一次函数(教学课件)

合集下载

《一次函数》课件

《一次函数》课件

REPORTING
经济问题中的一次函数
总结词:经济模型
详细描述:一次函数在经济领域中常被用作简化经济模型,例如,消费和收入之 间的关系、生产成本和产量之间的关系等。通过一次函数,可以更直观地理解经 济现象和预测未来的经济趋势。
物理问题中的一次函数
总结词:物理定律
详细描述:在物理学中,许多定律和公式都可以用一次函数来表示,例如,重力与距离的关系、电流与电压的关系等。通过 一次函数,可以更准确地描述物理现象和预测实验结果。
2023
《一次函数最新》 ppt课件
REPORTING
2023
目录
• 一次函数简介 • 一次函数的表达式 • 一次函数的应用 • 一次函数的解析方法 • 一次函数的实际案例
2023
PART 01
一次函数简介
REPORTING
一次函数的定义
一次函数是形如y=kx+b的函 数,其中k和b是常数,k≠0。
一次函数在数学问题中的应用
线性规划
利用一次函数解决资源分 配问题,实现资源利用的 最大化。
代数方程求解
通过一次函数表示代数方 程,简化方程求解过程。
几何图形面积计算
利用一次函数计算几何图 形的面积,如三角形、矩 形等。
一次函数与其他数学知识的结合
与二次函数的结合
利用一次函数和二次函数的性质 ,解决更复杂的数学问题。
一次函数是线性函数的一种, 它的图像是一条直线。
一次函数在平面坐标系中表示 为一条直线,该直线经过点 (0,b)和斜率为k。
一次函数的图像
一次函数的图像是一 条直线,其斜率为k ,截距为b。
通过代入不同的x值 ,可以求出对应的y 值,从而得到函数的 图像。

一次函数图像与性质ppt课件

一次函数图像与性质ppt课件


象时,只要描出函数图象中的两个点就可画出此
函 数的图象.
b ,0 k
(2)一般地,一次函数y=kx+b(k,b是常数,k≠0)
都过(0,b) (与y轴交点坐标)和(
)(与x轴交点
总结
一次函数的图象是一条直线,我们称它为直线 y=kx+b;它必过(0,b)和( b , 0 )两点.
k
例1 画出函数y=-6x与y=-6x+5的图象.
从 k、b的值看一次函数的图像 (1)当k>0,b>0时,图象过一、二、三象限; (2)当k>0,b<0时,图象过一、三、四象限; (3)当k<0,b>0时,图象过一、二、四象限; (4)当k<0,b<0时,图象过二、三、四象限.
例2 已知直线y=(1-3k)x+2k-1. (1)k为何值时,直线与y轴交点的纵坐标是-2?
一次函数的图象是一条直线,这条直线与坐标轴 有交点,正比例函数只有一个交点,一般的一次函数 有两个交点. 注意:一次函数图象的画法与我们前边学过的函数图 象的画法一样,其步骤为列表、描点、连线.通过实际 操作,我们可得出:
(1)一次函数 y=kx+b(k,b是常数,k≠0)的图象是

条直线.由两点确定一条直线可知,在画一次函数
要点精析: (1)在实际问题中,当自变量x的取值受限制时,一次函 数 y=kx+b的图象就不一定是一条直线了,有时是线段、 射线或直线上的部分点. (2)k决定直线的倾斜角度: k>0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为锐角; k<0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为钝角; k1=k2⇔直线y1=k1x+b1∥直线y2=k2x+b2(b1≠b2). (3)k>0⇔y随x的增大而增大;k<0⇔y随x的增大而减小 .

一次函数课件(共50张PPT)

一次函数课件(共50张PPT)
例2.画出函数y =-6x与 y =-6x +5的图 象。
x
-2 -1 0 1 2
y=-6x 12 6
0
-6 -12
y=-6x+5 17 11 5 -1 -7
解:函数y =-6x与 y =-6x +5中,自变量x 可以是任意的实数,列表表示几组对应值:
y
y=-6x+5 17
11
y=-6x
5
两个函数 图象有什 么关系?
即它可以看作由直线y=x向 下 平移___2_ 个单位长度而得 到.
.
.
.
y
...0...
.Байду номын сангаас
.
.
y... =yyx==+xx2-2
2
x
一次函数y=kx+b(k≠0) 图象的画法 (两点)
例1 在同一平面直角坐标系中画出下列 每组函数的图象:
1 y 2x与
y 2x 3
2 y 2x 1与
y 1 x 1 2
2、正比例函数的图象是什么形状?
正比例函数的图象是
(
经过原点的一条直)线
3、正比例函数 y=kx(k是常数,k≠0)中,
k的正负对函数图象有什么影响?
y=kx
图象
性质
y
K>0
经过一、三象限
x
y随x增大而增大
K<0
y
经过二、四象限
y随x增大而减小
x
图像必经过(0,0)和(1,k)这两个点
二、新课精讲
结 y随x的增大而增大,
y 3x 2

这时函数的图象从左到右上升;
观察分析:
y 2 x 1和

一次函数全章ppt课件

一次函数全章ppt课件
一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值, 变量y都有唯一的值与它对应,那么我们称y是x的函数(function),其中x是自变 量.
2.函数的表示法:三种方法 ①图象法 ②列表法 ③关系式法
完整版ppt课件
22
2 一次函数与正比例函数
完整版ppt课件
23
1.理解一次函数和正比例函数的概念,以及它们之间的关系. 2.能根据所给条件,写出简单的一次函数、正比例函数表达式.
汽车速度v s v2
300
25
100
12
3
3
滑行距离s
完整版ppt课件
9
(2)给定一个v值,你能求出相应的s值吗?

(3)其中对于给定的每一个速度v,滑行距离s对应有几个值?
只有一个值
完整版ppt课件
10
议一议
上面的问题中,有什么共同特点?
【解析】都有两个变量:①时间 t 、相应的高度 h ; ②层数n、物体总数y;③汽车速度v、滑行距离s. 如果给定其中一个变量(自变量)的值,就能确定另一个变量(因变量)的 值.
完整版ppt课件
30
【例题】
【例1】写出下列各题中y与x之间的关系式,并判断y是否为x的一次函 数?是否为正比例函数? (1)汽车以60km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间 的关系. (2)圆的面积y (cm2)与它的半径x (cm)之间的关系. (3)一棵树现在高50 cm,每个月长高2 cm,x月后这棵 树的高度为y cm.
完整版ppt课件
15
【跟踪训练】
下面各题中分别有几个变量?你能将其中某个变量看成是另一个变量的函 数吗?
(1)每一个同学购一本代数书,书的单价为2元, 则x个同学共付y元.

一次函数课件ppt

一次函数课件ppt
掌握如何根据直线的方程求解一次函数,并了解直线的性质。
一次函数与两直线的交点
了解如何通过两直线的交点求解一次函数的解析式。
一次函数与抛物线的交点
了解如何通过抛物线的交点求解一次函数的解析式。
一次函数在实际问题中的应用
一次函数与最值问题
掌握如何利用一次函数解决最值问题。
一次函数与不等式问题
了解如何利用一=kx+b(k,b是常数,k≠0)中,当b=0时, y=kx(k是常数,k≠0),此时称y是x的正比例函 数。
一次函数的表达式
表达式
y=kx+b(k,b是常数,k≠0)
变量的取值范围
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而 减小。
截距的意义
b是常数项,表示与y轴的交点坐标。当b>0时,交点在y 轴的正半轴上;当b<0时,交点在y轴的负半轴上;当 b=0时,交点在原点。
03 一次函数的应用
一次函数在代数中的应用
一次函数与一元一次方程的关系
01
了解如何用一次函数解决一元一次方程的问题。
一次函数的单调性
02
掌握如何根据函数的单调性求解函数的值域和定义域。
一次函数的零点
03
了解如何通过零点将函数进行分类,并求解函数的零点。
一次函数在几何中的应用
直线方程与一次函数的关系
一次函数的图像
图像的绘制
描点法,先确定自变量x的取值范 围,然后分别在坐标系中找出对
应的y值,描点、连线即可得到一 次函数的图像。
图像的性质
当k>0时,直线呈上升趋势;当 k<0时,直线呈下降趋势。截距b 的取值决定了直线与y轴交点的位 置。

一次函数的图像ppt课件

一次函数的图像ppt课件

取一些点,这些点的坐标分别满足y=-2x或y=-2x+1上
由此可见,一次函数y=kx+b(k、b为常数, k≠0 )可以用直角坐标系
中的一条直线来表示, 这条直线就叫做一次函数y=kx+b的图象.
y=2x
y=-2x
观察图象,它们有什么异同?
你能得出一次函数的图象特点吗?
相同点:两图象都经过原点
不同点:函数y=2x的图象经过第一、三象限,从左向右呈上升状态,
–3
–4
一般地,你能从函数y=k+b的图象上直接看出b
的数值吗?
y = 2x+3
–5
–6
–7
–8
y = -x
5
x
归纳总结
一次函数y=kx+b(k,b是常数,k≠0)的图象与性质
k>0
y随x的增大而增大
k<0
y随x的增大而减小
k相等
图象平行
b相等
图象相交于点(0,b)
例1、在同一坐标系中作出下列函数的图象,并求它们与坐标轴的交点
取x=1,得y=-1,得到点(1,-1)
2
-2 -1
0
1
2
3
x
-1
-2
y=-3x+2
1.设下列两个函数:
当 x =x1时,y = y1; 当x=x2时,y=y2,
用“<”或“>”号填空
①对于函数y=


②对于函数y= -
x,若x2>x1,则y2


x+3,若x2
>
>
y1
x1,则y2<y1
观察一次函数y=kx+b(k≠0)的图象,总结一次函数图象的k,b的

一次函数课件ppt

一次函数课件ppt

奇偶性
一次函数既不是奇函数也不是偶函数 ,因为它们的图像不关于原点或 y 轴 对称。
02 一次函数的表达式与系数
一次函数的表达式
01
一次函数的一般表达式为 $y = ax + b$,其中 $a$ 和 $b$ 是常 数,且 $a neq 0$。
02
当 $a > 0$ 时,函数为增函数; 当 $a < 0$ 时,函数为减函数。
已知函数与$x$轴和$y$轴的截距,使用截 距式$y = frac{x}{a} + frac{b}{a}$求函数解 析式。
一次函数的解题技巧
数形结合
利用函数图像直观理解 函数性质,如增减性、
最值等。
整体代入
在求解过程中,将表达 式整体代入,简化计算

分类讨论
根据不同情况分类讨论 ,得出不同情况下的函
斜率与图像
斜率决定了图像的倾斜程 度,当 a > 0 时,图像向 右倾斜;当 a < 0 时,图 像向左倾斜。
一次函数的性质
单调性
无界性
一次函数的单调性由斜率决定,当 a > 0 时,函数单调递增;当 a < 0 时 ,函数单调递减。
一次函数的值域是全体实数,即对于 任意实数 x,y = ax + b 总有一个对 应的值。
一次函数的系数
一次函数的斜率为 $a$,表示函数图 像的倾斜程度。
当 $a > 0$ 时,函数图像从左下到右 上倾斜;当 $a < 0$ 时,函数图像从 左上到右下倾斜。
一次函数的应用
一次函数在数学、物理、工程等领域都有广泛应用。
在实际生活中,一次函数可以用来描述一些简单的问题,如速度与时间的关系、 价格与数量的关系等。

一次函数图象课件

一次函数图象课件

物理问题
利用一次函数图象描述物 理现象,如速度与时间的 关系、力与位移的关系等 。
经济问题
通过一次函数图象分析成 本、收益、利润等经济指 标的变化趋势。
一次函数图象在数学建模中的应用
建立数学模型
利用一次函数图象描述实 际问题的变化趋势,建立 数学模型进行预测和决策 。
参数估计
通过一次函数图象的拟合 ,估计模型参数,提高预 测精度。
一次函数图象ppt课 件
目录
• 一次函数图象的基本概念 • 一次函数图象的性质 • 一次函数图象的应用 • 一次函数图象的变换 • 一次函数图象的解题技巧
01
一次函数图象的基本概念
一次函数图象的定义
01 一次函数图象
一次函数y=kx+b(k≠0)的图象是一条直线。
02 斜率
一次函数图象的斜率为k,反映了函数值y随自变 量x的变化率。
THANKS
感谢观看
利用待定系数法解题
总结立关于待定系数的方程或方程组,通过解方程或方 程组得到待定系数的值,从而确定一次函数的解析式。这种方法能够避免对函数 性质和图像的复杂分析,提高解题效率。
利用方程组法解题
总结词:逻辑严谨
详细描述:根据题目条件建立关于未知数的方程组,通过解方程组得出未知数的值,进一步确定一次函数的解析式。这种方 法需要严谨的逻辑思维和计算能力,能够确保解题的准确性和完整性。
一次函数图象的对称性
总结词
关于y轴对称
详细描述
一次函数图象是关于y轴对称的。这是因为一次函 数的表达式为y=kx+b,其中k是斜率,b是截距 。无论k和b取何值,图象总是关于y轴对称。
03
一次函数图象的应用
利用一次函数图象解决实际问题

19.2.2 一次函数的概念 课件(共23张PPT)

19.2.2  一次函数的概念   课件(共23张PPT)
4.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒 增加2 m/s.
(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.

一次函数的应用课件(共31张PPT)

一次函数的应用课件(共31张PPT)
(0,b)
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6

所拼得四边形的周长L

初二数学《一次函数》课件

初二数学《一次函数》课件

进阶习题
01
A. (4,4) 或 (-4,-4)
02
B. (4,-4) 或 (-4,4)
03
C. (-4,8) 或 (4,-8)
04
D. (-4,-8) 或 (4,8)
高阶习题
1
高阶习题1:已知一次函数 y = kx + b(k≠0) 经过点 (0,2),且与坐标轴围成的三角形的面积为 4,求这个一次函数的解析式.
2
A. y = x + 2 或 y = -x + 2
3
B. y = x - 2 或 y = -x + 2
高阶习题
01
C. y = x + 2 或 y = -x - 2
02
D. 以上都不对
03
高阶习题2:已知一次函数 y = kx + b(k≠0)的图象经过点 P(3,4),它与 x、 y 轴的正半轴分别相交于 A、B 两点,且 OA+OB=15,求此一次函数的解析式 .
详细描述
斜截式为 $y = mx + b$,其中 $m$ 是斜率,$b$ 是截距。这种形式简洁 地表示了直线方程的斜率和截距,便 于理解和计算。
一次函数的点斜式
总结词
点斜式是一次函数的另一种表达方式,用于描述通过某一点的直线方程。
详细描述
点斜式为 $y - y_1 = m(x - x_1)$,其中 $(x_1, y_1)$ 是直线上的一个点,$m$ 是斜率。该形式通过一个已知点和斜率来表示直线方程,具有更强的实际应用价 值。
注重理解而非死记硬背
函数的性质和特点应通过理解来掌握,而不是简单地记忆公式。
多做练习
通过大量的练习,可以更好地掌握一次函数的运用,提高解题能力 。

一次函数ppt课件免费

一次函数ppt课件免费

线性关系判断方法
01
观察法
通过观察散点图或数据表,判断两个变量之间是否存在线性关系。
02 03
计算法
通过计算相关系数r的值,判断两个变量之间的线性关系强度。当|r|接 近于1时,表示两个变量之间存在较强的线性关系;当|r|接近于0时,表 示两个变量之间不存在线性关系。
残差分析法
通过绘制残差图或计算残差平方和,判断回归模型是否符合线性关系。 如果残差图呈现随机分布且残差平方和较小,则表明回归模型符合线性 关系。
实际应用问题建模与求解
01
02
03
列方程
根据实际问题中的条件, 列出反映问题中数量关系 的方程。
解方程
运用一次函数的运算技巧, 求解所列出的方程。
检验与作答
将求得的解代入原方程进 行检验,确认解的合理性, 并根据实际问题要求进行 作答。
03
一次函数图像变换规律
平移变换规律
一次函数 y = kx + b (k ≠ 0) 的图像是一条直线, 01 当 b 值发生变化时,图像会沿着 y 轴上下平移。
当 b > 0 时,图像向上平移 b 个单位;当 b < 0 02 时,图像向下平移 |b| 个单位。
平移后的直线斜率不变,仍为 k。 03
伸缩变换规律
01 当 k > 1 时,图像的斜率增大,函数值增长的速 度变快,图像相对于原直线更陡峭。
02 当 0 < k < 1 时,图像的斜率减小,函数值增长 的速度变慢,图像相对于原直线更平缓。
学习数学不仅仅是为了应付考试,更重要的是培养解决实际问题的能力。通过学习和应用一 次函数,可以强化数学与实际生活的联系,提高数学应用意识。
拓展数学思维

10、一次函数PPT课件

10、一次函数PPT课件
第一部分 教材同步复习
10、一次函数
第一部分 教材同步复习
1
10、一次函数
知识要点 ·归纳
►知识点一 一次函数的图象与性质
1.一次函数及正比例函数的概念 一般地,如果y=kx+b(k,b是①___常__数__,k≠0),那么,y叫做x的一次函数,特 别地,当②____b_=__0_时,一次函数y=kx+b就变为y=kx(k为常数,k≠0),这时,y叫 做x的正比例函数.
202X权威 · 预测
第一部分 教材同步复习
15
【解答】 (1)∵点 A(2,0),AB= 13,∴BO= AB2-AO2= 9=3,∴点 B 的 坐标为(0,3);
(2)∵△ABC 的面积为 4,∴12×BC×AO=4,∴12×BC×2=4,即 BC=4.∵BO =3,∴CO=4-3=1,∴C(0,-1).
第一部分 教材同步复习
13
1.(202X玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是
( D) A.点(0,k)在l上
B.l经过定点(-1,0)
C.当k>0时,y随x的增大而增大
D.l经过第一、二、三象限
【考查内容】一次函数的性质.
【解析】A.当x=0时,y=k,即点(0,k)在l上,此选项正确;B.当x=-1
(3)一次函数图象y=kx+b与x轴的交点是⑥__(_-_bk_,__0_)__ ,与y轴的交点是⑦ _(0_,__b_)___.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
3
3.一次函数的性质 一次函数
k、b 符号 b>0
k>0 b<0
中考新突破 · 数学(江西)

一次函数的性质课件(共10张PPT)

一次函数的性质课件(共10张PPT)

1 2
x
当P点沿直线向右下方运动时,直线是下 降的.这说明当自变量x的值增大时,函数 值y随着减小.
(4)比较(2)(3)中你的发现,你能总结出一次函数y=k x +b当自变量x增加时,函数值y的变化吗?
一般地,对于一次函数;当k<0时,y随着x的增大而减小.
作业布置
课本146页 习题10.3 第1、3、4题.
当P沿直线向右上方运动时, 直线是上升的.这说明当自 变量x的值增大时,函数y 的值也随着增大.
(2)在同一直角坐标系中,分别画出直线y=x-1,y=5x,y (图10-11),你发现它们是否也具有上述性质?
4 3
x
2
它们具有上述性质
(3)在同一直角坐标系中,分别画出直线y=-3x-1,y=-x+2,y (图10-12),你又有什么发现?与同学交流.
10.3 一次函数的性质
学习目标
1.结合函数图象,理解正比例函数与一次函数 的性质.
2.加强图象与函数表达式,即“数”与“形” 的联系.
相关知识链接
1.一次函数:形如 y=k x+b(k≠0)的函数叫做x的一
次函数,其中k与b是常数.特别地,当b=0时,一次函 数y=kx也叫做正比例函数,k叫做比例系数.
解: 因为一次函数y=kx-k的y随x的增大而 增大,所以k>0.又因为x=0时,y=-k<0, 所以直线y=kx-k与y轴的交点(0,-k) 在y轴的负半轴,且当y=0时,x=1,故 直线y=kx-k与x轴的交点为(1,0).它 的图象大致如图10-13所示,这条直线 经过第一、三、四象限.
练习
2.一次函数y=k x+b(k≠0),当b≠0时,它的图象与x
轴的交点坐标是(

一次函数的图像课件

一次函数的图像课件
02
图像是一条直线,其上每一个点 的坐标 $(x, y)$ 都满足该函数的 解析式。
解析式中参数对图像的影响
$k$ 的影响
当 $k > 0$ 时,图像为上升直线;当 $k < 0$ 时,图像为下降直线。
$b$ 的影响
当 $b > 0$ 时,图像与 $y$ 轴交于 正半轴;当 $b < 0$ 时,图像与 $y$ 轴交于负半轴。
如果将一次函数的x替换 为x+h(h>0),则图 像向左移动h个单位。
如果将一次函数的x替换 为x-h(h>0),则图像
向右移动h个单位。
03 一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本与产量的关 系、价格与需求的关系等。
一次函数在物理学中的应用
截距
一次函数的截距为b,表示函数图像 与y轴的交点。当b>0时,交点在y轴 的正半轴上;当b<0时,交点在y轴的 负半轴上。
一次函数图像的平移
上平移
下平移
左平移
右平移
如果一次函数的b值增加 (即向上平移),则图 像向上移动相应的距离。
如果一次函数的b值减小 (即向下平移),则图 像向下移动相应的距离。
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在统计学中的应用
在统计学中,一次函数可以用来拟合数据,例如线性回归分析等。
一次函数在数学题目中的应用
一次函数在代数题中的应用
在代数题目中,一次函数可以用来解决方程和不等式问题,例如求解一元一次方 程、一元一次不等式等。
描点,最后将这些点连接成一条直线。

一次函数的概念PPT课件

一次函数的概念PPT课件
20.1 一次函数的概念
概念学习
一般地,解析式形如y kx b (k、b是常数,且k 0)的函数叫做
一次函数(linear function) k是比例系数
一次函数y kx b的定义域是一切实数.
当b 0时,解析式 y kx b就
成为 y kxk是常数,且k 0,
这时y是x的正比例函数.
分析:可设 y kx b
待定系数法
例题3 一直变量x、y之间的关系式是y=(a+1)x+a(其 中a是常数),那么y是x的一次函数吗?
分析:一次函数的解析式是什么样情势的?
y kx b (其中k、b是常数,且k 0)
概念学习 一般地,我们把函数y c(c为常数,) 叫做常值函数(constant function).
正比例函数是一次函数的特例.
例题1
根据变量x、y的关系式,判断y是否是x的一次函数.
(1) y 2x √
(3) x 1 y 2
3√
y 3x 6
(2)
y
1
1 2
x

(4) y 2 3

例题2
已知一个一次函数,当自变量x=2时,函数值 y=-1;当x=5时,y=8.求这个函数的解析式.
解:y 50 5x
它是一次函数
(0 x 10)
练习3:已知一次函数图象过点(3,5)与 (-4,-9),求这个一次函数的解析式.
解:设 y kx b 把(3,5)和(-4,-9)分别代入解析式中

3k b 5 4k b 9
解得
k b
2 1
函数的解析式为y 2x 1
课堂小结
一次函数 常值函数 待定系数法求函数解析式

一次函数PPT课件

一次函数PPT课件

(1)y=-x-4 它是一次函数,不是正比例函数。
k=
,b=_____
(2)y=x2 它不是一次函数,也不是正比例函数
(3)y=2πx 它是一次函数,也是正比例函数。
1
(4)y= — 它不是一次函数,也不是正比例函数
x
例2: 写出下列各题中y与 x之间的关系式,并判断:y 是否为x的一次函数?是否为正比例函数? (1)汽车以60千米/时的速度匀速行驶,行驶路程为y(千米) 与行驶时间x(时)之间的关系; (2)圆的面积y (c m2)与它的半径x ( cm)之间的关系; (3)一棵树现在高5 0 厘米,每个月长高2 厘米,x 月后 这棵树的高度为y 厘米。
解:设此人本月工资、薪金是x元,则 19.2=0.05×(x-1600),
解得:x=1984. 答:本月工资、薪金是1984元.
练一练184页随堂练习1
1、某种大米的单价是2.2元/千克,当购买 x千克大米时,花费为y元,y是x的一次函 数吗?是正比例函数吗?
解:y=2.2x,y是x的一次函数, 也是x的正比例函数.
是:y=3x+,1y是否为x一的次函数.
练一练186页知识技能2
2、不管通话多长时间,每部手机须交月租50元, 在此基础上,另外每通话1分钟缴费0.4元. (1)写出每月必须交月租费用y元与时间x的 关系式:
(2)求出月通话时间为152分的电话费; (3)如果预交200元的话费,求通话的时间.
练一练186页知识技能2
x
x
④y= ⑤y=5 ⑥y=x2
8
练习2:在一次函数y=-3x-6中, 自变量x的系数是 , 常数项是 .
练3:若y=(m-2)x+ m2 -4是关于x的正比例函数, 则m =-2 ; 若是关于x的一次函数,则m ≠2 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、数形结合的思想与方法,从特 殊到一般的思想与方法
4、进一步体验研究函数的一般思 路与方法
(4)对于函数y=5x+6,y的值随x的值 减小而_减__少___。
(5)函数y=2x-1经过一、三、四象限
(6)函数y=2x - 4与y轴的交点为 ( 0,-4),与x轴交于( 2, 0)
(7)函数y=3(x -2)在y轴上的截 距为 -6 。
1、会画一次函数的图象
2、一次函数的图象与性质,常数k, b的意义和作用
k的符号
k>0 k>0 k<0 k<0
b的符号
b>0 b<0 b>0 b<0
1.下列函数中,y的值随x值的增
大而增大的函数是___C_____.
A.y=-2x B.y=-2x+1
C.y=x-2 D.y=-x-2
2、直线y=3x-2可由直线y=3x向 下 平 移 2 单位得到。 3、直线y=x+2可由直线y=x-1向 上 平 移 3 单位得到。
一次函数y=kx+b的图象是一条直线,我 们称它为直线y=kx+b,它可以看作由直线 y=kx平移|b|个单位长度得到。
(当b>0时,向上平移;当b<0时,向下 平移)
你会画出函数y=2x-1与y=-2x+l 的图象吗?
x y=2x-1 y=-2x+1
01
-1 1 1 -1
∴ y=2x -1的图象是经过点 (0,-1)和点(1,1)的直线; y= -2x+1是经过点(0, 1 ) 点(1, -1)的直线。
1、什么是一次函数? 2、正比例函数的图象与性质 有哪些? 3、正比例函数与一次函数有什么关系?
既然正比例函数是特殊的一次函 数,正比例函数的图象是直线,那么 一次函数的图象也会是一条直线吗? 它们图象之间有什么关系?一次函数 又有什么性质呢?
1、请大家在同一坐标系内作出下 列函数y=x, y=x+2,y=x-2的图象。
x
… -2 -1 0 1 2 …
y=x … -2 -1 0 1 2 …
y=x+2 … 0 1 2 3 4 …
y=x-2 … -4 -3 -2 -1 0 …
2、观察与比较
.
.
.
y
...0...
.
.
.
y... =yyx==+xx2-2
2
x
议一议:正比例函数y=x与一次函数 y=x+2 、y=x-2图象有什0,-_2_),即它可以看 作由直线y=x向下 平移__2__
个单位长度而得到.
3.探究
(1)、比较它们函数的解析式与图象,
你能解释这是为什么吗?
y y=x+2
y=x
3
y=x-2
02
x
(2)你能说出一次函数y=3x-4的图象是 什么形状吗?它与直线y=3x有什么关系?
(3)那么一次函数y=kx+b的图象与正 比例函数y=kx图象有什么关系?
归纳:这两个函数的图象形状 都是直线 ,并且倾斜程度相__同_ 函数y=x的图象经过原点,函 数y=x+2的图象与y轴交于点 (_0_,__2),即它可以看作由直线 y=x向_上_平移 2 个单位长度而 得到.函数y=x-2的图象与y轴
.
.
.
y
23...0...
.
.
.
.y=x+2
.
.
y=x y=x-2
o··1
x
y=-2x+l
b的正负对函数图象
有什么影响?
结论:1、当k>0时,,y随x的增大而增 大;当k<0时,y随x的增大而减小
y x
·o· x
y=x+1
y
o·· x
y=2x-1
y
o·· x
y=-2x+1
y
·o· x
y=-x-1
结论2
图象经过的象限 一、二、三 一、三、四 一、二、四 二、三、四
y y=2x-1
2
··
o··1
x
y=-2x+l
注意:图象与y轴交于(0,b), b就叫做图象 在y轴上的截距, 它有正负之分。
同样,我们可以画出 函数y=x+1, y=-x-1的
y y=2x-1
图象
y=-x-1 2 ··
议一议:一次函数 解析式y=kx+b(k, b y=x+1 是常数,k≠0)中,k、
相关文档
最新文档