一次函数(教学课件)
合集下载
《一次函数》课件
REPORTING
经济问题中的一次函数
总结词:经济模型
详细描述:一次函数在经济领域中常被用作简化经济模型,例如,消费和收入之 间的关系、生产成本和产量之间的关系等。通过一次函数,可以更直观地理解经 济现象和预测未来的经济趋势。
物理问题中的一次函数
总结词:物理定律
详细描述:在物理学中,许多定律和公式都可以用一次函数来表示,例如,重力与距离的关系、电流与电压的关系等。通过 一次函数,可以更准确地描述物理现象和预测实验结果。
2023
《一次函数最新》 ppt课件
REPORTING
2023
目录
• 一次函数简介 • 一次函数的表达式 • 一次函数的应用 • 一次函数的解析方法 • 一次函数的实际案例
2023
PART 01
一次函数简介
REPORTING
一次函数的定义
一次函数是形如y=kx+b的函 数,其中k和b是常数,k≠0。
一次函数在数学问题中的应用
线性规划
利用一次函数解决资源分 配问题,实现资源利用的 最大化。
代数方程求解
通过一次函数表示代数方 程,简化方程求解过程。
几何图形面积计算
利用一次函数计算几何图 形的面积,如三角形、矩 形等。
一次函数与其他数学知识的结合
与二次函数的结合
利用一次函数和二次函数的性质 ,解决更复杂的数学问题。
一次函数是线性函数的一种, 它的图像是一条直线。
一次函数在平面坐标系中表示 为一条直线,该直线经过点 (0,b)和斜率为k。
一次函数的图像
一次函数的图像是一 条直线,其斜率为k ,截距为b。
通过代入不同的x值 ,可以求出对应的y 值,从而得到函数的 图像。
一次函数图像与性质ppt课件
图
象时,只要描出函数图象中的两个点就可画出此
函 数的图象.
b ,0 k
(2)一般地,一次函数y=kx+b(k,b是常数,k≠0)
都过(0,b) (与y轴交点坐标)和(
)(与x轴交点
总结
一次函数的图象是一条直线,我们称它为直线 y=kx+b;它必过(0,b)和( b , 0 )两点.
k
例1 画出函数y=-6x与y=-6x+5的图象.
从 k、b的值看一次函数的图像 (1)当k>0,b>0时,图象过一、二、三象限; (2)当k>0,b<0时,图象过一、三、四象限; (3)当k<0,b>0时,图象过一、二、四象限; (4)当k<0,b<0时,图象过二、三、四象限.
例2 已知直线y=(1-3k)x+2k-1. (1)k为何值时,直线与y轴交点的纵坐标是-2?
一次函数的图象是一条直线,这条直线与坐标轴 有交点,正比例函数只有一个交点,一般的一次函数 有两个交点. 注意:一次函数图象的画法与我们前边学过的函数图 象的画法一样,其步骤为列表、描点、连线.通过实际 操作,我们可得出:
(1)一次函数 y=kx+b(k,b是常数,k≠0)的图象是
一
条直线.由两点确定一条直线可知,在画一次函数
要点精析: (1)在实际问题中,当自变量x的取值受限制时,一次函 数 y=kx+b的图象就不一定是一条直线了,有时是线段、 射线或直线上的部分点. (2)k决定直线的倾斜角度: k>0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为锐角; k<0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为钝角; k1=k2⇔直线y1=k1x+b1∥直线y2=k2x+b2(b1≠b2). (3)k>0⇔y随x的增大而增大;k<0⇔y随x的增大而减小 .
一次函数课件(共50张PPT)
例2.画出函数y =-6x与 y =-6x +5的图 象。
x
-2 -1 0 1 2
y=-6x 12 6
0
-6 -12
y=-6x+5 17 11 5 -1 -7
解:函数y =-6x与 y =-6x +5中,自变量x 可以是任意的实数,列表表示几组对应值:
y
y=-6x+5 17
11
y=-6x
5
两个函数 图象有什 么关系?
即它可以看作由直线y=x向 下 平移___2_ 个单位长度而得 到.
.
.
.
y
...0...
.Байду номын сангаас
.
.
y... =yyx==+xx2-2
2
x
一次函数y=kx+b(k≠0) 图象的画法 (两点)
例1 在同一平面直角坐标系中画出下列 每组函数的图象:
1 y 2x与
y 2x 3
2 y 2x 1与
y 1 x 1 2
2、正比例函数的图象是什么形状?
正比例函数的图象是
(
经过原点的一条直)线
3、正比例函数 y=kx(k是常数,k≠0)中,
k的正负对函数图象有什么影响?
y=kx
图象
性质
y
K>0
经过一、三象限
x
y随x增大而增大
K<0
y
经过二、四象限
y随x增大而减小
x
图像必经过(0,0)和(1,k)这两个点
二、新课精讲
结 y随x的增大而增大,
y 3x 2
论
这时函数的图象从左到右上升;
观察分析:
y 2 x 1和
x
-2 -1 0 1 2
y=-6x 12 6
0
-6 -12
y=-6x+5 17 11 5 -1 -7
解:函数y =-6x与 y =-6x +5中,自变量x 可以是任意的实数,列表表示几组对应值:
y
y=-6x+5 17
11
y=-6x
5
两个函数 图象有什 么关系?
即它可以看作由直线y=x向 下 平移___2_ 个单位长度而得 到.
.
.
.
y
...0...
.Байду номын сангаас
.
.
y... =yyx==+xx2-2
2
x
一次函数y=kx+b(k≠0) 图象的画法 (两点)
例1 在同一平面直角坐标系中画出下列 每组函数的图象:
1 y 2x与
y 2x 3
2 y 2x 1与
y 1 x 1 2
2、正比例函数的图象是什么形状?
正比例函数的图象是
(
经过原点的一条直)线
3、正比例函数 y=kx(k是常数,k≠0)中,
k的正负对函数图象有什么影响?
y=kx
图象
性质
y
K>0
经过一、三象限
x
y随x增大而增大
K<0
y
经过二、四象限
y随x增大而减小
x
图像必经过(0,0)和(1,k)这两个点
二、新课精讲
结 y随x的增大而增大,
y 3x 2
论
这时函数的图象从左到右上升;
观察分析:
y 2 x 1和
一次函数全章ppt课件
一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值, 变量y都有唯一的值与它对应,那么我们称y是x的函数(function),其中x是自变 量.
2.函数的表示法:三种方法 ①图象法 ②列表法 ③关系式法
完整版ppt课件
22
2 一次函数与正比例函数
完整版ppt课件
23
1.理解一次函数和正比例函数的概念,以及它们之间的关系. 2.能根据所给条件,写出简单的一次函数、正比例函数表达式.
汽车速度v s v2
300
25
100
12
3
3
滑行距离s
完整版ppt课件
9
(2)给定一个v值,你能求出相应的s值吗?
能
(3)其中对于给定的每一个速度v,滑行距离s对应有几个值?
只有一个值
完整版ppt课件
10
议一议
上面的问题中,有什么共同特点?
【解析】都有两个变量:①时间 t 、相应的高度 h ; ②层数n、物体总数y;③汽车速度v、滑行距离s. 如果给定其中一个变量(自变量)的值,就能确定另一个变量(因变量)的 值.
完整版ppt课件
30
【例题】
【例1】写出下列各题中y与x之间的关系式,并判断y是否为x的一次函 数?是否为正比例函数? (1)汽车以60km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间 的关系. (2)圆的面积y (cm2)与它的半径x (cm)之间的关系. (3)一棵树现在高50 cm,每个月长高2 cm,x月后这棵 树的高度为y cm.
完整版ppt课件
15
【跟踪训练】
下面各题中分别有几个变量?你能将其中某个变量看成是另一个变量的函 数吗?
(1)每一个同学购一本代数书,书的单价为2元, 则x个同学共付y元.
2.函数的表示法:三种方法 ①图象法 ②列表法 ③关系式法
完整版ppt课件
22
2 一次函数与正比例函数
完整版ppt课件
23
1.理解一次函数和正比例函数的概念,以及它们之间的关系. 2.能根据所给条件,写出简单的一次函数、正比例函数表达式.
汽车速度v s v2
300
25
100
12
3
3
滑行距离s
完整版ppt课件
9
(2)给定一个v值,你能求出相应的s值吗?
能
(3)其中对于给定的每一个速度v,滑行距离s对应有几个值?
只有一个值
完整版ppt课件
10
议一议
上面的问题中,有什么共同特点?
【解析】都有两个变量:①时间 t 、相应的高度 h ; ②层数n、物体总数y;③汽车速度v、滑行距离s. 如果给定其中一个变量(自变量)的值,就能确定另一个变量(因变量)的 值.
完整版ppt课件
30
【例题】
【例1】写出下列各题中y与x之间的关系式,并判断y是否为x的一次函 数?是否为正比例函数? (1)汽车以60km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间 的关系. (2)圆的面积y (cm2)与它的半径x (cm)之间的关系. (3)一棵树现在高50 cm,每个月长高2 cm,x月后这棵 树的高度为y cm.
完整版ppt课件
15
【跟踪训练】
下面各题中分别有几个变量?你能将其中某个变量看成是另一个变量的函 数吗?
(1)每一个同学购一本代数书,书的单价为2元, 则x个同学共付y元.
一次函数课件ppt
掌握如何根据直线的方程求解一次函数,并了解直线的性质。
一次函数与两直线的交点
了解如何通过两直线的交点求解一次函数的解析式。
一次函数与抛物线的交点
了解如何通过抛物线的交点求解一次函数的解析式。
一次函数在实际问题中的应用
一次函数与最值问题
掌握如何利用一次函数解决最值问题。
一次函数与不等式问题
了解如何利用一=kx+b(k,b是常数,k≠0)中,当b=0时, y=kx(k是常数,k≠0),此时称y是x的正比例函 数。
一次函数的表达式
表达式
y=kx+b(k,b是常数,k≠0)
变量的取值范围
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而 减小。
截距的意义
b是常数项,表示与y轴的交点坐标。当b>0时,交点在y 轴的正半轴上;当b<0时,交点在y轴的负半轴上;当 b=0时,交点在原点。
03 一次函数的应用
一次函数在代数中的应用
一次函数与一元一次方程的关系
01
了解如何用一次函数解决一元一次方程的问题。
一次函数的单调性
02
掌握如何根据函数的单调性求解函数的值域和定义域。
一次函数的零点
03
了解如何通过零点将函数进行分类,并求解函数的零点。
一次函数在几何中的应用
直线方程与一次函数的关系
一次函数的图像
图像的绘制
描点法,先确定自变量x的取值范 围,然后分别在坐标系中找出对
应的y值,描点、连线即可得到一 次函数的图像。
图像的性质
当k>0时,直线呈上升趋势;当 k<0时,直线呈下降趋势。截距b 的取值决定了直线与y轴交点的位 置。
一次函数与两直线的交点
了解如何通过两直线的交点求解一次函数的解析式。
一次函数与抛物线的交点
了解如何通过抛物线的交点求解一次函数的解析式。
一次函数在实际问题中的应用
一次函数与最值问题
掌握如何利用一次函数解决最值问题。
一次函数与不等式问题
了解如何利用一=kx+b(k,b是常数,k≠0)中,当b=0时, y=kx(k是常数,k≠0),此时称y是x的正比例函 数。
一次函数的表达式
表达式
y=kx+b(k,b是常数,k≠0)
变量的取值范围
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而 减小。
截距的意义
b是常数项,表示与y轴的交点坐标。当b>0时,交点在y 轴的正半轴上;当b<0时,交点在y轴的负半轴上;当 b=0时,交点在原点。
03 一次函数的应用
一次函数在代数中的应用
一次函数与一元一次方程的关系
01
了解如何用一次函数解决一元一次方程的问题。
一次函数的单调性
02
掌握如何根据函数的单调性求解函数的值域和定义域。
一次函数的零点
03
了解如何通过零点将函数进行分类,并求解函数的零点。
一次函数在几何中的应用
直线方程与一次函数的关系
一次函数的图像
图像的绘制
描点法,先确定自变量x的取值范 围,然后分别在坐标系中找出对
应的y值,描点、连线即可得到一 次函数的图像。
图像的性质
当k>0时,直线呈上升趋势;当 k<0时,直线呈下降趋势。截距b 的取值决定了直线与y轴交点的位 置。
一次函数的图像ppt课件
取一些点,这些点的坐标分别满足y=-2x或y=-2x+1上
由此可见,一次函数y=kx+b(k、b为常数, k≠0 )可以用直角坐标系
中的一条直线来表示, 这条直线就叫做一次函数y=kx+b的图象.
y=2x
y=-2x
观察图象,它们有什么异同?
你能得出一次函数的图象特点吗?
相同点:两图象都经过原点
不同点:函数y=2x的图象经过第一、三象限,从左向右呈上升状态,
–3
–4
一般地,你能从函数y=k+b的图象上直接看出b
的数值吗?
y = 2x+3
–5
–6
–7
–8
y = -x
5
x
归纳总结
一次函数y=kx+b(k,b是常数,k≠0)的图象与性质
k>0
y随x的增大而增大
k<0
y随x的增大而减小
k相等
图象平行
b相等
图象相交于点(0,b)
例1、在同一坐标系中作出下列函数的图象,并求它们与坐标轴的交点
取x=1,得y=-1,得到点(1,-1)
2
-2 -1
0
1
2
3
x
-1
-2
y=-3x+2
1.设下列两个函数:
当 x =x1时,y = y1; 当x=x2时,y=y2,
用“<”或“>”号填空
①对于函数y=
②对于函数y= -
x,若x2>x1,则y2
x+3,若x2
>
>
y1
x1,则y2<y1
观察一次函数y=kx+b(k≠0)的图象,总结一次函数图象的k,b的
一次函数课件ppt
奇偶性
一次函数既不是奇函数也不是偶函数 ,因为它们的图像不关于原点或 y 轴 对称。
02 一次函数的表达式与系数
一次函数的表达式
01
一次函数的一般表达式为 $y = ax + b$,其中 $a$ 和 $b$ 是常 数,且 $a neq 0$。
02
当 $a > 0$ 时,函数为增函数; 当 $a < 0$ 时,函数为减函数。
已知函数与$x$轴和$y$轴的截距,使用截 距式$y = frac{x}{a} + frac{b}{a}$求函数解 析式。
一次函数的解题技巧
数形结合
利用函数图像直观理解 函数性质,如增减性、
最值等。
整体代入
在求解过程中,将表达 式整体代入,简化计算
。
分类讨论
根据不同情况分类讨论 ,得出不同情况下的函
斜率与图像
斜率决定了图像的倾斜程 度,当 a > 0 时,图像向 右倾斜;当 a < 0 时,图 像向左倾斜。
一次函数的性质
单调性
无界性
一次函数的单调性由斜率决定,当 a > 0 时,函数单调递增;当 a < 0 时 ,函数单调递减。
一次函数的值域是全体实数,即对于 任意实数 x,y = ax + b 总有一个对 应的值。
一次函数的系数
一次函数的斜率为 $a$,表示函数图 像的倾斜程度。
当 $a > 0$ 时,函数图像从左下到右 上倾斜;当 $a < 0$ 时,函数图像从 左上到右下倾斜。
一次函数的应用
一次函数在数学、物理、工程等领域都有广泛应用。
在实际生活中,一次函数可以用来描述一些简单的问题,如速度与时间的关系、 价格与数量的关系等。
一次函数图象课件
物理问题
利用一次函数图象描述物 理现象,如速度与时间的 关系、力与位移的关系等 。
经济问题
通过一次函数图象分析成 本、收益、利润等经济指 标的变化趋势。
一次函数图象在数学建模中的应用
建立数学模型
利用一次函数图象描述实 际问题的变化趋势,建立 数学模型进行预测和决策 。
参数估计
通过一次函数图象的拟合 ,估计模型参数,提高预 测精度。
一次函数图象ppt课 件
目录
• 一次函数图象的基本概念 • 一次函数图象的性质 • 一次函数图象的应用 • 一次函数图象的变换 • 一次函数图象的解题技巧
01
一次函数图象的基本概念
一次函数图象的定义
01 一次函数图象
一次函数y=kx+b(k≠0)的图象是一条直线。
02 斜率
一次函数图象的斜率为k,反映了函数值y随自变 量x的变化率。
THANKS
感谢观看
利用待定系数法解题
总结立关于待定系数的方程或方程组,通过解方程或方 程组得到待定系数的值,从而确定一次函数的解析式。这种方法能够避免对函数 性质和图像的复杂分析,提高解题效率。
利用方程组法解题
总结词:逻辑严谨
详细描述:根据题目条件建立关于未知数的方程组,通过解方程组得出未知数的值,进一步确定一次函数的解析式。这种方 法需要严谨的逻辑思维和计算能力,能够确保解题的准确性和完整性。
一次函数图象的对称性
总结词
关于y轴对称
详细描述
一次函数图象是关于y轴对称的。这是因为一次函 数的表达式为y=kx+b,其中k是斜率,b是截距 。无论k和b取何值,图象总是关于y轴对称。
03
一次函数图象的应用
利用一次函数图象解决实际问题
19.2.2 一次函数的概念 课件(共23张PPT)
4.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒 增加2 m/s.
(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.
(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.
一次函数的应用课件(共31张PPT)
(0,b)
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6
…
所拼得四边形的周长L
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6
…
所拼得四边形的周长L
初二数学《一次函数》课件
进阶习题
01
A. (4,4) 或 (-4,-4)
02
B. (4,-4) 或 (-4,4)
03
C. (-4,8) 或 (4,-8)
04
D. (-4,-8) 或 (4,8)
高阶习题
1
高阶习题1:已知一次函数 y = kx + b(k≠0) 经过点 (0,2),且与坐标轴围成的三角形的面积为 4,求这个一次函数的解析式.
2
A. y = x + 2 或 y = -x + 2
3
B. y = x - 2 或 y = -x + 2
高阶习题
01
C. y = x + 2 或 y = -x - 2
02
D. 以上都不对
03
高阶习题2:已知一次函数 y = kx + b(k≠0)的图象经过点 P(3,4),它与 x、 y 轴的正半轴分别相交于 A、B 两点,且 OA+OB=15,求此一次函数的解析式 .
详细描述
斜截式为 $y = mx + b$,其中 $m$ 是斜率,$b$ 是截距。这种形式简洁 地表示了直线方程的斜率和截距,便 于理解和计算。
一次函数的点斜式
总结词
点斜式是一次函数的另一种表达方式,用于描述通过某一点的直线方程。
详细描述
点斜式为 $y - y_1 = m(x - x_1)$,其中 $(x_1, y_1)$ 是直线上的一个点,$m$ 是斜率。该形式通过一个已知点和斜率来表示直线方程,具有更强的实际应用价 值。
注重理解而非死记硬背
函数的性质和特点应通过理解来掌握,而不是简单地记忆公式。
多做练习
通过大量的练习,可以更好地掌握一次函数的运用,提高解题能力 。
一次函数ppt课件免费
线性关系判断方法
01
观察法
通过观察散点图或数据表,判断两个变量之间是否存在线性关系。
02 03
计算法
通过计算相关系数r的值,判断两个变量之间的线性关系强度。当|r|接 近于1时,表示两个变量之间存在较强的线性关系;当|r|接近于0时,表 示两个变量之间不存在线性关系。
残差分析法
通过绘制残差图或计算残差平方和,判断回归模型是否符合线性关系。 如果残差图呈现随机分布且残差平方和较小,则表明回归模型符合线性 关系。
实际应用问题建模与求解
01
02
03
列方程
根据实际问题中的条件, 列出反映问题中数量关系 的方程。
解方程
运用一次函数的运算技巧, 求解所列出的方程。
检验与作答
将求得的解代入原方程进 行检验,确认解的合理性, 并根据实际问题要求进行 作答。
03
一次函数图像变换规律
平移变换规律
一次函数 y = kx + b (k ≠ 0) 的图像是一条直线, 01 当 b 值发生变化时,图像会沿着 y 轴上下平移。
当 b > 0 时,图像向上平移 b 个单位;当 b < 0 02 时,图像向下平移 |b| 个单位。
平移后的直线斜率不变,仍为 k。 03
伸缩变换规律
01 当 k > 1 时,图像的斜率增大,函数值增长的速 度变快,图像相对于原直线更陡峭。
02 当 0 < k < 1 时,图像的斜率减小,函数值增长 的速度变慢,图像相对于原直线更平缓。
学习数学不仅仅是为了应付考试,更重要的是培养解决实际问题的能力。通过学习和应用一 次函数,可以强化数学与实际生活的联系,提高数学应用意识。
拓展数学思维
10、一次函数PPT课件
第一部分 教材同步复习
10、一次函数
第一部分 教材同步复习
1
10、一次函数
知识要点 ·归纳
►知识点一 一次函数的图象与性质
1.一次函数及正比例函数的概念 一般地,如果y=kx+b(k,b是①___常__数__,k≠0),那么,y叫做x的一次函数,特 别地,当②____b_=__0_时,一次函数y=kx+b就变为y=kx(k为常数,k≠0),这时,y叫 做x的正比例函数.
202X权威 · 预测
第一部分 教材同步复习
15
【解答】 (1)∵点 A(2,0),AB= 13,∴BO= AB2-AO2= 9=3,∴点 B 的 坐标为(0,3);
(2)∵△ABC 的面积为 4,∴12×BC×AO=4,∴12×BC×2=4,即 BC=4.∵BO =3,∴CO=4-3=1,∴C(0,-1).
第一部分 教材同步复习
13
1.(202X玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是
( D) A.点(0,k)在l上
B.l经过定点(-1,0)
C.当k>0时,y随x的增大而增大
D.l经过第一、二、三象限
【考查内容】一次函数的性质.
【解析】A.当x=0时,y=k,即点(0,k)在l上,此选项正确;B.当x=-1
(3)一次函数图象y=kx+b与x轴的交点是⑥__(_-_bk_,__0_)__ ,与y轴的交点是⑦ _(0_,__b_)___.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
3
3.一次函数的性质 一次函数
k、b 符号 b>0
k>0 b<0
中考新突破 · 数学(江西)
10、一次函数
第一部分 教材同步复习
1
10、一次函数
知识要点 ·归纳
►知识点一 一次函数的图象与性质
1.一次函数及正比例函数的概念 一般地,如果y=kx+b(k,b是①___常__数__,k≠0),那么,y叫做x的一次函数,特 别地,当②____b_=__0_时,一次函数y=kx+b就变为y=kx(k为常数,k≠0),这时,y叫 做x的正比例函数.
202X权威 · 预测
第一部分 教材同步复习
15
【解答】 (1)∵点 A(2,0),AB= 13,∴BO= AB2-AO2= 9=3,∴点 B 的 坐标为(0,3);
(2)∵△ABC 的面积为 4,∴12×BC×AO=4,∴12×BC×2=4,即 BC=4.∵BO =3,∴CO=4-3=1,∴C(0,-1).
第一部分 教材同步复习
13
1.(202X玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是
( D) A.点(0,k)在l上
B.l经过定点(-1,0)
C.当k>0时,y随x的增大而增大
D.l经过第一、二、三象限
【考查内容】一次函数的性质.
【解析】A.当x=0时,y=k,即点(0,k)在l上,此选项正确;B.当x=-1
(3)一次函数图象y=kx+b与x轴的交点是⑥__(_-_bk_,__0_)__ ,与y轴的交点是⑦ _(0_,__b_)___.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
3
3.一次函数的性质 一次函数
k、b 符号 b>0
k>0 b<0
中考新突破 · 数学(江西)
一次函数的性质课件(共10张PPT)
1 2
x
当P点沿直线向右下方运动时,直线是下 降的.这说明当自变量x的值增大时,函数 值y随着减小.
(4)比较(2)(3)中你的发现,你能总结出一次函数y=k x +b当自变量x增加时,函数值y的变化吗?
一般地,对于一次函数;当k<0时,y随着x的增大而减小.
作业布置
课本146页 习题10.3 第1、3、4题.
当P沿直线向右上方运动时, 直线是上升的.这说明当自 变量x的值增大时,函数y 的值也随着增大.
(2)在同一直角坐标系中,分别画出直线y=x-1,y=5x,y (图10-11),你发现它们是否也具有上述性质?
4 3
x
2
它们具有上述性质
(3)在同一直角坐标系中,分别画出直线y=-3x-1,y=-x+2,y (图10-12),你又有什么发现?与同学交流.
10.3 一次函数的性质
学习目标
1.结合函数图象,理解正比例函数与一次函数 的性质.
2.加强图象与函数表达式,即“数”与“形” 的联系.
相关知识链接
1.一次函数:形如 y=k x+b(k≠0)的函数叫做x的一
次函数,其中k与b是常数.特别地,当b=0时,一次函 数y=kx也叫做正比例函数,k叫做比例系数.
解: 因为一次函数y=kx-k的y随x的增大而 增大,所以k>0.又因为x=0时,y=-k<0, 所以直线y=kx-k与y轴的交点(0,-k) 在y轴的负半轴,且当y=0时,x=1,故 直线y=kx-k与x轴的交点为(1,0).它 的图象大致如图10-13所示,这条直线 经过第一、三、四象限.
练习
2.一次函数y=k x+b(k≠0),当b≠0时,它的图象与x
轴的交点坐标是(
一次函数的图像课件
02
图像是一条直线,其上每一个点 的坐标 $(x, y)$ 都满足该函数的 解析式。
解析式中参数对图像的影响
$k$ 的影响
当 $k > 0$ 时,图像为上升直线;当 $k < 0$ 时,图像为下降直线。
$b$ 的影响
当 $b > 0$ 时,图像与 $y$ 轴交于 正半轴;当 $b < 0$ 时,图像与 $y$ 轴交于负半轴。
如果将一次函数的x替换 为x+h(h>0),则图 像向左移动h个单位。
如果将一次函数的x替换 为x-h(h>0),则图像
向右移动h个单位。
03 一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本与产量的关 系、价格与需求的关系等。
一次函数在物理学中的应用
截距
一次函数的截距为b,表示函数图像 与y轴的交点。当b>0时,交点在y轴 的正半轴上;当b<0时,交点在y轴的 负半轴上。
一次函数图像的平移
上平移
下平移
左平移
右平移
如果一次函数的b值增加 (即向上平移),则图 像向上移动相应的距离。
如果一次函数的b值减小 (即向下平移),则图 像向下移动相应的距离。
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在统计学中的应用
在统计学中,一次函数可以用来拟合数据,例如线性回归分析等。
一次函数在数学题目中的应用
一次函数在代数题中的应用
在代数题目中,一次函数可以用来解决方程和不等式问题,例如求解一元一次方 程、一元一次不等式等。
描点,最后将这些点连接成一条直线。
图像是一条直线,其上每一个点 的坐标 $(x, y)$ 都满足该函数的 解析式。
解析式中参数对图像的影响
$k$ 的影响
当 $k > 0$ 时,图像为上升直线;当 $k < 0$ 时,图像为下降直线。
$b$ 的影响
当 $b > 0$ 时,图像与 $y$ 轴交于 正半轴;当 $b < 0$ 时,图像与 $y$ 轴交于负半轴。
如果将一次函数的x替换 为x+h(h>0),则图 像向左移动h个单位。
如果将一次函数的x替换 为x-h(h>0),则图像
向右移动h个单位。
03 一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本与产量的关 系、价格与需求的关系等。
一次函数在物理学中的应用
截距
一次函数的截距为b,表示函数图像 与y轴的交点。当b>0时,交点在y轴 的正半轴上;当b<0时,交点在y轴的 负半轴上。
一次函数图像的平移
上平移
下平移
左平移
右平移
如果一次函数的b值增加 (即向上平移),则图 像向上移动相应的距离。
如果一次函数的b值减小 (即向下平移),则图 像向下移动相应的距离。
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在统计学中的应用
在统计学中,一次函数可以用来拟合数据,例如线性回归分析等。
一次函数在数学题目中的应用
一次函数在代数题中的应用
在代数题目中,一次函数可以用来解决方程和不等式问题,例如求解一元一次方 程、一元一次不等式等。
描点,最后将这些点连接成一条直线。
一次函数的概念PPT课件
20.1 一次函数的概念
概念学习
一般地,解析式形如y kx b (k、b是常数,且k 0)的函数叫做
一次函数(linear function) k是比例系数
一次函数y kx b的定义域是一切实数.
当b 0时,解析式 y kx b就
成为 y kxk是常数,且k 0,
这时y是x的正比例函数.
分析:可设 y kx b
待定系数法
例题3 一直变量x、y之间的关系式是y=(a+1)x+a(其 中a是常数),那么y是x的一次函数吗?
分析:一次函数的解析式是什么样情势的?
y kx b (其中k、b是常数,且k 0)
概念学习 一般地,我们把函数y c(c为常数,) 叫做常值函数(constant function).
正比例函数是一次函数的特例.
例题1
根据变量x、y的关系式,判断y是否是x的一次函数.
(1) y 2x √
(3) x 1 y 2
3√
y 3x 6
(2)
y
1
1 2
x
√
(4) y 2 3
x×
例题2
已知一个一次函数,当自变量x=2时,函数值 y=-1;当x=5时,y=8.求这个函数的解析式.
解:y 50 5x
它是一次函数
(0 x 10)
练习3:已知一次函数图象过点(3,5)与 (-4,-9),求这个一次函数的解析式.
解:设 y kx b 把(3,5)和(-4,-9)分别代入解析式中
得
3k b 5 4k b 9
解得
k b
2 1
函数的解析式为y 2x 1
课堂小结
一次函数 常值函数 待定系数法求函数解析式
概念学习
一般地,解析式形如y kx b (k、b是常数,且k 0)的函数叫做
一次函数(linear function) k是比例系数
一次函数y kx b的定义域是一切实数.
当b 0时,解析式 y kx b就
成为 y kxk是常数,且k 0,
这时y是x的正比例函数.
分析:可设 y kx b
待定系数法
例题3 一直变量x、y之间的关系式是y=(a+1)x+a(其 中a是常数),那么y是x的一次函数吗?
分析:一次函数的解析式是什么样情势的?
y kx b (其中k、b是常数,且k 0)
概念学习 一般地,我们把函数y c(c为常数,) 叫做常值函数(constant function).
正比例函数是一次函数的特例.
例题1
根据变量x、y的关系式,判断y是否是x的一次函数.
(1) y 2x √
(3) x 1 y 2
3√
y 3x 6
(2)
y
1
1 2
x
√
(4) y 2 3
x×
例题2
已知一个一次函数,当自变量x=2时,函数值 y=-1;当x=5时,y=8.求这个函数的解析式.
解:y 50 5x
它是一次函数
(0 x 10)
练习3:已知一次函数图象过点(3,5)与 (-4,-9),求这个一次函数的解析式.
解:设 y kx b 把(3,5)和(-4,-9)分别代入解析式中
得
3k b 5 4k b 9
解得
k b
2 1
函数的解析式为y 2x 1
课堂小结
一次函数 常值函数 待定系数法求函数解析式
一次函数PPT课件
(1)y=-x-4 它是一次函数,不是正比例函数。
k=
,b=_____
(2)y=x2 它不是一次函数,也不是正比例函数
(3)y=2πx 它是一次函数,也是正比例函数。
1
(4)y= — 它不是一次函数,也不是正比例函数
x
例2: 写出下列各题中y与 x之间的关系式,并判断:y 是否为x的一次函数?是否为正比例函数? (1)汽车以60千米/时的速度匀速行驶,行驶路程为y(千米) 与行驶时间x(时)之间的关系; (2)圆的面积y (c m2)与它的半径x ( cm)之间的关系; (3)一棵树现在高5 0 厘米,每个月长高2 厘米,x 月后 这棵树的高度为y 厘米。
解:设此人本月工资、薪金是x元,则 19.2=0.05×(x-1600),
解得:x=1984. 答:本月工资、薪金是1984元.
练一练184页随堂练习1
1、某种大米的单价是2.2元/千克,当购买 x千克大米时,花费为y元,y是x的一次函 数吗?是正比例函数吗?
解:y=2.2x,y是x的一次函数, 也是x的正比例函数.
是:y=3x+,1y是否为x一的次函数.
练一练186页知识技能2
2、不管通话多长时间,每部手机须交月租50元, 在此基础上,另外每通话1分钟缴费0.4元. (1)写出每月必须交月租费用y元与时间x的 关系式:
(2)求出月通话时间为152分的电话费; (3)如果预交200元的话费,求通话的时间.
练一练186页知识技能2
x
x
④y= ⑤y=5 ⑥y=x2
8
练习2:在一次函数y=-3x-6中, 自变量x的系数是 , 常数项是 .
练3:若y=(m-2)x+ m2 -4是关于x的正比例函数, 则m =-2 ; 若是关于x的一次函数,则m ≠2 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、数形结合的思想与方法,从特 殊到一般的思想与方法
4、进一步体验研究函数的一般思 路与方法
(4)对于函数y=5x+6,y的值随x的值 减小而_减__少___。
(5)函数y=2x-1经过一、三、四象限
(6)函数y=2x - 4与y轴的交点为 ( 0,-4),与x轴交于( 2, 0)
(7)函数y=3(x -2)在y轴上的截 距为 -6 。
1、会画一次函数的图象
2、一次函数的图象与性质,常数k, b的意义和作用
k的符号
k>0 k>0 k<0 k<0
b的符号
b>0 b<0 b>0 b<0
1.下列函数中,y的值随x值的增
大而增大的函数是___C_____.
A.y=-2x B.y=-2x+1
C.y=x-2 D.y=-x-2
2、直线y=3x-2可由直线y=3x向 下 平 移 2 单位得到。 3、直线y=x+2可由直线y=x-1向 上 平 移 3 单位得到。
一次函数y=kx+b的图象是一条直线,我 们称它为直线y=kx+b,它可以看作由直线 y=kx平移|b|个单位长度得到。
(当b>0时,向上平移;当b<0时,向下 平移)
你会画出函数y=2x-1与y=-2x+l 的图象吗?
x y=2x-1 y=-2x+1
01
-1 1 1 -1
∴ y=2x -1的图象是经过点 (0,-1)和点(1,1)的直线; y= -2x+1是经过点(0, 1 ) 点(1, -1)的直线。
1、什么是一次函数? 2、正比例函数的图象与性质 有哪些? 3、正比例函数与一次函数有什么关系?
既然正比例函数是特殊的一次函 数,正比例函数的图象是直线,那么 一次函数的图象也会是一条直线吗? 它们图象之间有什么关系?一次函数 又有什么性质呢?
1、请大家在同一坐标系内作出下 列函数y=x, y=x+2,y=x-2的图象。
x
… -2 -1 0 1 2 …
y=x … -2 -1 0 1 2 …
y=x+2 … 0 1 2 3 4 …
y=x-2 … -4 -3 -2 -1 0 …
2、观察与比较
.
.
.
y
...0...
.
.
.
y... =yyx==+xx2-2
2
x
议一议:正比例函数y=x与一次函数 y=x+2 、y=x-2图象有什0,-_2_),即它可以看 作由直线y=x向下 平移__2__
个单位长度而得到.
3.探究
(1)、比较它们函数的解析式与图象,
你能解释这是为什么吗?
y y=x+2
y=x
3
y=x-2
02
x
(2)你能说出一次函数y=3x-4的图象是 什么形状吗?它与直线y=3x有什么关系?
(3)那么一次函数y=kx+b的图象与正 比例函数y=kx图象有什么关系?
归纳:这两个函数的图象形状 都是直线 ,并且倾斜程度相__同_ 函数y=x的图象经过原点,函 数y=x+2的图象与y轴交于点 (_0_,__2),即它可以看作由直线 y=x向_上_平移 2 个单位长度而 得到.函数y=x-2的图象与y轴
.
.
.
y
23...0...
.
.
.
.y=x+2
.
.
y=x y=x-2
o··1
x
y=-2x+l
b的正负对函数图象
有什么影响?
结论:1、当k>0时,,y随x的增大而增 大;当k<0时,y随x的增大而减小
y x
·o· x
y=x+1
y
o·· x
y=2x-1
y
o·· x
y=-2x+1
y
·o· x
y=-x-1
结论2
图象经过的象限 一、二、三 一、三、四 一、二、四 二、三、四
y y=2x-1
2
··
o··1
x
y=-2x+l
注意:图象与y轴交于(0,b), b就叫做图象 在y轴上的截距, 它有正负之分。
同样,我们可以画出 函数y=x+1, y=-x-1的
y y=2x-1
图象
y=-x-1 2 ··
议一议:一次函数 解析式y=kx+b(k, b y=x+1 是常数,k≠0)中,k、
4、进一步体验研究函数的一般思 路与方法
(4)对于函数y=5x+6,y的值随x的值 减小而_减__少___。
(5)函数y=2x-1经过一、三、四象限
(6)函数y=2x - 4与y轴的交点为 ( 0,-4),与x轴交于( 2, 0)
(7)函数y=3(x -2)在y轴上的截 距为 -6 。
1、会画一次函数的图象
2、一次函数的图象与性质,常数k, b的意义和作用
k的符号
k>0 k>0 k<0 k<0
b的符号
b>0 b<0 b>0 b<0
1.下列函数中,y的值随x值的增
大而增大的函数是___C_____.
A.y=-2x B.y=-2x+1
C.y=x-2 D.y=-x-2
2、直线y=3x-2可由直线y=3x向 下 平 移 2 单位得到。 3、直线y=x+2可由直线y=x-1向 上 平 移 3 单位得到。
一次函数y=kx+b的图象是一条直线,我 们称它为直线y=kx+b,它可以看作由直线 y=kx平移|b|个单位长度得到。
(当b>0时,向上平移;当b<0时,向下 平移)
你会画出函数y=2x-1与y=-2x+l 的图象吗?
x y=2x-1 y=-2x+1
01
-1 1 1 -1
∴ y=2x -1的图象是经过点 (0,-1)和点(1,1)的直线; y= -2x+1是经过点(0, 1 ) 点(1, -1)的直线。
1、什么是一次函数? 2、正比例函数的图象与性质 有哪些? 3、正比例函数与一次函数有什么关系?
既然正比例函数是特殊的一次函 数,正比例函数的图象是直线,那么 一次函数的图象也会是一条直线吗? 它们图象之间有什么关系?一次函数 又有什么性质呢?
1、请大家在同一坐标系内作出下 列函数y=x, y=x+2,y=x-2的图象。
x
… -2 -1 0 1 2 …
y=x … -2 -1 0 1 2 …
y=x+2 … 0 1 2 3 4 …
y=x-2 … -4 -3 -2 -1 0 …
2、观察与比较
.
.
.
y
...0...
.
.
.
y... =yyx==+xx2-2
2
x
议一议:正比例函数y=x与一次函数 y=x+2 、y=x-2图象有什0,-_2_),即它可以看 作由直线y=x向下 平移__2__
个单位长度而得到.
3.探究
(1)、比较它们函数的解析式与图象,
你能解释这是为什么吗?
y y=x+2
y=x
3
y=x-2
02
x
(2)你能说出一次函数y=3x-4的图象是 什么形状吗?它与直线y=3x有什么关系?
(3)那么一次函数y=kx+b的图象与正 比例函数y=kx图象有什么关系?
归纳:这两个函数的图象形状 都是直线 ,并且倾斜程度相__同_ 函数y=x的图象经过原点,函 数y=x+2的图象与y轴交于点 (_0_,__2),即它可以看作由直线 y=x向_上_平移 2 个单位长度而 得到.函数y=x-2的图象与y轴
.
.
.
y
23...0...
.
.
.
.y=x+2
.
.
y=x y=x-2
o··1
x
y=-2x+l
b的正负对函数图象
有什么影响?
结论:1、当k>0时,,y随x的增大而增 大;当k<0时,y随x的增大而减小
y x
·o· x
y=x+1
y
o·· x
y=2x-1
y
o·· x
y=-2x+1
y
·o· x
y=-x-1
结论2
图象经过的象限 一、二、三 一、三、四 一、二、四 二、三、四
y y=2x-1
2
··
o··1
x
y=-2x+l
注意:图象与y轴交于(0,b), b就叫做图象 在y轴上的截距, 它有正负之分。
同样,我们可以画出 函数y=x+1, y=-x-1的
y y=2x-1
图象
y=-x-1 2 ··
议一议:一次函数 解析式y=kx+b(k, b y=x+1 是常数,k≠0)中,k、