近世代数第二章规范标准答案

合集下载

近世代数课后题答案修改版

近世代数课后题答案修改版
a1=56/8=7, b1=88/8=11, m1=96/8=12. 用辗转相除法求 p,q 满足 p a1+q m1=1,得 p=-5。 所 以 方 程 的 解 为 x ≡ pb1 (mod m1) ≡ -5 × 11(mod12) ≡ 5(mod12)。 或 x=5+12k(k 为任意整数)。 6. 解同余方程组: x≡3(mod5) x≡7(mod9) 解 按解同余方程组的三个步骤: 首先,计算 M=5×9=45, M1=9, M2=5. 其次,解两个一次同余式,由于这两个同余式有其特殊性:右端 都是 1,且(a,m)=1。因而 有时可用观察法得到 pa+qm=1,从而得到 p。 1) 9x≡1(mod5), 观察得到 -9+2×5=1, p=-1. 所以此一次同余式的一个特解为 c=-1≡4(mod5). 2)5x≡1(mod9), 观察得到 2×5-9=1, p=2. 所以此一次同余式的一个特解为 c=2(mod9). 最后,将得到的一次同余式的一个特解代入公式,得到同余方程 组的解: x=b1c1M1+b2c2M2=3×4×9+2×7×5(mod45)=43(mod45)。 7. 5 行多 1,6 行多 5,7 行多 4,11 行多 10,求兵数。
(2)在乘法表中任取一个 1,在同一列中必有一个 x,在同一行 中必有一个 y,设第四个顶点的元素为 z,见下图,
�
..........a-1.........................c...................
......
...........................................................
......

近世代数ch2(1-6节)习题参考答案

近世代数ch2(1-6节)习题参考答案

近世代数ch2(1-6节)习题参考答案第二章前6节习题解答 P35§11.全体整数集合对于普通减法来说是不是一个群?解 ∵减法不满足结合律,∴全体整数对于减法不构成群。

2.举出一个有两个元的群例子。

解 }11{-,对于普通乘法构成一个群。

]}1[]0{[,对于运算][][][j i j i +=+构成群。

]}2[]1{[,对于运算][]][[ij j i =构成群。

它们都是两个元的群。

3. 设G 是一个非空集合,”“ 是一个运算。

若①”“ 运算封闭;②结合律成立;③G 中存在右单位元Re :Ga ∈∀,有aaeR=;④G a ∈∀,GaR∈∃-1,有RR e aa=-1。

则G 是一个群。

证(仿照群第二定义的证明) 先证RR Re a a aa ==--11。

∵Ga R ∈-1,∴G a ∈∃',使RRe a a=-'1,∴R R R R R R R R R R Re a a a e a a aa a a a a a e a a a a======--------''')()')(()(11111111,RRe a a=⇒-1。

∴RR R e a a aa==--11。

再证aaea e RR==,即Re 是单位元。

Ga ∈∀,已证RR Re a a aa==--11,∴aa e a ae a a a a aaa e R R R R R=⇒====--)()(11。

∴aaea e RR==。

即Re 就是单位元e 。

再由ea a aaR R ==--11得到1-Ra 就是1-a 。

这说明:G 中有单位元,G a ∈∀都有逆元1-a 。

∴G 是一个群。

P38 §21.若群G 的每一个元都适合方程ex =2,那么G 是可交换的。

证∵12,-=⇒=∈∀x x e x G x 。

∴。

b b aa Gb a 11,,--==⇒∈∀∴baba b aab ===---111)(。

近世代数基础习题课答案到第二章9题

近世代数基础习题课答案到第二章9题

第一章 第二章第一章1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群.证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □3. 设G 是一个非空有限集合, 它上面的一个乘法满足:(1) ()()a bc ab c =, 任意,,a b c G ∈.(2) 若ab ac =则b c =.(3) 若ac bc =则a b =.求证: G 关于这个乘法是一个群.证明: 任取a G ∈, 考虑2{,,,}a a G ⋯⊆. 由于||G <∞必然存在最小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1,即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元,从而是幺群. 事实上, 对任意,a b G ∈, 此时有:()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==,再由消去律, 得到a b =, 从而证明了此时G 只有一个元,从而是幺群.所以我们设G 中至少有一个元素a 满足: 对于满足i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =:i ba ba =, 即be b =.最后, 对任意x G ∈, 前面已经证明了有最小的正整数k使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e =从而22x e e ==, 此时x 有逆, 即它自身.如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆:1k x -. □注: 也可以用下面的第4题来证明.4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群.证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =.于是: ()()be ca e c ae ca b ====. 得证.对任意g G ∈, 由gx e =即得g 的逆. □5. 找两个元素3,x y S ∈使得222()xy x y =/.解: 取(12)x =, (13)y =. □6. 对于整数2n >, 作出一个阶为2n 的非交换群.解: 二面体群n D . □7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证明: ii i r a ba b -=, i 是非负整数.证明: 对i 作数学归纳. □8. 证明: 群G 是一个交换群当且仅当映射1x x - 是群同构.证明: 直接验证. □9. 设S 是群G 的一个非空集合. 在G 上定义关系 为: ~a b 当且仅当1ab S -∈. 证明: 这个关系是一个等价关系当且仅当S G ≤. 证明: 直接验证. □10. 设n 是正整数. 证明: n 是 的子群且与 同构.证明: 直接验证. □11. 证明: 4S 的子集{(1),(12)(34),(13)(24),(14)(23)}B =是一个子群, 而且B 与4U 不同构. (n U 是全体n 次单位根关于复数的乘法组成的群).证明: 用定义验证B 是4S 的子群. 由于4U 中有4阶元而B 中的元的阶只能是1或2, 所以它们不可能同构. □12.证明: 2n 阶群的n 阶子群必然是正规子群.证明: 用正规子群的定义验证. □13. 设群G 的阶为偶数. 证明: G 中必有2阶元.证明: 否则, G 中的任意非单位元和它的逆成对出现, 从而, G的阶为奇数, 矛盾. □14. 设0110A ⎛⎫= ⎪⎝⎭, 2i 2i 0e e 0n n B ππ-⎛⎫ ⎪= ⎪ ⎪⎝⎭. 证明: 集合 22:{,,,,,,,}n n G B B B AB AB AB =⋯⋯关于矩阵的乘法是一个群, 而且这个群与二面体群n D 同构.证明: n D 有如下的表现: 21,|1,n n D T S T S TS ST -=〈===〉. 作2:GL ()n D ϕ→ : S A , T B . 直接验证ϕ是群单同态,而且im G ϕ=. □15. 设群G 满足: 存在正整数i 使得对任意,a b G ∈都有()k k k ab a b =, 其中,1,2k i i i =++. 证明: G 是一个交换群.证明: 由()i i i ab a b =和111()i i i ab a b +++=得:111()()()()()i i i i i i ab a b ab ab ab a b +++===, 从而, 1i i i i ba b a b +=, 即:i i ba a b =.同理可得: 11i i ba a b ++=. 于是:11()()i i i i a ba ba a b a ab ++===, 即: ab ba =. □16. 在群2()SL 中, 证明元素0110a -⎛⎫= ⎪⎝⎭的阶为4, 元素1101b --⎛⎫= ⎪-⎝⎭的 阶为3, 而ab 的阶为∞.证明: 直接验证. □17. 如果群G 为一个交换群, 证明G 的全体有限阶元素组成一个子群.证明: 设{|()}H g G o g =∈<∞. 显然e H ∈, 从而H 不是空集. 对任意,a b H ∈, 设()o a m =, ()o b n =, 则1()o b n -=;11()()mn m n ab a b e --==, 即: 1ab H -∈. □18. 如果群G 只有有限多个子群, 证明G 是有限群.证明: 首先证明: 对任意a G ∈有()o a <∞. 事实上, 设k a 〈〉为G 的由k a 生成的子群, 其中, 1k ≥是整数. 则242m a a a a 〈〉⊇〈〉⊇〈〉⊇⊇〈〉⊇ . 由于G 只有有限多 个子群, 所以必然存在m 使得2(1)22(2)m m m a a a ++〈〉=〈〉=〈〉= ,即 22(1)m t m a a +=.由消去律即得()o a <∞.于是G 的任意元素都包含在某个有限子群里, 而G 只有有限多个子群, 所以||G <∞. □19. 写出群n D 的全部正规子群.解: 已知: 212121{,,,,1,,,,,,|1},n n n n n D T T T T S ST ST ST S T S T TS ST ---=⋯=⋯〈====〉设H 是n D 的子群. 如果1H =则H 当然是n D 的正规子群.I (1) 设k H T =〈〉. 由于1k k k k ST S ST S SST T H ---===∈和k k TT T T H =∈. 所以k T 〈〉是n D 的正规子群.(2) 设{1,}H S S =〈〉=. 由于SSS S =和12TST ST --=, 所以{1,}H S S =〈〉=是n D 的正规子群当且仅当2n =.(3) 设k H ST =〈〉. 注意到()()1k k ST ST =, 所以{1,}k k H ST ST =〈〉=. 由于1k k TST T ST -=和()k k S ST S ST -=,所以{1,}k k H ST ST =〈〉=是n D 的正规子群当且仅当|2n k .II (1) 设,k k H T T '=〈〉. 则(,')k k H T =〈〉. 归结为I (1)的情形, 从而是n D 的正规子群. 一般地,1212(,,,),,,t t k k k k k k H T T T T ⋯=〈⋯〉=〈〉也是n D 的正规子群.(2) 设,k H S T =〈〉. 由于1k k TT T T -=, 12TST ST --=, k k ST S T -=, 所以,k H S T =〈〉是n D 的正规子群当且仅当存在m ∈ 使得|(2)n mk +. (注: 当1k =时,k n H S T D =〈〉=). 一般地, 设1,,,t k k H S T T =〈⋯〉. 则12(,,,),t k k k H S T ⋯=〈〉, 归结为刚讨论的情形.(3) 设,k k H ST ST '=〈〉. 或者, 更一般地,1212(,,,),,,t t k k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉. 归结为I (3)的情形,即: 1212(,,,),,,t tk k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉是n D 的正规子群 当且仅当12|2(,,,)t n k k k ⋯.□20. 设,H K 是群G 的子群. 证明: HK 为G 的子群当且仅当HK KH =. 证明: HK 为G 的子群当且仅当111()HK HK K H KH ---===. □21. 设,H K 是群G 的有限子群. 证明: ||||||||H K HK H K =⋂. 证明: 首先, HK 是形如Hk 的不交并; 其中k K ∈. 又, 12Hk Hk =当且仅当112k k K H -∈⋂. 所以, 这样的右陪集共有||||K H K ⋂ 个. 于是: ||||||||K HK H K H =⋂. □ 22. 设,M N 是群G 的正规子群, 证明:(1) MN NM =.(2) MN 是G 的正规子群.(3) 如果{}M N e ⋂=, 那么/MN N 与M 同构.证明: (1) 由1MNM N -⊆得MN NM ⊆. 同理, NM MN ⊆.(2) 由(1)和第20题, MN 确实是子群. 对任意g G ∈有111()()()g MN g gMg gNg MN ---=⊆. 所以MN 是G 的正规子群.(3) 如果mn m n ''=则11(){}m m n n M N e --''=∈⋂=, 从而,m m n n ''==. 即: MN 中的元素可以唯一地写为,,mn m M n N ∈∈的形式. 于是可以定义映射: :MN M σ→为mn m . 由于,M N 都是正规子群, 对任 意,m M n N ∈∈有111()(){}mn nm mnm n M N e ---=∈⋂=, 所 以mn nm =: 即此时, M 中的元素与N 中的元素可交 换. 由此可以验证σ是群同态. 显然σ是满的, 而且 ker N σ=. □23. 设G 是一个群, S 是G 的一个非空子集. 令(){|,}C S x G xa ax a S =∈=∀∈; 1(){|}N S x G x Sx S -=∈=. 证明: (1) (),()C S N S 都是G 的子群.(2) ()C S 是()N S 的正规子群.证明: 直接用定义验证. 以(2)为例. 对任意(),(),c C S n N S s S ∈∈∈,111111()()()()ncn s ncn nc n sn c n ------=. 设1n sn s S -'=∈, 即: 1s ns n -'=. 所以,1111111()()()()ncn s ncn nc n sn c n ns n s -------'===. 此即表明: 1()ncn C S -∈. □24. 证明: 任意2阶群都与乘法群{1,1}-同构. 证明: 设{,}G e a =. 作:{1,1}G σ→-为1e , 1a - . □25. 试定出所有的互不同构的4阶群.解: 设群G 的阶为4. 如果G 有4阶元, 则4G . 如果G 没有4阶元, 则G 的非单位元的阶都为2. 设{,,,}G e a b c =. 考虑第11题中的4S 的子群(Klein 四元群):{(1),(12),(34),(12)(34)}K =. 作映射: :G K σ→为:(1),(12),(34),(12)(34)e b a c . 则σ为群同构. 综上, 在同构意义下, 4阶群只能是4 或Klein 四元群. □26. 设p 是素数. 证明任意两个p 阶群都同构.证明: 只需证明任意p 阶群G 都同构于p . 由Lagrange 定理, G的任意非单位元a 的阶都为p , 从而21{,,,,}p G e a a a -=⋯, 从 而有良定的映射:p G σ→ 为: 1a . 此即为一个群同构.□27. 在集合S =⨯ 上定义(,)(,):(,);(,)(,):(,)a b c d a c b d a b c d ac bd ad bc +=++=++. 证明: S 在这两个运算下是一个有单位元的环. 证明: 直接验证. 零元素为(0,0), 单位元为(1,0). □28. 在 上重新定义加法⊕和 为: :,:a b ab a b a b ⊕==+ . 问 关于这两个运算是否是一个环.解: 不是. 关于⊕不是一个abel 群. □29. 设L 是一个有单位元的交换环. 在L 中定义: :1a b a b ⊕=+-,:a b a b ab =+- . 证明: 在这两个新的运算下, L 仍然是一个环, 且与原来的环同构.证明: 直接验证满足环的定义中的条件. 作:(,,)(,,)L L σ+→⊕ 为:1a a - . 验证σ是环同构. □30. 给出满足如下条件的环L 和子环S 的例子:(1) L 有单位元, 而S 没有单位元.(2) L 没有单位元, 而S 有单位元.(3) ,L S 都有单位元, 但不相同.(4) L 不交换, 但S 可交换.解: (1) ;2L S == .(2) 0|,20a L a b b ⎧⎫⎛⎫=∈∈⎨⎬⎪⎝⎭⎩⎭ , 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (3) 0|,0a L a b b ⎧⎫⎛⎫=∈∈⎨⎬ ⎪⎝⎭⎩⎭, 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (4) |,,,a L a b b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 0|0a S a a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . 31. 环R 中的一个元L e 为一个左单位元, 如果对任意r R ∈有L e r r =.类似地可定义右单位元. 证明:(1) 如果环R 既有左单位元, 又有右单位元, 则R 有单位元.(2) 如果环R 有左单位元, 没有零因子, 则R 有单位元.(3) 如果环R 有左单位元但没有右单位元, 则R 至少有两个左单位元.证明: (1) 设,L R e e 分别为R 的左, 右单位元. 则L L R R e e e e ==为R的单位元.(2) 设L e 为R 的一个左单位元. 对任意0x R =∈/, 由22()0L xe x x x x -=-=得: L xe x =, 即L e 为R 的一个右单 位元. 由(1)即得.(3) 设L e 为R 的一个左单位元, 由于R 没有右单位元, 所以存在0z R =∈/使得L ze z =/. 令: :L L L f e z ze =+-. 则 L L f e =/且, 对任意r R ∈有0L L L f r e r zr ze r r r =+-=+=, 即: L f 为R 的另一个单位元. □32. 设F 为一个域. 证明: F 没有非平凡的双边理想.证明: 设0I F =⊆/为F 的一个理想. 取0x I =∈/, 有11x x F -=∈, 从而I F =. □33. 设R 是一个交换环, a R ∈.(1) 证明{|}Ra ra r R =∈是R 的一个理想.(2) 举例说明, 如果R 不是交换环, 那么Ra 不一定是一个(双边)理想.证明: (1) 直接验证.(2) 设|,,,a b R a b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 1010a ⎛⎫= ⎪⎝⎭. 则 0|,0r s Ra r s ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭. 显然, Ra 不是一个理想, 比如: 01010101a Ra ⎛⎫⎛⎫=∉ ⎪ ⎪⎝⎭⎝⎭. □34. 设I 为交换环R 的一个理想, 令: rad {|,}n I r I r I n +=∈∈∈ . 证明:rad I 为R 的理想, 称为I 的根.证明: 对任意,rad a b I ∈. 则存在正整数,m n 使得,m n a b I ∈. 由于 ()m n a b I +-∈, 从而rad a b I -∈.对任意rad a I ∈和r R ∈, 存在正整数m 使得m a I ∈. 从而()m m m ra r a I =∈, 即: rad ra I ∈. □35. 设F 为一个有单位元的交换环. 证明: 如果F 没有非平凡理想,则F 是一个域.证明: 对任意0a F =∈/, 由第33题(1)知, Fa 是F 的一个非零理想.由于F 没有非平凡理想, 所以Fa F =. 特别1Fa ∈, 即: 存在 b F ∈使得1ba =. □36. 设 是有理数域, ()n 是全体n 阶 上的矩阵组成的环. 证明:()n 没有非平凡的理想(没有非平凡理想的环称为单环). 证明: 设0I =/为()n 的一个理想. 取0A I =∈/. 则A 至少有一个 非零元素, 设为ij a . 由于I 是一个理想, 所以1ij ij ij ij E AE E I a ⎛⎫=∈ ⎪ ⎪⎝⎭, 其中ij E 表示(,)i j -元为1而其余元为0的基本矩阵. 由基本矩阵的乘法性质, ij jk ik E E E I =∈, 从而ki ik kk E E E I =∈, 1,2,,k n =⋯. 于是单位阵1nn kk k E E I ==∈∑, 从而()n I = . □37. 设R 是一个环, 0a R =∈/. 证明: 如果存在0b R ≠∈使得0aba =, 那么a 是一个左零因子或右零因子.证明: 由于0aba =, 所以, 如果0ba =/则a 是一个左零因子; 如果0ba =, 则a 是一个右零因子. □38. 环的一个元素a 成为幂零的, 如果存在正整数n 使得0n a =. 证明:对于有单位元环R 的任意幂零元a , 1a -是可逆的.证明: 21(1)(1)11n n a a a a a --+++⋯+=-=. □39. 证明: 在交换环中, 全部幂零元素组成一个理想.证明: 用定义直接验证: 在交换环中, 幂零元的差、积仍然幂零.□40. 设R 是有单位元的有限环. 如果,x y R ∈满足1xy =, 证明: 1yx =.证明: 作映射: ::f R R z yz → . 则f 是单射: 事实上, 如果 12yz yz =, 则12xyz xyz =, 即12z z =. 由于R 是有限集, 所以f是满射, 从而存在0z R ∈使得001()f z yz ==. 只需证明:0z x =. 事实上, 00001()()1z z xy z x yz x x ===== . □41. 设R 是一个有单位元的环. 证明: 如果存在,a b R ∈满足1ab =但1ba =/, 那么有无穷多x R ∈使得1ax =.证明: 注意到111()1n n n n a b ba a ab aba a ab ++++-=+-==, n ∈ . 所以只需证明1n n ba a +- (n ∈ )互不相同. 注意到1m m a b aa abb b =⋯⋯=, 对任意m ∈ 都成立.如果11n n k k ba a ba a ++-=-, (n k >). 则11111()0n n k k k k k ba a b ba b a b b b +++++-=-=-=, 即0n k n k ba a b ---=. 如果1n k -=则1ba ab ==, 矛盾.所以1n k ->. 从而10n k n k ba a ----=;11)(10n k n k n k ba a b b a ------=-=, 也得到矛盾. □42. 设R 是满足如下条件的环: R 至少有两个元素而且对任意0a R =∈/都存在唯一的元素b R ∈使得aba a =. 证明:(1) R 没有零因子.(2) bab b =.(3) R 有单位元.(4) R 是一个体.证明: (1) 设0a R =∈/使得0ax =. 由已知, 对于a 有唯一的b R ∈使得aba a =. 于是()a b x a aba +=. 由唯一性, b x b +=, 即: 0x =; 从而a 不是左零因子. 即: R 中的任意非零元都不 是左零因子; 从而R 也没有右零因子.(2) 由于()()a bab a ab aba aba ==, 再由唯一性即得bab b =.(3) 任取0a R =∈/, 取那个唯一的b R ∈使得aba a =. 往证ab就是一个单位元. 对任意0x R =∈/, 取那个唯一的y R ∈ 使得xyx x =. 由(2)有:()0b ab xy x babx bxyx bx bx -=-=-=.由(1), 0ab xy -=. 从而abx xyx x ==, 此即证明了ab 是左 单位元. 保持记号. 类似地有:()0a ba xy x abax axyx ax ax -=-=-=, 从而ba xy =, 于是xab xyx x ==, 此即证明了ab 是右单位元.(4) 由(3)可知, R 的每个非零元都有逆. □43. 设[0,1]C 是[0,1]上的连续函数组成的环. 证明:(1) 对于[0,1]C 的任意非平凡理想I , 都存在一个[0,1]θ∈使得对任意()f x I ∈都有()0f θ=.(2) ()[0,1]f x C ∈是一个零因子当且仅当零点集{[0,1]|()0}x f x ∈= 包含一个开区间.证明: (1) 若不然, 对任意[0,1]θ∈都存在()[0,1]g x C θ∈使得()0g θ=/. 由连续性, 存在一个包含θ的开区间[0,1]J θ⊆使得()g x θ在 J θ上恒为正或恒为负(0J 实际上是左闭右开的; 1J 实际上是左开右闭的). 另一方面, 由开覆盖定理, 存在有限多个i J θ, 使得[0,1]i i J θ=⋃. 定义2():(())ii g x g x θ=∑. 则 ()g x I ∈, 而且()0g x >. 于是11()()g x I g x =∈ , 与I 是非平凡理 想矛盾.(2) “⇒”: 设()f x 是[0,1]C 中的一个零因子: 存在0()[0,1]g x C =∈/使得()()0,[0,1]g x f x x ≡∈. 由于()0g x =/, 所以 存在[0,1]上的开区间J 使得()g x 在J 上恒为正或恒为负; 从而, ()f x 在J 上恒为0.“⇐”: 设存在[0,1]上的开区间J 使得()f x 在J 上恒为0. 作连 续函数()g x 使得: ()g x 在J 上恒不为0, 而在J 上恒为0, 从 而()()0f x g x ≡: 即()f x 是[0,1]C 中的一个零因子. □44. 设p = 为素域. (1) 求环()n 的元素个数.(2) 求群()n GL 的元素个数.(1) 解: 由于2dim ()n n = , 所以()n 的元素个数为2n p .(2) 解: 取定向量空间n 的一个基, 则()n GL 中的元与n 上 的可逆线性变换一一对应, 而可逆线性变换把基映为基. 所以, 只需求n 的基的个数. 注意到n 的元素个数为n p . 任取n 的一 个非零向量1α, 这样的取法有1n p -种. 取2n α∈ 使得12,αα线性 无关. 这样的2α能且只能从1n α-〈〉 中选取. 所以2α的选取方法有n p p -种. 类似地, 取3n α∈ 使得312,,ααα线性无关. 这样的3α 能且只能从12,n αα-〈〉 中选取. 所以3α的选取方法有2n p p -种(因为12,αα〈〉的维数是2). 继续这个过程, 我们得到n 的基的个 数为21()()()n n n n p p p p p p ---⋯-, 此即为所求. □45. 设K 是一个体, 0,a b K =∈/且1ab =/. 证明如下的华罗庚恒等式:1111(())a a b a aba -----+-=.证明: 由提示, 先证明引理: 对任意0,1x K =∈/,1111(1)(1(1))1(1)(((1)))x x x x x x -----+-=-+--11(1)(1)11x x x x x x -=-+--=-+=,所以, 111(1)(1)1x x ----=--成立. 注意到: 原恒等式等价于1111(1)(())a ba a b a -----=+-, 等价于11111(1)()ba a a b a ------=+-. 由引理,111111*********(1)((1)1)(1)((1))ba a a b a a a b a a a a b ----------------=-+=+-=+-111()a b a ---=+- 即为所要的等式. □第二章1. 设G 为有限群, N G , (||,|/|)1N G N =. 证明: 如果元素a G ∈的阶整除||N , 那么a N ∈.证明: 考虑自然满态: :/G G N π→. 记()a a π=. 由于()/o a a e G N =∈, 所以()|()o a o a . 如果()1o a =/, 则((),|/|)1o a G N =/, 矛盾. □2. 设c 为群G 的阶为rs 的元素, 其中(,)1r s =. 证明: c 可以表示成c ab =, 其中()o a r =, ()o b s =, 且,a b 都是c 的幂.证明: 由(,)1r s =知, 存在整数,u v 使得1ur vs +=. 于是1ur vs c c c c ==.令vs a c =和ur b c =. 则()()((),)(,)o c rs rs o a r o c vs rs vs s ====. 同理, ()o b s =. □3. 证明: 如果群G 中的元素a 的阶与正整数k 互素, 那么方程k x a =在 a 〈〉内恰有一解.证明: 设()o a n =. 于是存在整数,r s 使得1rn ks +=. (法一) 作映射::k f a a x x 〈〉→〈〉 . 只需证明f 是双射. 由于||a n 〈〉=<∞, 所以只需证明f 是单射. 若k k x y =, ,x y a ∈〈〉, 则1()1k xy -=. 从而1111()()rn ks s xy xy xy e e ----====, 即x y =.(法二) 首先1()s k rn a a a -==, 即方程k x a =在a 〈〉中有解. 若t a a ∈〈〉也是k x a =的一个解, 那么()t s k a e -=, 从而 1()()t s ks t s rn t s a e a a ----===, 即t s a a =. □4. 设G 是一个群. 证明: 对任意,a b G ∈有()()o ab o ba =. 证明: 注意到, 对任意正整数m , 1()()m m ab a ba b -=, 所以1()()m m ab a ba b e -==当且仅当1111()()m ba a b ba ----==当且仅当 ()m ba e =. □5. 设2n >. 证明: 有限群G 中阶为n 的元素个数是偶数. 证明: 注意到, 对任意g G ∈有1()()o g o g -=, 而且, ()2o g >当且仅当1g g -=/. □6. 证明: 当2n >时有(){}n Z S e =. 即: n S 是交换群当且仅当2n ≤. 证明: 注意到, 对任意n S σ∈和轮换12()r i i i ⋯有11212()(()()())r r i i i i i i σσσσσ-⋯=⋯. 设()n e z Z S =∈/, 则对任意 n S σ∈应该有1z z σσ-=. 不妨设z 分解为互不相交的轮换的乘积(必要的话, 可通过重新编号): (12)(...)...(...)z =⋯. 取 (23)σ=. 则()(1)3z σσ=但(1)2z =, 矛盾. □7. 证明: 有理数加群 的任意有限生成的子群是一个循环群. 证明: 设1212,,,n n n H m m m =〈⋯〉, 其中(,)1i i n m =, 1i ≤≤ . 令 12[,,,]t m m m =⋯ . 则1H t=〈〉. □ 8. 设G 是有限生成的交换群. 证明: 如果G 的这些生成元都是有限 阶的, 那么G 是一个有限群.证明: 设1,,n G a a =〈⋯〉且()i i o a m =. 则G 的任意元素具有形式:1212nt t t n a a a ⋯, 其中1i i t m ≤≤, 从而G 只有有限个元素. □ 9. 对任意群G 和正整数k , 令{|}k k G a a G =∈. 证明: 群G 是循环 群的成分必要条件是G 的任意非单位子群都是形如k G 的集合. 证明: 必要性. 设G g =〈〉. 则G 的任意非单位子群H 具有形式k H g =〈〉, 其中k 是某个正整数. 于是H 中的任意元素具有形 式()()k m m k g g =, 即k H G ⊆. 反之, k G 的任意元素具有形式 ()()m k k m g g =, 于是k H G =.充分性. 考虑12k k G G ≥-⋃.(i) 如果12k k G G ≥-⋃不是空集, 取12k k g G G ≥∈-⋃. 则G g =〈〉是无限循环群. 事实上, g e =/, 从而G 的子群g 〈〉形如k G . 如果2k ≥, 则k k g x G =∈, 与g 的选取矛盾. 所以1g G G 〈〉==. 另外, 如果此时G g =〈〉是有限群, 则2k k G G ≥=⋃, 也得到矛盾.(ii) 现在假设12k k G G ≥-⋃是空集. 则对任意e x G =∈/, 存在正整 数k 使得子群k x G 〈〉=. 若1k =则G x =〈〉是循环群. 特别,存在整数s 使得k s x x =, 此即表明, G 的任意元素都是有限阶的. (To be continued).。

近世代数_杨子胥_第二版课后习题答案(最新发行版)

近世代数_杨子胥_第二版课后习题答案(最新发行版)

近世代数题解第一章基本概念§1. 11.4.5.近世代数题解§1. 2 2.3.近世代数题解§1. 31. 解 1)与3)是代数运算,2)不是代数运算.2. 解这实际上就是M中n个元素可重复的全排列数n n.3. 解例如A B=E与A B=AB—A—B.4.5.近世代数题解§1. 41.2.3.解 1)略 2)例如规定4.5.略近世代数题解§1. 51. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射.2.略3.4.5.§1. 61.2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性;3)是等价关系;4)是等价关系.3. 解 3)每个元素是一个类,4)整个实数集作成一个类.4.则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5.6.证 1)略2)7.8.9.10.11.12.第二章群§2. 1 群的定义和初步性质一、主要内容1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子.2.群的初步性质1)群中左单位元也是右单位元且惟一;2)群中每个元素的左逆元也是右逆元且惟一:3)半群G是群⇔方程a x=b与y a=b在G中有解(∀a ,b∈G).4)有限半群作成群⇔两个消去律成立.二、释疑解难有资料指出,群有50多种不同的定义方法.但最常用的有以下四种:1)教材中的定义方法.简称为“左左定义法”;2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”;3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”;4)半群G再加上方程a x=b与y a=b在G中有解(∀a ,b∈G).此简称为“方程定义法”.“左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续(虽然这层手续一般是比较容易的);优点是:①不用再去证明左单位元也是右单位元,左逆元也是右逆元;②从群定义本身的条件直接体现了左与右的对称性.以施行“除法运算”,即“乘法”的逆运算.因此,群的‘方程定义法”直接体现了在群中可以施行“乘法与除法”运算.于是简言之,可以施行乘法与除法运算的半群就是群.为了开阔视野,再给出以下群的另一定义.定义一个半群G如果满足以下条件则称为一个群:对G中任意元素a,在G中都存在元素1-a,对G中任意元素b都有1-a(ab)=(ba)1-a=b.这个定义与前面4种定义的等价性留给读者作为练习.2.在群的“方程定义法”中,要求方程a x=b与y a=b都有解缺一不可.即其中一个方程有解并不能保证另一个方程也有解.4.关于结合律若代数运算不是普通的运算(例如,数的普通加法与乘法,多项式的普通加法与乘法以及矩阵、变换和线性变换的普通加法或乘法),则在一般情况下,验算结合律是否成立比较麻烦.因此在代数系统有限的情况下,有不少根据乘法表来研究检验结合律是否成立的方法.但无论哪种方法,一般都不是太简单.5.关于消去律.根据教材推论2,对有限半群是否作成群只用看消去律是否成立.而消去律是否成立,从乘法表很容易看出,因为只要乘法表中每行和每列中的元素互异即可.6.在群定义中是否可要求有“左”单位元而每个元素有“右”逆元呢?答不可以,例如上面例2就可以说明这个问题,因为e1是左单位元,而e1与e2都有右逆元且均为e1.但G并不是群.7.群与对称的关系.1)世界万物,形态各异.但其中有无数大量事物部具有这样或那样的对称性.而在这些具有对称性的万事万物中,左右对称又是最为常见的.由群的定义本身可知,从代数运算到结合律,特别是左、右单位元和左、右逆元,均体现出左右对称的本质属性.2)几何对称.设有某一几何图形,如果我们已经找到了它的全部对称变换(即平常的反射、旋转、反演和平移变换的统称),则此对称变换的全体关于变换的乘法作成一个群,称为该图形的完全对称群.这个图形的对称性和它的完全对称群是密切相关的.凡对称图形(即经过对称变换保持不变的图形、亦即完成这种变换前后的图形重合),总存在若干个非恒等对称变换和恒等变换一起构成该图形的完全对称群.反之,如果一个图形存在着非平凡的对称变换,则该图形就是对称图形.不是对称的图形,就不能有非恒等的对称变换.显然,一个图形的对称程度越高,则该图形的对称变换就越多.也就是说它的完全对称群的阶数就越高,即图形对称程度的高低与其对称群的阶数密切相关.因此;这就启发人们用群去刽面对称图形及其性质,用群的理论去研究对称.所以人们就把群论说成是研究对称的数学理论.显然,每个n元多项式都有一个确定的n次置换群:例如n元多项式例6 任何n元对称多项式的置换群都是n次对称群.很显然,一个多元多项式的置换群的阶数越高,这个多元多项式的对称性越强.反之亦然.因此,我们通常所熟知的多元对称多项式是对称性最强的多项式.三、习题2.1解答1.略2.3.4.5.6.§2. 2 群中元素的阶一、主要内容1.群中元素的阶的定义及例子.周期群、无扭群与混合群的定义及例子.特别,有限群必为周期群,但反之不成立.2.在群中若a=n,则4.若G是交换群,又G中元素有最大阶m,则G中每个元素的阶都是m的因子.二、释疑解难在群中,由元素a与b的阶一般决定不了乘积ab的阶,这由教材中所举的各种例子已经说明了这一点.对此应十分注意.但是,在一定条件下可以由阶a与b决定阶ab,这就是教材中朗定理4:4.一个群中是否有最大阶元?有限群中元素的阶均有限,当然有最大阶元.无限群中若元素的阶有无限的(如正有理数乘群或整数加群),则当然无最大阶元,若无限群中所有元素的阶均有限(即无限周期群),则可能无最大阶元,如教材中的例4:下面再举两个(一个可换,另一个不可换)无限群有最大阶元的例子.5.利用元素的阶对群进行分类,是研究群的重要方法之一.例如,利用元素的阶我们可以把群分成三类,即周期群、无扭群与混合群.而在周期群中又可分出p—群p是素数),从而有2—群、3—群、5—群等等.再由教材§3. 9知,每个有限交换群(一种特殊的周期群)都可惟一地分解为素幂阶循环p—群的直积,从而也可见研究p—群的重要意义.三、习题2.2解答1.2.3.4.5.推回去即得.6.§2. 3 子群一、主要内容1.子群的定义和例子.特别是,特殊线性群(行列式等于l的方阵)是一般线性群(行列式不等于零的方阵)的子群.4.群的中心元和中心的定义.二、释疑解难1.关于真子群的定义.教材把非平凡的子群叫做真子群.也有的书把非G的于群叫做群G的真子群.不同的定义在讨论子群时各有利弊.好在差异不大,看参考书时应予留意.2.如果H与G是两个群,且H⊆G,那么能不能说H就是G的子群?答:不能.因为子群必须是对原群的代数运算作成的群.例如,设G是有理数加群,而H 是正有理数乘群,二者都是群,且H⊆G但是不能说H是G的子群.答:不能这样认为.举例如下. 例2 设G 是四元数群.则显然 是G 的两个子群且易知反之亦然.三、习题2.3解答 1.证 赂.2.证 必要性显然,下证充分性.设子集H 对群G 的乘法封闭,则对H 中任意元素a 和任意正整数m 都有a m ∈H . 由于H 中每个元素的阶都有限,设a =n ,则3.对非交换群一放不成立.例如,有理数域Q 上全体2阶可逆方阵作成的乘群中,易知⎪⎪⎭⎫ ⎝⎛-=1021a , ⎪⎪⎭⎫⎝⎛-=1031b的阶有限,都是2,但易知其乘积⎪⎪⎭⎫ ⎝⎛=1011ab的阶却无限.即其全体有限阶元素对乘法不封闭,故不能作成子群.4.证 由高等代数知,与所有n 阶可逆方阵可换的方阵为全体纯量方阵,由此即得证. 5.证 因为(m ,n )=1,故存在整数s ,t 使 ms 十n t =1. 由此可得6.7.§2. 4 循 环 群一、主要内容1.生成系和循环群的定义.2.循环群中元素的表示方法和生成元的状况.3.循环群在同构意义下只有两类:整数加群和n 次单位根乘群,其中n =1,2,3,…. 4.循环群的子群的状况.无限循环群有无限多个子群.n 阶循环群a 有T (n )(n 的正出数个数)个子群,且对n 的每个正因数k ,a 有且仅有一个k 阶子群kn a.二、释疑解难1.我们说循环群是一类完全弄清楚了的群,主要是指以下三个方面: 1)循环群的元素表示形式和运算方法完全确定.其生成元的状况也完全清楚(无限循环群有两个生成元,n 阶循环群a 有)(n ϕ个生成元而且a k 是生成元⇔(k n )=1);2)循环群的子群的状况完全清楚;3)在同构意义下循环群只有两类:一类是无限循环群,都与整数加群同构;另一类是n (n =1,2,…)阶循环群,都与n 次单位根乘群同构.2.循环群不仅是一类完全弄清楚了的群,而且是一类比较简单又与其他一些群类有广泛联系的群类.例如由下一章§9可知,有限交换群可分解为一些素幂阶循环群的直积.更一般地,任何一个具有有限生成系的交换群都可分解成循环群的直积.由于循环群已完全在我们掌握之中,所以这种群(具有有限生成系的交换群)也是一类研究清楚了的群类.它在各种应用中有着非常重要的作用.例如在组合拓扑学中它就是一个主要的工具. 三、习题§2. 4解答 1.2.3.4.5.6.7.§2. 5 变换群一、主要内容1.变换群、双射变换群(特别是集合M上的对称群和n次对称群)和非双射变换群的定义及例子.2.变换群是双射变换群的充要条件;双射变换群与抽象群的关系.1)集合M上的变换群G是双射变换群⇔G含有M的单或满)射变换;2)任何一个群都同一个(双射)变换群同构.3.有限集及无限集上非双射变换群的例子(例2和例3).二、释疑解难1.一般近世代数书中所说的“变换群”,都是由双射变换(关于变换乘法)所作成的群,即本教材所说的“双射变换群”.而本教材所说的“变换群”则是由一个集合上的一些变换(不一定是双射变换)作成的群.通过教材§5定理2和推论1可知,实际上变换群可分成两类:一类是双射变换群(全由双射变换作成的群,即通常近世代数书中所说的“变换群”),另一类是非双射变换群(全由非双射变换作成的群).在学习本书时应留意这种差异.2.本节教材定理2(若集合M上的变换群G含有M的单射或满射变换.则G必为M上的一个双射变换群,即G中的变换必全是双射变换)比有些书上相应的定理(若集合M上由变换作成的群G含有M的恒等变换,则G中的变换必全为双射变换)大为推广.因为后者要求G包含恒等变换(一个特殊的双射变换),而前者仅要求G包含一个单(或满)射变换即可.因此,后音只是前者(本节教材定理2)的一个推论,一种很特殊的情况.两相比较,差异较大.这种差异也说明,M上的任何一个非双射变换群不仅不能包含恒等变换,而且连M的任何单射或满射变换也不能包含.另外,在这里顺便指出,集合M上的任何双射变换群G的单位元必是M的恒等变换.3.集合M上的全体变换作成的集合T(M),对于变换的乘法作成一个有单位元的半群.在半群的讨论中,这是一类重要的半群.并且本节习题中第4题还指出,当M>1时T(M)只能作成半群,而不能作成群.三、习题§2. 5解答1. 解作成有单位元半群,τ是单位元.但不作成群,因为σ无逆元.2.3. 解G作成群:因为易知4.5.§2. 6 置 换 群一、主要内容1.任何(非循环)置换都可表为不相连循环之积,任何置换都可表为若干个对换之积,且对换个数的奇阴偶性不变.从而有奇、偶置换的概念,且全体n 次置换中奇、偶置换个数相等,各为2!n 个(n >1).2.k —循环的奇偶性、阶和逆元的确定方法,以及不相连循环乘积的奇偶性、阶和逆元的确定方法.1)k —循环与A 有相反奇偶性.2)k —循环的阶为k .又(i 1,i 2…i k )-1=(i k ,…,i 2,i 1 ).3)若σ分解为不相连循环之积.则其分解中奇循环个数为奇时σ为奇置换,否则σ为偶置换.σ的阶为各因子的阶的最小公倍.其逆元可由k —循环的逆元来确定. 3.由置换σ,τ求置换στσ-1的方法.n 次对称群s n 的中心. 4.传递群的定义、例子和简单性质. 二、释疑解难1.研究置换群的重要意义和作用.除了教材中已经指出的(置换群是最早研究的一类群,而且每个有限的抽象群都同一个置换群同构)以外,研究置换群的重要意义和作用至少还有以下几方面:1) 置换群是一种具体的群,从置换乘法到判断置换的奇偶性以及求置换的阶和逆置换,都很具体和简单.同时它也是元素不是数的一种非交换群.在群的讨论中举例时也经常用到这种群.2) 在置换群的研究中,有一些特殊的研究对象是别的群所没有的.如置换中的不动点理论以及传递性和本原性理论等等.3) 置换群中有一些特殊的子群也是一般抽象群所没有的.例如,交代群、传递群、稳定子群和本原群等等.就教材所讲过的交代群和传递群的重要性便可以知道,介绍置换群是多么的重要.2.用循环与对换之积来表出置换的优越性. 首先,书写大为简化,便于运算。

近世代数__第二版课后习题答案

近世代数__第二版课后习题答案

近世代数题解第一章基本概念§1. 11.4.5.近世代数题解§1. 22.3.近世代数题解§1. 31. 解 1)与3)是代数运算,2)不是代数运算.2. 解这实际上就是Mxxn个元素可重复的全排列数nn.3. 解例如AB=E与AB=AB—A—B.4.5.近世代数题解§1. 41.2.3.解 1)略 2)例如规定4.5.略近世代数题解§1. 51. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射.2.略3.4.5.§1. 61.2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性;3)是等价关系;4)是等价关系.3. 解 3)每个元素是一个类,4)整个实数集作成一个类.4.则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5.6.证 1)略2)7.8. 9.10.11.12.第二章群§2. 1 群的定义和初步性质一、主要内容1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子.2.群的初步性质1)群中左单位元也是右单位元且惟一;2)群中每个元素的左逆元也是右逆元且惟一:3)半群G是群方程a x=b与y a=b在G中有解(a ,b∈G).4)有限半群作成群两个消去律成立.二、释疑解难有资料指出,群有50多种不同的定义方法.但最常用的有以下四种:1)教材中的定义方法.简称为“左左定义法”;2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”;3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”;4)半群G再加上方程a x=b与y a=b在G中有解(a ,b∈G).此简称为“方程定义法”.“左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续(虽然这层手续一般是比较容易的);优点是:①不用再去证明左单位元也是右单位元,左逆元也是右逆元;②从群定义本身的条件直接体现了左与右的对称性.以施行“除法运算”,即“乘法”的逆运算.因此,群的‘方程定义法”直接体现了在群中可以施行“乘法与除法”运算.于是xx,可以施行乘法与除法运算的半群就是群.为了开阔视野,再给出以下群的另一定义.定义一个半群G如果满足以下条件则称为一个群:对Gxx任意元素a,在Gxx 都存在元素,对Gxx任意元素b都有(ab)=(ba)=b.这个定义与前面4种定义的等价性留给读者作为练习.2.在群的“方程定义法”中,要求方程a x=b与y a=b都有解缺一不可.即其中一个方程有解并不能保证另一个方程也有解.4.关于结合律若代数运算不是普通的运算(例如,数的普通加法与乘法,多项式的普通加法与乘法以及矩阵、变换和线性变换的普通加法或乘法),则在一般情况下,验算结合律是否成立比较麻烦.因此在代数系统有限的情况下,有不少根据乘法表来研究检验结合律是否成立的方法.但无论哪种方法,一般都不是太简单.5.关于消去律.根据教材推论2,对有限半群是否作成群只用看消去律是否成立.而消去律是否成立,从乘法表很容易看出,因为只要乘法表中每行和每列中的元素互异即可.6.在群定义中是否可要求有“左”单位元而每个元素有“右”逆元呢?答不可以,例如上面例2就可以说明这个问题,因为e1是左单位元,而e1与e2都有右逆元且均为e1.但G并不是群.7.群与对称的关系.1)世界万物,形态各异.但其中有无数大量事物部具有这样或那样的对称性.而在这些具有对称性的万事万物中,左右对称又是最为常见的.由群的定义本身可知,从代数运算到结合律,特别是左、右单位元和左、右逆元,均体现出左右对称的本质属性.2)几何对称.设有某一几何图形,如果我们已经找到了它的全部对称变换(即平常的反射、旋转、反演和平移变换的统称),则此对称变换的全体关于变换的乘法作成一个群,称为该图形的完全对称群.这个图形的对称性和它的完全对称群是密切相关的.凡对称图形(即经过对称变换保持不变的图形、亦即完成这种变换前后的图形重合),总存在若干个非恒等对称变换和恒等变换一起构成该图形的完全对称群.反之,如果一个图形存在着非平凡的对称变换,则该图形就是对称图形.不是对称的图形,就不能有非恒等的对称变换.显然,一个图形的对称程度越高,则该图形的对称变换就越多.也就是说它的完全对称群的阶数就越高,即图形对称程度的高低与其对称群的阶数密切相关.因此;这就启发人们用群去刽面对称图形及其性质,用群的理论去研究对称.所以人们就把群论说成是研究对称的数学理论.显然,每个n元多项式都有一个确定的n次置换群:例如n元多项式例6 任何n元对称多项式的置换群都是n次对称群.很显然,一个多元多项式的置换群的阶数越高,这个多元多项式的对称性越强.反之亦然.因此,我们通常所熟知的多元对称多项式是对称性最强的多项式.三、习题2.1解答1.略2.3.4. 5.6.§2. 2 群中元素的阶一、主要内容1.群中元素的阶的定义及例子.xx、无扭群与混合群的定义及例子.特别,有限群必为xx,但反之不成立.2.在群中若=n,则4.若G是交换群,又Gxx元素有最大阶m,则Gxx每个元素的阶都是m的因子.二、释疑解难在群中,由元素a与b的阶一般决定不了乘积ab的阶,这由教材中所举的各种例子已经说明了这一点.对此应十分注意.但是,在一定条件下可以由阶与决定阶,这就是教材xx定理4:4.一个群中是否有最大阶元?有限群中元素的阶均有限,当然有最大阶元.无限群中若元素的阶有无限的(如正有理数乘群或整数xx),则当然无最大阶元,若无限群中所有元素的阶均有限(即无限xx),则可能无最大阶元,如教材中的例4:下面再举两个(一个可换,另一个不可换)无限群有最大阶元的例子.5.利用元素的阶对群进行分类,是研究群的重要方法之一.例如,利用元素的阶我们可以把群分成三类,即xx、无扭群与混合群.而在xx中又可分出p—群p是素数),从而有2—群、3—群、5—群等等.再由教材§3. 9知,每个有限交换群(一种特殊的xx)都可惟一地分解为素幂阶循环p—群的直积,从而也可见研究p—群的重要意义.三、习题2.2解答1.2.3.4.5.推回去即得.6.§2. 3xx一、主要内容1.xx的定义和例子.特别是,特殊线性群(行列式等于l的方阵)是一般线性群(行列式不等于零的方阵)的xx.4.群的中心元和中心的定义.二、释疑解难1.关于真xx的定义.教材把非平凡的xx叫做真xx.也有的书把非G的于群叫做群G的真xx.不同的定义在讨论xx时各有利弊.好在差异不大,看参考书时应予留意.2.如果H与G是两个群,且HG,那么能不能说H就是G的xx?答:不能.因为xx必须是对原群的代数运算作成的群.例如,设G是有理数xx,而H是正有理数乘群,二者都是群,且HG但是不能说H是G的xx.答:不能这样认为.举例如下.例2设G是四元数群.则显然是G的两个xx且易知反之亦然.三、习题2.3解答1.证赂.2.证必要性显然,下证充分性.设子集H对群G的乘法封闭,则对Hxx任意元素a和任意正整数m都有am∈H.由于Hxx 每个元素的阶都有限,设=n ,则3.对非交换群一放不成立.例如,有理数域Qxx 全体2阶可逆方阵作成的乘群中,xx,的阶有限,都是2,但易知其乘积⎪⎪⎭⎫ ⎝⎛=1011ab的阶却无限.即其全体有限阶元素对乘法不封闭,故不能作成xx .4.证 由高等代数知,与所有n 阶可逆方阵可换的方阵为全体纯量方阵,由此即得证.5.证 因为(m ,n)=1,故存在整数s ,t 使 ms 十n t =1. 由此可得6.7.§2. 4循环群一、主要内容1.生成系和循环群的定义.2.循环群中元素的表示方法和xx的状况.3.循环群在同构意义下只有两类:整数xx和n次单位根乘群,其中n=1,2,3,….4.循环群的xx的状况.无限循环群有无限多个xx.n阶循环群有T(n)(n的正出数个数)个xx,且对n 的每个正因数k,有且仅有一个k阶xx.二、释疑解难1.我们说循环群是一类完全弄清楚了的群,主要是指以下三个方面:1)循环群的元素表示形式和运算方法完全确定.其xx的状况也完全清楚(无限循环群有两个xx,n阶循环群有个xx而且ak是xx(kn)=1);2)循环群的xx的状况完全清楚;3)在同构意义下循环群只有两类:一类是无限循环群,都与整数xx同构;另一类是n(n=1,2,…)阶循环群,都与n次单位根乘群同构.2.循环群不仅是一类完全弄清楚了的群,而且是一类比较简单又与其他一些群类有广泛联系的群类.例如由下一章§9可知,有限交换群可分解为一些素幂阶循环群的直积.更一般地,任何一个具有有限生成系的交换群都可分解成循环群的直积.由于循环群已完全在我们掌握之中,所以这种群(具有有限生成系的交换群)也是一类研究清楚了的群类.它在各种应用中有着非常重要的作用.例如在组合拓扑学中它就是一个主要的工具.三、习题§2. 4解答1.2.3.4. 5.6. 7.§2. 5 变换群一、主要内容1.变换群、双射变换群(特别是集合M上的对称群和n次对称群)和非双射变换群的定义及例子.2.变换群是双射变换群的充要条件;双射变换群与抽象群的关系.1)集合M上的变换群G是双射变换群G含有M的单或满)射变换;2)任何一个群都同一个(双射)变换群同构.3.有限集及无限集上非双射变换群的例子(例2和例3).二、释疑解难1.一般近世代数书中所说的“变换群”,都是由双射变换(关于变换乘法)所作成的群,即本教材所说的“双射变换群”.而本教材所说的“变换群”则是由一个集合上的一些变换(不一定是双射变换)作成的群.通过教材§5定理2和推论1可知,实际上变换群可分成两类:一类是双射变换群(全由双射变换作成的群,即通常近世代数书中所说的“变换群”),另一类是非双射变换群(全由非双射变换作成的群).在学习本书时应留意这种差异.2.本节教材定理2(若集合M上的变换群G含有M的单射或满射变换.则G必为M上的一个双射变换群,即G中的变换必全是双射变换)比有些书上相应的定理(若集合M上由变换作成的群G含有M的恒等变换,则G中的变换必全为双射变换)大为推广.因为后者要求G包含恒等变换(一个特殊的双射变换),而前者仅要求G 包含一个单(或满)射变换即可.因此,后音只是前者(本节教材定理2)的一个推论,一种很特殊的情况.两相比较,差异较大.这种差异也说明,M上的任何一个非双射变换群不仅不能包含恒等变换,而且xxM的任何单射或满射变换也不能包含.另外,在这里顺便指出,集合M上的任何双射变换群G的单位元必是M的恒等变换.3.集合M上的全体变换作成的集合T(M),对于变换的乘法作成一个有单位元的半群.在半群的讨论中,这是一类重要的半群.并且本节习题中第4题还指出,当>1时T(M)只能作成半群,而不能作成群.三、习题§2. 5解答1. 解作成有单位元半群,是单位元.但不作成群,因为无逆元.2.3. 解 G作成群:因为xx4.5.§2. 6 置换群一、主要内容1.任何(非循环)置换都可表为不相连循环之积,任何置换都可表为若干个对换之积,且对换个数的奇阴偶性不变.从而有奇、偶置换的概念,且全体n次置换xx、偶置换个数相等,各为个(n>1).2.k—循环的奇偶性、阶和逆元的确定方法,以及不相连循环乘积的奇偶性、阶和逆元的确定方法.1)k—循环与A有相反奇偶性.2)k—循环的阶为k.又(i1,i2…ik)-1=(ik,…,i2,i1 ).3)若分解为不相连循环之积.则其分解xx循环个数为奇时为奇置换,否则为偶置换.的阶为各因子的阶的最小公倍.其逆元可由k—循环的逆元来确定.3.由置换,求置换-1的方法.n次对称群sn的中心.4.传递群的定义、例子和简单性质.二、释疑解难1.研究置换群的重要意义和作用.除了教材中已经指出的(置换群是最早研究的一类群,而且每个有限的抽象群都同一个置换群同构)以外,研究置换群的重要意义和作用至少还有以下几方面:1) 置换群是一种具体的群,从置换乘法到判断置换的奇偶性以及求置换的阶和逆置换,都很具体和简单.同时它也是元素不是数的一种非交换群.在群的讨论中举例时也经常用到这种群.2) 在置换群的研究中,有一些特殊的研究对象是别的群所没有的.如置换中的不动点理论以及传递性和本原性理论等等.3) 置换群中有一些特殊的xx也是一般抽象群所没有的.例如,交代群、传递群、稳定xx和本原群等等.就教材所讲过的交代群和传递群的重要性便可以知道,介绍置换群是多么的重要.2.用循环与对换之积来表出置换的优越性.首先,书写大为简化,便于运算。

近世代数_杨子胥_第二版课后习题答案

近世代数_杨子胥_第二版课后习题答案

近世代数题解第一章基本概念§1. 11.4.5.近世代数题解§1. 2 2.3.近世代数题解§1. 31. 解 1)与3)是代数运算,2)不是代数运算.2. 解这实际上就是M中n个元素可重复的全排列数n n.3. 解例如AοB=E与AοB=AB—A—B.4.5.近世代数题解§1. 41.2.3.解 1)略 2)例如规定4.5.略近世代数题解§1. 51. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射.2.略3.4.5.§1. 61.2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性;3)是等价关系;4)是等价关系.3. 解 3)每个元素是一个类,4)整个实数集作成一个类.4.则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5.6.证 1)略2)7.8.9.10.11.12.第二章群§2. 1 群的定义和初步性质一、主要内容1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子.2.群的初步性质1)群中左单位元也是右单位元且惟一;2)群中每个元素的左逆元也是右逆元且惟一:3)半群G是群⇔方程a x=b与y a=b在G中有解(∀a ,b∈G).4)有限半群作成群⇔两个消去律成立.二、释疑解难有资料指出,群有50多种不同的定义方法.但最常用的有以下四种:1)教材中的定义方法.简称为“左左定义法”;2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”;3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”;4)半群G再加上方程a x=b与y a=b在G中有解(∀a ,b∈G).此简称为“方程定义法”.“左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续(虽然这层手续一般是比较容易的);优点是:①不用再去证明左单位元也是右单位元,左逆元也是右逆元;②从群定义本身的条件直接体现了左与右的对称性.以施行“除法运算”,即“乘法”的逆运算.因此,群的‘方程定义法”直接体现了在群中可以施行“乘法与除法”运算.于是简言之,可以施行乘法与除法运算的半群就是群.为了开阔视野,再给出以下群的另一定义.定义一个半群G如果满足以下条件则称为一个群:对G中任意元素a,在G中都存在元素1-a,对G中任意元素b都有1-a(ab)=(ba)1-a=b.这个定义与前面4种定义的等价性留给读者作为练习.2.在群的“方程定义法”中,要求方程a x=b与y a=b都有解缺一不可.即其中一个方程有解并不能保证另一个方程也有解.4.关于结合律若代数运算不是普通的运算(例如,数的普通加法与乘法,多项式的普通加法与乘法以及矩阵、变换和线性变换的普通加法或乘法),则在一般情况下,验算结合律是否成立比较麻烦.因此在代数系统有限的情况下,有不少根据乘法表来研究检验结合律是否成立的方法.但无论哪种方法,一般都不是太简单.5.关于消去律.根据教材推论2,对有限半群是否作成群只用看消去律是否成立.而消去律是否成立,从乘法表很容易看出,因为只要乘法表中每行和每列中的元素互异即可.6.在群定义中是否可要求有“左”单位元而每个元素有“右”逆元呢?答不可以,例如上面例2就可以说明这个问题,因为e1是左单位元,而e1与e2都有右逆元且均为e1.但G并不是群.7.群与对称的关系.1)世界万物,形态各异.但其中有无数大量事物部具有这样或那样的对称性.而在这些具有对称性的万事万物中,左右对称又是最为常见的.由群的定义本身可知,从代数运算到结合律,特别是左、右单位元和左、右逆元,均体现出左右对称的本质属性.2)几何对称.设有某一几何图形,如果我们已经找到了它的全部对称变换(即平常的反射、旋转、反演和平移变换的统称),则此对称变换的全体关于变换的乘法作成一个群,称为该图形的完全对称群.这个图形的对称性和它的完全对称群是密切相关的.凡对称图形(即经过对称变换保持不变的图形、亦即完成这种变换前后的图形重合),总存在若干个非恒等对称变换和恒等变换一起构成该图形的完全对称群.反之,如果一个图形存在着非平凡的对称变换,则该图形就是对称图形.不是对称的图形,就不能有非恒等的对称变换.显然,一个图形的对称程度越高,则该图形的对称变换就越多.也就是说它的完全对称群的阶数就越高,即图形对称程度的高低与其对称群的阶数密切相关.因此;这就启发人们用群去刽面对称图形及其性质,用群的理论去研究对称.所以人们就把群论说成是研究对称的数学理论.显然,每个n元多项式都有一个确定的n次置换群:例如n元多项式例6 任何n元对称多项式的置换群都是n次对称群.很显然,一个多元多项式的置换群的阶数越高,这个多元多项式的对称性越强.反之亦然.因此,我们通常所熟知的多元对称多项式是对称性最强的多项式.三、习题2.1解答1.略2.3.4.5.6.§2. 2 群中元素的阶一、主要内容1.群中元素的阶的定义及例子.周期群、无扭群与混合群的定义及例子.特别,有限群必为周期群,但反之不成立.2.在群中若a=n,则4.若G是交换群,又G中元素有最大阶m,则G中每个元素的阶都是m的因子.二、释疑解难在群中,由元素a与b的阶一般决定不了乘积ab的阶,这由教材中所举的各种例子已经说明了这一点.对此应十分注意.但是,在一定条件下可以由阶a与b决定阶ab,这就是教材中朗定理4:4.一个群中是否有最大阶元?有限群中元素的阶均有限,当然有最大阶元.无限群中若元素的阶有无限的(如正有理数乘群或整数加群),则当然无最大阶元,若无限群中所有元素的阶均有限(即无限周期群),则可能无最大阶元,如教材中的例4:下面再举两个(一个可换,另一个不可换)无限群有最大阶元的例子.5.利用元素的阶对群进行分类,是研究群的重要方法之一.例如,利用元素的阶我们可以把群分成三类,即周期群、无扭群与混合群.而在周期群中又可分出p—群p是素数),从而有2—群、3—群、5—群等等.再由教材§3. 9知,每个有限交换群(一种特殊的周期群)都可惟一地分解为素幂阶循环p—群的直积,从而也可见研究p—群的重要意义.三、习题2.2解答1.2.3.4.5.推回去即得.6.§2. 3 子群一、主要内容1.子群的定义和例子.特别是,特殊线性群(行列式等于l的方阵)是一般线性群(行列式不等于零的方阵)的子群.4.群的中心元和中心的定义.二、释疑解难1.关于真子群的定义.教材把非平凡的子群叫做真子群.也有的书把非G的于群叫做群G的真子群.不同的定义在讨论子群时各有利弊.好在差异不大,看参考书时应予留意.2.如果H与G是两个群,且H⊆G,那么能不能说H就是G的子群?答:不能.因为子群必须是对原群的代数运算作成的群.例如,设G是有理数加群,而H 是正有理数乘群,二者都是群,且H⊆G但是不能说H是G的子群.答:不能这样认为.举例如下. 例2 设G 是四元数群.则显然 是G 的两个子群且易知反之亦然.三、习题2.3解答 1.证 赂.2.证 必要性显然,下证充分性.设子集H 对群G 的乘法封闭,则对H 中任意元素a 和任意正整数m 都有a m ∈H . 由于H 中每个元素的阶都有限,设a =n ,则3.对非交换群一放不成立.例如,有理数域Q 上全体2阶可逆方阵作成的乘群中,易知⎪⎪⎭⎫ ⎝⎛-=1021a , ⎪⎪⎭⎫⎝⎛-=1031b的阶有限,都是2,但易知其乘积⎪⎪⎭⎫ ⎝⎛=1011ab的阶却无限.即其全体有限阶元素对乘法不封闭,故不能作成子群.4.证 由高等代数知,与所有n 阶可逆方阵可换的方阵为全体纯量方阵,由此即得证. 5.证 因为(m ,n )=1,故存在整数s ,t 使 ms 十n t =1. 由此可得6.7.§2. 4 循 环 群一、主要内容1.生成系和循环群的定义.2.循环群中元素的表示方法和生成元的状况.3.循环群在同构意义下只有两类:整数加群和n 次单位根乘群,其中n =1,2,3,…. 4.循环群的子群的状况.无限循环群有无限多个子群.n 阶循环群a 有T (n )(n 的正出数个数)个子群,且对n 的每个正因数k ,a 有且仅有一个k 阶子群kn a.二、释疑解难1.我们说循环群是一类完全弄清楚了的群,主要是指以下三个方面: 1)循环群的元素表示形式和运算方法完全确定.其生成元的状况也完全清楚(无限循环群有两个生成元,n 阶循环群a 有)(n ϕ个生成元而且a k 是生成元⇔(k οn )=1);2)循环群的子群的状况完全清楚;3)在同构意义下循环群只有两类:一类是无限循环群,都与整数加群同构;另一类是n (n =1,2,…)阶循环群,都与n 次单位根乘群同构.2.循环群不仅是一类完全弄清楚了的群,而且是一类比较简单又与其他一些群类有广泛联系的群类.例如由下一章§9可知,有限交换群可分解为一些素幂阶循环群的直积.更一般地,任何一个具有有限生成系的交换群都可分解成循环群的直积.由于循环群已完全在我们掌握之中,所以这种群(具有有限生成系的交换群)也是一类研究清楚了的群类.它在各种应用中有着非常重要的作用.例如在组合拓扑学中它就是一个主要的工具. 三、习题§2. 4解答 1.2.3.4.5.6.7.§2. 5 变换群一、主要内容1.变换群、双射变换群(特别是集合M上的对称群和n次对称群)和非双射变换群的定义及例子.2.变换群是双射变换群的充要条件;双射变换群与抽象群的关系.1)集合M上的变换群G是双射变换群⇔G含有M的单或满)射变换;2)任何一个群都同一个(双射)变换群同构.3.有限集及无限集上非双射变换群的例子(例2和例3).二、释疑解难1.一般近世代数书中所说的“变换群”,都是由双射变换(关于变换乘法)所作成的群,即本教材所说的“双射变换群”.而本教材所说的“变换群”则是由一个集合上的一些变换(不一定是双射变换)作成的群.通过教材§5定理2和推论1可知,实际上变换群可分成两类:一类是双射变换群(全由双射变换作成的群,即通常近世代数书中所说的“变换群”),另一类是非双射变换群(全由非双射变换作成的群).在学习本书时应留意这种差异.2.本节教材定理2(若集合M上的变换群G含有M的单射或满射变换.则G必为M上的一个双射变换群,即G中的变换必全是双射变换)比有些书上相应的定理(若集合M上由变换作成的群G含有M的恒等变换,则G中的变换必全为双射变换)大为推广.因为后者要求G包含恒等变换(一个特殊的双射变换),而前者仅要求G包含一个单(或满)射变换即可.因此,后音只是前者(本节教材定理2)的一个推论,一种很特殊的情况.两相比较,差异较大.这种差异也说明,M上的任何一个非双射变换群不仅不能包含恒等变换,而且连M的任何单射或满射变换也不能包含.另外,在这里顺便指出,集合M上的任何双射变换群G的单位元必是M的恒等变换.3.集合M上的全体变换作成的集合T(M),对于变换的乘法作成一个有单位元的半群.在半群的讨论中,这是一类重要的半群.并且本节习题中第4题还指出,当M>1时T(M)只能作成半群,而不能作成群.三、习题§2. 5解答1. 解作成有单位元半群,τ是单位元.但不作成群,因为σ无逆元.2.3. 解G作成群:因为易知4.5.§2. 6 置 换 群一、主要内容1.任何(非循环)置换都可表为不相连循环之积,任何置换都可表为若干个对换之积,且对换个数的奇阴偶性不变.从而有奇、偶置换的概念,且全体n 次置换中奇、偶置换个数相等,各为2!n 个(n >1).2.k —循环的奇偶性、阶和逆元的确定方法,以及不相连循环乘积的奇偶性、阶和逆元的确定方法.1)k —循环与A 有相反奇偶性.2)k —循环的阶为k .又(i 1,i 2…i k )-1=(i k ,…,i 2,i 1 ).3)若σ分解为不相连循环之积.则其分解中奇循环个数为奇时σ为奇置换,否则σ为偶置换.σ的阶为各因子的阶的最小公倍.其逆元可由k —循环的逆元来确定. 3.由置换σ,τ求置换στσ-1的方法.n 次对称群s n 的中心. 4.传递群的定义、例子和简单性质. 二、释疑解难1.研究置换群的重要意义和作用.除了教材中已经指出的(置换群是最早研究的一类群,而且每个有限的抽象群都同一个置换群同构)以外,研究置换群的重要意义和作用至少还有以下几方面:1) 置换群是一种具体的群,从置换乘法到判断置换的奇偶性以及求置换的阶和逆置换,都很具体和简单.同时它也是元素不是数的一种非交换群.在群的讨论中举例时也经常用到这种群.2) 在置换群的研究中,有一些特殊的研究对象是别的群所没有的.如置换中的不动点理论以及传递性和本原性理论等等.3) 置换群中有一些特殊的子群也是一般抽象群所没有的.例如,交代群、传递群、稳定子群和本原群等等.就教材所讲过的交代群和传递群的重要性便可以知道,介绍置换群是多么的重要.2.用循环与对换之积来表出置换的优越性. 首先,书写大为简化,便于运算。

近世代数初步(第二版)课后习题答案(石生明)02

近世代数初步(第二版)课后习题答案(石生明)02

第二章 域 和 环1畅基本概念:域、子域、扩域、域的特征、素域.环、子环、理想、商环、同态、同构、同态基本定理.整环、极大理想.2畅商环的应用例子:爱森斯坦判别法的证明(整数环上多项式性质的证明)可化归到整数环的剩余类域上.3畅新域或新环的构造:复数域(作为实数域R上使x2+1=0有根的最小扩域);二元域;集合S在域F上生成的扩域;商环、剩余类环F[x]/(f(x))(包括构造F上添加任意不可约多项式f(x)的一个根的扩域)、Z/(n)(包括构造p个元素的域);理想的和、积;环的直和;整环的分式域.4畅域扩张的初步知识:代数扩张、有限扩张、单代数扩张、单超越扩张.集合S在F上生成的扩域的三种刻画: F(S)=f1(α1,α2,…,αt)f2(α1,α2,…,αt)橙t∈N(自然数),橙α1,α2,…,αt∈S,橙fi(x1,x2,…,xt)∈F[x1,x2,…,xt],i=1,2.f2(α1,α2,…,αt)≠0=由F及S的元尽可能地多次作加减乘除所得的元素的集合=含F及S的最小的域.单扩张的构造:F(α)=f1(α)f2(α)橙f1(x),f2(x)∈F[x],f2(α)≠0.若α为F上代数元,f(x)是以α为根的F上不可约多项式(α的极小多项式),其次数为n,则F(α)是F上n维线性空间,而1,α,…,αn-1是它的一组基.扩张次数[E:F]及性质:对域扩张E车H车F有[E:F]=[E:H][H:F].5畅域的应用举例:(1)二元域用于纠错码.(2)域的扩张次数的性质用于否定三大几何作图难题(给出了用圆规直尺作图作出的量满足的条件).6畅中国剩余定理.1畅这一章讲域、环的基本概念.主要是讲各种造新域和新环的方法,环是为·84·域起铺垫的作用.本章的内容充分体现总导引第一点中的思想.2畅体会造二元域的数学背景及如何用于构造纠一个错的码.思考一下能纠错的关键之点在哪里,随便指定一个矩阵H是否能起到纠错的作用?3畅体会对圆规直尺作图问题进行分析中的几个步骤:(1)用解析几何知识分析出能用圆规直尺作图作出的量(长度)满足的方程;(2)用扩域的语言表达上述作出的量所在的范围;(3)用扩张次数的性质来表达作出的量满足的条件.4畅这一章中我们充分地应用了引论章§2末尾的定理.即用了一般域上线性方程组、矩阵运算、线性空间、多项式等理论的大量性质.促进读者巩固高等代数的知识.5畅与其它近世代数教材相比,本书中域的内容(包括下一章的有限域的内容)放到整环的因式分解唯一性理论之前,并且替代它而成为教材的核心部分.内容也改变很多,加入纠错码的例子和三大几何作图难题的讨论这些应用内容,而舍去了可分扩张及分裂域等内容.由于目标明确(参看总导引第一条)且有应用内容,增加了学习的生动性.(1)造一个码长13,容量为29的能纠一个错的码集合.(2)证明上面的码一般不能纠两个错.(举例:考察码子X=(0,0,0,0,0,0,0,0,0,0,0,0,0)T错了两位成为Y=(1,1,0,0,0,0,0,0,0,0,0,0,0)T.能否用书中所述的译码方法由Y恢复成X?§1 域的例子,复数域及二元域的构造,对纠一个错的码的应用以下习题中打倡者为必作题,其余为选作题. 倡1畅令C0=ab-baa,b∈R,则(1)C0对矩阵的加法和乘法成为域.(2)C0中R0=a00aa∈R是同构于R的子域.·94· (3)干脆将R0与R等同,将a 00 a写成a,则可写ab-ba=a00a+b00b01-10=a+b01-10.作映射 CφC0a+bia+b01-10,橙a,b∈R,则φ是域同构.以下2-6题出现的运算是F2中元素的运算. 倡2畅计算1111001010110100101111110110111101100111010001110. 倡3畅求1111001111010111-1. 倡4畅解方程组x1+x2+x3+x4+x5+x6=1 x3+x4+0+x6=0x1+x2+0+x4=1 x2+x3+x4=0. 倡5畅计算(x4+x3+x+1)2,(x3+x2+1)(x5+x2+x+1). 倡6畅(1)以x2+x+1除x6+x4+x3+1,求商及余式.(2)求x2+x+1与x6+x4+x3+1的最大公因式d(x).(3)求u(x),v(x),使u(x)(x2+x+1)+v(x)(x6+x4+x3+1)=d(x).·05· 倡7畅求作一个13位0,1序列的码集合,其容量为29,有纠一个错的能力.8畅F为素数特征p的域,a,b,a1,…,an∈F,则(1)(a+b)p=ap+bp,而且无论p为奇偶皆有(a-b)p=ap-bp.(2)(a+b)pk=apk+bpk.(3)(a1+a2+…+an)pk=apk1+apk2+…+apkn.(参见引论章习题6)(4)映射 FφF,aap是F的自同态.且φ是同构当且仅当方程xp-b=0对所有b∈F都有解.1畅略.2畅111110001.3畅1001010110101110.4畅x1=x5+x6+1x2=x6+1x3=x5+x6x4=x5+1.5畅x8+x6+x2+1,x8+x7+x+1.6畅(1)x6+x4+x3+1=(x4+x3+x2+x)(x2+x+1)+x+1.(2)(x6+x4+x3+1,x2+x+1)=1.(3)x(x6+x4+x3+1)+(x5+x4+x3+x2+1)(x2+x+1)=1.7畅令H=10101010101010110011001100000111100001100000001111114×13,以HX13×1=0的解空间为码集.因秩H=4,未知数的数目为13,故解空间维数为13-4=9.由于码集合是F2上9维空间,共有29个解向量,即29个码子,码·15·集合的容量为29.与课文中例4一样有纠一个错的能力.8畅(1)由二项定理(参见引论章习题6),(a+b)p=ap+bp+∑p-1i=1Cipaibp-i.当1≤i≤p-1时,Cip=p(p-1)…2·1(p-i)!i!.而(p-i)!及i!中的素因子皆小于p,故p|Cip.题设F的特征为p,故∑p-1i=1Cipaibp-i=0.这证明了(a+b)p=ap+bp.对(a-b)p=ap+(-b)p=ap+(-1)pbp.当p为奇素数时,(-1)p=-1;当p=2时,(-1)2=1=-1.故(a-b)p=ap-bp.(2)(a+b)pk=((a+b)p)pk-1=(ap+bp)pk-1.利用归纳法可得(a+b)pk=(ap)pk-1+(bp)pk-1=apk+bpk.(3)(a1+a2+…+an)pk=apk1+(a2+…+an)pk.利用归纳法可得(a1+…+an)pk=apk1+apk2+…+apkn.(4)φ(a+b)=(a+b)p=ap+bp=φ(a)+φ(b).φ(ab)=(ab)p=apbp=φ(a)φ(b).故φ为F的自同态.又φ(a-b)=(a-b)p=ap-bp=φ(a)-φ(b),就有φ(a)=φ(b)当且仅当a=b.即φ是单射.由以上论证,φ是同构当且仅当φ是满射当且仅当对橙b∈F,有a∈F使φ(a)=ap=b也即方程xp-b=0有解.§2 域的扩张,扩张次数,单扩张的构造以下习题中打倡者为必作题,其余为选作题.1畅F炒E是域扩张.(1)α1,α2,…,αs∈E,则F(α1,α2,…,αs)=f1(α1,…,αs)f2(α1,…,αs)f1,f2∈F[x1,…,xs],f2(α1,…,αs)≠0.·25·(2)S炒E,则F(S)=∪S0炒SS0有限集F(S0). 倡2畅计算[Q(2,3):Q],[Q(2+3):Q].证明Q(2,3)=Q(2+3). 倡3畅F炒E是域扩张,且[E:F]=p是素数,则任意α∈E\F,有E=F(α). 倡4畅E车F为域扩张,α1,α2,…,αt∈E,[F(αi):F]=ni,i=1,2,…,t,则[F(α1,…,αt):F]≤n1n2…nt. 倡5畅F炒E为有限次域扩张,则必为代数扩张. 倡6畅F炒E为有限次域扩张,则有α1,…,αt∈E,使得E=F(α1,…,αt).7畅F炒E为域扩张,S炒E且S中每个元皆是F上代数元,则F(S)是F上代数扩张.进而,E中全部代数元作成F的一个扩域. 倡8畅令E=Q(u).(1)设u3-u2+u+2=0.试把(u2+u+1)(u2-u)和(u-1)-1表成au2+bu+c的形式,a,b,c∈Q.(2)若u3-2=0,把u+1u-1表成au2+bu+c的形式,a,b,c∈Q.9畅令E=F(u),u是极小多项式为奇数次的代数元.证明E=F(u2).10畅求32+5在Q上的极小多项式.11畅E车F,E是环,F是域,s∈E是F上代数元,则s可逆当且仅当有F上多项式f(x),其常数项不为零使f(s)=0.并且s-1=g(s),g(x)是F上多项式.12畅E是F上的代数扩张,则E的含F的子环都是子域.13畅设[E:F]=n,则不存在子域G,使E车G车F及[G:F]与n互素. 倡14畅R(实数域)上任意代数扩张E若不为R,则同构于C.特别地,R上除二次扩域外没有其它有限次扩域.(这正是Hamilton等数学家找不到“三维复数”的原因).1畅(1)这几令S={α1,…,αs},按命题2下面一段的约定F(α1,α2,…,αs)就是F(S).命题1中的(2)式定义了F(S).易看出本题所设的集合与F(S)的定义集合是一致的.(2)比较(1)的结果和命题1中(2)式在一般集合S下F(S)的定义即得F(S)={F(α1,…,αk)|橙{α1,α2,…,αk}炒S}·35·=∪S0炒SS0有限集F(S0).2畅易看出Q(2,3)=Q(2)(3)={(a1+b12)+(a2+b22)3|ai,bi∈Q}.我们来证1,3在Q(2)上是线性无关的.设(a1+b12)+(a2+b22)3=0,若a2+b22≠0,则3=-a1-b12a2+b22∈Q(2).令3=a+b2,a,b∈Q.将两边平方,得到3=a2+2ab2+b2.因2不是有理数,则a,b之一为零.若a=0,则32=2b2=2q2p2,(p,q)=1.又因左边为整数,必须p2|2,只能p=1,由32=2q2,必须2|32,这也不可能.若b=0,则3=a2,3=a是有理数,这也不可能.这些矛盾推出a2+b22=0,a1+b12也就为零,说明1,3在Q(2)上线性无关.因而[Q(2)(3):Q(2)]=2.结果[Q(2)(3):Q]=[Q(2)(3):Q(2)][Q(2):Q]=2×2=4.再证[Q(2+3):Q]=4.这只要证Q(2)(3)=Q(2+3).首先显然有Q(2+3)彻Q(2,3).又从3-2=12+3得3=12(3-2+3+2)=1213+2+3+2∈Q(2+3).同样可得2∈Q(2+3).这就证明了Q(2,3)彻Q(2+3).于是Q(2,3)=Q(2+3).3畅[F(α):F]|[E:F],[E:F]=p.故[F(α):F]=1或p.但α∈E\F,[F(α):F]>1.故[F(α):F]=p.因此F(α)=E.4畅[F(α1,…,αt):F]=[F(α1,…,αt):F(α1,…,αt-1)][F(α1,…,αt-1):F(α1,…,αt-2)]…[F(α1):F].由于αi在F中的极小多项式次数为ni.F上的这个极小多项式也是F(α1,…,αi-1)中的多项式,这个次数ni比αi在F(α1,…,αi-1)上的极小多项式的次数低.故[F(α1,…,αi-1,αi):F(α1,…,αi-1)]≤ni.因而[F(α1,…,αt):F]≤ntnt-1…n1=n1n2…nt.5畅F彻E是k次扩张.任一元α∈E,1,α,…,αk是E中k+1个元,必在F上线性相关.即有F上不全为零的a0,a1,…,ak使a0+a1α+…+akαk=0.由此知α满足F上的次数≤k的一个多项式.故α是F上代数元,因而E是F上代数扩张.6畅取E的F基α1,…,αt,则E=钞ti=1liαi|li∈F彻F(α1,…,αt)彻E,·45·故E=F(α1,…,αt).7畅设S中每个元皆为F上代数元.对α∈F(S),必有α1,…,αk∈S使α=f1(α1,…,αk)f2(α1,…,αk)∈F(α1,…,αk).因αi为代数元,令[F(αi):F]=ni.由习题4,[F(α1,…,αk):F]≤n1n2…nk.故F(α1,…,αk)是F上有限扩张,再由习题5,它是F上代数扩张.这就证明了任意α∈F(S)是F上代数元,于是F(S)也是F上代数扩张.现令E中全体F上代数元的集合为S.则F(S)是代数扩张,F(S)中每个元皆为F上代数元.于是F(S)彻S,即有S=F(S).故S是F上扩域.8畅(1)(u2+u+1)(u2-u)=u4-u=(u+1)(u3-u2+u+2)-4u-2=-4u-2.由于(u-1)(u2+1)-(u3-u2+u+2)=3,故(u-1)(u2+1)=3.因此(u-1)-1=13(u2+1).(2)由(u-1)(u2+u+1)=u3-1=(u3-2)+1=1,故u+1u-1=(u+1)·(u2+u+1)=u3+2u2+2u+1=(u3-2)+2u2+2u+3=2u2+2u+3.9畅设u2=a∈F(u2),则u2-a=0.故[F(u):F(u2)]≤2.因[F(u):F(u2)]|[F(u):F],及[F(u):F]=奇数,[F(u):F(u2)]≠2.所以[F(u):F(u2)]=1,即E=F(u)=F(u2).另一证法,设u在F中极小多项式是f(x).f(x)为2l+1次,满足f(u)=0,设为a2l+1u2l+1+a2lu2l+…+a1u+a0=0,ai∈F,则u(a2l+1u2l+a2l-1u2(l-1)+…+a1)+(a2lu2l+…+a0)=0.由f(x)的极小性,第一括弧不为零,所以u=a2lu2l+a2(l-1)u2(l-1)+…+a0a2l+1u2l+a2l-1u2(l-1)+…+a1∈F(u2).故F(u)=F(u2).10畅令u=32+5.则32=u-5,(u-5)3=2.于是u3-3·u2·5+3u(5)2-(5)3=u3+15u-(3u2+5)5=2.移项后得u3+15u-2=(3u2-5)5.两边平方,得到(u3+15u-2)2=(3u2-5)2·5.这是u满足的Q上6次方程,故[Q(u):Q]≤6.又(u-5)3=2,可得5∈Q(u).由[Q(5):Q]=2,及[Q(5):Q]|[Q(u):Q],知2|[Q(u):Q].而由32=5-u知32∈Q(u,5)=Q(u).又·55·[Q(32):Q]=3及[Q(32):Q]|[Q(u):Q],得3|[Q(u):Q].于是6|[Q(u):Q],因而[Q(u):Q]=6.由于(u3+15u-2)2-(3u2-5)2·5=0,故6次多项式(x3+15x-2)2-5(3x2-5)2是u在Q上的极小多项式.11畅设s为可逆的代数元,则有F上多项式f(x),使f(s)=aksk+ak-1sk-1+…+a1s+a0=0,其中k≥1,ak≠0.设a0,a1,…,ak-1,ak中不为零的最小脚标为i.则i≠k,否则aksk=0,由s可逆,得ak=0.矛盾.故i<k.用s-i乘它,则得aksk-i+…+ai=0.于是g(x)=akxk-i+…+ai满足g(s)=0且常数项ai≠0.反之,设s满足某多项式方程f(s)=aksk+…+a1s+a0=0,且a0≠0.令g(x)=-(akxk-1+…+a1),则g(s)·s=a0≠0.故s-1=1a0g(s).1a0g(x)是F上多项式.12畅设E车H是含F的子环.任取0≠s∈H.s在E中有逆,由习题11知,s-1=g(s),g(x)是F上多项式.H是子环,因此g(s)∈H.故H是E的子域.13畅设G是域,使EGF.则[G:F]|[E:F],故[G:F]不能与n=[E:F]互素.14畅设R炒E是代数扩张.任取α∈E,α是R上不可约多项式f(x)的根.R上只有1次或2次不可约多项式.若为1次,则α∈R.若E中有α碒R,则它是R上2次不可约多项式的根,设α满足α2+bα+c=0,b,c∈R.则α-b22=14(b2-4c).因α碒R,故b2-4c<0.因此b2-4c=4c-b2-1∈R(α),而有-1∈R(α).显然R(-1)=R(α),即C臣R(α).又任β∈E是R上代数元,由C是代数封闭域知R(-1)也是.于是β∈R(-1),即得E=R(-1).上面证明了代数扩域E车R,只能是E=R或E=R(-1).它们是1次和2次扩域,R上没有3次扩域.§3 古希腊三大几何作图难题的否定以下习题中打倡者为必作题,其余为选作题.·65· 倡1畅设已知量a,b及r皆大于0且a>b.试用圆规直尺作图作出a±b,ab,ar,r. 倡2畅下列哪些量可以用圆规直尺作图作出:(1)45+26 (2)21+7(3)1-527 倡3畅下列多项式中哪些多项式的实根可用圆规直尺作图作出:(1)x2-7x-13(2)x4-5(3)x3-10x2+1(4)x5-9x3+3(5)x4-2x-34畅证明:实数α可用圆规直尺作图作出当且仅当有实数的域的序列E0炒E1炒…炒En-1炒En,使α∈En,且[Ei:Ei-1]=2,1≤i≤n,其中E0是已知量的域.1畅运用中学几何作图知识来作出要求的量.2畅(1)可以.(2)可以.(3)不可以.证明 令x=527,它满足x5-27=0.再令y+2=x,则(y+2)5-27=y5+5y4·2+10y3·22+10y2·23+5y·24+25-27=y5+10y4+40y3+80y2+80y+5=0.用艾森斯坦判别法,它是y的Q上5次不可约多项式方程,527-2是它的根,于是[Q(527-2):Q]=[Q(527):Q]=5.若527能用圆规直尺作图得到,则它落在Q的某扩域E中,且[E:Q]=2l.但[Q(527):Q]嘲[E:Q],故527,因而1-527不能落在这样的域中,它们不能这样作出.3畅(1)可以.(2)可以,令x=±45=±5.5是可作的,故5也可作.(3)我们证明x3-10x2+1是Q上不可约多项式.实际上只有±1可能是它的有理根,但它们不是.因此x3-10x2+1在Q[x]中没有一次因式,故不可约.令它的实根为α,则[Q(α):Q]=3.α不属于Q的任何扩张域E,使E满足[E:Q]=2l.故α不能用圆规直尺作图作出.(4)用艾森斯坦判别法,x5-9x3+3在Q上不可约.对它的实根α,[Q(α):Q]=5.与习题1中(3)的证明类似,知α不可作.·75·(5)x4-2x-3=(x+1)(x3-x2+x-3).第二个因式的有理根只可能是±3,±1,但都不是根.因而是Q上三次不可约多项式、与本题(3)的证明一样可知,它的实根不可作,但第一因式的根为-1,是可作的.4畅课文中已证明由E0作为已知量出发,用圆规直尺作图能作出的量α一定属于某个具有题目所设性质的扩域En中.反之,设α属于具有上述性质的扩域En中.我们对n作归纳法.首先对橙i,[Ei:Ei-1]=2,即Ei是Ei-1上2维向量空间.取βi∈Ei/Ei-1.则1,βi对域Ei-1为线性无关,因而是Ei作为Ei-1上线性空间的基,故Ei=Ei-1(βi).又β2i∈Ei,它是1,βi的线性组合,因此有bi,ci∈Ei-1使β2i+biβi+ci=0,βi=-bi±b2i-4ci.n=0,E0中的任一个量显然可用圆规和直尺经有限步作出.2设En-1中任一量已可用圆规和直尺经有限步作出,即bn,cn可用有限步作出.于是b2n-4cn以至βn皆能作出.En中任一量α都是1,βn的线性组合α=a+bβn,a,b∈En-1.a,b,βn皆能用圆规直尺经有限步作出,则α也能.完成了归纳法.§4 环的例子,几个基本概念以下习题中打倡者为必作题,其余为选作题. 倡1畅举出Z/6Z=Z6中的零因子的例子. 倡2畅令Z[i]={a+bi|a,b∈Z},它是整环.2Z[i]={2a+2bi}是Z[i]的主理想.问Z[i]/2Z[i]中是否有零因子? 倡3畅写出下列商环的全部元素.(i)Z2=Z/2Z,检查它与F2是否同构.(ii)Z3=Z/3Z,检查是否是域.(iii)F2[x]/(x2+x+1),检查是否有零因子.(iv)Z3[x]/(x2+x+2),检查是否是域. 倡4畅R是环.若R的加群是循环群,则(i)R是交换环;(ii)R的子环只有R;(iii)当R的元素有无限多个时,它的任一理想也有无限多个元;(iv)当R的元素有限时,设I为它的理想,则|I|||R|;(v)R的加法子群都是R的理想.5畅找出Z6,Z8的全部理想.哪些是极大理想?对所有极大理想K,写出Z6/K及Z8/K的全部元素、加法表和乘法表.··856畅设K为交换环,M是它的理想,M作为K的加法子群满足[K:M]=素数,则商环K/M是域.7畅试将第一章§10习题6中关于群同态的结论推广到环同态的情形.8畅设f(x)=fr11(x)fr22(x)…frkk(x)是域F上的不可约多项式的乘积,且f1(x),…,fk(x)互不相伴,令R=F[x]/(f(x))是商环.(i)求出R的全体理想.(ii)这些理想中哪些是极大理想?(iii)设珡K是R的理想,K是珡K在F[x]中的原象.检验F[x]/K碖R/珡K.9畅证明Z[i]/(1+i)是域.1畅2+6Z≠0,3+6Z≠0,都是Z6中的零因子.2畅由(1+i)2=2i,((1+i)+2Z[i])2=2i+2Z[i]=0.故(1+i)+2Z[i]是Z[i]/2Z[i]中的零因子.3畅(i)Z2=Z/2Z={0+2Z,1+2Z}={0,1}.它的加法表和乘法表如下: +01001110,×01000101.建立映射Z2F20011.这是双射,且保持加法和乘法.故是同构.(ii)Z3=Z/3Z={0,1,2}.这是交换环,又(1)-1=1,(2)-1=2.故Z3是域.(iii)因0,1不是x2+x+1的根,故x2+x+1在F2[x]上不可约.因此F2[x]/(x2+x+1)是域,故无零因子.(iv)由于0,1,2都不是x2+x+2的根,故它在Z3[x]中不可约.因此Z3[x]/(x2+x+2)是域.4畅由于R是加法循环群,可设R=Za,a∈R.(i)R中任意两元可写为ma,na,而(ma)(na)=mna2=(na)(ma),故R是交换环.(ii)设1=ka,又设a2=la.则a=1·a=ka2=kla=lka=l·1.因R的子·95·环含1,就含有l1=a.故子环含Za=R.即子环必是R.(iii)R=Za有无限多个元,则它是无限循环加群.于是当m,n∈Z,m≠n时有ma≠na.设I是R的非零理想,它就是R的非零子加群,必为无限群.故I有无限个元.(iv)当R的元素有限时,它作为加群是有限循环群.而R的理想I是它的子加群,由Lagrange定理,知|I|||R|.(v)设I是R的加法子群,它也是循环群.设I=Z(ka).任ma∈R,(ma)I=Z(na)(ka)=Z(mkla)彻Z(ka)=I.故I是R的理想.5畅Z6的全部理想为Z6,2Z6,3Z6,0·Z6.其中2Z6,3Z6是Z6的极大理想.Z8的全部理想为Z8,2Z8,4Z8,0·Z8,其中2Z8是极大理想.Z6/2Z6={0,1},Z6/3Z6={0,1,2},Z8/2Z8={0,1}.它们的加法表和乘法表:Z6/2Z6: +01001110,×01000101.Z8/2Z8碖Z6/2Z6,它们有相同的加法表和乘法表.Z6/3Z6:+012001211202201×0120000101220216畅K/M是商环,作为加法商群[K:M]=素数.对K的任一理想N,若M彻N彻K、则从加法方面看N/M是K/M的子群.后者是素数阶群,故N/M是单位元群或K/M本身.因此N=M或N=K,即M是K的极大理想.于是K/M是域.7畅群同态的结论推广到环同态,结论如下:设环G到环珚G有满同态f.令N=Kerf.记f-1(珡K)为珚G的子集珡K对于f的原象.则(1)若珡K是珚G的子环,则N炒f-1(珡K),且f-1(珡K)是子环.(2)有映射{G的含N的子环}φ{珚G的子环}·06·Hf(H).它还是双射,且保持包含关系.(3)若珡K是珚G的理想,则f-1(珡K)是G的含N的理想,于是{G的含N的理想}{珚G的理想}Kf(K)是双射.(4)设珡H是珚G的理想,则有同构G/f-1(H)碖珚G/珡H.(5)G是环,N是理想.令珚G=G/N,π是自然同态GπG/N=珚G,则π建立了{G的含N的子环}到{珚G的子环}上的双射:π(H)=珡H=H/N,且保持包含关系.同时建立了{G的含N的理想}到{珚G的理想}上的双射,且有同构G/H碖珚G/珡H=G/N/H/N.证明 由于环是加群,子环、理想是子加群,环同态的核正是加群同态的核.如能证明(i)若H是G的子环(或理想),则f(H)是珚G的子环(或理想),(ii)珡H是珚G的子环(或理想),则f-1(珡H)是G的包含N的子环(或理想).再利用群同态的结论就给出上面(1)到(5)的结论都成立.对结论(i),易知子环(或理想)的满同态的象是子环(或理想),故成立.对(ii),设珡H是子环(或理想),它是珚G的子加群,故f-1(珡H)是G的子加群.又对l,k∈f-1(珡H)(或取l∈G),f(l),f(k)∈珡H(或f(l)∈珚G).由珡H是子环(或理想),f(l)f(k)=f(lk)∈珡H,故lk∈f-1(珡H).这证明了f-1(珡H)是G的子环(或理想).8畅(i)F[x]是主理想环,它的同态象R=F(x)/(f(x)).由7题,R的任一理想为J/(f(x)),其中J为F[x]的理想.J为主理想,设为J=g(x)F[x].于是R的任一理想I必有形式:I=g(x)F[x]/(f(x))是R的一个主理想.令(g(x),f(x))=m(x),g(x)=h(x)m(x).由(h(x),f(x))=1,有u(x),v(x)∈F[x],使u(x)h(x)+v(x)f(x)=1.即u(x)h(x)+(f(x))=1+(f(x)).于是m(x)F[x]/(f(x))=u(x)h(x)m(x)F[x]/(f(x))彻g(x)F[x]/(f(x))=I彻m(x)F[x]/(f(x)),故I=m(x)F[x]/(f(x)).这说明R的任一理想必为m(x)F[x]/(f(x)),其中m(x)|f(x).再设Ii=mi(x)F[x]/(f(x)),mi(x)|f(x),i=1,2都是R的理想.来证I1=I2当且仅当m1(x)与m2(x)相伴.首先设m1(x)=cm2(x),c≠0是F的元,则··16I1=m1(x)F[x]/(f(x))=cm2(x)F[x]/(f(x))=m2(x)·cF[x]/(f(x))=m2(x)F[x]/(f(x))=I2.反之,设I1彻I2.由m1(x)+(f(x))∈I1彻I2=m2(x)F[x]/(f(x)),有h2(x)∈F[x]使m1(x)+(f(x))=m2(x)h2(x)+(f(x)).进而有g2(x)使m1(x)+g2(x)f(x)=m2(x)h2(x).因m2(x)|f(x),可得m2(x)|m1(x).当I1=I2时,同样有m1(x)|m2(x).就证明了m1(x),m2(x)相伴.写gi1…ik(x)=(f1(x))i1(f2(x))i2…(fk(x))ik,其中i1,…,ik可独立地遍取1≤i1≤r1,1≤i2≤r2,…,1≤ik≤rk.则{gi1…ik(x)}是f(x)的全部不相伴的因式,而gi1…ik(x)F[x]/(f(x))是R的全部的理想.(ii)取Ji=fi(x)F[x]/(f(x)).由(i)第二部分的证明只有理想1·F[x]/(f(x))及fi(x)F[x]/(f(x))能包含Ji.故Ji是R的极大理想.R的任一理想若非Ji之一和R本身,则它是m(x)F[x]/(f(x)),其中m(x)是f1(x),…,fk(x)中至少两项的乘积.设m(x)=fi(x)fj(x)….则fi(x)|m(x),但任意一个fi(x)与m(x)不相伴.由(i)中第二部分的证明m(x)F[x]/(f(x))彻Ji,但它们不相等,故前者不是极大理想.因此R的全部极大理想为Ji,i=1,2,…,k.(iii)设珡K=m(x)F[x]/(f(x))是R的理想,其中m(x)|f(x).显然m(x)F[x]在R中的象是珡K.又任意g(x)∈F(x),若g(x)+(f(x))∈m(x)F[x]/(f(x)),用(i)中第二部分的证明可得m(x)|g(x).故g(x)∈m(x)F[x].这证明了珡K在F[x]中的原象K是m(x)F[x].作映射F[x]/m(x)F[x]πR/珡Kg(x)+m(x)F[x][g(x)+(f(x))]+珡K.首先要证明它确实规定了映射,即象元与g(x)+m(x)F[x]中的代表的选择无关,实际上g1+m(x)F[x]=g2+m(x)F[x]当且仅当g1-g2∈m(x)F[x]当且仅当(g1-g2)+(f(x))∈m(x)F[x]/(f(x))=珡K当且仅当[g1+(f(x))]与[g2+(f(x))]属于珡K的同一陪集当且仅当[g1+(f(x))]+珡K=[g2+(f(x))]+珡K.这就证明了映射是意义的,而且是单射.π显然是满射,因而是双射.又π((g1+m(x)F[x])+(g2+m(x)F[x]))=π((g1+g2)+m(x)F[x])=[(g1+g2)+(f(x))]+珡K=[(g1+(f(x)))+(g2+(f(x)))]+珡K=(g1+(f(x)))+珡K+(g2+(f(x)))+珡K=π(g1+m(x)F[x]) +π(g2+m(x)F[x]).·26·同样可证π((g1+m(x)F[x])(g2+m(x)F[x]))=π(g1+m(x)F[x])π(g2+m(x)F[x]).故π是环同构.9畅先计算Z[i]/(1+i)的全部元素.记剩余类a+bi+((1+i))为a+bi,其中a,b∈Z.我们有a+bi=a-b+b(1+i)=a-b.又(1+i)2=-2,故2=2+(1+i)2=0.于是Z[i]/(1+i)={0,1}={0+((1+i)),1+((1+i))}碖Z2.故它是域.§5 整数模n的剩余类环,素数p个元素的域以下习题中打倡者为必作题,其余为选作题.1畅求出Z8中可逆元的群及其乘法表. 倡2畅求出Z9中可逆元的群及其乘法表. 倡3畅写出Z3[x]/(x2+1)的全部元素.求出x+1与全部元素的乘积以及它的逆元素. 倡4畅427≡?(mod3) 7123≡?(mod5) 827≡?(mod6) 倡5畅p是素数,则域Zp中全部元素是方程xp-x=0的全部根.因而映射ZpZpaap是恒等自同构.1畅Z8的可逆元群是{1+8Z,3+8Z,5+8Z,7+8Z}.乘法表略.2畅Z9的可逆元群是{1+9Z,2+9Z,4+9Z,5+9Z,7+9Z,8+9Z}.乘法表略.3畅记剩余类f(x)+((x2+1))为f(x).则Z3[x]/(x2+1)={0,1,2,珔x,x+1,x+2,2x,2x+1,2x+2}.(x+1)Z3[x]/(x2+1)={0,x+1,2(x+1)}x+1的逆元素为x+24畅427≡127=1(mod3).7123≡2123≡2120·23(mod5)≡23(mod5)(因24≡1,2120=(24)30≡1)≡3(mod5).··36827≡((23)3)3≡(23)3≡23≡2(mod6).5畅Zp\{0}是p-1阶乘法循环群,故任0≠a∈Zp,满足ap-1=1.于是ap=a.又0p=0,所以Zp中全部元是xp-x=0的全部根.这就证明了ZpZpaap是恒等自同构.§6 F[x]模某个理想的剩余类环,添加一个多项式的根的扩域以下习题中打倡者为必作题,其余为选作题. 倡1畅Z3[x]中计算(x2+x+1)(x3+2x+1)及(x4+2x+1)(x3+x+1) 倡2畅证明x2+1,x3+2x+1是Z3[x]中不可约多项式.问Z3[x]/(x2+1),Z3[x]/(x3+2x+1)分别是几个元素的域.3畅写出Z3[x]/((x2+1)(x3+2x+1))中的全部理想和极大理想. 倡4畅证明Q[x]/(x2-2)与Q(2)={a+b2|a,b∈Q}都是域,且互相同构.1畅(x2+x+1)(x3+2x+1)=x5+x4+1.(x4+2x+1)(x3+x+1)=x7+x5+x3+2x2+1.2畅x2+1,x3+2x+1在Z3中无根,于是在Z3[x]中无一次因式,因此不可约.Z3[x]/(x2+1)是有9个元的域,Z3[x]/(x3+2x+1)是有27个元的域.3畅用§4习题8,它的全部理想为零理想及Z3[x]/((x2+1)(x3+2x+1)),(x2+1)Z3[x]/((x2+1)(x3+2x+1)),(x3+2x+1)Z3[x]/((x2+1)(x3+2x+1)).后面两个理想是极大理想.4畅Q[x]/(x2-2)与Q(2)都是域,略证.作映射Q[x]φQ(2)p(x)p(2)·46·这是同态映射,且是满射.Kerφ={p(x)|p(2)=0}.由于x2-2是2的极小多项式,故Kerφ=(x2-2)Q[x]=((x2-2)).由同态基本定理得Q[x]/((x2-2))碖Q(2).§7 整环的分式域,素域以下习题中打倡者为必作题,其余为选作题.1畅证明:有限整环是域. 倡2畅R是交换环,P≠R是R的理想,则RP是整环当且仅当P有性质:若a,b∈R满足ab∈P,则a∈P或b∈P.有这种性质的理想P称为素理想. 倡3畅R是交换环,则R的极大理想必为素理想. 倡4畅设n∈Z,n>1,Z中主理想(n)=nZ是素理想当且仅当n是素数. 倡5畅设R是一个域,则R的分式域就是自身. 倡6畅令Z(2)={a+b2|a,b∈Z},Q(2)={α+β2|α,β∈Q}.证明Q(2)是Z(2)的分式域.7畅令Z[i]={a+bi|a,b∈Z},Q[i]={α+βi|α,β∈Q}Z.证明Q[i]是Z[i]的分式域.8畅域F上多项式f(x)的次数≥1.F[x]中主理想(f(x))是素理想当且仅当f(x)是不可约多项式.1畅设R是有限整环,R={r1,…,rt}.令rt=0.橙0≠r∈R,当ri≠rj时有rri≠rrj.故rr1,…,rrt-1是R的全部非零元,必有某rj使rrj=1,即rj为r的逆元.R的每个非零元都有逆,故是域.2畅设R/P为整环.橙a,b∈R,若ab∈P,则(a+P)(b+P)=ab+P=0.于是a+P=0或b+P=0,即a∈P或b∈P.故P为素理想.反之,设P是素理想,橙a,b∈R,若ab∈P则a∈P或b∈P.现设R/P中(a+P)(b+P)=ab+P=0.即ab∈P,于是a∈P或b∈P,即a+P=0或b+P=0.故R/P是整环.3畅设I是R的极大理想,则R/I是域,当然是整环.由习题2,I是素理想.·56· 4畅设Z中(n)=nZ是一个理想.若n不是素数,则n=ab,a,b为大于1的正整数.由于a和b都不是n的倍数,故a∈(n),b∈(n).但ab=n∈(n),故(n)不是素理想,这就证明了(n)是素理想则n为素数.当n是素数时,对ab∈(n),则n|ab.若n嘲a,则(n,a)=1.于是n|b.即a∈(n)或b∈(n),(n)是素理想.5畅R是域,则也是整环.它的分式域F以R为子环,且F中的元是R的元的商.由于R是域,它的元的商仍在R中,故R=F.6畅我们已知Q(2)是域.对任意α+β2∈Q(2),可写α=ac,β=bc,a,b,c∈Z.则α+β2=a+b2c是Z(2)中两元素的商.又Z(2)中两元素的商为:a+b2c+d2=(c-d2)(a+b2)c2-2d2=ac-2bdc2-2d2+bc-adc2-2d22∈Q(2).现在Z(2)是Q(2)的子环,且Q(2)是由Z(2)中两元素的商组成,故Q(2)是Z(2)的分式域.7畅易证Q[i]是域.对任意α+βi∈Q[i],可写α=ac,β=bc,则α+βi=a+bic是Z[i]中两元素的商.又Z[i]中两元素的商为a+bic+di=ac+bdc2+d2+bc-adc2+d2i∈Q[i].即Q[i]由Z[i]的两元素的商组成.故Q[i]是Z[i]的分式域.8畅完全可仿照习题4的证明.设(f(x))是F[x]中理想,f(x)的次数≥1.若f(x)=g(x)h(x),g(x)及h(x)的次数皆大于等于1,这时g(x),h(x)皆不是f(x)的倍数,故g(x),h(x)∈(f(x)),但g(x)h(x)∈(f(x)).即(f(x))不是素理想.故若(f(x))是素理想,则f(x)不可约.反之,若f(x)不可约.对g(x)h(x)∈(f(x)),则有g(x)h(x)=f(x)k(x).若f(x)|g(x)则g(x)∈(f(x)).若f(x)嘲g(x),则(f(x),g(x))=1,于是f(x)|h(x).即有h(x)∈(f(x)),故(f(x))是素理想.§8 环的直和与中国剩余定理以下习题中打倡者为必作题,其余为选作题. 倡1畅解同余方程组.·66·(i)x≡1(mod2)x≡2(mod5)x≡3(mod7)x≡4(mod9) (ii)x≡5(mod7)x≡4(mod6) 倡2畅韩信点兵问题:有兵一队,若列5列纵队,则末行1人.成6列纵队,则末行5人.成7列纵队,则末行4人.成11列纵队,则末行10人.求兵数. 倡3畅R1,…,Rs是环.U1,…,Us分别是它们的可逆元的群.证明R1磑…磑Rs的可逆元群为U=U1×U2×…×Us(见第一章§4定义2).4畅设n=m1m2…ms,mi两两互素.令U(Zm)表Zm的可逆元群,则Z/nZ=Zn的可逆元群同构于U(Zm1)×…×U(Zms).进而有,φ(n)=φ(m1)φ(m2)…φ(ms),这里φ(n)是欧拉函数.当n=pes1…pess,pi为不同素数时,φ(n)=n1-1p1…1-1ps.(见第二章§5定义1及最后一段).1畅(i)解为157(mod630)(ii)解为40(mod42)2畅2111(mod2310)3畅(a1,a2,…as)是R1磑…磑Rs的可逆元当且仅当有(b1,…,bs)使(a1,…,as)(b1,…,bs)=(a1b1,…,asbs)=(1,…,1)当且仅当aibi=1,i=1,2,…,s当且仅当ai∈Ui,i=1,2,…,s当且仅当(a1,…,as)∈U1×…×Us.4畅这时Zn碖Zm1磑…磑Zms.Zm的可逆元群U(Zn)={k+nZ|(k,n)=1}.故|U(Zn)|=φ(n).(见第二章§5定义1).由习题3,U(Zn)碖U(Zm1)×…×U(Zms).|U(Zmi)|=φ(mi),i=1,2,…,s.故得φ(n)=φ(m1)…φ(ms).对素数幂pk,1,2,…,pk-1中与pk不互素的数为p的所有倍数lp,1≤l≤pk-1-1.故此中与pk互素的数共(pk-1)-(pk-1-1)=pk-pk-1=pk1-1p(个).即φ(pk)=pk1-1p.当n=pe11pe22…pess时,φ(n)=φ(pe11)φ(pe22)…φ(pess)=pe11…pess1-1p1…1-1ps.·76·。

浙师大11近世代数答案2

浙师大11近世代数答案2

浙师大11近世代数答案2近世代数习题解答第二章16第二章群论§2.1半群1.设r是实数集,在r×r中规定(a1,a2)?(b1,b2)=??a1?b1a2?b2?,?,22??问?是不是r×r的代数运算,(r×r,?)是不是半群?解:注意到等式右边的运算指的是普通的实数运算,易知?是r×r的一个代数运算。

下面检验结合律,?(a1,a2),(b1,b2),(c1,c2)∈r×r,[(a1,a2)?(b1,b2)]?(c1,c2)=??a1?b1a2?b2?,??(c1,c2)22??a2?b2?a1?b1??c1?c2??22?,=?22=??a1?b1?2c1a2?b2?2c2?,?,44??近世代数习题答疑第二章17(a1,a2)?[(b1,b2)?(c1,c2)]=(a1,a2)b1?c1b2?c2?,?22??b1?c1b2?c2??a?a??1?222?,=?22=??2a1?b1?c12a2?b2?c2?,?。

44??所述r×r的代数运算?不满足用户结合律,所以(r×r,?)不是半群。

2.设立(s,)就是一个半群,证明s×s关于下面规定的代数运算做成半群,(a1,a2)ο(b1,b2)=(a1b1,a2b2)。

如果s就是存有单位元的互换半群,那么,(s×s,ο)与否仍就是存有单位元的互换半群?证明:显然ο是s×s的一个代数运算。

只需验证结合律。

?(a1,a2),(b1,b2),(c1,c2)∈s×s,[(a1,a2)ο(b1,b2)]ο(c1,c2)=(a1b1,a2b2)ο(c1,c2)=((a1b1)c1,(a2b2)c2)=(a1(b1c1),a2(b2c2))=(a1,a2)ο((b1c1),(b2c2))=(a1,a2)ο[(b1,b2)ο(c1,c2)]。

近世代数答案(一、二三章)

近世代数答案(一、二三章)

Chapter 11、proof Let A,B,C be sets .Suppose that x ∈B,we get x ∈A ∩B orx A B A ∈- ,and x A C ∈ or x A C A ∈- since A B A C = and A B A C = .so x ∈C and B C ⊆.Similarly ,we have C B ⊆and so B=C .2、proof ① First,consider ()x A B A ∈- .Then x A ∈ or x B ∈,but x A ∉.Thisimplies if x is not an element of A ,then x B ∈.Hence x A B ∈ and()A B A - ⊆A B .Conversely, if x A B ∈ ,then by definition , x A ∈ or x B ∈.This generates two cases:(a1) If x A ∈,clearly ()x A B A ∈- ;(b2) If x B ∈,then either x A ∈ or not . i.e.,either x B ∈ and x A ∈ orx B∈ but x A ∉, in either case, we have ()x A B A ∈- .Hence A B ⊆()A B A - .Therefore ()A B A - =A B .② Suppose that ()x A B C ∈- .Then x A ∈ but x B ∉ and x C ∉. Sox A ∈-B and x A C∈- and ()()x A B A C ∈-- by definition .Hence ()A B C - ⊆()()A B A C -- .Converssely , Assume that ()()x A B A C ∈-- ,then x A ∈-B andx A C∈-,and we have ,x A ∈but x B ∉ and x C ∉.Hencex B C ∉ , x A ∈, i.e., ()x A B C ∈- .Therefore ()()A B A C -- ⊆()A B C - and,so ()A B C - =()()A B A C --3.(a) surjective (b) bijective (c) bijective4.proof if f: X →Y and g: Y →Z are functions,then their composite denoted byg ︒f, is the function X →Z given by g ︒f: X →g(f(x)) (i)suppose that (g ︒f)(a)= (g ︒f)(b), where a,b ∈X. we have g(f(a))=g(f(b)) by definition, and f(a)=f(b) since g is injective, similarly , a=b for f is injective. Therefore, g ︒f is injective.(ii)For each Z ∈Z, there is y ∈Y with g(y)=z since g is surjective, and for each y ∈ Y , there exists a ∈ x with f(a)=y since f is surjective. So for ∀z ∈Z, there is a ∈ x with (g ︒f)(a)=g(f(a))=g(y)=z. which implies g ︒f is surgective.5. proof clearly , α:R →R is a function. Suppose that α(a)= α(b) where a, b∈R are distinct. Then332211aba b =++, cross multiplying yields332323a ab b a b +=+, which simplifies to 33a b = and hence a b =,so α isinjective. for ∀given y ∈ R,321xy x =+from,we get equation320x yx y --=, which can be solved for x, i.e .for each y ∈ R,there is at leastx ∈x such that 321xy x =+.whic implies α is surjective. Therefore α isbijective.6、(a) R is reflexive, symmetric, transitive. (b) R is reflexive, not symmetric, transitive.(c ) R is reflexive, symmetric, transitive.(d) R is reflexive, symmetric, transitive.7、proof (1) For every a ∈R-{0},we have 20aa a =>, and so ,aRa (2) IfaR b, where ,{0}a b R ∈-, i.e.,0,ab > then 0ba >,i.e., bR a ,(3) If ,aRb bRc , where ,,a b c ∈{0}R -, i.e. 0,ab >0b c >,then 0a c >.i.e.,aR c .Therefore, the relation ~ is an equivalence relation .8、 There are 1,3,5,15 equivalence relations on a set S with 1,2,3 or 4 elements,separately.9、 We can list the elements of the residue classes of modulo 3: [0]={…,-9,-6,-3,0,6,9,…} [1]={…,-8,-5,-2,1,4,7,10,…} [2]={…,-7,-4,-1,2,5,8,11,…}Chapter 21、proof i)ii )For every x,y ,z ∈G ,(x*y)*z=(xy-x-y+2)*z=(xy-x-y+2)z-z-(xy-x-y+2)+2=xyz-xz-yz+z-xy+x+y x*(y*z)=x*(yz-y-z+2)=x(yz-y-z+2)-x-(yz-y-z+2)+2=xyz-xy-xz+x-yz+y+z we have (x*y)*z=x*(y*z). And so the associative law holds.3、Solution Straightforward calculation shows that 46A IB ==. ()nAB I ≠,since 1()01n n A B I -⎛⎫=≠⎪⎝⎭(0)n ≠.4、proof Suppose 222()ab a b = for all,a b G∈,then2()ab =()()ab ab =22a b =()()aa bb ,i.e., abab aabb =. Applying left cancellation , this becomes bab abb =,and by right cancellation, this reduces to ba ab =. 5、proof For every a G ∈, there is a ,1a G -∈ such that 1a a e -=(identity)So 11()nabaaba--=1aba- (1)aba-1aba-=1naba-。

近世代数答案(一、二章)

近世代数答案(一、二章)

Chapter 11、proof Let A,B,C be sets .Suppose that x ∈B,we get x ∈A ∩B orx A B A ∈- ,andx A C∈ or x A C A ∈- sinceA B A C= andA B A C= .so x ∈C andB C⊆.Similarly ,we haveC B⊆and soB=C .2、proof ① First,consider()x A B A ∈- .Then x A ∈ or x B ∈,butx A ∉.This implies if x is not an element of A ,then x B ∈.Hence x A B∈ and ()A B A - ⊆A B .Conversely, ifx A B∈ ,then by definition , x A ∈ or x B ∈.This generates two cases: (a1) If x A ∈,clearly()x A B A ∈- ;(b2) Ifx B ∈,then either x A ∈ or not . i.e.,either x B ∈andx A ∈or x B ∈but x A ∉, in either case, we have()x A B A ∈- .Hence A B ⊆()A B A - .Therefore()A B A - =A B . ② Suppose that()x A B C ∈- .Then x A ∈but x B ∉ and x C∉.Sox A ∈-B and x A C ∈- and ()()x A B A C ∈--bydefinition .Hence()A B C - ⊆()()A B A C -- .Converssely, Assume that()()x A B A C ∈-- ,then x A ∈-Bandx A C∈-,and we have ,x A ∈but x B ∉ andx C ∉.Hence x B C ∉ , x A ∈, i.e., ()x A B C ∈- .Therefore ()()A B A C -- ⊆()A B C - and,so ()A B C - =()()A B A C --3.(a) surjective (b) bijective (c) bijective4.proof if f: X →Y and g: Y →Z are functions,then their composite denoted by g ︒f, is the function X →Z given by g ︒f: X →g(f(x))(i) suppose that (g ︒f)(a)= (g ︒f)(b), where a,b ∈X. we haveg(f(a))=g(f(b)) by definition, and f(a)=f(b) since g is injective, similarly, a=b for f is injective. Therefore, g ︒f is injective. (ii) For each Z ∈Z, there is y ∈Y with g(y)=z since g is surjective,and for each y ∈ Y , there exists a ∈ x with f(a)=y since f is surjective. So for∀z ∈Z, there is a ∈ x with(g ︒f)(a)=g(f(a))=g(y)=z. which implies g ︒f is surgective.5. proof clearly,α:R →R is a function. Suppose thatα(a)=α(b)where a, b ∈R are distinct. Then 332211aba b =++, cross multiplyingyields332323a ab b a b+=+, which simplifies to33a b= and hence a b =,so α is injective. for ∀given y ∈R,321xyx =+from,we getequation 320x yx y --=, which can be solved for x, i.e .for each y ∈R,there is at least x ∈x such that 321xyx =+.whic impliesαissurjective. Thereforeαis bijective.6、(a) R is reflexive, symmetric, transitive. (b) R is reflexive, not symmetric, transitive. (c ) R is reflexive, symmetric, transitive. (d) R is reflexive, symmetric, transitive.7、proof (1) For every a ∈R-{0},we have 20aa a =>, and so,aR a(2) If aRb , where ,{0}a b R ∈-, i.e.,0,ab > then0ba >, i.e., bRa ,(3) If ,aR b bR c , where ,,a b c ∈{0}R -, i.e.0,ab >0bc >, then 0ac >.i.e.,aRc .Therefore, therelation ~ is an equivalence relation .8、 There are 1,3,5,15 equivalence relations on a set S with 1,2,3 or 4elements, separately.9、 We can list the elements of the residue classes of modulo 3: [0]={…,-9,-6,-3,0,6,9,…} [1]={…,-8,-5,-2,1,4,7,10,…} [2]={…,-7,-4,-1,2,5,8,11,…}Chapter 21、proof i)ii )For every x,y,z ∈G ,(x*y)*z=(xy-x-y+2)*z=(xy-x-y+2)z-z-(xy-x-y+2)+2=xyz-xz-yz+z-xy+x+yx*(y*z)=x*(yz-y-z+2)=x(yz-y-z+2)-x-(yz-y-z+2)+2=xyz-xy-xz+x-yz+y +zwe have (x*y)*z=x*(y*z). And so the associative law holds.3、Solution Straightforward calculation shows that 46A IB ==.()nAB I ≠, since 1()01nn AB I -⎛⎫=≠⎪⎝⎭(0)n ≠.4、proof Suppose222()ab a b = for all ,a b G ∈,then 2()ab =()()ab ab =22a b =()()aa bb ,i.e., abab aabb =. Applying left cancellation , this becomesbab abb =,and by right cancellation, this reduces to ba ab =.5、proof For every a G ∈, there is a ,1a G -∈ such that 1a a e -=(identity)So 11()naba aba--=1aba- (1)aba-1aba-=1n ab a-。

近世代数导引_答案

近世代数导引_答案

i目录第1章集合与运算 (1)1.集合 (1)2.运算 (1)第2章群 (4)1.群的定义 (4)2.子群 (7)3.置换群 (9)4.陪集和商群 (11)5.同构与同态 (14)6.循环群 (17)1集合1第1章集合与运算1.集合本节无习题2.运算1.设f 是有限集A 的变换。

证明f 是单射当且仅当f 是满射。

因为f 是单射,所以()f A A =且()f A A ⊆,又因集合A 是有限集,所以()f A A =,由此得出f 是满射。

若f 是满射,则()f A A =,因为集合A 是有限集,所以f 是单射。

2.设f 是有限维线性空间V 上的线性变换。

证明f 是单射当且仅当f 是满射。

在n 维线性空间V 中任选一组基底{}1,,n E e e = ,则对任意一个向量x V ∈,有唯一的坐标1,,n ξξ 使得1n i i i x e ξ==∑。

只需讨论f 对基底的作用,因为()()()11n ni i i i i i f x f e f e ξξ====∑∑。

设()f E F =,若F n <,总可从V 中另外选出n F -个线性无关的向量,使得它们与F 中的向量一起,组成线性空间V 的一组基底F ',此时有F n '=,F F '⊆。

f 是从E 到F '的映射,重复类似上一题目的讨论即可。

3.设A 和B 均是有限集,A m =,B n =。

问从A 到B 有多少个映射?有多少个单射?A 有多少个二元运算?由基本计数法则,从A 到B 的映射的个数有m n 个。

若m n >,则不存在从A 到B 的单射。

如果m n ,从A 到B 的单射有第1章集合与运算2()!!!n n m m n m ⎛⎫= ⎪-⎝⎭个。

2A A m ⨯=,集合A 上的二元运算即从A A ⨯到A 的映射,有2m m 个。

4.考虑()n M R 上的相抵关系 :A B 当且仅当存在n 阶可逆矩阵P 和Q 使得=B PAQ 。

近世代数第二章答案讲解学习

近世代数第二章答案讲解学习

近世代数第二章群论答案§1.群的定义1.全体整数的集合对于普通减法来说是不是一个群?解:不是,因为普通减法不是适合结合律。

例如()321110--=-=--=-=()321312()()--≠--3213212.举一个有两个元的群的例。

解:令G=,e a{},G的乘法由下表给出首先,容易验证,这个代数运算满足结合律(1) ()(),,= ∈x y z x y z x y z G因为,由于ea ae a==,若是元素e在(1)中出现,那么(1)成立。

(参考第一章,§4,习题3。

)若是e不在(1)中出现,那么有()aa a ea a==a aa ae a==()而(1)仍成立。

其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a。

所以G是一个群。

读者可以考虑一下,以上运算表是如何作出的。

3.证明,我们也可以用条件Ⅰ,Ⅱ以及下面的条件IV',V'来做群的定义:IV ' G 里至少存在一个右逆元1a -,能让=ae a对于G 的任何元a 都成立;V ' 对于G 的每一个元a ,在G 里至少存在一个右逆元1a -,能让1=aa e -解:这个题的证法完全平行于本节中关于可以用条件I,II,IV,V 来做群定义的证明,但读者一定要自己写一下。

§2. 单位元、逆元、消去律1. 若群G 的每一个元都适合方程2=x e ,那么G 是交换群。

解:令a 和b 是G 的任意两个元。

由题设()()()2==ab ab ab e另一方面()()22====ab ba ab a aea a e于是有()()()()=ab ab ab ba 。

利用消去律,得=ab ba所以G 是交换群。

2. 在一个有限群里,阶大于2的元的个数一定是偶数。

解:令G 是一个有限群。

设G 有元a 而a 的阶>2n 。

考察1a -。

我们有()1=n n a a e - ()()11==n n e a a e -- 设正整数<m n 而()1=ma e -,那么同上可得=m a e ,与n 是a 的阶的假设矛盾。

近世代数第二章规范标准答案

近世代数第二章规范标准答案

近世代数第二章群论答案§1.群的定义1.全体整数的集合对于普通减法来说是不是一个群?解:不是,因为普通减法不是适合结合律。

例如()321110--=-=--=-=()321312()()--≠--3213212.举一个有两个元的群的例。

解:令G=,e a{},G的乘法由下表给出首先,容易验证,这个代数运算满足结合律(1) ()(),,= ∈x y z x y z x y z G因为,由于ea ae a==,若是元素e在(1)中出现,那么(1)成立。

(参考第一章,§4,习题3。

)若是e不在(1)中出现,那么有()aa a ea a==a aa ae a==()而(1)仍成立。

其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a。

所以G是一个群。

读者可以考虑一下,以上运算表是如何作出的。

3.证明,我们也可以用条件Ⅰ,Ⅱ以及下面的条件IV',V'来做群的定义:IV ' G 里至少存在一个右逆元1a -,能让=ae a对于G 的任何元a 都成立;V ' 对于G 的每一个元a ,在G 里至少存在一个右逆元1a -,能让1=aa e -解:这个题的证法完全平行于本节中关于可以用条件I,II,IV,V 来做群定义的证明,但读者一定要自己写一下。

§2. 单位元、逆元、消去律1. 若群G 的每一个元都适合方程2=x e ,那么G 是交换群。

解:令a 和b 是G 的任意两个元。

由题设()()()2==ab ab ab e另一方面()()22====ab ba ab a aea a e于是有()()()()=ab ab ab ba 。

利用消去律,得=ab ba所以G 是交换群。

2. 在一个有限群里,阶大于2的元的个数一定是偶数。

解:令G 是一个有限群。

设G 有元a 而a 的阶>2n 。

考察1a -。

我们有()1=n n a a e - ()()11==n n e a a e -- 设正整数<m n 而()1=ma e -,那么同上可得=m a e ,与n 是a 的阶的假设矛盾。

韩士安 近世代数 课后习题解答2

韩士安 近世代数 课后习题解答2

习题1-2(参考解答)1. 证明::实数域R 上全体n 阶方阵的集合()Mn R ,关于矩阵的加法构成一个交换群.证明:(1)显然,()Mn R 为一个具有“+”的代数系统. (2)∵矩阵的加法满足结合律,那么有结合律成立. (3)∵矩阵的加法满足交换律,那么有交换律成立. (4)零元是零矩阵.(),00.A Mn R A A A ∀∈+=+=(5)(),A Mn R ∀∈负元是.()0A A A A A −+−=−=.∴()(),Mn R +构成一个Abel 群.2. 证明:实数域R 上全体n 阶可逆方阵的集合()GLn R 关于矩阵的乘法构成群.这个群称为n 阶一般线形群.证明: 显然()GLn R 是个非空集合.对于任何的,()A B GLn R ∈,令C AB =, 则0C AB A B ==≠,所以()C GLn R ∈.⑴ 因为举证乘法有结合律,所以结合律成立. ⑵ 对任意(),A GLn R AE EA ∈=,所以E 是单位元.⑶ 任意的(),A GLn R ∈由于0A ≠,∴A 的逆矩阵1A −,满足11AAA A E −−==且∴A 的逆元是1A −.所以, ()GLn R 关于矩阵的乘法构成群.3. 证明:实数域R 上全体n 阶正交矩阵的集合()On R 关于矩阵的乘法构成群.这个群称为n 阶正交群.证明:(1)由于()E On R ∈,∵ ()On R 非空.(2 ) 任意,()A B On R ∈,有()()111TTTAB B A B AAB −−−===,∴()AB On R ∈,于是矩阵的乘法在()On R 上构成代数运算. (3) ∵矩阵的乘法满足结合律,那么有结合律成立. (4)对任意()A On R ∈,有.AE EA A ==∴E 为()On R 的单位元.(5)对任意()A On R ∈,存在()TA On R ∈,满足1T AA E AA −==, 1T AA E A A −==∴TA 为A 在()On R 中的逆元.∴()On R 关于矩阵的乘法构成一个群.4. 证明:所有行列式等于1的n 阶整数矩阵组成的集合()SLn Z ,关于矩阵的乘法构成群.证明:∵()E SLn Z ∈,∴()SLn Z 是个非空集合.对任意,()A B SLn Z ∈,记C AB =,则C 是整数矩阵,且1C AB A B ===,∴()C SLn Z ∈,即()SLn Z 关于矩阵的乘法封闭.(1) ∵矩阵乘法有结合律,∴结合律成立.(2) 对任意的()A SLn Z ∈,.AE EA A ==,且()E SLn Z ∈,∴A 的单位元是单位矩阵E .(3) 对任意的()A SLn Z ∈,因为()A Mn Z ∈,故*()A Mn Z ∈,又11*A A A A−−==且11A A −==,所以1()A SLn Z −∈,又11AA A A E −−==,故A 的逆元为1A −.所以, ()SLn Z 关于矩阵乘法构成群.5. 在整数集中,规定运算“∈”如下:2a b a b ⊕=+−, ,a b Z ∀∈.证明:(),Z ⊕构成群. 证明: (1)对于,a b Z ∀∈有 2a b a b Z ⊕=+−∈, 于是“⊕”在Z 上构成代数运算. (2)对于,a b Z ∀∈有,()4a b c a b c ⊕⊕=++−.()()24a b c a b c a b c ⊕⊕=⊕+−=++−∴()()a b c a b c ⊕⊕=⊕⊕于是结合律成立.(3)对于,a b Z ∀∈,22a b a b b a b a Z ⊕=+−=+−=⊕∈ 那么“⊕”在Z 上有交换律.(4)对于a Z ∀∈, 有222a a a ⊕=+−= ∴2为单位元. (5)对于a Z ∀∈, 有4a Z −∈,()()4422a a a a −⊕=−+−= ∴4a −为a 的逆元.∴(),Z ⊕构成群.6. 分别写出下列各群的乘法表. (1)例6中的群:1 -1 i -i 1 1 -1 i -i -1 -1 1 -i i i I -i -1 1 -i -i i 1 -1(3) 群*7Z :1 2 3 4 5 61 123456 2 2 4 6 1 3 5 3 3 6 2 5 1 4 4 4 1 5 2 6 3 5 5 3 1 6 4 2 6 6 5 4 3 2 1(4) 群(18)U .1 5 7 11 13 17 1 1 5 7 11 13 17 5 5 7 17 1 11 13 7 7 17 13 5 1 11 11 11 1 5 13 17 7 13 13 11 1 17 7 5 17 17 13 11 7 5 17. 设,0.a a G a R a a a ⎧⎫⎛⎞=∈≠⎨⎬⎜⎟⎝⎠⎩⎭证明:G 关于矩阵的乘法构成群.证明: 记a a aI a a ⎛⎞=⎜⎟⎝⎠,1111I ⎛⎞=⎜⎟⎝⎠.(1) G 非空,1111G ⎛⎞∈⎜⎟⎝⎠. (2),aI bI G ∀∈,则,,,0a b R a b ∈≠,∴20,2ab aIbI abI G ≠=∈.(3),,a b c R ∀∈,且,,0a b c ≠,有()()242aIbI cI abIcI abcI aI bcI aI bIcI ====,结合律成立.(4)单位元为12I G ∈. 11,0,22a R a aI I IaI aI ⎛⎞∀∈≠==⎜⎟⎝⎠. (5)aI G ∀∈,则1111,4442I G aI I I aI I a a a ⎛⎞⎛⎞∈==⎜⎟⎜⎟⎝⎠⎝⎠. ∴(),G ⋅为群.8. 证明:所有形如23m n的有理数(),m n Z ∈的集合关于数的乘法构成群.证明:记{}23|,m nG m n Z =∈,G 是一个非空集合;(1)∀112223,23m n m n G ∀∈,有11221212232323m n m n m m n n G ++•=∈,∴•是G 上的一个代数运算; (2) 结合律,交换律均成立(数的乘法满足结合律和交换律); (3)1是单位元. 00123G =∈G ,且1•23m n=23m n;(4)∀23m n G ∈,有23m n G −−∈,且23m n −−•231m n =;∴ G 关于数的乘法构成群.9. 证明:所有形如101001a b c ⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠的33∗实矩阵关于矩阵的乘法构成一个群.这个群以诺贝尔物理学奖获得者海森伯(Heisenberg )的名字命名,称为海森伯群(Heisenberg group ). 证明:(1)显然非空.(2)保持代数运算:11112211212120110120112001001001a b a b a a b b a c c c c c G +++⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=+∈⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠.(3)结合律:111122133112121330110120130112013001001001001001a b a b a b a a b b a b c c c c c c ⎛⎞++⎛⎞⎛⎞⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟=+⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠⎝⎠⎝⎠13(21)33(21)(2121)013(21)001a a a b c a a b a c b c c c +++++++⎛⎞⎜⎟=++⎜⎟⎜⎟⎝⎠1(32)1(3232)(23)1101(32)1001a a a b a c b c c a b c c c +++++++⎛⎞⎜⎟=++⎜⎟⎜⎟⎝⎠11112332320110123001001a b a a b a c b c c c +++⎛⎞⎛⎞⎜⎟⎜⎟=+⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠111122133011012013.001001001a b a b a b c c c ⎛⎞⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠ (4)单位元为100010001⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠,101001a b c ⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠100010001⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠100010001⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠101001a b c ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠101001a b c ⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠. (5)∀101001a b c G ⎛⎞⎜⎟∈⎜⎟⎜⎟⎝⎠,∃101001a ac b c G −−⎛⎞⎜⎟−∈⎜⎟⎜⎟⎝⎠,使101001a b c ⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠101001a ac b c −−⎛⎞⎜⎟−=⎜⎟⎜⎟⎝⎠101001a ac b c −−⎛⎞⎜⎟−⎜⎟⎜⎟⎝⎠101001a b c ⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠100010001⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠. ∴G 构成群. 10. 设G 是群,12,,,r a a a G ∈L .证明()11111221r r a a a a a a −−−−=L L .证:∵G 是群,,1,2,i a G i r ∀∈=L ,则1111221,r r a a a G a a a G −−−∈∈L L . ∴()()()()()()()111111112112211222rr r r r r aa a a a a a a a a a a a a a a −−−−−−−−====L L L L L L L 1r r a a e −=又()()()()()111111122112111r r r r rr a a a a a a a a a a a aa e −−−−−−−−===L L L L L .由逆元的惟一性知:()11111221r r a a a a a a −−−−=L L .11. 设G 是群,a ,b ,a b G ∈,证明:如果ab e =,则ba e =.证明:ba =eba =1()a a ba −=1()a ab a −=1a ea −=e .或ba =bae =1()ba bb −=1()b ab b−=1beb −=e .12. 设G 是群.证明:如果对任意的x G ∈,都有2x e =,则G 是一个交换群. 证明:对任意,a b G ∈,∵aa e =∴1a a −=.故()111ab ab b a ba −−−===,所以群G 是交换群.13. 设G 是群.证明:G 是交换群的充分必要条件是对任意的()222,,a b G ab a b ∈=. 证明: “⇒”∵G 是交换群.∴对于任意的,a b G ∈,有ab ba =那么()()()()()222ab ab ab a ba b a ab b a b ====.“⇐”令G 为群假设对于任意的,a b G ∈,()222,,a b G ab a b ∈=,即abab aabb =.ba ab ⇒=, (消去律)∴G 为交换群.14. 设G 是一个具有乘法运算的非空有限集合.证明:如果G 满足结合律,有左单位元,且右消去律成立,则G 是一个群.证明: ∵G 是具有乘法运算的非空有限集合, 设{}12,,,n G a a a =L ,对于任意的a G ∈, {}12,,,n Ga a a a a a a G ==L . 且G 满足结合律,有左单位元. ∴存在i a a e G =∈, 即i a 为a 的左逆元. 于是G 是一个群.15. 证明:一个具有乘法运算的非空集合G ,如果满足结合律,有右单位元(即有e G ∈,使对任意的a G ∈,有ae a =),且G 中的每个元素有右逆元(即对每个a G ∈,有'a G ∈,使'aa =e ),则G 构成群.证明:(必要性)由群的定义,这是显然的.(充分性)只需证:e 是G 的单位元,'a 是a 的逆元即可.设a ∈G ,由条件知,存在'a ∈G ,使'aa =e .同时又存在''a ∈G ,使'''a a =e .于是'a a ='a ae =''''()a a a a =''''()a aa a ='''a ea ='''a a =e ,且ea ='aa a ='()a a a =ae =a .由题设条件知,e 是G 的单位元,'a 是a 的逆元.∴G 为群.16. 设G 是有限群.证明: G 中使3x e =的元素x 的个数是奇数.证明: ∵G 是有限群,{}3|A x G x e =∈=.∵e G ∈ 且3e e =, ∴e A ∈.又 对于任意的x A ∈,x e ≠,存在1x A −∈,满足()()331262xx x e e −====∴A 中的元素个数是奇数.17. 设,p q 是不同的素数.假设H 是整数集的真子集,且H 关于加法是群,H 恰好包含集合{},,,,qpp p q pq p q +中的三个元素.试确定以下各组元中哪一组是H 中的这三个元素?(A) ,,q p pq p q ; (B) ,,p p q pq + (C) ,,q p pq p (D) ,,q p q pq p + (E) ,,q pp p q . 解:(C ). (A )(),1q pp q=,()qp p mpnq p H +=∈,矛盾.(B )(),1,p p q q H +=∈,矛盾.(C )全为p 的倍数,不能生成q 的倍数,故也没有p q +. (D )()2q p q pq q H +−=∈,(),1,qpp qp q H =⇒∈,矛盾.(E )(),1q pp q=, ()()1,qp q p mpnq p q mp nq p q H +=++=+∈,矛盾.18. 假设下表是一个群的乘法表,试填出未列出的元.e a b c de e abcda abcd eb bcde ac cde a b d de a b c。

(完整word版)近世代数课后习题参考答案(张禾瑞)-2

(完整word版)近世代数课后习题参考答案(张禾瑞)-2

近世代数课后习题参考答案第二章 群论1 群论1. 全体整数的集合对于普通减法来说是不是一个群?证 不是一个群,因为不适合结合律.2. 举一个有两个元的群的例子.证 }1,1{-=G 对于普通乘法来说是一个群.3. 证明, 我们也可以用条件1,2以及下面的条件''5,4来作群的定义:'4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立'5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1 证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1 得e a a =-1 因为由'4G 有元'a 能使e a a =-'1 所以))(()('111a a a a e a a ---=e a a a e a a aa a ====----'1'1'11][)]([ 即 e a a =-1(2) 一个右恒等元e 一定也是一个左恒等元,意即 由 a ae = 得 a ea = a ae a a a a aa ea ====--)()(11 即 a ea =这样就得到群的第二定义. (3) 证 b ax =可解 取b a x 1-=b be b aa b a a ===--)()(11 这就得到群的第一定义.反过来有群的定义得到''5,4是不困难的.2 单位元,逆元,消去律1. 若群G 的每一个元都适合方程e x =2,那么G 就是交换群.证 由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有ba a b ab ab ===---111)(.2. 在一个有限群里阶大于2的元的个数是偶数.证 (1) 先证a 的阶是n 则1-a 的阶也是n .e e a a e a n n n ===⇒=---111)()(若有n m 〈 使e a m =-)(1 即 e a m =-1)(因而 1-=e a m e a m =∴ 这与a 的阶是n 矛盾.a 的阶等于1-a 的阶 (2)a 的阶大于2, 则1-≠a a 若 e a a a =⇒=-21 这与a 的阶大于2矛盾(3) b a ≠ 则 11--≠b a总起来可知阶大于2的元a 与1-a 双双出现,因此有限群里阶大于2的元的个数一定是偶数3. 假定G 是个数一个阶是偶数的有限群,在G 里阶等于2的元的个数一定是奇数.证 根据上题知,有限群G 里的元大于2的个数是偶数;因此阶2≤的元的个数仍是偶数,但阶是1的元只有单位元,所以阶 2≤的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的.证 G a ∈故 G a a a a n m ∈ ,,,,,,2由于G 是有限群,所以这些元中至少有两个元相等: n m a a = )(n m 〈 故 e a m n =-m n -是整数,因而a 的阶不超过它.4 群的同态假定在两个群G 和-G 的一个同态映射之下,-→a a ,a 和-a 的阶是不是一定相同? 证 不一定相同 例如 }231,231,1{i i G +-+-= }1{=-G对普通乘法-G G ,都作成群,且1)(=x φ(这里x 是G 的任意元,1是-G 的元)由 φ可知 G ∽-G但 231,231i i --+-的阶都是3. 而1的阶是1.5 变换群1. 假定τ是集合的一个非一一变换,τ会不会有一个左逆元1-τ,使得εττ=-1?证 我们的回答是回有的},3,2,1{ =A1τ: 1→1 2τ 1→12→1 2→33→2 3→4 4→3 4→5 … …τ显然是一个非一一变换但 εττ=-12. 假定A 是所有实数作成的集合.证明.所有A 的可以写成b a b ax x ,,+→是有理数,0≠a 形式的变换作成一个变换群.这个群是不是一个交换群? 证 (1) :τ b ax x +→ :λ d cx x +→:τλ d cb cax d b ax c x ++=++→)( d cb ca +,是有理数 0≠ca 是关闭的.(2) 显然时候结合律(3) 1=a 0=b 则 :ε x x → (4) :τ b ax +)(1:1a b x a x -+→-τ 而 εττ=-1所以构成变换群. 又 1τ: 1+→x x :2τ x x 2→ :21ττ )1(2+→x x :12ττ 12+→x x 故1221ττττ≠因而不是交换群.3. 假定S 是一个集合A 的所有变换作成的集合,我们暂时仍用旧符号τ:)('a a a τ=→ 来说明一个变换τ.证明,我们可以用21ττ: )()]([2121a a a ττττ=→来规定一个S 的乘法,这个乘法也适合结合律,并且对于这个乘法来说ε还是S 的单位元.证 :1τ )(1a a τ→ :2τ )(2a a τ→那么:21ττ )()]([2121a a a ττττ=→ 显然也是A 的一个变换. 现在证这个乘法适合结合律:)]()[(:)(321321a a ττττττ→)]]([[321a τττ= =→)]([:)(321321a a ττττττ)]]([[321a τττ 故 )()(321321ττττττ= 再证ε还是S 的单位元 :ε )(a a a ε=→ :ετ )()]([a a a ττε=→τ:τε )()]([a a a τετ=→∴ τεετ=4. 证明一个变换群的单位元一定是恒等变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近世代数第二章群论答案§ 1.群的定义1. 全体整数的集合对于普通减法来说是不是一个群?解:不是,因为普通减法不是适合结合律。

例如3 2 1 3 1 2 3 2 1 1 1 03 2 1 3 2 12. 举一个有两个元的群的例。

解:令G e,a , G的乘法由下表给出首先,容易验证,这个代数运算满足结合律(1) x y z x y z x, y,z G因为,由于ea ae a,若是元素e在(1)中出现,那么(1)成立。

(参考第一章,§ 4,习题3。

)若是e不在(1)中出现,那么有aa a ea a a aa ae a而(1)仍成立。

其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a。

所以G是一个群。

读者可以考虑一下,以上运算表是如何作出的。

3. 证明,我们也可以用条件I,H 以及下面的条件IV , V 来做群的定义:IVG 里至少存在一个右逆元a 1,能让ae = a对于G 的任何元a 都成立;V对于G 的每一个元a ,在G 里至少存在一个右逆元a 1,能让1aa = e解:这个题的证法完全平行于本节中关于可以用条件 I,II,IV,V 来做群定义的证明,但读者一定要自己写一下。

§ 2.单位元、逆元、消去律1. 若群G 的每一个元都适合方程x 2 = e ,那么G 是交换群。

解:令a 和b 是G 的任意两个元。

由题设2ab ab = ab = e另一方面ab ba = ab 2a = aea= a 2 = e于是有ab ab = ab ba 。

利用消去律,得ab = ba所以G 是交换群。

2. 在一个有限群里,阶大于2的元的个数一定是偶数。

解:令G 是一个有限群。

设G 有元a 而a 的阶n>2。

考察a 1。

我们有n 1n1n1 na a = ee a = a = e设正整数m<n而a1"=e,那么同上可得a m = e,与n是a的阶的假设矛盾。

这样,n也是a1的阶,易见a 1 a。

否贝 y a 2 = aa 1 = e与n > 2的假设矛盾。

这样,我们就有一对不同的阶大于2的元a 和1a 。

设G 还有元b , b a , b a 1,并且b 的阶大于2。

那么b 1的阶也 大于2,并且b 1 b 。

我们也有b 1 a 。

否贝卩 e = b 1b = aa 1 = b 1a 1消去b 1得b=a 1,与假设矛盾。

同样可证b 1=a 1。

这样,除a 和a 1 外,又有一对不同的阶大于 2的元b 和b 1。

由于G 是有限群,而G 的阶大于2的元总是成对出现,所以G 里 这种元的个数一定是偶数。

3•假定G 是一个阶是偶数的有限群。

在G 里阶等于2的元的个数一定 是奇数。

解:由习题2知,G 里阶大于2的元的个数是偶数。

但G 只有一个 阶是1的元,就是单位元e 。

于是由于的阶是偶数,得G 里阶等于2 的元的个数是奇数。

4. 一个有限群的每一个元的阶都有限。

解:令G 是一个有限群而a 是的任一元素,那么边,得(1)这样,存在正整数i j ,使(1)成立,因此也存在最小的正整数 m ,不能都不相等。

因此存在正整数i , j , if j ,使 a ,a j ,用 a j 乘两a ,j使a m e ,这就是说,兀a的阶是m。

4. 群的同态假定在两个群G和G的一个同态映射之下,a a。

a与a的阶是不是一定相同?解:不一定。

例如,令G是本章1中例2所给出的群而G是该节中例1所给出的的群。

那么读者容易证明: n g n是G的任意元是G到G的一个同态映射。

但G的每一元n 0都是无限阶的,而g的阶是1。

5. 变换群1•假定是集合A的一个非------ 变换。

会不会有一个左逆元1使得1 ?解:可能有。

例如令A={所有正整数},贝S: 11, n n 1 n f 1显然是A的一个非--- 变换。

而A的变换1: n n 1 nA就能使1.2•假定A是所有实数作成的集合。

证明,所有A的可以写成x ax b a 和b是有理数,a 0形式的变换作成一个变换群。

这个群是不是一个变换群?解:令G是由一切上述变换作成的集合。

考察G的任何两个元素x ax b a和b是有理数,a 0: x cx d c和d是有理数, c 0 那么: x x (ax b) c(ax b) d(ca)x (cb d)这里ca和cb d都是有理数,并且ca 0。

所以仍属于G。

结合律对一般变换都成立,所以对上述变换也成立单位变换属于G。

容易验证,在G中有逆,即1 1 ( b、x -x (-) a a因此G作为一个变换群。

但G不是-1・个父换群。

令xx 12・x2x那么1 2 : x(x1) 2 (x 1)2 2x 22 1 : x(x2) 1(2x)1 2x 11 2 2 13•假定S是一个集合A的所有变换作成的集合。

我们暂时用符号(a) 来说明一个变换。

证明,我们可以用i 2 : a i[ 2(a)] i 2(a)来规定一个乘法,这个乘法也适合结合律并且对于这个乘法来说,还是S的单位元。

解:令1和2是S的任意两个元而a是A的任意一个元。

那么2(a)和i[ 2(a)]都是A的唯一确定的兀。

因此如上规定i 2仍是S的一个唯一一确定的元而我们得到了一个S的乘法。

令3也是一个任意元,那么[(1 2) 3](a) 1 2【3(a)] i{[ 3(a)]}[i(2 3)](a)i[2 3(a)] i{ 2[3(a)]}所以(12)3 l( 2 3)而乘法适合结合律。

令是S的任意元。

由于对一切a A,都有(a) a ,所以(a) [ (a)] (a)(a) [ (a)] (a)即而仍是S的单位元。

4. 证明,一个变换群的单位元一定是恒等变换。

解:设G是由某一集合A的变换组成一个变换群,而是G的单位元。

任取G的一个元和A的一个元a。

由于,有a (a ) a由于是A的一个一一变换,所以a a而是A的恒等变换。

5. 证明,实数域上一切有逆的n n矩阵对于矩阵乘法来说,作成一个群.解:这个题的解法很容易,这里从略。

6. 置换群1. 1 23找出所有S 3不能和231 交换的元解: S 3有6 个元:123 123 123123 , 132 , 213 ,123 123 123231 , 31 2 , 。

321其中的123 1 23 123 2_ 123123 '231'312 =231显然可以和23;交换。

通过计算,易见其它三个元不能和231交换2•把s ;的所有元写成不相连的循环置换的乘积3. 证明:(i ) 两个不相连的循环置换可以交换; (ii )' ■; ■■-/ :.解:(i )看■的两个不相连的循环置换 使数字1, 2,…,n 如何变动。

有三种情况。

解:123 123=(1),123 132=(2 3)1 23 213 =(1 2), 123 321(1 3),1 232 31(1 2 3)123 31 2=(1 3 2)和T 。

我们考察乘积(a)数字:在中出现,并且把二变成j。

这时由于和T不相连,j不在T中出现,因而T使j不变,所以T仍把:变成j。

(b)数字k在T中出现,并且T把k变成》。

这时」不在中出现,因而使k不变,所以T仍把变成巧(c)数字m不在和T中出现。

这时T使m不动。

如上考察T 使数字1,2,…,n如何变动,显然得到同样的结果。

因•此T = T 。

(ii)由于一 _ . —:_ •_-'、,所以鈿4. 证明一个厂循环置换的阶是。

解:一个疵一循环置换n =辄血曲曲的一次方,二次方,…,〔次方分别把.变成_ _ •.。

同理:把i2变成j2,…,把.变成.。

因此。

由上面的分析,若是 v,那么。

这就证明了,n的阶是'。

5. 证明••的每一个元都可以写成(1 2),(1 3),…,(1 n)这二--个1 -循环置换中的若干个的乘积。

解:由于每一个置换都可以写成不相连的循环置换的乘积,所以只须证明,一个循环置换可以写成若干个(1 :)形的置换的乘积。

设n 是一个循环置换。

我们分两个情形加以讨论。

(a) 1在n中出现,这时n可以写成勺Gr ^4-11容易验算(i ij 勾一博fl (1 7 (1 .丿(b) 1不在n中出现,这时兀=(右右…=(1 gijhM』(1 •])=(1 \) (1 勺)…(1 ―) (1§ 7.循环群1. 证明,一个循环群一定是交换群。

解:设循环群G a。

那么G的任何两个元都可以写成a m和a n(m,n是整数)的形式。

但a m a n a mn a nm a n a m所以G是一个交换群。

El2•假定群的元a的阶是n。

证明」的阶是匚,这里d=( r,n )是r和n 的最大公因子。

解:由于d | r , r=ds,所以tt H(a r)d = ◎曲严=(a a)s= e现在证明,二就是J的阶。

设三的阶为{。

那么玉朋-。

令二……一「•二|三,得--:<■;■- 「厂:-:丁- :但心宅尿而是以的阶,所以O "而■=创于是■- u。

(参看本节定理的第二种情形。

)为了证明_;,只须反过来证明_ |'。

由J"」*而n是a的阶,同上有n | r ,因而;|「。

但d是n和r的最大公因子,所以:三:互素而有.-o3•假定a生成一个阶是n的循环群G。

证明:二也生成G ,假如(r,n ) =1 (这就是说r和n互素)。

解:由习题2, R的阶是n。

所以a T, (a r)2 ........... (a r)n_l, (a r)n = e互不相同。

但G只有n个元,所以, ,而厂生成G。

4. 假定G是循环群,并且G与一同态。

证明•一也是循环群。

解:由于G与一同态,1也是一个群。

设G a,而在G至归的同态满射©下,二—I 。

看「的任意元三。

那么在©下,有二…三二岂八 f : Q.- : 二亍:。

这样,一的每一元者E是-二的一个乘方而G (a)。

5. 假定G是无限阶的循环群,「•是任何循环群。

证明G与]同态。

解:令G a , G Q)。

定义①:产一我们证明,©是G到•_的一个同态满射。

(i)由于G是无限阶的循环群,G的任何元都只能以一种方法写成子的形式,所以在©之下,G的每一个元有一个唯一确定的象,而©是G至匸的一个映射。

(ii)一的每一个元都可以写成:…的形式,因此它在©之下是G的元 -■的象,而©是G至狀的一个满射。

(jii)-… 二_ -—- 所以©是G到-的一个同态满射。

§ 8•子群1. 找出〉的所有子群。

解:「显然有以下子群:本身;((1))={(1)};.\ ((1 2))={(1 2),(1)};((1 3))={(1 3),(1)};((2 3))={(2 3),(1)};((1 2 3))={(1 2 3),(1 3 2) , (1)}。

相关文档
最新文档