因式法(共2小题)35.【解答】解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).36.【解答】解:a2+a=a(a+1).故答案为:a(a+1).一十九.因式分解-运用公式法(共2小题)37.【解答】解:x2﹣y2=(x+y)(x﹣y).故答案为:(x+y)(x﹣y).38.【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).二十.提公因式法与公式法的综合运用(共2小题)39.【解答】解:原式=a(b2﹣2b+1)=a(b﹣1)2;故答案为:a(b﹣1)2.40.【解答】解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.二十一.分式的乘除法(共1小题)41.【解答】解:(1)原式=2×√32+2﹣2√3 =√3+2﹣2√3=2−√3;(2)原式=x−1x•x(x+1)(x−1)(x+1)=1.二十二.分式的加减法(共1小题)42.【解答】解:(1)原式=4+5﹣4 =5;(2)原式=a−1a−b+1+ba−b=a−1+1+ba−b=a+ba−b.二十三.分式的混合运算(共3小题)43.【解答】解:(1)原式=4m 2+12mn +9n 2﹣(4m 2﹣n 2) =4m 2+12mn +9n 2﹣4m 2+n 2=12mn +10n 2;(2)原式=x−y x ÷(x 2x +y 2−2xy x) =x −y x ÷x 2−2xy +y 2x=x−y x •x(x−y)2=1x−y .44.【解答】解:(1)原式=1+2−√2−2=1−√2;(2)原式=a−1a ÷(a−1)22(a−1) =a−1a •2a−1=2a .45.【解答】解:(1)|﹣3|+(π﹣1)0−√4=3+1﹣2=2;(2)x+12x ÷(1+1x )=x +12x÷x +1x =x +12x ⋅x x +1=12.二十四.负整数指数幂(共1小题)46.【解答】解:当x =﹣3时,31+x =3﹣2=19, 故答案为:19. 二十五.二次根式有意义的条件(共3小题)47.【解答】解:代数式√x+23在实数范围内有意义, 则x +2≥0,解得:x≥﹣2.故答案为:x≥﹣2.48.【解答】解:由题意得,x﹣1≥0,解得,x≥1,故答案为:x≥1.49.【解答】解:根据二次根式的意义,得x﹣2≥0,解得x≥2.二十六.二次根式的混合运算(共1小题)50.【解答】解:A.3与4√2不是同类二次根式,不能合并,此选项计算错误;B.√3×√2=√6,此选项计算错误;C.√3÷1√6=√3×√6=3√2,此选项计算错误;D.√(−3)2=3,此选项计算正确;故选:D.第11 页共11 页。
2020年江苏省中考数学分类汇编解析版
93480000 有 8 位,所以可以确定 n=8﹣1=7.
2Hale Waihona Puke .【解析】【解答】解:故答案为:
【分析】科学记数法的形式是:
,其中
<10, 为整数.所以
, 取决于原数小
数点的移动位数与移动方向, 是小数点的移动位数,往左移动, 为正整数,往右移动, 为负整数。
本题小数点往左移动到 4 的后面,所以
三、计算题
8.【解析】【解答】4 的倒数为 .
故答案为:A . 【分析】根据倒数的定义进行解答即可. 9.【解析】【解答】解:2 的相反数是-2. 故答案为:B.
【分析】只有符号不同的两个数叫做互为相反数,从而根据定义解答即可.
10.【解析】【解答】由图可得
,
故答案为:C.
【分析】由实数的数轴表示和大小比较及绝对值的几何意义结合本题实数 在数轴上表示的位置可知:
B.
C.
D.
4.计算
的结果是( )
A.
B.
C.
D.
5.下列计算正确的是( ).
A.
B.
C.
D.
6.计算
的结果是( )
A.
B. t
C.
D.
7.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是( )
A. 205
B. 250
C. 502
D. 520
8.计算
的结果是( )
a<0,b>0,b>a,|a|<|b|,从而可以判断.
11.【解析】【解答】解:由题意可知,将 400000 用科学记数法表示为:
,
故答案为:D.
【分析】科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数
2020年中考数学真题分类汇编(四川省)专题: 数与式(学生版)
专题01 数与式 实数部分一、选择题1.(2019四川凉山州)﹣2的相反数是( ) A .2B .﹣2C .12D .﹣122.(2019是攀枝花)2(1)-等于( )A 、1-B 、1C 、2-D 、2 3.(2019四川资阳)﹣3的倒数是( ) A .﹣13B .13C .﹣3D .34.(2019四川自贡)﹣2019的倒数是( ) A .﹣2019B .﹣20191C .20191D .20195.(2019四川乐山)3-的绝对值是 A. 3 B. 3-C.31 D. 31- 6.(2019四川眉山)下列四个数中,是负数的是( )A .|﹣3|B .﹣(﹣3)C .(﹣3)2D7.(2019四川遂宁)﹣||的值为( )AB .﹣CD .28.(2019四川攀枝花)在0,1-,2,3-这四个数中,绝对值最小的数是( ) A 、0 B 、1- C 、2 D 、3- 9.(2019四川成都)比﹣3大5的数是( ) A .﹣15B .﹣8C .2D .810.(2019四川达州)﹣2019的绝对值是( ) A .2019B .﹣2019C .20191D .﹣2019111.(2019四川广安)﹣2019的绝对值是( ) A .﹣2019B .2019C .﹣20191D .2019112.(2019四川乐山)a -一定是( )A. 正数B. 负数C. 0D. 以上选项都不正确 13.(2019四川南充)如果6a =1,那么a 的值为( ) A .6B .61C .﹣6D .﹣61 14.(2019四川宜宾)2的倒数是( ) A .12B .﹣2C .12-D .12±15.(2019四川资阳)设x x 的取值范围是()A .2<x <3B .3<x <4C .4<x <5D .无法确定16.(2019四川自贡)实数m ,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )1mnA .|m |<1B .1﹣m >1C .mn >0D .m +1>017.(2019四川宜宾)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为 52微米,52微米为0.000052米.将0.000052用科学记数法表示为( ) A .5.2×10﹣6B .5.2×10﹣5C .52×10﹣6D .52×10﹣518.(2019四川自贡)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国 实力的新名片.现在中国高速铁路营运里程将达到23000公里,将23000用科学记数法表示 应为( ) A .2.3×104B .23×103C .2.3×103D .0.23×10519.(2019四川凉山州)2018年凉山州生产总值约为153300000000,用科学记数法表示数 153300000000是( ) A .1.533×109B .1.533×1010C .1.533×1011D .1.533×101220.(2019四川眉山)中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲 盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将 120亿个用科学记数法表示为( ) A .1.2×109个B .12×109个C .1.2×1010个D .1.2×1011个21.(2019四川攀枝花)用四舍五入法将130542精确到千位,正确的是( ) A 、131000 B 、60.13110⨯ C 、51.3110⨯ D 、413.110⨯22.(2019=2,则a 的值为()A. B. 4 C.23(2019四川绵阳)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为( ) A . 0.2×10-3B. 0.2×10-4C. 2×10-3D. 2×10-424.(2019四川巴中)企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300 万元用科学记数法表示为( ) A .93×108元B .9.3×108元C .9.3×107元D .0.93×108元25.(2019四川成都)2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个 巨椭圆星系M 87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示( ) A .5500×104B .55×106C .5.5×107D .5.5×10826.(2019四川广安)第二届“一带一路”国际合作高峰论坛于2019年4月25日至27日 在北京召开,“一带一路”建设进行5年多来,中资金融机构为“一带一路”相关国家累计 发放贷款250000000000元,重点支持了基础设施、社会民生等项目.数字250000000000 用科学记数法表示,正确的是( ) A .0.25×1011B .2.5×1011C .2.5×1010D .25×101027.(2019四川绵阳)已知x 是整数,当x 取最小值时,x 的值是( )A. 5B. 6C. 7D. 828.(2019四川达州)a 是不为1的有理数,我们把11a-称为a 的差倒数,如2的差倒数为 112-=﹣1,﹣1的差倒数111(1)2=--,已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数, a 4是a 3的差倒数…,依此类推,a 2019的值是( )A .5B .﹣14C .43D .45二、填空题29.(2019四川攀枝花)3-的相反数是 。
(部编版)2020年中考数学第一部分考点研究复习第一章数与式第3课时代数式与整式含因式分解真题
第一章 数与式第3课时 代数式与整式(含因式分解) 江苏近4年中考真题精选(2013~2016)命题点1 代数式及其求值(2016年淮安7题,2015年4次,2014年9次,2013年6次)1. (2016淮安7题3分)已知a -b =2,则代数式2a -2b -3的值是( )A. 1B. 2C. 3D. 72. (2013苏州9题3分)已知x -1x=3,则4-12x 2+32x 的值为( ) A. 1 B. 32 C. 52 D. 723. (2014盐城9题3分)“x 的2倍与5的和”用代数式表示为________.4. (2013苏州15题3分)按照下图所示的操作步骤,若输入x 的值为2,则输出的值为________.第4题图5. (2015连云港11题3分)已知m +n =mn ,则(m -1)(n -1)=________.6. (2014连云港12题3分)若ab =3,a -2b =5,则a 2b -2ab 2的值是________.7. (2014盐城16题3分)已知x (x +3)=1,则代数式2x 2+6x -5的值为________.8. (2014泰州14题3分)已知a 2+3ab +b 2=0(a ≠0,b ≠0),则代数式b a +a b 的值等于________.9. (2013淮安18题3分)观察一列单项式:x ,3x 2,5x 3,7x ,9x 2,11x 3,…,则第2013个单项式是________.10. (2014南通18题3分)已知实数m ,n 满足m -n 2=1,则代数式m 2+2n 2+4m -1的最小值等于________. 命题点2 整式的运算(2016年14次,2015年13次,2014年15次,2013年15次)11. (2016盐城2题3分)计算(-x 2y )2的结果是( )A. x 4y 2B. -x 4y 2C. x 2y 2D. -x 2y 212. (2016南京3题2分)下列计算中,结果是a 6的是( )A. a 2+a 4B. a 2·a 3C. a 12÷a 2D. (a 2)313. (2015镇江15题3分)计算-3(x -2y )+4(x -2y)的结果是( )A. x -2yB. x +2yC. -x -2yD. -x +2y14. (2014扬州2题3分)若 ×3xy =3x 2y ,则 内应填的单项式是( )A. xyB. 3xyC. xD. 3x15. (2016徐州2题3分)下列运算中,正确的是( )A. x3+x3=x6B. x3·x9=x27C. (x2)3=x5D. x÷x2=x-116. (2014连云港10题3分)计算:(2x+1)(x-3)=________.17. (2016无锡19(2)题4分)计算:(a-b)2-a(a-2b).18. (2014南通19(2)题5分)化简:[x(x2y2-xy)-y(x2-x3y)]÷x2y.19. (2014盐城20题8分)先化简,再求值:(a+2b)2+(b+a)(b-a),其中a=-1,b=2.命题点3 因式分解(2016年9次,2015年8次,2014年5次,2013年5次)20. (2015盐城10题3分)分解因式:a2-2a=________________.21. (2016盐城9题3分)分解因式:a2-ab=_______________.22. (2016淮安10题3分)分解因式:m2-4=______________.23. (2013苏州12题3分)因式分解:a2+2a+1=_________________.24. (2015宿迁11题3分)因式分解:x3-4x=_______________.25. (2014南通12题3分)因式分解:a3b-ab=_______________.26. (2016常州11题2分)分解因式:x3-2x2+x=________.27. (2013扬州10题3分)因式分解a3-4ab2=________.28. (2016南京9题2分)分解因式2a(b+c)-3(b+c)的结果是__________.29. (2015南京10题3分)分解因式(a-b)(a-4b)+ab的结果是____________.答案1. A 【解析】∵a -b =2,∴2a -2b -3=2(a -b )-3=2×2-3=1.2. D 【解析】∵x -1x =3,∴x 2-1=3x ,∴x 2-3x =1,∴原式=4-12(x 2-3x )=4-12=72. 3. 2x +5 【解析】根据题中表述可得该式为2x +5.4. 20 【解析】由题图可知,运算程序为(x +3)2-5;当x =2时,(x +3)2-5=(2+3)2-5=25-5=20. 5. 1 【解析】∵(m -1)(n -1)=mn -m -n +1=mn -(m +n )+1,∵mn =m +n ,∴原式=1.6. 15 【解析】∵ab =3,a -2b =5,∴a 2b -2ab 2=ab (a -2b )=3×5=15. 7. -3 【解析】∵x (x +3)=1,∴2x 2+6x -5=2x (x +3)-5=2×1-5=2-5=-3. 8. -3 【解析】∵a 2+3ab +b 2=0,∴a 2+b 2=-3ab ,∴原式=22a b ab =-3ab ab =-3. 9. 4025x 3【解析】系数依次为1,3,5,7,9,11,…,2n -1;x 的指数依次是1,2,3,1,2,3,…,可见三个单项式一个循环,故可得第2013个单项式的系数为4025;∵20133=671,∴第2013个单项式指数为3,故可得第2013个单项式是4025x 3. 10. 4 【解析】∵m -n 2=1,即n 2=m -1≥0,得m ≥1,∴原式=m 2+2m -2+4m -1=m 2+6m +9-12=(m +3)2-12,则代数式m 2+2n 2+4m -1的最小值等于(1+3)2-12=4. 11. A 【解析】(-x 2y )2=(-x 2)2·y 2=x 4y 2. 12. D 【解析】13. A 【解析】-3(x-2y)+4(x-2y)=x-2y.14. C 【解析】根据题意得:3x2y÷3xy=x.15. D 【解析】16. 2x2-5x-3 【解析】(2x+1)(x-3)=2x2-6x+x-3=2x2-5x-3.17. 解:原式=a2-2ab+b2-a2+2ab=b2.18. 解:原式=[x2y(xy-1)-x2y(1-xy)]÷x2y=x2y(2xy-2)÷x2y=2xy-2.19. 解:原式=a2+4ab+4b2+b2-a2=4ab+5b2,当a=-1,b=2时,原式=4×(-1)×2+5×22=12.20.a(a-2) 【解析】提取公因式a,即a2-2a=a(a-2).21. a(a-b)【解析】提取公因式a,即a2-ab=a(a-b).22. (m-2)(m+2) 【解析】原式=(m-2)(m+2).23. (a+1)2【解析】a2+2a+1=(a+1)2.24. x(x+2)(x-2) 【解析】本题考查了多项式的因式分解,x3-4x=x(x2-4)=x(x+2)(x-2),故填x(x +2)(x-2).25. ab(a+1)(a-1) 【解析】a3b-ab=ab(a2-1)=ab(a+1)(a-1).26. x(x-1)2【解析】主要考查了提取公因式法以及公式法分解因式.原式=x(x2-2x+1)=x(x-1)2.27. a(a+2b)(a-2b) 【解析】a3-4ab2=a(a2-4b2)=a(a+2b)·(a-2b).28. (b+c)(2a-3) 【解析】提取公因式(b+c)得,原式=(b+c)·(2a-3).29. (a-2b)2【解析】化简(a-b)(a-4b)+ab=a2-5ab+4b2+ab=a2-4ab+4b2,再利用完全平方公式得a2-4ab+4b2=(a-2b)2.。
2020年全国中考数学试题精选分类(1)——数与式(含解析)
2020年全国中考数学试题精选分类(1)——数与式一.选择题(共13小题)1.(2020•西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于()A.18 B.19 C.20 D.212.(2020•呼和浩特)下列运算正确的是()A.•==±B.(ab2)3=ab5C.(x﹣y+)(x+y+)=(x+y)2D.÷=﹣3.(2020•聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是()A.150 B.200 C.355 D.5054.(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F5.(2020•西藏)今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为()A.16×106B.1.6×107C.1.6×108D.0.16×1086.(2020•西藏)下列分解因式正确的一项是()A.x2﹣9=(x+3)(x﹣3)B.2xy+4x=2(xy+2x)C.x2﹣2x﹣1=(x﹣1)2D.x2+y2=(x+y)27.(2020•大连)下列四个数中,比﹣1小的数是()A.﹣2 B.﹣C.0 D.18.(2020•葫芦岛)下列运算正确的是()A.a2•a3=a6B.a8÷a4=a2C.5a﹣3a=2a D.(﹣ab2)2=﹣a2b49.(2020•赤峰)2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A.99×10﹣10B.9.9×10﹣10C.9.9×10﹣9D.0.99×10﹣810.(2020•赤峰)估计(2+3)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间11.(2020•沈阳)下列有理数中,比0小的数是()A.﹣2 B.1 C.2 D.312.(2020•南通)计算|﹣1|﹣3,结果正确的是()A.﹣4 B.﹣3 C.﹣2 D.﹣113.(2020•大庆)若|x+2|+(y﹣3)2=0,则x﹣y的值为()A.﹣5 B.5 C.1 D.﹣1二.填空题(共17小题)14.(2020•赤峰)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为.15.(2020•呼和浩特)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,……,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数超过120张,则可算得5月1日到5月28日他共用宣纸张数为,并可推断出5月30日应该是星期几.16.(2020•鸡西)如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是个.17.(2020•宜宾)定义:分数(m,n为正整数且互为质数)的连分数(其中a1,a2,a3,…,为整数,且等式右边的每个分数的分子都为1),记作+++…,例如:======,的连分数为,记作+++,则++.18.(2020•张家界)观察下面的变化规律:=1﹣,=﹣,=﹣,=﹣,…根据上面的规律计算:=.19.(2020•长沙)某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为.20.(2020•常德)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.21.(2020•张家界)因式分解:x2﹣9=.22.(2020•邵阳)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为.3 21 6323.(2020•海南)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有个菱形,第n个图中有个菱形(用含n的代数式表示).24.(2020•昆明)观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是.25.(2020•呼和浩特)分式与的最简公分母是,方程﹣=1的解是.26.(2020•十堰)对于实数m,n,定义运算m*n=(m+2)2﹣2n.若2*a=4*(﹣3),则a=.27.(2020•江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.28.(2020•通辽)如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n个正方形多个小正方形.29.(2020•山西)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).30.(2020•青海)分解因式:﹣2ax2+2ay2=;不等式组的整数解为.三.解答题(共20小题)31.(2020•锦州)先化简,再求值:,其中.32.(2020•呼和浩特)(1)计算:|1﹣|﹣×+﹣()﹣2;(2)已知m是小于0的常数,解关于x的不等式组:.33.(2020•湖北)(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.34.(2020•山西)(1)计算:(﹣4)2×(﹣)3﹣(﹣4+1).(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步任务一:填空:①以上化简步骤中,第步是进行分式的通分,通分的依据是.或填为:;②第步开始出现错误,这一步错误的原因是;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.35.(2020•烟台)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.36.(2020•自贡)先化简,再求值:•(+1),其中x是不等式组的整数解.37.(2020•鞍山)先化简,再求值:(x﹣1﹣)÷,其中x=﹣2.38.(2020•德阳)计算:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°.39.(2020•桂林)计算:(π+)0+(﹣2)2+|﹣|﹣sin30°.40.(2020•呼伦贝尔)先化简,再求值:÷+3,其中x=﹣4.41.(2020•赤峰)先化简,再求值:m﹣÷,其中m满足:m2﹣m﹣1=0.42.(2020•呼伦贝尔)计算:(﹣)﹣1++2cos60°﹣(π﹣1)0.43.(2020•雅安)(1)计算:(﹣1)2020+(π﹣1)0×()﹣2;(2)先化简(﹣x+1)÷,再从﹣1,0,1中选择合适的x值代入求值.44.(2020•鄂尔多斯)(1)解不等式组,并求出该不等式组的最小整数解.(2)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.45.(2020•鸡西)先化简,再求值:﹣÷,其中x=1﹣2tan45°.46.(2020•益阳)先化简,再求值:(﹣)÷,其中a=﹣2.47.(2020•娄底)先化简(﹣)÷,然后从﹣3,0,1,3中选一个合适的数代入求值.48.(2020•恩施州)先化简,再求值:(﹣)÷,其中m=.49.(2020•娄底)计算:|﹣1|﹣3tan30°+(3.14﹣π)0+()﹣1.50.(2020•云南)先化简,再求值:÷,其中x=.2020年全国中考数学试题精选分类(1)——数与式参考答案与试题解析一.选择题(共13小题)1.(2020•西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于()A.18 B.19 C.20 D.21【答案】A【解答】解:第1个相同的数是1=0×6+1,第2个相同的数是7=1×6+1,第3个相同的数是13=2×6+1,第4个相同的数是19=3×6+1,…,第n个相同的数是6(n﹣1)+1=6n﹣5,所以6n﹣5=103,解得n=18.答:第n个相同的数是103,则n等于18.故选:A.2.(2020•呼和浩特)下列运算正确的是()A.•==±B.(ab2)3=ab5C.(x﹣y+)(x+y+)=(x+y)2D.÷=﹣【答案】C【解答】解:A、,故选项错误;B、(ab2)3=a3b6,故选项错误;C、===(x+y)2,故选项正确;D、,故选项错误;故选:C.3.(2020•聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是()A.150 B.200 C.355 D.505【答案】C【解答】解:由图形可知:第1个图形12块白色小正方形,第2个图形19个白色小正方形,第3个图形26个白色小正方形则图ⓝ的白色小正方形地砖有(7n+5)块,当n=50时,7n+5=350+5=355.故选:C.4.(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【答案】D【解答】解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)﹣7p格,这时p是整数,且使0≤k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.5.(2020•西藏)今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为()A.16×106B.1.6×107C.1.6×108D.0.16×108【答案】B【解答】解:16000000=1.6×107,故选:B.6.(2020•西藏)下列分解因式正确的一项是()A.x2﹣9=(x+3)(x﹣3)B.2xy+4x=2(xy+2x)C.x2﹣2x﹣1=(x﹣1)2D.x2+y2=(x+y)2【答案】A【解答】解:A、原式=(x+3)(x﹣3),符合题意;B、原式=2x(y+2),不符合题意;C、原式不能分解,不符合题意;D、原式不能分解,不符合题意.故选:A.7.(2020•大连)下列四个数中,比﹣1小的数是()A.﹣2 B.﹣C.0 D.1【答案】A【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1,0>﹣1,﹣>﹣1,1>﹣1,∴四个数中,比﹣1小的数是﹣2.故选:A.8.(2020•葫芦岛)下列运算正确的是()A.a2•a3=a6B.a8÷a4=a2C.5a﹣3a=2a D.(﹣ab2)2=﹣a2b4【答案】C【解答】解:(A)原式=a5,故A错误.(B)原式=a4,故B错误.(D)原式=a2b4,故D错误.故选:C.9.(2020•赤峰)2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A.99×10﹣10B.9.9×10﹣10C.9.9×10﹣9D.0.99×10﹣8【答案】C【解答】解:0.0000000099=9.9×10﹣9,故选:C.10.(2020•赤峰)估计(2+3)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】A【解答】解:原式=2+,∵,∴,故选:A.11.(2020•沈阳)下列有理数中,比0小的数是()A.﹣2 B.1 C.2 D.3【答案】A【解答】解:由于﹣2<0<1<2<3,故选:A.12.(2020•南通)计算|﹣1|﹣3,结果正确的是()A.﹣4 B.﹣3 C.﹣2 D.﹣1【答案】C【解答】解:原式=1﹣3=﹣2.故选:C.13.(2020•大庆)若|x+2|+(y﹣3)2=0,则x﹣y的值为()A.﹣5 B.5 C.1 D.﹣1【答案】A【解答】解:∵|x+2|+(y﹣3)2=0,∴x+2=0,y﹣3=0,解得:x=﹣2,y=3,故x﹣y=﹣2﹣3=﹣5.故选:A.二.填空题(共17小题)14.(2020•赤峰)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为.【答案】.【解答】解:第一次落点为A1处,点A1表示的数为1;第二次落点为OA1的中点A2,点A2表示的数为;第三次落点为OA2的中点A3,点A3表示的数为()2;…则点A2020表示的数为()2019,即点A2020表示的数为;故答案为:.15.(2020•呼和浩特)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,……,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数超过120张,则可算得5月1日到5月28日他共用宣纸张数为112,并可推断出5月30日应该是星期几五、六、日.【答案】112;五、六、日.【解答】解:∵5月1日~5月30日共30天,包括四个完整的星期,∴5月1日~5月28日写的张数为:4×=112,若5月30日为星期一,所写张数为112+7+1=120,若5月30日为星期二,所写张数为112+1+2<120,若5月30日为星期三,所写张数为112+2+3<120,若5月30日为星期四,所写张数为112+3+4<120,若5月30日为星期五,所写张数为112+4+5>120,若5月30日为星期六,所写张数为112+5+6>120,若5月30日为星期日,所写张数为112+6+7>120,故5月30日可能为星期五、六、日.故答案为:112;五、六、日.16.(2020•鸡西)如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是92个.【答案】见试题解答内容【解答】解:因为第1个图形中一共有1×(1+1)+2=4个圆,第2个图形中一共有2×(2+1)+2=8个圆,第3个图形中一共有3×(3+1)+2=14个圆,第4个图形中一共有4×(4+1)+2=22个圆;可得第n个图形中圆的个数是n(n+1)+2;所以第9个图形中圆的个数9×(9+1)+2=92.故答案为:92.17.(2020•宜宾)定义:分数(m,n为正整数且互为质数)的连分数(其中a1,a2,a3,…,为整数,且等式右边的每个分数的分子都为1),记作+++…,例如:======,的连分数为,记作+++,则++.【答案】见试题解答内容【解答】解:++====.故答案为:.18.(2020•张家界)观察下面的变化规律:=1﹣,=﹣,=﹣,=﹣,…根据上面的规律计算:=.【答案】见试题解答内容【解答】解:由题干信息可抽象出一般规律:(a,b均为奇数,且b=a+2).故=1﹣+﹣+﹣+…+﹣=1﹣=.故答案:.19.(2020•长沙)某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为7.【答案】见试题解答内容【解答】解:设每人有牌x张,B同学从A同学处拿来二张扑克牌,又从C同学处拿来三张扑克牌后,则B同学有(x+2+3)张牌,A同学有(x﹣2)张牌,那么给A同学后B同学手中剩余的扑克牌的张数为:x+2+3﹣(x﹣2)=x+5﹣x+2=7.故答案为:7.20.(2020•常德)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx ﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+或x=﹣1﹣.【答案】见试题解答内容【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.21.(2020•张家界)因式分解:x2﹣9=(x+3)(x﹣3).【答案】见试题解答内容【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).22.(2020•邵阳)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为.3 21 63【答案】.【解答】解:由题意可得:xy=,xy=.故答案为:.23.(2020•海南)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有41个菱形,第n个图中有2n2﹣2n+1个菱形(用含n的代数式表示).【答案】41,2n2﹣2n+1.【解答】解:∵第1个图中菱形的个数1=12+02,第2个图中菱形的个数5=22+12,第3个图中菱形的个数13=32+22,第4个图中菱形的个数25=42+32,∴第5个图中菱形的个数为52+42=41,第n个图中菱形的个数为n2+(n﹣1)2=n2+n2﹣2n+1=2n2﹣2n+1,故答案为:41,2n2﹣2n+1.24.(2020•昆明)观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是(﹣1)n..【答案】见试题解答内容【解答】解:观察下列一组数:﹣=﹣,=,﹣=﹣,=,﹣=﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是:(﹣1)n.故答案为:(﹣1)n.25.(2020•呼和浩特)分式与的最简公分母是x(x﹣2),方程﹣=1的解是x=﹣4.【答案】(1)x(x﹣2);(2)x=﹣4.【解答】解:∵x2﹣2x=x(x﹣2),∴分式与的最简公分母是x(x﹣2),方程,去分母得:2x2﹣8=x(x﹣2),去括号得:2x2﹣8=x2﹣2x,移项合并得:x2+2x﹣8=0,变形得:(x﹣2)(x+4)=0,解得:x=2或﹣4,∵当x=2时,x(x﹣2)=0,当x=﹣4时,x(x﹣2)≠0,∴x=2是增根,∴方程的解为:x=﹣4.故答案为:x(x﹣2),x=﹣4.26.(2020•十堰)对于实数m,n,定义运算m*n=(m+2)2﹣2n.若2*a=4*(﹣3),则a=﹣13.【答案】﹣13.【解答】解:∵m*n=(m+2)2﹣2n,∴2*a=(2+2)2﹣2a=16﹣2a,4*(﹣3)=(4+2)2﹣2×(﹣3)=42,∵2*a=4*(﹣3),∴16﹣2a=42,解得a=﹣13,故答案为:﹣13.27.(2020•江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是25.【答案】见试题解答内容【解答】解:由题意可得,表示25.故答案为:25.28.(2020•通辽)如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n个正方形多2n+3个小正方形.【答案】见试题解答内容【解答】解:∵第1个正方形需要4个小正方形,4=22,第2个正方形需要9个小正方形,9=32,第3个正方形需要16个小正方形,16=42,…,∴第n+1个正方形有(n+1+1)2个小正方形,第n个正方形有(n+1)2个小正方形,故拼成的第n+1个正方形比第n个正方形多(n+2)2﹣(n+1)2=2n+3个小正方形.故答案为:2n+3.29.(2020•山西)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有(3n+1)个三角形(用含n的代数式表示).【答案】见试题解答内容【解答】解:第1个图案有4个三角形,即4=3×1+1第2个图案有7个三角形,即7=3×2+1第3个图案有10个三角形,即10=3×3+1…按此规律摆下去,第n个图案有(3n+1)个三角形.故答案为:(3n+1).30.(2020•青海)分解因式:﹣2ax2+2ay2=﹣2a(x﹣y)(x+y)或2a(y+x)(y﹣x);不等式组的整数解为2.【答案】见试题解答内容【解答】解:﹣2ax2+2ay2=﹣2a(x2﹣y2)=﹣2a(x﹣y)(x+y);或原式=2a(y+x)(y﹣x);,解①得:x≥2,解②得:x<3,∴2≤x<3,∴不等式的整数解为:2.故答案为:﹣2a(x﹣y)(x+y)或2a(y+x)(y﹣x);2.三.解答题(共20小题)31.(2020•锦州)先化简,再求值:,其中.【答案】.【解答】解:原式=﹣×=+=+==.当x=时,原式==.32.(2020•呼和浩特)(1)计算:|1﹣|﹣×+﹣()﹣2;(2)已知m是小于0的常数,解关于x的不等式组:.【答案】(1);(2)x>4﹣6m.【解答】解:(1)原式==;(2),解不等式①得:x>﹣2,解不等式②得:x>4﹣6m,∵m是小于0的常数,∴4﹣6m>0>﹣2,∴不等式组的解集为:x>4﹣6m.33.(2020•湖北)(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.【答案】见试题解答内容【解答】解:(1)原式=•=,当a=﹣1时,原式==2;(2),∵解不等式①得:x>﹣2,解不等式②得:x≤4,∴不等式组的解集是:﹣2<x≤4,在数轴上表示为:.34.(2020•山西)(1)计算:(﹣4)2×(﹣)3﹣(﹣4+1).(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步任务一:填空:①以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质.或填为:分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;②第五步开始出现错误,这一步错误的原因是括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.【答案】见试题解答内容【解答】解:(1)(﹣4)2×(﹣)3﹣(﹣4+1)=16×(﹣)+3=﹣2+3=1;(2)①以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质.或填为:分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;②第五步开始出现错误,这一步错误的原因是括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号;任务二:﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步;任务三:答案不唯一,如:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.故答案为:三;分式的基本性质;分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;五;括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号.35.(2020•烟台)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.【答案】见试题解答内容【解答】解:(﹣)÷,=[﹣]÷,=×,=,当x=+1,y=﹣1时,原式==2﹣.36.(2020•自贡)先化简,再求值:•(+1),其中x是不等式组的整数解.【答案】见试题解答内容【解答】解:•(+1)===,由不等式组,得﹣1≤x<1,∵x是不等式组的整数解,∴x=﹣1,0,∵当x=﹣1时,原分式无意义,∴x=0,当x=0时,原式==﹣.37.(2020•鞍山)先化简,再求值:(x﹣1﹣)÷,其中x=﹣2.【答案】1﹣2.【解答】解:(x﹣1﹣)÷,=(﹣),=,=,当x=﹣2时,原式====1﹣2.38.(2020•德阳)计算:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°.【答案】﹣2.【解答】解:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°=﹣2++1﹣2﹣2×=﹣2.39.(2020•桂林)计算:(π+)0+(﹣2)2+|﹣|﹣sin30°.【答案】5.【解答】解:原式=1+4+﹣=5.40.(2020•呼伦贝尔)先化简,再求值:÷+3,其中x=﹣4.【答案】﹣1.【解答】解:原式==x+3,将x=﹣4代入得:原式=﹣4+3=﹣1.41.(2020•赤峰)先化简,再求值:m﹣÷,其中m满足:m2﹣m﹣1=0.【答案】1.【解答】解:原式=m﹣=m﹣=,∵m2﹣m﹣1=0,∴m2=m+1,∴原式=.42.(2020•呼伦贝尔)计算:(﹣)﹣1++2cos60°﹣(π﹣1)0.【答案】0.【解答】解:原式==0,故答案为:0.43.(2020•雅安)(1)计算:(﹣1)2020+(π﹣1)0×()﹣2;(2)先化简(﹣x+1)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】(1);(2),﹣1.【解答】解:(1)原式=1+1×=1+=;(2)原式=(﹣)÷=•=,∵x≠±1,∴取x=0,则原式=﹣1.44.(2020•鄂尔多斯)(1)解不等式组,并求出该不等式组的最小整数解.(2)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.【答案】(1)﹣<x≤4,﹣2;(2),.【解答】解:(1)解不等式①,得:x>﹣,解不等式②,得:x≤4,则不等式组的解集为﹣<x≤4,∴不等式组的最小整数解为﹣2;(2)原式=[+]÷=(+)•=•==,∵a2+2a﹣15=0,∴a2+2a=15,则原式=.45.(2020•鸡西)先化简,再求值:﹣÷,其中x=1﹣2tan45°.【答案】.【解答】解:原式=﹣•=﹣==﹣,当x=1﹣2tan45°=1﹣2=﹣1时,原式=﹣=.46.(2020•益阳)先化简,再求值:(﹣)÷,其中a=﹣2.【答案】见试题解答内容【解答】解:原式=÷=•=,当a=﹣2时,原式===2.47.(2020•娄底)先化简(﹣)÷,然后从﹣3,0,1,3中选一个合适的数代入求值.【答案】见试题解答内容【解答】解:原式=[﹣]•=•=(m﹣3)﹣2(m+3)=m﹣3﹣2m﹣6=﹣m﹣9,当m=﹣3,0,3时,原式没有意义,舍去;当m=1时,原式=﹣1﹣9=﹣10.48.(2020•恩施州)先化简,再求值:(﹣)÷,其中m=.【答案】见试题解答内容【解答】解:====;当时,原式=.49.(2020•娄底)计算:|﹣1|﹣3tan30°+(3.14﹣π)0+()﹣1.【答案】见试题解答内容【解答】解:原式=﹣1﹣3×+1+2=﹣1﹣+1+2=2.50.(2020•云南)先化简,再求值:÷,其中x=.【答案】见试题解答内容【解答】解:原式=÷=•=,当x=时,原式=2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题训练(一):数与式
一、选择题
1. 点A 在数轴上表示+2,从点A 沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( )
A. 3
B. –1
C. 5
D. –1或3
2.下列计算中,正确的是( ).A. B. C. D.
3.为了响应中央号召,今年我市加大财政支农力度,全市农业支出累计达到234 760 000元,其 中234 760 000元用科学记数法可表示为( )(保留三位有效数字).
A .2.34×108元
B .2.35×108元
C .2.35×109 元
D . 2.34×109元 4. 若代数式2231y y +=,那么代数式2469y y +-的值是( )。
A.2 B.17 C.-7
D.7
5. 估计1832
⨯+的运算结果应在( )A .1到2之间 B .2到3之间 C .3到4之间D .4到5之间
6. 如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n 盆花,每个图案花盆总数是S ,按此推断S 与n 的关系式为( )。
A .S=3n
B .S=3(n -1)
C .S=3n -1
D .S=3n +1
7. 若的值为则2y -x 2
,54,32==y x ( ) A.53 B.-2 C.553 D.5
6 8. 若,则ab =( ) A.1 B.2 C.-2 D.0
9.下列各式正确的是( )A 、 a 4·a 5=a 20 B 、a 2+2a 2=3a 2 C 、(-a 2b 3)2= a 4b 9
D 、a 4÷a= a 2 10.分式29(1)(3)
x x x ---的值等于0,则x 的值为( ) A 、3 B 、-3 C 、3或-3
D 、0
二、填空题
11. 已知一个数的平方根是31a +和11a +,则这个数的相反数是________,倒数是______.
12、因式分解 (1) 2
1222++x x = (2) =-x xy 42_______________;
13、 定义一种新运算:=**-=*321,2
)则(
b a b a _________ 14. 计算:①02)36(|221|8)3(----+--=__________ 15. 观察等式:2
22211⨯=+,333322⨯=+,444433⨯=+,555544
⨯=+,L .设n 表示正整数,请用关于n 的等式表示这个观律为:_________。
16.5x a+2b y 8 与-4x 2y 3a+4b 是同类项,则a+b=________.a
b a a 1⨯÷= 17.当x_________时,x -2在实数范围内有意义;当x 时,分式
41-x 有意义. 18.李明的作业本上有六道题:
(1)3322-=-,(2)24-=-(3)2)2(2-=-,(4)=4±2 ,(5)22414m
m =-, (6)a a a =
-23如果你是他的数学老师,请找出他做对的题是 (填
序号)。
三.解答题 19(6分)、计算:(1)424
1)4(5854232÷+⨯-⨯--⨯-
02)+
20(10分)、先化简再求值:(1)114
122122--+-÷+-x x x x x x 其中x=3 (2)请选择你认为合适的x,y 的值,求式子211(
)()2x y xy x y x y x y x y
+⋅÷++++的值
21(10分)、(1)实数a 、b 、c 在数轴上的点如图所示,
化简:
(2)若10m n +=,24mn =,求22m n +的值
22(10分).已知A =a +2,B =a 2-a +5,C =a 2+5a -19,其中a >2.
(1)求证:B -A >0,并指出A 与B 的大小关系;
(2)指出A 与C 哪个大?说明理由.
23(10分)、据有关资料统计,两个城市之间每天的电话通话次数T 与这两个城市的人口数m 、n (单位:万)以及两城市的距离d (单位:km )有T =2d
kmn 的关系(k 为常数),已知A 、B 、C 三个城市的人口数及它们之间的距离如图所示,如果A 、B 两个城市间每天的电话通话次数为t ,那么B 、C 两个城市间每天的电话通话次数是多少?(用含t 的代数式表示)
24(10)、已知两个分式:A=221x -,B=1111x x
++-,其中x ≠±1.下面有三个结论: 甲说:A=B ; 乙说:A 、B 互为倒数; 丙说:A 、B 互为相反数.
哪个说法正确?为什么?
25(10)、(121
2()02x y -+-=y x +(2)已知m 、n 是实数,且551,m n n =--求23m n -的值
26(12).如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.
(1)28和2 012这两个数是神秘数吗?为什么?
(2)设两个连续偶数为2k +2和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?
(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?
27(12分)、张老师购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示,根据图中的数据(单位:m ),解答下列问题:
(1)用含x 、y 的代数式表示地面的总面积;
(2)已知客厅面积比卫生间面积多212m ,且地面总面积是卫生间的面积的15倍.若铺12m 地砖的平均费用为80元,那么铺地砖的总费用为
多少元?。