【人教A版】高中数学必修4第二章课后习题解答
人教A版高中数学必修4课后习题 第二章 2.2.3 向量数乘运算及其几何意义
第二章平面向量2.2 平面向量的线性运算 2.2.3 向量数乘运算及其几何意义课后篇巩固探究基础巩固1.下列说法正确的个数为( )①0·a=0;②0·a=0;③a·0=0;④a·0=0. A.1B.2C.3D.4,由于数乘向量的结果是一个向量而不是一个数,因此本题所给的四种说法中只有②与③的结果是一个向量,因此选B.2.13[12(2a +8b )-(4a -2b )]等于( )A.2a-bB.2b-aC.b-aD.a-b=16(2a+8b)-13(4a-2b)=13a+43b-43a+23b=-a+2b=2b-a.3.在△ABC 中,D 是线段BC 的中点,且AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =4AE⃗⃗⃗⃗⃗ ,则( )A.AD ⃗⃗⃗⃗⃗ =2AE ⃗⃗⃗⃗⃗B.AD ⃗⃗⃗⃗⃗ =4AE ⃗⃗⃗⃗⃗C.AD ⃗⃗⃗⃗⃗ =2EA⃗⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗⃗ =4EA⃗⃗⃗⃗⃗AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗ ,所以AD ⃗⃗⃗⃗⃗ =2AE ⃗⃗⃗⃗⃗ .4.已知AB ⃗⃗⃗⃗⃗ =a+5b,BC ⃗⃗⃗⃗⃗ =-2a+8b,CD ⃗⃗⃗⃗⃗ =3(a-b),则 ( )A.A,C,D 三点共线B.B,C,D 三点共线C.A,B,C 三点共线D.A,B,D 三点共线BD ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(-2a+8b)+3(a-b)=a+5b,所以AB ⃗⃗⃗⃗⃗ =BD⃗⃗⃗⃗⃗ . 又AB ⃗⃗⃗⃗⃗ 与BD ⃗⃗⃗⃗⃗ 有公共点B, 所以A,B,D 三点共线.5.已知向量a 与b 不共线,AB ⃗⃗⃗⃗⃗ =a+mb,AC ⃗⃗⃗⃗⃗ =na+b(m,n ∈R),则AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 共线的条件是( ) A.m+n=0 B.m-n=0 C.mn+1=0D.mn-1=0AB ⃗⃗⃗⃗⃗ =a+mb,AC ⃗⃗⃗⃗⃗ =na+b(m,n ∈R)共线,得a+mb=λ(na+b)=λna+λb,∵向量a 与b 不共线,∴{1=λn ,m =λ,即mn-1=0,故选D.6.若AB ⃗⃗⃗⃗⃗ =5e,CD ⃗⃗⃗⃗⃗ =-7e,且|AD ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |,则四边形ABCD 的形状是 .AB ⃗⃗⃗⃗⃗ =-57CD ⃗⃗⃗⃗⃗ ,因此AB ⃗⃗⃗⃗⃗ ∥CD ⃗⃗⃗⃗⃗ ,且|AB ⃗⃗⃗⃗⃗ |≠|CD ⃗⃗⃗⃗⃗ |,又知|AD ⃗⃗⃗⃗⃗ |=|BC⃗⃗⃗⃗⃗ |,所以四边形ABCD 是等腰梯形.7.在四边形ABCD 中,AB ∥CD,AB=3DC,E 为BC 的中点,则AE ⃗⃗⃗⃗⃗ = AB ⃗⃗⃗⃗⃗ + AD ⃗⃗⃗⃗⃗ .⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =-23AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ +12(AD ⃗⃗⃗⃗⃗ −23AB ⃗⃗⃗⃗⃗ )=23AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ .128.在△ABC 中,点M 为边AB 的中点,若OP ⃗⃗⃗⃗⃗ ∥OM ⃗⃗⃗⃗⃗⃗ ,且OP ⃗⃗⃗⃗⃗ ==12(OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ ). 又OP ⃗⃗⃗⃗⃗ ∥OM ⃗⃗⃗⃗⃗⃗ ,∴存在实数λ,使OP ⃗⃗⃗⃗⃗ =λOM ⃗⃗⃗⃗⃗⃗ , ∴OP ⃗⃗⃗⃗⃗ =λ2(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )=λ2OA ⃗⃗⃗⃗⃗ +λ2OB⃗⃗⃗⃗⃗ , ∴x=y=λ2,∴yx=1.9.如图,已知D,E 分别为△ABC 的边AB,AC 的中点,延长CD 到M 使DM=CD,延长BE 至N 使BE=EN,求证:M,A,N 三点共线.D 为MC 的中点,且D 为AB 的中点,∴AB ⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ . ∴AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ . 同理可证明AN ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ . ∴AM ⃗⃗⃗⃗⃗⃗ =-AN ⃗⃗⃗⃗⃗ .∴AM ⃗⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗ 共线,又AM ⃗⃗⃗⃗⃗⃗ 与AN ⃗⃗⃗⃗⃗ 有公共点A. ∴M,A,N 三点共线.10.(1)已知a=3i+2j,b=2i-j,求(13a -b)−(a -23b)+(2b-a);(2)已知向量a,b,且5x+2y=a,3x-y=b,求x,y.原式=13a-b-a+23b+2b-a=(13-1-1)a+(-1+23+2)b=-53a+53b.∵a=3i+2j,b=2i-j,∴原式=-53(3i+2j)+53(2i-j)=(-5+103)i+(-103-53)j=-53i-5j.(2)将3x-y=b 两边同乘2,得6x-2y=2b. 与5x+2y=a 相加,得11x=a+2b, ∴x=111a+211b.∴y=3x-b=3(111a +211b)-b=311a-511b.能力提升1.如图,AB 是☉O 的直径,点C,D 是半圆弧AB 的两个三等分点,AB ⃗⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗⃗ =b,则AD ⃗⃗⃗⃗⃗ =( )A.a-12bB.12a-bC.a+12bD.12a+bAODC 为菱形,所以AD ⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ =12a+b.2.已知点P 是△ABC 内的一点,AP ⃗⃗⃗⃗⃗ =13(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ),则△ABC 的面积与△PBC 的面积之比为( ) A.2B.3C.32D.6BC 的中点为D,则AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗ .∵AP ⃗⃗⃗⃗⃗ =13(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=23AD ⃗⃗⃗⃗⃗ ,如图,过点A 作AE ⊥BC,交BC 于点E,过点P 作PF ⊥BC,交BC 于点F,则|PF ||AE |=|PD ||AD |=13.∴S △ABC S △PBC=12|BC |·|AE |12|BC |·|PF |=3.3.已知OM ⃗⃗⃗⃗⃗⃗ =23OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗ ,设AM ⃗⃗⃗⃗⃗⃗ =λAB⃗⃗⃗⃗⃗ ,则实数λ的值为 .OM ⃗⃗⃗⃗⃗⃗ =23OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗ ,所以23OM ⃗⃗⃗⃗⃗⃗ +13OM ⃗⃗⃗⃗⃗⃗ =23OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗ ,于是23OM ⃗⃗⃗⃗⃗⃗ −23OA ⃗⃗⃗⃗⃗ =13OB ⃗⃗⃗⃗⃗ −13OM ⃗⃗⃗⃗⃗⃗ ,即23AM ⃗⃗⃗⃗⃗⃗ =13MB ⃗⃗⃗⃗⃗⃗ ,所以AM ⃗⃗⃗⃗⃗⃗ =12MB ⃗⃗⃗⃗⃗⃗ ,所以AM ⃗⃗⃗⃗⃗⃗ =13AB⃗⃗⃗⃗⃗ ,故λ=13.4.在平行四边形ABCD 中,DE ⃗⃗⃗⃗⃗ =12EC ⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗ =FC ⃗⃗⃗⃗ ,若AC ⃗⃗⃗⃗⃗ =λAE⃗⃗⃗⃗⃗ +μAF ⃗⃗⃗⃗⃗ ,其中λ,μ∈R,则λ+μ= .,有AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ .因为AC ⃗⃗⃗⃗⃗ =λAE ⃗⃗⃗⃗⃗ +μAF ⃗⃗⃗⃗⃗ =λ(AD ⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ )+μ(AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗ )=λ(AD⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ )+μ(AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ )=(λ3+μ)AB ⃗⃗⃗⃗⃗ +(λ+μ2)AD ⃗⃗⃗⃗⃗ . 所以AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =(λ3+μ)AB ⃗⃗⃗⃗⃗ +(λ+μ2)AD ⃗⃗⃗⃗⃗ ,即{λ3+μ=1,λ+μ2=1,解得{λ=35,μ=45,故λ+μ=75.5.在△ABC 中,点P 是AB 上一点,且CP ⃗⃗⃗⃗⃗ =23CA ⃗⃗⃗⃗⃗ +13CB⃗⃗⃗⃗⃗ ,Q 是BC 的中点,AQ 与CP 的交点为M,且CM ⃗⃗⃗⃗⃗⃗ =t CP ⃗⃗⃗⃗⃗ ,求t 的值.CP ⃗⃗⃗⃗⃗ =23CA ⃗⃗⃗⃗⃗ +13CB⃗⃗⃗⃗⃗ , ∴3CP ⃗⃗⃗⃗⃗ =2CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ,即2CP ⃗⃗⃗⃗⃗ -2CA ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ −CP⃗⃗⃗⃗⃗ . ∴2AP⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ ,即P 为AB 的一个三等分点(靠近点A),如图所示.∵A,M,Q 三点共线,∴设CM ⃗⃗⃗⃗⃗⃗ =x CQ ⃗⃗⃗⃗⃗ +(1-x)CA ⃗⃗⃗⃗⃗ =x 2CB⃗⃗⃗⃗⃗ +(x-1)AC ⃗⃗⃗⃗⃗ , 又CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ,∴CM ⃗⃗⃗⃗⃗⃗ =x 2AB ⃗⃗⃗⃗⃗ +(x 2-1)AC⃗⃗⃗⃗⃗ . 又CP ⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ,且CM ⃗⃗⃗⃗⃗⃗ =t CP⃗⃗⃗⃗⃗ , ∴x 2AB ⃗⃗⃗⃗⃗ +(x2-1)AC ⃗⃗⃗⃗⃗ =t (13AB ⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ ). ∴{x 2=t3,x2-1=-t ,解得t=34.6.已知△OBC 中,点A 是线段BC 的中点,点D 是线段OB 的一个三等分点(靠近点B),设AB ⃗⃗⃗⃗⃗ =a,AO ⃗⃗⃗⃗⃗ =b. (1)用向量a 与b 表示向量OC⃗⃗⃗⃗⃗ ; (2)若OE ⃗⃗⃗⃗⃗ =35OA ⃗⃗⃗⃗⃗ ,判断C,D,E 是否共线,并说明理由.∵AB ⃗⃗⃗⃗⃗ =a,AO ⃗⃗⃗⃗⃗ =b,点A 是BC 的中点,∴AC⃗⃗⃗⃗⃗ =-a. ∴OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ =-a-b. (2)假设存在实数λ,使CE ⃗⃗⃗⃗⃗ =λCD ⃗⃗⃗⃗⃗ .∵CE ⃗⃗⃗⃗⃗ =CO ⃗⃗⃗⃗⃗ +OE ⃗⃗⃗⃗⃗ =a+b+35(-b)=a+25b,CD ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +13BO⃗⃗⃗⃗⃗=CB ⃗⃗⃗⃗⃗ +13(BA ⃗⃗⃗⃗⃗ +AO ⃗⃗⃗⃗⃗ )=2a+13(-a+b)=53a+13b,∴a+25b=λ(53a +13b), ∴{53λ=1,13λ=25,此方程组无解, ∴不存在实数λ,满足CE ⃗⃗⃗⃗⃗ =λCD ⃗⃗⃗⃗⃗ .∴C,D,E 三点不共线.。
人教版高中数学必修4课后习题答案详解
第二章 平面向量2.1平面向量的实际背景及基本概念 练习(P77)1、略.2、AB ,BA . 这两个向量的长度相等,但它们不等.3、2AB =, 2.5CD =,3EF =,22GH =4、(1)它们的终点相同; (2)它们的终点不同. 习题 A 组(P77) 1、(2). 3、与DE 相等的向量有:,AF FC ;与EF 相等的向量有:,BD DA ; 与FD 相等的向量有:,CE EB .4、与a 相等的向量有:,,CO QP SR ;与b 相等的向量有:,PM DO ; 与c 相等的向量有:,,DC RQ ST5、33AD =. 6、(1)×; (2)√; (3)√; (4)×. 习题 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM 同向的共有6对,与AM 反向的也有6对;与AD同向的共有3对,与AD 反向的也有6对;模的向量共有4对;模为2的向量有2对2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA ; (2)CB .4、(1)c ; (2)f ; (3)f ; (4)g . 练习(P87)1、图略.2、DB ,CA ,AC ,AD ,BA .3、图略. 练习(P90) 1、图略.2、57AC AB =,27BC AB =-.说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC 与AB 反向.3、(1)2b a =; (2)74b a =-; (3)12b a =-; (4)89b a =.4、(1)共线; (2)共线.5、(1)32a b -; (2)111123a b -+; (3)2ya . 6、图略.习题 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km; (3)向东北走km ;(4)向西南走;(5)向西北走;(6)向东南走 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km. 3、解:如右图所示:AB 表示船速,AD 表示河水的流速,以AB 、AD 为邻边作□ABCD ,则AC 表示船实际航行的速度.在Rt △ABC 中,8AB =,2AD =,所以228AC AB AD =+==因为tan4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是km/h ,船航行的方向与河岸的夹角约为76°. 4、(1)0; (2)AB ; (3)BA ; (4)0; (5)0; (6)CB ; (7)0.5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥时,a b a b +=-9、(1)22a b --; (2)102210a b c -+; (3)132a b +; (4)2()x y b -.10、14a b e +=,124a b e e -=-+,1232310a b e e -=-+. 11、如图所示,OC a =-,OD b =-,DC b a =-,BC a b =--.12、14AE b =,BC b a =-,1()4DE b a =-,34DB a =, 34EC b =,1()8DN b a =-,11()48AN AM a b ==+.13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =,即12EF AC =;同理,12HG AC =,所以EF HG =.习题 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b 不共线时它们不相等.3、证明:因为MN AN AM =-,而13AN AC =,13AM AB =, 所以1111()3333MN AC AB AC AB BC =-=-=.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.(第11题)(第12题)EHGFC AB丙乙(第1题)(第4题(2))BCD证明:∵AB DC =,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形. 证明:因为OA OB BA -=,OD OC CD -= 而OA OC OB OD +=+所以OA OB OD OC -=- 所以BA CD =,即∥.因此,四边形ABCD 为平行四边形. 2.3平面向量的基本定理及坐标表示 练习(P100)1、(1)(3,6)a b +=,(7,2)a b -=-; (2)(1,11)a b +=,(7,5)a b -=-; (3)(0,0)a b +=,(4,6)a b -=; (4)(3,4)a b +=,(3,4)a b -=-.2、24(6,8)a b -+=--,43(12,5)a b +=.3、(1)(3,4)AB =,(3,4)BA =--; (2)(9,1)AB =-,(9,1)BA =-; (3)(0,2)AB =,(0,2)BA =-; (4)(5,0)AB =,(5,0)BA =-4、AB ∥CD . 证明:(1,1)AB =-,(1,1)CD =-,所以AB CD =.所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3-7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =,得32AP PB =-(,)(2,3)(2,3)AP x y x y =-=--,(4,3)(,)(4,3)PB x y x y =--=---∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩(第4题(3))(第5题)∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题. 2、123(8,0)F F F ++=3、解法一:(1,2)OA =--,(53,6(1))(2,7)BC =---=而AD BC =,(1,5)OD OA AD OA BC =+=+=. 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++,(53,6(1))(2,7)BC =---=由AD BC =可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =,(2,4)AB =-. 1(1,2)2AC AB ==-,2(4,8)AD AB ==-,1(1,2)2AE AB =-=-. (0,3)OC OA AC =+=,所以,点C 的坐标为(0,3); (3,9)OD OA AD =+=-,所以,点D 的坐标为(3,9)-; (2,1)OE OA AE =+=-,所以,点E 的坐标为(2,1)-. 5、由向量,a b 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-. 6、(4,4)AB =,(8,8)CD =--,2CD AB =-,所以AB 与CD 共线. 7、2(2,4)OA OA '==,所以点A '的坐标为(2,4);3(3,9)OB OB '==-,所以点B '的坐标为(3,9)-; 故(3,9)(2,4)(5,5)A B ''=--=- 习题 B 组(P101)1、(1,2)OA =,(3,3)AB =.当1t =时,(4,5)OP OA AB OB =+==,所以(4,5)P ; 当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=,所以57(,)22P ; 当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--,所以(5,4)P --; 当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=,所以(7,8)P .2、(1)因为(4,6)AB =--,(1,1.5)AC =,所以4AB AC =-,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ =-,(6,8)PR =-,所以4PR PQ =,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--,(1,0.5)EG =--,所以8EF EG =,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=,得2121e e λλ=-. 所以12,e e 是共线向量,与已知12,e e 是平面内的一组基底矛盾, 因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)19OP =(2)对于任意向量12OP xe ye =+,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积 练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=. 2、当0a b ⋅<时,ABC ∆为钝角三角形;当0a b ⋅=时,ABC ∆为直角三角形.3、投影分别为0,-图略 练习(P107)1、2(3)5a =-=,252b =+=35427a b ⋅=-⨯+⨯=-.2、8a b ⋅=,()()7a b a b +-=-,()0a b c ⋅+=,2()49a b +=.3、1a b ⋅=,13a =,74b =,88θ≈︒. 习题 A 组(P108)1、63a b ⋅=-222()225a b a a b b +=+⋅+=-25a b +=- 2、BC 与CA 的夹角为120°,20BC CA ⋅=-.3、22223a b a a b b +=+⋅+=,22235a b a a b b -=-⋅+=. 4、证法一:设a 与b 的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λ与b ,a 与b λ的夹角都为θ,所以()cos cos a b a b a b λλθλθ⋅==()cos a b a b λλθ⋅=()cos cos a b a b a b λλθλθ⋅== 所以 ()()()a b a b a b λλλ⋅=⋅=⋅;(3)当0λ<时,a λ与b ,a 与b λ的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-()cos cos a b a b a b λλθλθ⋅==-()cos(180)cos a b a b a b λλθλθ⋅=︒-=- 所以 ()()()a b a b a b λλλ⋅=⋅=⋅; 综上所述,等式成立.证法二:设11(,)a x y =,22(,)b x y =,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+所以 ()()()a b a b a b λλλ⋅=⋅=⋅;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--,(3,4)(5,2)(2,2)BC =-=-∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=,(1,6)(2,3)(1,3)AC =-----=-∴2117(3)0AB AC ⋅=⨯+⨯-=∴AB AC ⊥,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-,(10,7)(5,2)(5,5)BC =-=∴35350BA BC ⋅=-⨯+⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=,于是可得6a b ⋅=-,1cos 2a ba bθ⋅==-,所以120θ=︒.8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-,(8,4)(5,2)(3,6)BC =--=,(8,4)(4,6)(4,2)DC =-=-∴AB DC =,43(2)60AB BC ⋅=⨯+-⨯= ∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =,则2292x y yx⎧+=⎪⎨=⎪⎩,解得5x y⎧=⎪⎪⎨⎪=⎪⎩5x y ⎧=⎪⎪⎨⎪=-⎪⎩.于是35(,55a =或35(55a =--. 11、解:设与a 垂直的单位向量(,)e x y =,则221420x y xy ⎧+=⎨+=⎩,解得5x y ⎧=⎪⎪⎨⎪=⎪⎩或5x y ⎧=-⎪⎪⎨⎪=⎪⎩.于是5(,55e =-或5(,55e =-. 习题 B 组(P108)1、证法一:0()0()a b a c a b a c a b c a b c ⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥- 证法二:设11(,)a x y =,22(,)b x y =,33(,)c x y =.先证()a b a c a b c ⋅=⋅⇒⊥-1212a b x x y y ⋅=+,1313a c x x y y ⋅=+由a b a c ⋅=⋅得12121313x x y y x x y y +=+,即123123()()0x x x y y y -+-=而2323(,)b c x x y y -=--,所以()0a b c ⋅-= 再证()a b c a b a c ⊥-⇒⋅=⋅由()0a b c ⋅-=得 123123()()0x x x y y y -+-=, 即12121313x x y y x x y y +=+,因此a b a c ⋅=⋅2、cos cos cos sin sin OA OB AOB OA OBαβαβ⋅∠==+.3、证明:构造向量(,)u a b =,(,)v c d =.cos ,u v u v u v ⋅=<>,所以,ac bd u v +=<>∴2222222222()()()cos ,()()ac bd a b c d u v a b c d +=++<>≤++4、AB AC ⋅的值只与弦AB 的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =又cos AB AC AB AC BAC ⋅=∠,而AM BAC AC∠=所以212AB AC AB AM AB ⋅==5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=证明:∵AB CB CA =-∴2222()2AB CB CA CB CA CB CA =-=-⋅+. 由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅= ∴222CA CB AB +=(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+,,DB AB AD =-∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-.∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -= ∴0AC DB ⋅=,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+.∴22()()AB AD AB AD +=-,所以22AC BD =,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可. 2.5平面向量应用举例 习题 A 组(P113)1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--,(,)(1,0)(1,0)AP x y x =-=-由2RA AP =得11(1,)2(1,)x y x y --=-,即11232x x y y=-+⎧⎨=-⎩代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =. 2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =.2211()()3323AO BO BA BF a b a a a b =-=+=-+=+(2)因为1()2AE a b =+所以23AO AE =,因此,,A O E 三点共线,而且2AOOE =同理可知:2,2BO CO OF OD ==,所以2AO BO COOE OF OD===3、解:(1)(2,7)B A v v v =-=-; (2)v 在A v 方向上的投影为135A Av v v ⋅=. 4、解:设1F ,2F 的合力为F ,F 与1F 的夹角为θ,则31F =+,30θ=︒; 331F =+,3F 与1F 的夹角为150°.习题 B 组(P113)1、解:设0v 在水平方向的速度大小为x v ,竖直方向的速度的大小为y v ,则0cos x v v θ=,0sin y v v θ=.设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩为重力加速度 所以,最大高度为220sin 2v gθ,最大投掷距离为20sin 2v gθ.2、解:设1v 与2v 的夹角为θ,合速度为v ,2v 与v 的夹角为α,行驶距离为d .则1sin 10sin sin v vvθθα==,0.5sin 20sin v d αθ==. ∴120sin d v θ=. 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短. 3、(1)(0,1)-ODFEABC(第2题)(第4题)解:设(,)P x y ,则(1,2)AP x y =--. (2,22)AB =-.将AB 绕点A 沿顺时针方向旋转4π到AP ,相当于沿逆时针方向旋转74π到AP ,于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=--所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==-(2)32y x=-解:设曲线C 上任一点P 的坐标为(,)x y ,OP 绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()2()2x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=-第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-,1()2AD a b =+4、略解:2133DE BA MA MB a b ==-=-+2233AD a b =+,1133BC a b =+1133EF a b =--,1233FA DC a b ==-1233CD a b =-+,2133AB a b =-CE a b =-+5、(1)(8,8)AB =-,82AB =;(2)(2,16)OC =-,(8,8)OD =-; (3)33OA OB ⋅=.(第4题)6、AB 与CD 共线.证明:因为(1,1)AB =-,(1,1)CD =-,所以AB CD =. 所以AB 与CD 共线. 7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C ===11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=,所以(2)n m m -⊥.12、1λ=-. 13、13a b +=,1a b -=. 14、519cos ,cos 820θβ==第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-.222()2a b a b a b a b+=+=++⋅,222()2a b a b a b a b -=-=+-⋅.因为a b ⊥,所以0a b ⋅=,于是22a b a b a b +=+=-. 再证a b a b a b +=-⇒⊥.由于222a b a a b b +=+⋅+,222a b a a b b -=-⋅+ 由a b a b +=-可得0a b ⋅=,于是a b ⊥所以a b a b a b +=-⇔⊥. 【几何意义是矩形的两条对角线相等】 3、证明:先证a b c d =⇒⊥22()()c d a b a b a b ⋅=+⋅-=- 又a b =,所以0c d ⋅=,所以c d ⊥ 再证c d a b ⊥⇒=.由c d ⊥得0c d ⋅=,即22()()0a b a b a b +⋅-=-=所以a b = 【几何意义为菱形的对角线互相垂直,如图所(第3题)(第6题)示】4、12AD AB BC CD a b =++=+,1142AE a b =+而34EF a =,14EM a =,所以1111(4242AM AE EM a b a =+=++=5、证明:如图所示,12OD OP OP =+,由于1230OP OP OP ++=,所以3OP OD =-,1OD = 所以11OD OP PD == 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.6、连接AB .由对称性可知,AB 是SMN ∆的中位线,222MN AB b a ==-. 7、(18=(千米/时), 沿与水流方向成60°的方向前进; (2)实际前进速度大小为 沿与水流方向成90︒+的方向前进. 8、解:因为OA OB OB OC ⋅=⋅,所以()0OB OA OC ⋅-=,所以0OB CA ⋅= 同理,0OA BC ⋅=,0OC AB ⋅=,所以点O 是ABC ∆的垂心. 9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦cos θ=;(4)d =P 2(第5题)第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式 练习(P127)1、cos()cos cos sin sin 0cos 1sin sin 222πππαααααα-=+=⨯+⨯=.cos(2)cos2cos sin2sin 1cos 0sin cos παπαπαααα-=+=⨯+⨯=.2、解:由3cos ,(,)52πααπ=-∈,得4sin 5α==;所以34cos()cos cos sin sin ()44455πππααα-=+=-+=3、解:由15sin 17θ=,θ是第二象限角,得8cos 17θ===-;所以8115cos()cos cos sin sin 33317217πππθθθ-=+=-⨯+=. 4、解:由23sin ,(,)32πααπ=-∈,得cos α==又由33cos ,(,2)42πββπ=∈,得sin β==所以32cos()cos cos sin sin ((()43βαβαβα-=+=⨯+⨯-=. 练习(P131)1、(1; (2) (3(4)2 2、解:由3cos ,(,)52πθθπ=-∈,得4sin 5θ==;所以413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=. 3、解:由12sin 13θ=-,θ是第三象限角,得5cos 13θ===-; 所以5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=. 4、解:tan tan 314tan()241311tan tan 4παπαπα+++===--⨯-⋅.5、(1)1; (2)12; (3)1; (4);(5)原式=1(cos34cos26sin34sin 26)cos(3426)cos602-︒︒-︒︒=-︒+︒=-︒=-;(6)原式=sin 20cos70cos20sin70(sin 20cos70cos20sin70)sin901-︒︒-︒︒=-︒︒+︒︒=-︒=-.6、(1)原式=cos cos sin sin cos()333x x x πππ-=+;(2)原式=1cos )2(sin cos cos sin )2sin()2666x x x x x πππ+=+=+;(3)原式=)2(sin cos cos sin )2sin()444x x x x x πππ=-=-;(4)原式=12(cos )cos sin sin )cos()2333x x x x x πππ=-=+.7、解:由已知得3sin()cos cos()sin 5αβααβα---=,即3sin[()]5αβα--=,3sin()5β-=所以3sin 5β=-. 又β是第三象限角,于是4cos 5β===-.因此55534sin()sin cos cos sin ()(()(44455πππβββ+=+=-+-=. 练习(P135)1、解:因为812παπ<<,所以382αππ<<又由4cos 85α=-,得3sin 85α=-,3sin385tan 484cos 85ααα-===- 所以3424sinsin(2)2sin cos 2()()48885525αααα=⨯==⨯-⨯-=2222437cos cos(2)cos sin ()()48885525αααα=⨯=-=---=2232tan23162484tan tan(2)3482771tan 1()84αααα⨯=⨯===⨯=-- 2、解:由3sin()5απ-=,得3sin 5α=-,所以222316cos 1sin 1()525αα=-=--=所以2221637cos2cos sin ()25525ααα=-=--=3、解:由sin2sin αα=-且sin 0α≠可得1cos 2α=-,又由(,)2παπ∈,得sin α=,所以sintan (2)cos ααα==-= 4、解:由1tan 23α=,得22tan 11tan 3αα=-. 所以2tan 6tan 10αα+-=,所以tan 3α=-5、(1)11sin15cos15sin3024︒︒=︒=; (2)22cos sin cos 88πππ-==;(3)原式=212tan 22.511tan 4521tan 22.522︒⋅=︒=-︒; (4)原式=cos45︒=. 习题 A 组(P137)1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222πππαααααα-=+=⨯+-⨯=-;(2)333sin()sin cos cos sin 1cos 0sin cos 222πππαααααα-=-=-⨯-⨯=-;(3)cos()cos cos sin sin 1cos 0sin cos παπαπαααα-=+=-⨯+⨯=-; (4)sin()sin cos cos sin 0cos (1)sin sin παπαπαααα-=-=⨯--⨯=.2、解:由3cos ,05ααπ=<<,得4sin 5α==,所以431cos()cos cos sin sin 666552πππααα-=+=⨯=.3、解:由2sin ,(,)32πααπ=∈,得cos α===又由33cos ,(,)42πββπ=-∈,得sin β===,所以32cos()cos cos sin sin ()(43αβαβαβ-=+=-+⨯=.4、解:由1cos 7α=,α是锐角,得sin α=== 因为,αβ是锐角,所以(0,)αβπ+∈,又因为11cos()14αβ+=-,所以sin()αβ+===所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++1111()1472=-⨯= 5、解:由60150α︒<<︒,得9030180α︒<︒+<︒又由3sin(30)5α︒+=,得4cos(30)5α︒+=-所以cos cos[(30)30]cos(30)cos30sin(30)sin30αααα=︒+-︒=︒+︒+︒+︒431552=-+⨯=6、(1); (2) (3)2-7、解:由2sin ,(,)32πααπ=∈,得cos α===又由3cos 4β=-,β是第三象限角,得sin β==.所以cos()cos cos sin sin αβαβαβ+=-32()(43=--⨯=sin()sin cos cos sin αβαβαβ-=-23()((34=⨯--⨯=8、解:∵53sin ,cos 135A B ==且,A B 为ABC ∆的内角∴0,02A B ππ<<<<,124cos ,sin 135A B =±=当12cos 13A =-时,sin()sin cos cos sin AB A B A B +=+5312433()013513565=⨯+-⨯=-< A B π+>,不合题意,舍去∴124cos ,sin 135A B ==∴cos cos()(cos cos sin sin )C A B A B A B =-+=--1235416()13513565-⨯-⨯=- 9、解:由3sin ,(,)52πθθπ=∈,得4cos 5θ==-.∴sin 353tan ()cos 544θθθ==⨯-=-. ∴31tan tan 242tan()311tan tan 111()42θϕθϕθϕ-+++===--⋅--⨯. 31tan tan 42tan()2311tan tan 1()42θϕθϕθϕ----===-+⋅+-⨯. 10、解:∵tan ,tan αβ是22370x x +-=的两个实数根.∴3tan tan 2αβ+=-,7tan tan 2αβ⋅=-.∴3tan tan 12tan()71tan tan 31()2αβαβαβ-++===--⋅--.11、解:∵tan()3,tan()5αβαβ+=-=∴tan()tan()tan 2tan[()()]1tan()tan()αβαβααβαβαβαβ++-=++-=-+⋅-3541357+==--⨯tan()tan()tan 2tan[()()]1tan()tan()αβαββαβαβαβαβ+--=+--=++⋅-3511358-==-+⨯12、解:∵::2:3:6BD DC AD =∴11tan ,tan 32BD DC AD AD αβ====∴tan tan tan tan()1tan tan BAC αβαβαβ+∠=+=-⋅1132111132+==-⨯ 又∵0180BAC ︒<∠<︒,∴45BAC ∠=︒(第12题)13、(1))6x π+; (23sin()3x π-; (3)2sin()26x π+;(47sin()12x π-; (5)2; (6)12; (7)sin()αγ+; (8)cos()αγ--; (9) (10)tan()βα-.14、解:由sin 0.8,(0,)2παα=∈,得cos 0.6α===∴sin22sin cos 20.80.60.96ααα==⨯⨯= 2222cos2cos sin 0.60.80.28ααα=-=-=- 15、解:由cos 270ϕϕ=︒<<︒,得sin ϕ===∴sin 22sin cos 2((ϕϕϕ==⨯⨯=22221cos2cossin ((3ϕϕϕ=-=-=- sin 2tan 2(3)cos 23ϕϕϕ==-=-16、解:设5sin sin 13B C ==,且090B ︒<<︒,所以12cos 13B =. ∴512120sin sin(1802)sin 22sin cos 21313169A B B B B =︒-===⨯⨯=2222125119cos cos(1802)cos2(cos sin )(()())1313169A B B B B =︒-=-=--=--=-sin 120169120tan ()cos 169119119A A A ==⨯-=-17、解:22122tan 33tan 211tan 41()3βββ⨯===--,13tan tan 274tan(2)1131tan tan 2174αβαβαβ+++===-⋅-⨯. 18、解:1cos()cos sin()sin 3αββαββ+++=⇒1cos[()]3αββ+-=,即1cos 3α= 又3(,2)2παπ∈,所以sinα== ∴1sin 22sin cos 2(ααα==⨯⨯=222217cos2cos sin ()(39ααα=-=-=-∴7cos(2)cos2cos sin 2sin (4449πππααα+=-=-=19、(1)1sin2α+; (2)cos2θ; (3)1sin 44x ; (4)tan2θ.习题 B 组(P138) 1、略. 2、解:∵tan ,tan A B 是x 的方程2(1)10x p x +++=,即210x px p +++=的两个实根∴tan tan A B p +=-,tan tan 1A B p ⋅=+ ∴tan tan[()]tan()C A B A B π=-+=-+tan tan 11tan tan 1(1)A B pA B p +-=-=-=--⋅-+由于0C π<<,所以34C π=. 3、反应一般的规律的等式是(表述形式不唯一)223sin cos (30)sin cos(30)4αααα++︒++︒=(证明略) 本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cos sin(30)cos 4αααα-︒++-︒=223sin (15)cos (15)sin(15)cos(15)4αααα-︒++︒+-︒+︒=223sin cos sin cos 4αβαβ++=,其中30βα-=︒,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PA PP =,则2222(cos()1)sin ()(cos cos )(sin sin )αβαβαβαβ+-++=-++ 即22cos()22cos cos 2sin sin αβαβαβ-+=-+ 所以cos()cos cos sin sin αβαβαβ+=-3.2简单的三角恒等变换 练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x =. 最小正周期为2π,递增区间为[,],8282k k k Z ππππ-++∈,最大值为12;(2)cos 2y x =+. 最小正周期为2π,递增区间为[2,22],k k k Z ππππ++∈,最大值为3;(3)2sin(4)3y x π=+. 最小正周期为2π,递增区间为5[,],242242k k k Z ππππ-++∈,最大值为2.习题 A 组( P143) 1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用22sin cos ϕϕ+代替1,用2sin cos ϕϕ代替sin 2ϕ;(5)略; (6)提示:用22cos θ代替1cos2θ+;(7)提示:用22sin θ代替1cos2θ-,用22cos θ代替1cos2θ+; (8)略.2、由已知可有1sin cos cos sin 2αβαβ+=……①,1sin cos cos sin 3αβαβ-=……②(1)②×3-①×2可得sin cos 5cos sin αβαβ=(2)把(1)所得的两边同除以cos cos αβ得tan 5tan αβ= 注意:这里cos cos 0αβ≠隐含与①、②之中3、由已知可解得1tan 2θ=-. 于是2212()2tan 42tan 211tan 31()2θθθ⨯-===---- 1tan tan1142tan()1431tan tan 1()142πθπθπθ+-++===-⋅--⨯ ∴tan 24tan()4πθθ=-+4、由已知可解得sin x θ=,cos y θ=,于是2222sin cos 1x y θθ+=+=.5、()2sin(4)3f x x π=+,最小正周期是2π,递减区间为7[,],242242k k k Z ππππ++∈.习题 B 组(P143) 1、略.2、由于762790+⨯=,所以sin76sin(9014)cos14m ︒=︒-︒=︒= 即22cos 71m ︒-=,得cos7︒=3、设存在锐角,αβ使223παβ+=,所以23απβ+=,tan()2αβ+又tantan 22αβ=,又因为tantan 2tan()21tantan 2αβαβαβ++=-,所以tantan tan()(1tan tan )3222αααβββ+=+-=由此可解得tan 1β=, 4πβ=,所以6πα=.经检验6πα=,4πβ=是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22αβαβ++. 过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM βαααβ∠=-+=+.在Rt OMA ∆中,cos cos 22OM OA βααβ--==. 在1Rt OM M ∆中,11cos cos cos22OM OM MOM αβαβ+-=∠=11sin sin cos22M M OM MOM αβαβ+-=∠=.于是有 1(cos cos )cos cos222αβαβαβ+-+=, 1(sin sin )sin cos222αβαβαβ+-+= 5、当2x =时,22()sin cos 1f ααα=+=;当4x =时,4422222()sin cos (sin cos )2sin cos f ααααααα=+=+-211sin 22α=-,此时有1()12f α≤≤;当6x =时,662232222()sin cos (sin cos )3sin cos (sin cos )f ααααααααα=+=+-+231sin 24α=-,此时有1()14f α≤≤;由此猜想,当2,x k k N +=∈时,11()12k f α-≤≤6、(1)345(sin cos )5sin()55y x x x ϕ=+=+,其中34cos ,sin 55ϕϕ==所以,y 的最大值为5,最小值为﹣5; (2))y x ϕ+,其中cos ϕϕ==所以,y ;第三章 复习参考题A 组(P146)(第4题)1、1665. 提示:()βαβα=+- 2、5665. 提示:5sin()sin[()]sin[()()]44ππαβπαββα+=-++=-+--3、1.4、(1)提示:把公式tan tan tan()1tan tan αβαβαβ++=-变形;(2; (3)2; (4)提示:利用(1)的恒等式.5、(1)原式4sin(3010)4sin 20︒-︒==︒;(2)原式=sin10sin 40(sin 40cos10︒︒=︒ =2sin 40cos40sin801cos10cos10-︒︒-︒==-︒︒;(3)原式=tan 70cos101)tan 70cos10︒︒=︒ =sin702sin10sin 20cos101cos70cos20cos70︒-︒-︒⋅︒⋅==-︒︒︒;(4)原式=sin50(1sin50︒⋅= 2cos50sin100sin501cos10cos10︒︒=︒⋅==︒︒6、(1)95; (2)2425;(3). 提示:4422222sin cos (sin cos )2sin cos θθθθθθ+=+-; (4)1725.7、由已知可求得2cos cos 5αβ=,1sin sin 5αβ=,于是sin sin 1tan tan cos cos 2αβαβαβ==. 8、(1)左边=222cos 214cos232(cos 22cos21)αααα-++=++22242(cos21)2(2cos )8cos ααα=+===右边(2)左边=2222sin cos 2sin cos (sin cos )2cos 2sin cos 2cos (cos sin )αααααααααααα+++=++sin cos 11tan 2cos 22αααα+==+=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin 2cos (cos sin )αβαβααβααβααααα+-+++-+=+sin()cos cos()sin sin sin sin αβααβαβαα+-+===右边(第12(2)题)(4)左边=222234cos22cos 212(cos 22cos21)34cos22cos 212(cos 22cos21)A A A A A A A A -+--+=++-++ 2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A -===+=右边 9、(1)1sin 21cos2sin 2cos222)24y x x x x x π=+++=++++递减区间为5[,],88k k k Z ππππ++∈(222,最小值为22.10、2222()(cos sin )(cos sin )2sin cos cos2sin 22)4f x x x x x x x x x x π=+--=-=+(1)最小正周期是π;(2)由[0,]2x π∈得52[,]444x πππ+∈,所以当24x ππ+=,即38x π=时,()f x 的最小值为2-()f x 取最小值时x 的集合为3{}8π.11、2()2sin 2sin cos 1cos2sin 22)14f x x x x x x x π=+=-+=-+(1)最小正周期是π21;(2)()f x 在[,]22ππ-上的图象如右图:12、()3sin cos 2sin()6f x x x a x a π=++=++.(1)由21a +=得1a =-;(2)2{22,}3x k x k k Z πππ+∈≤≤.13、如图,设ABD α∠=,则CAE α∠=,2sin h AB α=,1cos hAC α=所以1212sin 2ABC h h S AB AC α∆=⋅⋅=,(0)2πα<<当22πα=,即4πα=时,ABC S ∆的最小值为12h h .第三章 复习参考题B 组(P147)1、解法一:由221sin cos 5sin cos 1αααα⎧-=⎪⎨⎪+=⎩,及0απ≤≤,可解得4sin 5α=, αh 1h 2l 2l 1BDE AC(第13题)13cos sin 55αα=-=,所以24sin 225α=,7cos225α=-,sin(2)sin 2cos cos2sin 44450πππααα-=-=. 解法二:由1sin cos 5αα-= 得21(sin cos )25αα-=,24sin 225α=,所以249cos 2625α=. 又由1sin cos 5αα-=,得sin()4πα-=.因为[0,]απ∈,所以3[,]444πππα-∈-.而当[,0]44ππα-∈-时,sin()04πα-≤;当3[,]444πππα-∈时,sin()4πα->所以(0,)44ππα-∈,即(,)42ππα∈所以2(,)2παπ∈,7cos225α=-.sin(2)4πα-=2、把1cos cos 2αβ+=两边分别平方得221cos cos 2cos cos 4αβαβ++=把1sin sin 3αβ+=两边分别平方得221sin sin 2sin sin 9αβαβ++=把所得两式相加,得1322(cos cos sin sin )36αβαβ++=,即1322cos()36αβ+-=,所以59cos()72αβ-=-3、由sin()sin 3παα++= 可得3sin 2αα=4sin()65πα+=-. 又02πα-<<,所以366πππα-<+<,于是3cos()65πα+=.所以cos cos[()]66ππαα=+-4、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos x x x x x x x x x x x x x x +++==---1tan sin 2sin 2tan()1tan 4x x x x x π+==+-由177124x ππ<<得5234x πππ<+<,又3cos()45x π+=,所以4sin()45x π+=-,4tan()43x π+=-所以cos cos[()]cos()cos sin()sin 444444x x x x ππππππ=+-=+++=,sin 10x =-,7sin 22sin cos 25x x x ==, 所以2sin 22sin 281tan 75x x x +=--, 5、把已知代入222sin cos (sin cos )2sin cos 1θθθθθθ+=+-=,得22(2sin )2sin 1αβ-=.变形得2(1cos2)(1cos2)1αβ---=,2cos2cos2αβ=,224cos 24cos 2αβ= 本题从对比已知条件和所证等式开始,可发现应消去已知条件中含θ的三角函数.考虑sin cos θθ+,sin cos θθ这两者又有什么关系及得上解法. 5、6两题上述解法称为消去法6、()21cos22sin(2)16f x x x m x m π=+++=+++.由 [0,]2x π∈ 得72[,]666x πππ+∈,于是有216m ++=. 解得3m =.()2sin(2)4()6f x x x R π=++∈的最小值为242-+=,此时x 的取值集合由322()62x k k Z πππ+=+∈,求得为2()3x k k Z ππ=+∈7、设AP x =,AQ y =,BCP α∠=,DCQ β∠=,则tan 1x α=-,tan 1y β=- 于是2()tan()()x y x y xyαβ-++=+-又APQ ∆的周长为2,即2x y +,变形可得2()2xy x y =+- 于是2()tan()1()[2()2]x y x y x y αβ-++==+-+-.又02παβ<+<,所以4παβ+=,()24PCQ ππαβ∠=-+=.8、(1)由221sin cos 5sin cos 1ββββ⎧+=⎪⎨⎪+=⎩,可得225sin 5sin 120ββ--=解得4sin 5β=或3sin 5β=-(由(0,)βπ∈,舍去)所以13cos sin 55ββ=-=-,于是4tan 3β=-(2)根据所给条件,可求得仅由sin ,cos ,tan βββ表示的三角函数式的值,例如,sin()3πβ+,cos22β+,sin cos 2tan βββ-,sin cos 3sin 2cos ββββ-+,等等.。
高中数学第二章平面向量新人教A版必修4
平面向量一、选择题1.下列命题中正确的是( )( A ) 两个相等的向量的起点,方向,长度必须都相同( B) 若a,b是两个单位向量,则a= b( C) 若向量a和b共线,则向量a, b 的方向相同( D) 零向量的长度为0,方向是任意的2.如图,在平行四边形ABCD 中,下列结论中错误的是( )( A ) ( C) AB DCAB AD BD( B )( D )AD AB ACAD CB03.在四边形ABCD 中,CB AB BA( )(A) DB (B) CA(C) CD (D) DC4.已知a,b为非零向量,且|a+ b|=| a|+| b|,则一定有( )( A ) a=b ( B ) a∥b,且a,b方向相同( C) a=-b ( D ) a∥b,且a,b方向相反5.化简下列向量: ( 1) AB BC CA (2) AB AC BD CD(3) FQ QP EF EM (4) OA OB AB,结果为零向量的个数是( )(A)1 (B)2 (C)3 (D)4二、填空题6.对于下列命题①相反向量就是方向相反的向量②不相等的向量一定不平行③相等的向量一定共线④共线的单位向量一定相等⑤共线的两个向量一定在同一条直线上其中真命题的序号为______.3 3点A 的位置向量为 ______.8.一艘船以 5 km 的速度出发向垂直于对岸的方向行驶,而船实际的航行方向与水流成30°,则船的实际速度的大小为______ ,水流速度的大小为______.9.如图,在□ABCD中,AO a ,DO b ,用向量a, b 表示下列向量CB______AB =_____.10.已知平面内有□ABCD和点O,若OA a ,OB b,OC c ,OD d,则a-b+c -d=______.三、解答题11.化简:(1) AB AC BD(2) AB CD CB DA12.在单位圆中, B 是 OA 的中点, PQ 过 B 且 PQ∥Ox,MP⊥ Ox,NQ⊥ Ox,则在向量OM,ON,MP,NQ,OP,OQ,OB,OA,PQ 中.( 1) 找出相等的向量;( 2) 找出单位向量;( 3) 找出与OM共线的向量;( 4) 向量OM,ON的长度.13.已知正方形A BCD 的边长为1,若AB a ,BC b ,AC c ,求作向量a-b+c,并求出 |a-b+c|.14.已知向量a, b 满足:| a|=3,| a+ b|=5,| a- b|=5,求| b|.向量的线性运算 ( 二 ) 一、选择题1.若 3( x+ 3a) - 2( a-x) =0,则向量 x= ( ) ( A ) 2a ( B) - 2a ( C) 7a ( D ) 7 a5 52.若AB5e, CD7e且 | AD | | BC |,则四边形ABCD 是 ( ) ( A ) 平行四边形( B ) 非等腰梯形( C)菱形( D)等腰梯形3.如图所示, D 是△ ABC 的边上的中点,则向量CD 等于()(A) BC 1BA ( B ) BC1BA 2 2(C) BC 1BA (D) BC 1 BA2 2 )4.已知向量1- 2e2,b=- 2e1+ 4e2,则向量a与b满足关系 (a= e( A ) b= 2a ( B) 共线且方向相反 ( C) 共线且方向相同(D)不平行5.下列结论中正确的个数是 ( )①若| b|=2| a|,则 b=±2a ②若 a∥ b,b∥ c,则 a∥ c ③若 m a=m b,则a=b④ 0a=0⑤若向量a与b共线,则一定存在一个实数,使得 a= b(A)0个(B)1个(C)2个(D)3 个二、填空题6.化简: 5( 3a- 2b) + 4( 2b-3a) = ______.7.与非零向量a共线的单位向量为 ____________.8.数轴上的点 A,B,C 的坐标分别为2x,- 2,x,且AB 3BC ,则x=______;|AB|= ______.9.已知向量 a 与 b 方向相反,|a|=6,| b|=4,则 a=______b.10.在□ ABCD 中,AB a ,AD b ,AN3NC ,M为BC的中点,则 MN____.三、解答题11.点 D 是△ ABC 边 BC 上一点,且BD 1 BC.设试AB a,AC b,用向量a,b表示3AD.12.已知向量a, b 满足求| a|∶| b|.11 1(a3b)(a b)(3a2b) ,求证:向量 a 与 b 共线,并52 513.已知|a|= 1,|b|= 2.若a=b,求|a-b|的值.14.已知平面中不同的四点A,B,C,D 和非零向量a,b,且AB a2b,CD 5a6b,CD =7a-2b.( 1) 证明: A, B, D 三点共线;( 2) 若a与b共线,证明A, B, C,D 四点共线.向量的分解与向量的坐标表示一、选择题1.已知向量a= ( 4,2) ,向量 b=( x,3),且 a∥b,则x=( )(A)9 (B)6 (C)5 (D)32.已知点 A( 0, 1) , B( 1, 2) , C( 3, 4) ,则AB 2BC的坐标为 ( )( A)( 3,3) ( B)( -3,- 3) ( C)( - 3, 3) ( D)( 3,- 3)3.已知基底 { e1,e2} ,实数 x,y 满足 ( 3x- 4y) e1+ ( 2x-3y) e2= 6e1+ 3e2,则 x- y 的值等于( )(A)3(B)-3(C)0(D)24.在基底 { e1,e2} 下,向量a=e1+ 2e2,b= 2e1-e2,若a∥b,则的值为()(A)0(B)-21(D)-4( C)25.设向量a= ( 1,- 3) ,b= ( - 2,4) ,c= ( - 1,- 2) ,若表示向量4a,4b-2c,2( a-c) ,d 的有向线段首尾相连能构成四边形,则向量 d 为( )( A)( 2,6) ( B)( -2,6)( C)( 2,- 6) ( D)( - 2,- 6)二、填空题6.点 A( 1,- 2) 关于点 B 的对称点为 ( - 2, 3) ,则点 B 的坐标为 ______.7.若 M( 3,- 2) ,N( - 5,- 1) 且MP 1 MN,则 P 点的坐标为 ______________.28.已知点 O( 0,0) , A( 1,2) ,B( 4,5) ,点 P 满足OP OA t AB ,当点P在x轴上时,t= _______.9.已知□ABCD 的三个顶点A( - 1, 3) , B( 3, 4) ,C( 2, 2) ,则顶点D的坐标为 ______.10.向量OA(k,12) , OB (4,5) , OB (10, k) 若A、B、C三点共线,则k= ______.三、解答题11.已知梯形ABCD 中,AB2DC ,M,N分别是DC,AB的中点.设 AD a,AB b 选择基底 { a,b} ,求向量DC,NM在此基底下的分解式.12.已知向量a=( 3,-2),b=(-2,1), c=( 7,-4),( 1) 证明:向量a, b 是一组基底;( 2) 在基底 { a,b} 下,若c= x a+ y b,求实数x, y 的值.13.已知向量a=( 1,2), b=(-3,x).若 m=2a+ b, n= a-3b,且 m∥ n,求实数x的值并判断此 m 时 n 与的方向相同还是相反.14.已知点O( 0,0) , A( 1, 4) ,B( 4,- 2) ,线段 AB 的三等分点C,D ( 点 C 靠近 A) .OC2OD平面向量的数量积及其运算律一、选择题1.若| a |= 4, | b |= 3,〈a , b 〉= 135°,则 a 2 b = ( )(A)6( B)(C)6 2 (D) 622.已知 | a |= 8, e 为单位向量,〈 a , e 〉2π,则 a 在 e 方向上的正射影的数量为 ( )3(A)4 3(B)4(C) 43(D)-4 3.若向量 a , b , c 满足 a 2 b = a 2 c ,则必有 ()( A ) a = 0( B) b = c( C) a =0 或 b = c ( D ) a ⊥ ( b - c )4.若| a |= 1,| b |= 2,且 ( a + b ) ⊥ a ,则〈 a , b 〉= ()( A) 30° ( B) 60°( C) 120° (D)150°5.平面上三点 A ,B ,C ,若 | AB | 3,|BC | 4,|CA | 5,则 AB BC BC CA CA AB= ( )A .25 ( B) -25(C)50(D)-50二、填空题6.已知 a 2 b =- 4, a 在 b 方向上的正射影的数量为-8,则在| a |和 | b | 中,可求出具体数值的是 ______,它的值为 ______.7.已知 a , b 均为单位向量, 〈 a , b 〉= 60°,那么| a + 3b | = ______. 8.已知| a |= 4,| b | = 1,| a - 2b | = 4,则 cos 〈a , b 〉= ______.9.下列命题中,正确命题的序号是______.( 1) | a | 2=a 2;( 2) 若向量 a , b 共线,则 a 2 b =| a || b | ;( 3)( a 2 b ) 2= a 22 b 2;( 4) 若 a 2 b = 0,则 a = 0 或 b = 0( 5)( a -b ) 2 ( a +b ) =| a | 2-| b | 2;10.设向量 a , b , c 满足 a + b +c = 0, ( a -b ) ⊥ c , a ⊥b .若| a |= 1,则 | a | 2+| b |2+| c | 2的值是 ______. 三、解答题11.已知| a |= 5,| b |= 4,〈a , b 〉π,求 ( a + b ) 2 a 和| a + b |.312.向量 a , b 满足 ( a - b ) 2 ( 2a + b ) =- 4,且 | a | = 2,| b |= 4,求〈 a ,b 〉.13.已知 O 为△ ABC 所在平面内一点,且满足(OB OC) (OB OA) 0 ,试判断△ ABC的形状.14.已知向量 a , b 满足:| a |= 1,| b | = 2,| a - b | = 7 .( 1) 求| a - 2b |; ( 2) 若 ( a + 2b ) ⊥( k a - b ) ,求实数 k 的值.向量数量积的坐标运算与度量公式一、选择题1.已知 a = ( - 4, 3) , b = ( 5,6) ,则 3a 2-4a 2 b =()(A)83(B)63(C)57(D)232.已知向量 a ( 3, 1) , b 是不平行于 x 轴的单位向量,且 a b3 ,则 b =()(A)(3, 1) (B) (1,3 ) (C) (1,3 3) ( D)( 1,0)2222443.在△ ABC 中, A( 4, 6) , B( - 4,10) , C( 2, 4) ,则△ ABC 是 ( )( A ) 等腰三角形( B) 锐角三角形( C) 钝角三角形( D ) 直角三角形4.已知 a = ( 0, 1) ,b = ( 1,1) ,且〈 aπ的值为( )b ,a 〉,则实数2(A)-1(B)0(C)1(D)25.已知 a = ( 1, 2) ,b = ( - 2,- 4) , | c |5 ,若 (ab )c 5 ),则〈 a , c 〉= (2( A) 30°( B) 60°( C) 120°(D)150°二、填空题,b 〉=.若a + = ( - ,-1) , - =,- ,则=,〈 a ______ .6 b 2 a b ( 4 3) a 2 b ______7.向量 a = ( 5, 2) 在向量 b =( - 2, 1) 方向上的正射影的数量为 ______. 8.在△ ABC 中, A( 1, 0) , B( 3, 1) , C( 2, 0) 则∠ BCA = ____________. 9.若向量 a 与 b = ( 1, 2) 共线,且满足 a 2 b =- 10,则 a = ______.10.已知点 A( 0,3) ,B( 1,4) ,将有向线段 AB 绕点 A 旋转角π到 AC 的位置,则点C 的2坐标为 ______. 三、解答题11.已知 a = ( - 3,2) ,b = ( 1,2) ,求值: | a + 2b |,( 2a - b ) 2 ( a +b ) ,cos 〈a + b ,a - b 〉.12.若 |a |2 13 , b = ( - 2, 3) ,且 a ⊥ b ,求向量 a 的坐标.13.直角坐标系 xOy 中,已知点 A( 0,1) 和点 B( -3, 4) ,OC 为△ AOB 的内角平分线,且OC 与 AB 交于点 C ,求点 C 的坐标.14.已知 k Z ,AB ( k ,1),AC ( 2,4),| AB | 4 ,且△ ABC 为直角三角形, 求实数 k 的值.用心爱心专心测试十二向量的应用Ⅰ学习目标1.会用向量的方法解决某些简单的平面几何问题.2.会用向量的方法解决物理中简单的力学和速度问题;能将物理问题转化为数学问题,同时会用建立起来的数学模型解释相关的物理问题.Ⅱ基础性训练一、选择题1.作用于原点的两个力f1=( 1,1), f2=( 2,3),为使它们平衡,需要增加力f3,则力 f3 的大小为 ( )( A)( 3,4) ( B)( -3,- 4)( C) 5 (D)252.在水流速度为自西向东,10 km / h 的河中,如果要使船以10 3 km/ h的速度从河南岸垂直到达北岸,则船出发时行驶速度的大小和方向( )( A ) 北偏西 30°, 20 km/ h( B ) 北偏西 60°, 20 km / h( C) 北偏东 30°, 20 km/ h( D ) 北偏东 60°, 20 km / h3.若平行四边形ABCD 满足| AB AD | | AB AD |,则平行四边形ABCD 一定是 ( )(A)正方形(B)矩形(C)菱形(D)等腰梯形4.已知□ABCD 对角线的交点为O,P 为平面上任意一点,且PO =a,则PA PB PC PD = ( )( A ) 2a ( B) 4a ( C) 6a ( D ) 8a5.已知非零向量AB与 AC满足(AB AC)BC 0且 AB.AC 1|AB | |AC | |AB| |AC| 2,则△ ABC为 ( )( A ) 三边均不相等的三角形( B ) 直角三角形( C) 等腰非等边三角形( D ) 等边三角形二、填空题6.自 50 m 高处以水平速度10 m/ s 平抛出一物体,不考虑空气阻力,则该物2s 时的速度的大小为 ______,与竖直向下的方向成角为,则tan=______( g=10 m/ s2).7.夹角为 120°的两个力f1和 f2作用于同一点,且| f 1|=| f2|=m( m>0),则 f1和 f2的合力 f 的大小为______, f 与 f2的夹角为____________.8.正方形ABCD 中, E,F 分别为边DC , BC 的中点,则cos∠ EAF = ____________.9.在△ ABC 中,有命题:①AB AC BC ;②若 ( AB AC) ( AB A C )0 ,则△ABC 为等腰三角形;③AB BC CA=0;④若 AB BC 0 ,则为△ABC锐角三角形.上述命题中正确的是____________( 填上你认为正确的所有序号)三、解答题10.水平电线AB 对竖直电杆BD 的拉力为300 N,斜拉索BC 的拉力为600 N,此时电杆恰好不偏斜,求斜拉索与地面成角的大小以及由此引起的电杆对地面的压力( 电杆自重不计).11.某运动员在风速为东偏北60°, 2 m/ s 的情况下正在以 10 m/ s 的速度向东跑.若风停止,运动员用力不变的情况下,求该运动员跑步速度的大小和方向.12.对于平行四边形ABCD ,点 M 是 AB 的中点,点N 在 BD 上,且BN 1 BD.用向量3的方法证明:M, N, C 三点共线.Ⅲ拓展性训练13.在 Rt△ABC 中,∠ C=90°,且 CA= CB, D 是 CB 的中点, E 是 AB 上一点,且AE=2EB.求证: AD ⊥ CE.14.如图,已知点A( 4, 0) , B( 4,4) , C( 2, 6) ,求 AC 与 OB 的交点 P 的坐标.测试十三平面向量全章综合练习一、选择题1.向量( AB MB) (BO CB) OM 化简后等于( )(A) AC (B) BC ( C) AB (D) AM2.点 A 的坐标为 ( 1,- 3) ,向量AB的坐标为 ( 3,7) ,则点 B 的坐标为 ( ) ( A)( 4,4) ( B)( -2,4) ( C)( 2, 10) ( D)( -2,- 10)3.已知向量a= ( -2, 4) ,b= ( - 1,- 2) , c=( 2,3),则( a+ b) 2 ( a- c)的值为( )(A)10 (B)14 ( C) -10 (D)-144.已知向量a= ( 2,t) ,b= ( 1, 2) .若 t= t1时,a∥b; t= t 2时,a⊥b,则 ( ) ( A ) t1=- 4, t2=- 1 ( B ) t1=- 4, t2= 1( C) t1= 4, t2=- 1 ( D ) t1= 4, t2= 15.若点 O 是△ ABC 所在平面内一点,满足OA OB OB OC OC OA ,则点O是△ABC 的 ( )( A ) 三个内角的角分线的交点( B ) 三条边的垂直平分线的交点( C) 三条中线的交点( D ) 三条高线的交点二、填空题6.河水的流速为 2 m/ s,一只小船想要以垂直于河岸方向10 m/ s 的速度驶向对岸,则小船在静水中的速度的大小应为______________.7.数轴上的点A,B,点 A 的坐标为- 3,且向量AB的长度为5,则点 B 的坐标为 ______.8.已知p= ( - 2, 2) ,q= ( 1,3) ,则p在q方向上的正射影的数量为______.9.已知向量a=( 2,3), b=(-1,2),若( a+b)⊥( a+ b),则实数=______.10.给出下列命题:①a b b; a2a②| a|-| b|<| a- b|;③ |a2b|=|a||b|;④ ( b2 c) a- ( c2 a) b与c垂直;⑤已知 a,b 是非零向量,若| a+ b|=| a- b|,则a⊥ b;a2= b2.⑥已知 a, b 是两个单位向量,则所有正确的命题的序号为____________ .三、解答题11.已知点A( - 2, 1) , B( 1,3) .求线段 AB 中点 M 和三等分点P, Q 的坐标.12.已知 | a|= 2, | b|= 4,〈a,b〉2π.求|a-b|和〈a,a-b〉的余弦值.313.已知向量a=( 1,2), b=( x,1).( 1) 求与 a 垂直的单位向量的坐标;( 2) 求| b-2a|的最小值以及此时 b 的坐标;( 3) 当 x 为何值,a+ 2b与b- 2a平行,并确定它们此时是同向还是反向.14.如图,以原点O 和 A( 5,2) 为两个顶点作等腰直角△OAB,使∠ B= 90°.求点 B 的坐标和 AB 的坐标.参考答案第二章平面向量测试七向量的线性运算 ( 一 )一、选择题1.D 2.C 3.C 4.B 5.C二、填空题6.③7.“东偏北 60°, 6 km”或“北偏东30°, 6 km ” 8. 10 km / h 5 3 km/ h9.b-a;a+b10.0三、解答题11.解: ( 1) CD;( 2) 原式=(AB BC CD) DA AD DA =0.12.解: ( 1) MP NQ OB ;( 2) OP,OQ,OA;( 3) ON,PQ ;( 4)|OM | | ON | 3 213.解:AB a, BC b, AC c ,所以DB a b,BE AC c, DE DB BE a b c ,| a- b+ c|=2.14.解:设AB a, AD b ,做□ABCD.则 AC a b, DB a b ,可得 AC BD 5 ,所以□ABCD为矩形,|b | | AD | 52 32=4.测试八 向量的线性运算 ( 二 )一、选择题1.D 2.D 3.A 4. B 5. A二、填空题6. 3a - 2b 7.a 8.- 4; 6 9. a 3b 10. 1 b 1a| a |244三、解答题11.答: AD2 a 1b .33712.略解:化简得 9a = 7b ,即 ab ,所以 a ∥ b ;| a |∶| b |= 7∶ 9.91,λ= 113.略解:由题意,得| a |=| λ|| b |,∴ | λ|=,22| a - b |=| λ- 1|| b |= 2| λ- 1|= 1 或 3.14. (1) 证明:∵ BDCD CB 2a 4b ,∴ BD 2 AB ,∴ AB // BD ,因为二者均经过点 B ,所以 A , B , C 三点共线. (2)证明:∵ a 与 b 共线,设 a = λb ,∴ BD ( 2 4)b , CD (7 2)b∵CD0, BD 0 ∴7λ- 2≠0, 2λ+ 4≠0.∴ BD 24CD ,7 2∴ BD // CD ,所以 B , C , D 三点共线,又 A ,B , D 三点共线.所以 A , B ,C , D 四点共线.测试九 向量的分解与向量的坐标表示一、选择题1.B 2. B 3.A 4.D 5.D 二、填空题6.( 1,1)7.( 1, 3) 8. t2 9.( -2,1) 10.- 2 或 112 223三、解答题11.答: DC1b ; NM a1b .2412. ( 1) 证明:∵32 ,∴ a 与 b 不平行,所以向量 a , b 是一组基底.213x 2 y 7,x 1, ( 2) 略解: ( 7,- 4) = x( 3,- 2) + y( - 2, 1) ,y4,所以2.2x y13.略解: m =( - 1, 4+x) , n =( 10, 2- 3x) ,因为 m ∥ n ,所以- ( 2- 3x) - 10( 4+ x) =0, x =- 6,此时 m = ( - 1,- 2) , n = ( 10, 20) ,有 n =- 10m ,所以 m 与 n 方向相反.14.略解: ( 1) OC OA AC OA 1(1,4)1(2,2) .AB (3, 6)3 3OD OA AD OA 2AB (1,4)2(3, 6) (3,0) .3 3( 2) OC 2OD ( 2,2) 2(3,0) (8,2) .OE OB OC 2OD ( 4, 2) (8,2) (12,0) .测试十平面向量的数量积及其运算律一、选择题1.D 2.D 3.D 4.C 5.B二、填空题6.|b|; 1 7.13 8.19.①⑤10. 42 4提示:10.由a+b+c=0,得c=-a-b,又 ( a-b) ⊥c,∴ (a-b) 2 (-a-b)=0,2 2∴-| a|- a2 b+a2 b+| b|=0,∴|b|=|a|=1.又 c=- a- b,222 2 ∴| c|=|- a- b|=(- a- b) 2 (- a- b)=| a|+2a2 b+| b|=2.另外,可以结合图示,分析解决问题.三、解答题11.解:a2 b= 10, ( a+b) 2 a=a2+a2 b= 35,|a b | ( a b) 2 a 2 2a b b2 61 .12.解:由题意得2a 2-a2 b-b2=- 4,所以 2a2-a2 b-b2=- 4,得a2 b=-4,cos 〈a,b〉 a b 1, 〈a,b〉=120°| a || b | 213.略解:因为(OB OC) (OB OA) 0 ,所以CB AB=0,从而CB AB ,△ABC 为直角三角形.14.略解: ( 1) |a-b|2=a2- 2ab+b2= 7,所以a2 b=- 1,| a-2b|2= a2-4ab+4b2=21,即|a2b | 21.( 2) 由已知得 ( a+ 2b) 2 ( k a-b) = 0,即 k a2-ab+ 2k ab- 2b2= 0,得 k=- 7.测试十一向量数量积的坐标运算与度量公式一、选择题1.A 2.B 3.D 4.A 5.C提示:5.设c= ( x,y) ,由 | c | 5 ,得x2+y2=5,,①,由 ( a b ) c55 5,得 ( 1, 2) ( x, y),∴ x 2 y,, ②222由①②解得 c( 1 3, 13) ,或 c ( 1 3, 13) .22 2213) 时, cos 〈a c5 1 , 当c (3, 1, 〉222a c5 52|a || c |∴〈 a ,c 〉= 120°,另一种情况,计算结果相同.二、填空题6.- 5; 135° 7. 8 510. ( - 1,4) 或 ( 1,2)58.135° 9. ( - 2,- 4)提示:10.设 C( x , y) ,则 AB(1,1), AC ( x, y 3) ,由 AC ⊥ AB 得, AB AC 0 ,即 x + y - 3= 0,, ①又 | AB | AC , ∴ 2= x 2+ ( y - 3) 2,, ②. 结合①②,解得,x 1,x 1y 或y 4 ∴ C( 1, 2) 或 C( -1,4) .2,三、解答题11.答: |a 2b |37 ;( 2a - b ) 2 ( a + b ) =22; cos a b , ab 55.12.解:设 a = ( x ,y) ,则2x 3 y 0 x 6 x6 x2y252,解得:y 4 或,所以 a =( 6,4) 或y 4a = ( -6,- 4) .13.解:设 C( x , y) ,则 OC( x, y) ,由已知可得: 〈 OA,OC 〉=〈 OB, OC 〉AC // ABx y 113 则,所以,解得OC OCOB OC 3 4 x, y,2yxy2|OA ||OB|55所以 C( 1, 3).2 214.解:由 | AB |4 得 k 2≤ 15,∵ k ∈ Z ,∴ k =- 3,- 2,- 1, 0, 1, 2,3,·2k 4 0 所以 k =- 2;当 A = 90°时, AB ACAB ·BC 0,BC (2 - k ,3)当 C= 90°时,,所以 2( 2- k) +12= 0, k= 8( 舍 ) .AC·BC 0,BC (2 - k,3)综上 k=- 1 或- 2 或 3.测试十二向量的应用一、选择题1.C2.A3.B4.B5.D提示:ABm, AC5.设n ,则|m|=|n|=1,|AB| |AC|由已知 (m n) BC 0 .∴ m BC n BC,∴ m BC cos(x B)n BC cos C ∴c osB= c osC,又B、C∈( 0,)∴B= C.又由已知 m n 1,2∴ m n cos A 1 2∴ cos A 1,又(0,π)2∴A= 60°∴△ ABC 为等边三角形.二、填空题18.46. 10 5m/s;7. m, 60°,9.②③2 5三、解答题10.答:= 60°;300 3N.11.解:如图,建立平面直角坐标系,作□ABCD,设|OC | 2,| OB | 10,则C( 1,3 ),B( 10, 0) ,CB (9, 3),得 |CB| 2 21 9.17m/s,tan AOB3.9由计算器计算得∠ AOB≈ 10. 89°.该运动员跑步速度的大小为9. 17 m/ s,方向为东偏南约10. 89°.MN // MC量,再证明二者具有关系 MN MC 即可.设AB e 1 , AD e 2 ,则 BDe 1 e 2 , BN1e 1 1e 2 .3 3MC1e 1 e 2 , MN MB BN 1e 1 ( 1e 11e 2 ) 1 e 1 1e 2 .22 33 6 3所以 MN1MC ,所以 M , N ,C 三点共线.313.证明:设此等腰直角三角形的直角边长为a ,AD CE( AC CD) (CA AE) AC CA AC AECD CA CD AE|AC|2| AC || AE | cos45 0 |CD || AE |cos45a 22 a 21 a 20 所以 AD ⊥ CE .33或以点 C 为原点, CA , CB 所在的直线分别为x ,y 轴建立平面直角坐标系,则 A( a , 0) , D (0, 1 a), E(1 a, 2a), AD ( a, 1 a), CE ( 1 a, 2a),23 3233可得出 AD CE1 a2 1 a 20 ,所以 AD ⊥CE .3 314.解:设 P( x , y) ,则 OP (x, y) , OB = ( 4, 4) ,由 OP,OB ,共线得 4x -4y = 0,,, ①,AP ( x 4, y) , AC = ( - 2, 6) ,由 AP, AC 共线得 6( x - 4) - y( - 2) =0,, ②,由①②解得, P( 3, 3) .测试十三 平面向量全章综合练习一、选择题 1.A2.A3.B4.C5.D二、填空题6. 2 26m/s7.-8 或 2 2 109.1710.④⑤⑥8.59三、解答题11.解: ABOB OA (3,2) ,OM1(OB OA) ( 1,2),所以 M (1,2),2 22OPOA1AB (1, 5) ,所以 p( 1, 5), OQ OA 2AB (0, 7) ,3 3 33 3 7所以 Q(0, ) .2 7 , cos 〈 a , a -b 〉2712.答:| a -b |7.13.略解: ( 1) 设单位向量为 e = k( - 2, 1) = ( - 2k , k) ,因为 | e | = 1,得 k55,2 5 52 5 5e (5 , 5 ) 或 e ( 5 , 5 ) .(2)|b 2 | ( x 2) 29 ,当 x = 2 时, | b - 2a |最小值为 3,此时 b = ( 2,1) .a ( 3) x 1 ,反向.214.解:设 B( x , y) ,则 AB( x 5, y 2), OBAB OB 0(x, y) ,由已知得,| AB| |OB|x( x5) y( y 2) 0x 3x2 7所以,解得 2 或 2 ,x2y2( x 5)21( y 2)2y 1 7 y 2 32 2 所以 B(3,7)或 B(7,3),AB ( 3, 1)或 AB ( 7,3),222 22 22 2用心 爱心 专心。
高中数学第二章平面向量2.3平面向量的基本定理及坐标表示1课后习题新人教A版必修4(2021年整理)
2018-2019学年高中数学第二章平面向量2.3 平面向量的基本定理及坐标表示1课后习题新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第二章平面向量2.3 平面向量的基本定理及坐标表示1课后习题新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第二章平面向量 2.3 平面向量的基本定理及坐标表示1课后习题新人教A版必修4的全部内容。
2。
3。
1平面向量基本定理课后篇巩固探究A组基础巩固1。
在正方形ABCD中,的夹角等于()A。
45°B.90°C.120°D。
135°解析如图,将平移到,则的夹角即为的夹角,且夹角为135°。
答案D2。
设向量e1与e2不共线,若3x e1+(10—y)e2=(4y-7)e1+2x e2,则实数x,y的值分别为() A.0,0 B.1,1 C。
3,0 D.3,4解析因为向量e1与e2不共线,所以答案D3.如图,e1,e2为互相垂直的单位向量,向量a+b+c可表示为()A。
3e1—2e2B。
-3e1—3e2C。
3e1+2e2D。
2e1+3e2答案C4.若点D在△ABC的边BC上,且=4=r+s,则3r+s的值为()A。
B.C.D。
解析∵=4=r+s,∴)=r+s,∴r=,s=-,∴3r+s=3×.答案C5。
如图,平面内的两条相交直线OP1和OP2将该平面分割成四个部分Ⅰ,Ⅱ,Ⅲ,Ⅳ(不包含边界).设=m+n,且点P落在第Ⅲ部分,则实数m,n满足()A。
高中数学 第二章 平面向量 2.4.1 平面向量数量积的物理背景及其含义课后习题 新人教A版必修4
2.4.1 平面向量数量积的物理背景及其含义一、A组1.已知向量a,b满足|a|=2,|b|=,a与b的夹角为30°,则a·(a-2b)=()A.2-2B.4-2C.-4D.-2解析:a·(a-2b)=a2-2a·b=|a|2-2|a||b|cos 30°=4-2×2×=4-6=-2.答案:D2.已知|a|=2,|b|=1,|a+2b|=2,则a与b的夹角为()A.B.C.D.解析:∵|a+2b|=2,∴(a+2b)2=a2+4a·b+4b2=12.∵|a|=2,|b|=1,∴a·b=1.设a与b的夹角为θ,则|a||b|cos θ=2cos θ=1,∴cos θ=.又0≤θ≤π,∴θ=.答案:B3.(2016·新疆阿克苏高一期末)已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是()A.-4B.4C.-2D.2解析:根据投影的定义,可得向量a在向量b方向上的投影为|a|cos α==-4,其中α为a与b的夹角.故选A.答案:A4.若向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为()A.2B.4C.6D.12解析:∵(a+2b)·(a-3b)=a2-a·b-6b2=|a|2-|a|·4cos 60°-6×16=|a|2-2|a|-96=-72,即|a|2-2|a|-24=0,∴|a|=6或|a|=-4(舍去),故选C.答案:C5.已知平面上三点A,B,C满足||=3,||=4,||=5,则的值等于()A.-25B.-20C.-15D.-10解析:由已知可得△ABC为直角三角形,则的夹角为,=0,∴·()==-||2=-25.答案:A6.已知向量a,b,且|a|=|b|=1,|a-b|=1,则|a+b|=.解析:∵|a-b|=1,∴a2-2a·b+b2=1.又|a|=|b|=1,∴a·b=.∴|a+b|2=(a+b)2=a2+2a·b+b2=1+2×+1=3,∴|a+b|=.答案:7.已知e1,e2是夹角为的两个单位向量,a=e1-2e2,b=k e1+e2,若a·b=0,则k的值为.解析:∵a·b=(e1-2e2)·(k e1+e2)=k-2k e1·e2+e1·e2-2=k-2k·-2=2k-=0.∴k=.答案:8ABC中,AB=2,AC=3,D是边BC的中点,则=. 解析:∵D是边BC的中点,∴).又,∴)·()=)=×(32-22)=.答案:9.已知向量a,b的长度|a|=4,|b|=2.(1)若a,b的夹角为120°,求|3a-4b|;(2)若|a+b|=2,求a与b的夹角θ.解:(1)∵a·b=|a||b|cos 120°=4×2×=-4.又|3a-4b|2=(3a-4b)2=9a2-24a·b+16b2=9×42-24×(-4)+16×22=304,∴|3a-4b|=4.(2)∵|a+b|2=(a+b)2=a2+2a·b+b2=42+2a·b+22=(2)2,∴a·b=-4,∴cos θ==-.又θ∈[0,π],∴θ=.10.已知向量a,b不共线,且|2a+b|=|a+2b|,求证:(a+b)⊥(a-b).证明:∵|2a+b|=|a+2b|,∴(2a+b)2=(a+2b)2.∴4a2+4a·b+b2=a2+4a·b+4b2,∴a2=b2.∴(a+b)·(a-b)=a2-b2=0.又a与b不共线,a+b≠0,a-b≠0,∴(a+b)⊥(a-b).二、B组1.(2016·山东淄川一中阶段性检测)若向量a,b满足|a|=|b|=1,a⊥b,且(2a+3b)⊥(k a-4b),则实数k的值为()A.-6B.6C.3D.-3解析:由题知,(2a+3b)·(k a-4b)=0,即2k a2+(3k-8)a·b-12b2=0,即2k-12=0,k=6.故选B.答案:B2.(2016·江西赣州期末考试)在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若=1,则AB的长为()A.2B.1C. D.解析:在平行四边形ABCD中,,∴=()·=1,∴1-×1×||×cos 60°=1,解得||=.答案:D3.在△ABC中,AB⊥AC,AC=1,点D满足条件,则等于()A. B.1C. D.解析:∵AB⊥AC,∴=0.∴·()==0+=·()=)=×(1-0)=.答案:A4.(2016·新疆阿克苏高一期末)已知向量a和b的夹角为120°,|a|=1,|b|=3,则|a-b|=()A.2B.C.4D.解析:因为向量a和b的夹角为120°,|a|=1,|b|=3,所以a·b=-.所以|a-b|2=a2-2a·b+b2=13.所以|a-b|=.答案:D5.已知a,b为共线的两个向量,且|a|=1,|b|=2,则|2a-b|=.解析:|2a-b|=.∵a,b为共线的两个向量,设a,b的夹角为θ,则θ=0°或180°,当θ=0°时,a·b=2;当θ=180°时,a·b=-2.∴|2a-b|=0或4.答案:0或46.已知|a|=|b|=2,a,b的夹角为60°,则使向量a+λb与λa+b的夹角为锐角的λ的取值范围是.解析:由a+λb与λa+b的夹角为锐角,得(a+λb)·(λa+b)>0,即λa2+(λ2+1)a·b+λb2>0,从而λ2+4λ+1>0,解得λ<-2-或λ>-2+.当λ=1时,a+λb与λa+b共线同向,故λ的取值范围是(-∞,-2-)∪(-2+,1)∪(1,+∞).答案:(-∞,-2-)∪(-2+,1)∪(1,+∞)7.已知|a|=3,|b|=2,a与b的夹角为60°,c=3a+5b,d=m a-3b.(1)当m为何值时,c与d垂直?(2)当m为何值时,c与d共线?解:(1)由向量c与d垂直,得c·d=0,而c·d=(3a+5b)·(m a-3b)=3m a2+(5m-9)a·b-15b2=27m+3(5m-9)-60=42m-87=0,∴m=,即m=时,c与d垂直.(2)由c与d共线,得存在实数λ,使得c=λd,∴3a+5b=λ(m a-3b),即3a+5b=λm a-3λb.又∵a与b不共线,∴解得即当m=-时,c与d共线.8)如图,在平面内将两块直角三角板接在一起,已知∠ABC=45°,∠BCD=60°,记=a,=b.(1)试用a,b表示向量;(2)若|b|=1,求.解:(1)=a-b,由题意可知,AC∥BD,BD=BC=AC.∴b,则=a+b,=a+(-1)b.(2)∵|b|=1,∴|a|=,a·b=cos 45°=1,则=a·[a+(-1)b]=a2+(-1)a·b=2+-1=+1.。
高中数学第二章平面向量2.2.3向量数乘运算及其几何意义课后习题新人教A版必修4
高中数学第二章平面向量223向量数乘运算及其几何意义课后习题新人教A 版必修4一、A 组1.已知非零向量 a, b 满足a +4b =0,则( )C a 与b 的方向相同D. a 与b 的方向相反解析:T a +4b =0,二 a =-4b, | a |= 4| b | ,且 a 与 b 的方向相反.答案:D1妙 4- BCA.1 -BA-BCB. Z:BA - BCC.--D.--I 1 IICD = -(CA + CB 解析:T 点D 是边AB 的中点,二).I~~TV 1I r^(CA + CB -BA + BC.•卫dg )=上.故选D .答案:D3.设a, b 不共线 J =a +k b, =n a +b(k ,m€ R),则A , B C 三点共线时有( )A.k=mB.km-仁0C km+1=0D.k+m=0i-1解析:若ABC 三点共线,则’共线,I I.存在唯一实数入,使二上=入“,.a +kb =X (m a +b),A. | a |+ 4| b |= 0B. a 与b 是相反向量2.如图所示1加=1*即 a +k b = Xm a + 入 b, •」几一/• km=1.即 km-1=0.答案:BA. △ ABC 的内部B. AC 边所在直线上C. AB 边所在直线上D. BC 边所在直线上4.如图,已知 lAB =a, AC =b,図/=3。
£,用a, b 表示眉D ,贝则4DA. a +Jb3 1B. 4a+4bC. ]a + ; b)5.已知P 是厶ABC 所在平面内的一点,池色=入卩月+PB ,其中入€ R 则点P —定在(上+解析:,兀入PP R, .UP R»PACB +•上P加••虽以共线.•••C P,A三点共线,故选B.答案:B6.化简:3(6a+»-^k 解析:原式=18a+3b-9a- 3b=9a.答案:9a7.如图,在平行四边形ABCD^ , E是CD的中点,且人月=a,4D=b,贝肖E = _____________________________________________________________________________I I I I I I解析:BE=BC^-CE = AD +答案—a+b &导学号08720054 在△ ABC中,点M为边AB的中点,若。
2021秋高中数学第二章平面向量2.3.1平面向量基本定理练习(含解析)新人教A版必修4
2.3.1 平面向量根本定理A 级 根底稳固一、选择题1.设e 1,e 2是平面内所有向量的一组基底,那么以下四组向量中,不能作为基底的是( )A .e 1+e 2和e 1-e 2B .3e 1-4e 2和6e 1-8e 2C .e 1+2e 2和2e 1+e 2D .e 1和e 1+e 2解析:B 中,因为6e 1-8e 2=2(3e 1-4e 2), 所以(6e 1-8e 2)∥(3e 1-4e 2),所以3e 1-4e 2和6e 1-8e 2不能作为基底. 答案:B2.在菱形ABCD 中,∠A =π3,那么AB →与AC →的夹角为( )A.π6B.π3C.5π6D.2π3解析:由题意知AC 平分∠BAD ,所以AB →与AC →的夹角为π6.答案:A3.在△ABC 中,点D 在BC 边上,且BD →=2DC →,设AB →=a ,AC →=b ,那么AD →可用基底a ,b 表示为( )A.12(a +b ) B.23a +13b C.13a +23b D.13(a +b ) 解析:因为BD →=2DC →, 所以BD →=23BC →.所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →=13a +23b .答案:C4.如图,在△OAB 中,P 为线段AB 上一点,OP →=xOA →+yOB →,且BP →=3PA →,那么( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:由BP →=3PA →,得OP →-OB →=3(OA →-OP →),整理,得OP →=34OA →+14OB →,故x =34,y =14.答案:D5.(2021·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,那么EB →=( ) A.34AB →-14AC → B.14AB →-34AC → C.34AB →+14AC → D.14AB →+34AC → 答案:A 二、填空题6.假设OP 1→=a ,OP 2→=b ,P 1P →=λPP 2→(λ≠-1),那么OP →=________.解析:因为OP →=OP 1→+P 1P →=OP 1+λPP 2→=OP 1→+λ(OP 2→-OP →)=OP 1→+λOP 2→-λOP →, 所以(1+λ)OP →=OP 1→+λOP 2→.所以OP →=11+λOP 1→+λ1+λOP 2→=11+λa +λ1+λb .答案:11+λa +λ1+λb 7.|a |=1,|b |=2,且a -b 与a 垂直,那么a 与b 的夹角为________.解析:如图,作向量OA →=a ,OB →=b ,那么BA →=a -b .由,得OA =1,OB =2,OA ⊥AB ,所以△OAB 为等腰直角三角形,所以∠AOB =45°,所以a 与b 的夹角为45°.答案:45°8.如果3e 1+4e 2=a ,2e 1+3e 2=b ,其中a ,b 为向量,那么e 1=________,e 2=________. 解析:由⎩⎪⎨⎪⎧a =3e 1+4e 2,b =2e 1+3e 2,解得⎩⎪⎨⎪⎧e 1=3a -4b ,e 2=3b -2a .答案:3a -4b 3b -2a 三、解答题9.如下图,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,假设OC →=λOA →+μOB →(λ,μ∈R).求λ+μ的值.解:如下图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,那么OC →=OD →+OE →.在直角△OCD 中,因为|OC →|=23,∠COD =30°,∠OCD =90°,所以|OD →|=4,|CD →|=2,故OD →=4OA →,OE →=2OB →,即λ=4,μ=2,所以λ+μ=6.10.如下图,▱ABCD 中,E ,F 分别是BC ,DC 的中点,G 为DE ,BF 的交点,假设AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →,CG →.解:DE →=AE →-AD →=AB →+BE →-AD →=a +12b -b =a -12b .BF →=AF →-AB →=AD →+DF →-AB →=b +12a -a =b -12a .如下图,连接DB ,延长CG ,交BD 于点O ,点G 是△CBD 的重心,故CG →=CE →+EG →=12CB →+EG →=12CB →+13ED →=-12b -13⎝ ⎛⎭⎪⎫a -12b =-13a -13b .B 级 能力提升1.如果e 1,e 2是平面α内两个不共线的向量,那么以下说法中不正确的选项是( ) ①λe 1+μe 2(λ,μ∈R)可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个;③假设向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,那么有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④假设存在实数λ,μ使得λe 1+μe 2=0,那么λ=μ=0.A .①②B .②③C .③④D .②解析:由平面向量根本定理可知,①④是正确的;对于②,由平面向量根本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个.答案:B2.如图,向量BP →=14BA →,假设OP →=xOA →+yOB →,那么x -y =________.解析:因为OP →=OB →+BP →=OB →+14BA →=OB →+14(BO →+OA →)=14OA →+34OB →,所以x =14,y =34.所以x -y =-12.答案:-123.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2. (1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式; (3)假设4e 1-3e 2=λa +μb ,求λ,μ的值.(1)证明:假设a ,b 共线,那么存在λ∈R ,使a =λb , 那么e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线得,⎩⎪⎨⎪⎧λ=1,3λ=-2,⇒⎩⎪⎨⎪⎧λ=1,λ=-23. 所以λ不存在,故a 与b 不共线,可以作为一组基底.(2)解:设c =ma +nb (m ,n ∈R),得3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2.所以⎩⎪⎨⎪⎧m +n =3,-2m +3n =-1,⇒⎩⎪⎨⎪⎧m =2,n =1.所以c =2a +b .(3)解:由4e 1-3e 2=λa +μb ,得4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2)=(λ+μ)e 1+(-2λ+3μ)e 2.所以⎩⎪⎨⎪⎧λ+μ=4,-2λ+3μ=-3,⇒⎩⎪⎨⎪⎧λ=3,μ=1.故所求λ,μ的值分别为3和1.。
人教A版高中数学必修4第二章 平面向量2.4 平面向量的数量积习题(1)
高中数学教案学案平面向量的数量积及其应用学习目标: 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.1.向量数量积的定义(1)向量数量积的定义:____________________________________________,其中|a |cos 〈a ,b 〉叫做向量a 在b 方向上的投影.(2)向量数量积的性质:①如果e 是单位向量,则a·e =e·a =__________________; ②非零向量a ,b ,a ⊥b ⇔________________; ③a·a =________________或|a |=________________; ④cos 〈a ,b 〉=________; ⑤|a·b |____|a||b |.2.向量数量积的运算律 (1)交换律:a·b =________; (2)分配律:(a +b )·c =________________; (3)数乘向量结合律:(λa )·b =________________. 3.向量数量积的坐标运算与度量公式(1)两个向量的数量积等于它们对应坐标乘积的和,即若a =(a 1,a 2),b =(b 1,b 2),则a·b =________________________;(2)设a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔________________________; (3)设向量a =(a 1,a 2),b =(b 1,b 2),则|a |=________________,cos 〈a ,b 〉=____________________________.(4)若A (x 1,y 1),B (x 2,y 2),则|AB →=________________________,所以|AB →|=_____________________.1.(2010·湖南)在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →等于 ( ) A .-16 B .-8 C .8 D .16 2.(2010·重庆)已知向量a ,b 满足a·b =0,|a |=1,|b |=2,则|2a -b |= ( ) A .0 B .2 2 C .4 D .8 3.(2011·福州月考)已知a =(1,0),b =(1,1),(a +λb )⊥b ,则λ等于 ( )A .-2B .2 C.12 D .-124.平面上有三个点A (-2,y ),B (0,2y ),C (x ,y ),若A B →⊥BC →,则动点C 的轨迹方程为________________.5.(2009·天津)若等边△ABC 的边长为M 满足CM →=16CB →+23CA →,则MA →·MB →=________.考点一 向量的模及夹角问题 例1 (2011·马鞍山月考)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.举一反三1 (1)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是 ( )A .1B .2C. 2D.22(2)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,实数λ的取值范围为________.考点二 两向量的平行与垂直问题 例2 已知a =(cos α,sin α),b =(cos β,sin β),且k a +b 的长度是a -k b 的长度的3倍(k >0).(1)求证:a +b 与a -b 垂直; (2)用k 表示a ·b ; (3)求a ·b 的最小值以及此时a 与b 的夹角θ.举一反三2 (2009·江苏)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b .考点三 向量的数量积在三角函数中的应用例3 已知向量a =⎝⎛⎭⎫cos 32x ,sin 32x , b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈⎣⎡⎦⎤-π3,π4. (1)求a·b 及|a +b |; (2)若f (x )=a·b -|a +b |,求f (x )的最大值和最小值.举一反三3 (2010·四川)已知△ABC 的面积S =12AB →·AC →·=3,且cos B =35,求cos C .1.一些常见的错误结论:(1)若|a |=|b |,则a =b ;(2)若a 2=b 2,则a =b ;(3)若a ∥b ,b ∥c ,则a ∥c ;(4)若a·b =0,则a =0或b =0;(5)|a·b |=|a |·|b |;(6)(a·b )c =a (b·c );(7)若a·b =a·c ,则b =c .以上结论都是错误的,应用时要注意.2.平面向量的坐标表示与向量表示的比较:(1)要证AB =CD ,可转化证明AB →2=CD →2或|AB →|=|CD →|.(2)要证两线段AB ∥CD ,只要证存在唯一实数λ≠0,使等式AB →=λCD →成立即可.(3)要证两线段AB ⊥CD ,只需证AB →·CD →=0.一、选择题(每小题5分,共25分) 1.(2010·重庆)若向量a =(3,m ),b =(2,-1),a·b =0,则实数m 的值为 ( )A .-32 B.32C .2D .62.已知非零向量a ,b ,若|a |=|b |=1,且a ⊥b ,又知(2a +3b )⊥(k a -4b ),则实数k 的值为 ( )A .-6B .-3C .3D .63.已知△ABC 中,AB →=a ,AC →=b ,a·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC 等于 ( )A .30°B .-150°C .150°D .30°或150° 4.(2010·湖南)若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为 ( ) A .30° B .60° C .120° D .150° 5.已知a =(2,3),b =(-4,7),则a 在b 上的投影为 ( )A.135B.655C.65D.136.(2010·湖南长沙一中月考)设a =(cos 2α,sin α),b =(1,2sin α-1),α∈⎝⎛⎭⎫π2,π,若a·b =25,则sin α=________. 7.(2010·广东金山中学高三第二次月考)若|a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为________.8.已知向量m =(1,1),向量n 与向量m 夹角为3π4,且m·n =-1,则向量n =__________________.三、解答题(共38分)9.(12分)已知OA →=(2,5),OB →=(3,1),OC →=(6,3),在线段OC 上是否存在点M ,使MA →⊥MB →,若存在,求出点M 的坐标;若不存在,请说明理由.10.(12分)(2011·杭州调研)已知向量a =(cos(-θ),sin(-θ)),b =(cos ⎝⎛⎭⎫π2-θ,sin ⎝⎛⎭⎫π2-θ). (1)求证:a ⊥b ;(2)若存在不等于0的实数k 和t ,使x =a +(t 2+3)b ,y =-k a +t b ,满足x ⊥y ,试求此时k +t 2t 的最小值.11.(14分)(2011·济南模拟)已知a =(1,2sin x ),b =⎝⎛⎭⎫2cos ⎝⎛⎭⎫x +π6,1,函数f (x )=a·b (x ∈R ).(1)求函数f (x )的单调递减区间;(2)若f (x )=85,求cos ⎝⎛⎭⎫2x -π3的值.答案1.(1)a·b =|a ||b |cos 〈a ,b 〉 (2)①|a |cos 〈a ,e 〉 ②a·b =0 ③|a |2 a·a ④a·b|a||b |⑤≤ 2.(1)b·a(2)a·c +b·c (3)λ(a ·b ) 3.(1)a 1b 1+a 2b 2 (2)a 1b 1+a 2b 2=0 (3)a 21+a 22 a 1b 1+a 2b 2a 21+a 22b 21+b 22(4)(x 2-x 1,y 2-y 1) (x 2-x 1)2+(y 2-y 1)22.B [|2a -b |=(2a -b )2=4a 2-4a·b +b 2=8=2 2.] 3.D [由(a +λb )·b =0得a·b +λ|b |2=0,∴1+2λ=0,∴λ=-12.]4.y 2=8x (x ≠0)解析 由题意得AB →=⎝⎛⎭⎫2,-y 2, BC →=⎝⎛⎭⎫x ,y 2,又AB →⊥BC →,∴AB →·BC →=0, 即⎝⎛⎭⎫2,-y 2·⎝⎛⎭⎫x ,y 2=0,化简得y 2=8x (x ≠0). 5.-2解析 合理建立直角坐标系,因为三角形是正三角形,故设C (0,0),A (23,0),B (3,3),这样利用向量关系式,求得MA →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫-32,52,所以MA →·MB →=-2.课堂活动区例1 解 (1)∵(2a -3b )·(2a +b )=61, ∴4|a |2-4a·b -3|b |2=61. 又|a |=4,|b |=3,∴64-4a·b -27=61, ∴a·b =-6.∴cos θ=a·b|a||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)|a +b |=(a +b )2 =|a |2+2a·b +|b |2=16+2×(-6)+9=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC=12×4×3×32=3 3. 举一反三1 (1)C [∵|a |=|b |=1,a·b =0,展开(a -c )·(b -c )=0⇒|c |2=c·(a +b ) =|c |·|a +b |cos θ,∴|c |=|a +b |cos θ=2cos θ, ∴|c |的最大值是 2.](2)λ<12且λ≠-2解析 ∵〈a ,b 〉∈(0,π2),∴a ·b >0且a ·b 不同向.即|i |2-2λ|j |2>0,∴λ<12.当a ·b 同向时,由a =k b (k >0)得λ=-2.∴λ<12且λ≠-2.例2 解题思路 1.非零向量a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.当向量a 与b 是非坐标形式时,要把a 、b 用已知的不共线的向量表示.但要注意运算技巧,有时把向量都用坐标表示,并不一定都能够简化运算,要因题而异.解 (1)由题意得,|a |=|b |=1, ∴(a +b )·(a -b )=a 2-b 2=0, ∴a +b 与a -b 垂直. (2)|k a +b |2=k 2a 2+2k a ·b +b 2=k 2+2k a ·b +1, (3|a -k b |)2=3(1+k 2)-6k a ·b . 由条件知,k 2+2k a ·b +1=3(1+k 2)-6k a ·b ,从而有,a ·b =1+k24k(k >0).(3)由(2)知a ·b =1+k 24k =14(k +1k )≥12,当k =1k时,等号成立,即k =±1.∵k >0,∴k =1.此时cos θ=a ·b |a ||b |=12,而θ∈[0,π],∴θ=π3.故a ·b 的最小值为12,此时θ=π3.举一反三2 (1)解 因为a 与b -2c 垂直, 所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β =4sin(α+β)-8cos(α+β)=0. 因此tan(α+β)=2.(2)解 由b +c =(sin β+cos β,4cos β-4sin β), 得|b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin 2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.(3)证明 由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b .例3 解题思路 与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式,向量模、夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.解 (1)a·b =cos 32x cos x 2-sin 32x sin x2=cos 2x ,|a +b |=⎝⎛⎭⎫cos 32x +cos x 22+⎝⎛⎭⎫sin 32x -sin x 22 =2+2cos 2x =2|cos x |,∵x ∈⎣⎡⎦⎤-π3,π4,∴cos x >0, ∴|a +b |=2cos x .(2)f (x )=cos 2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32. ∵x ∈⎣⎡⎦⎤-π3,π4,∴12≤cos x ≤1, ∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1.举一反三3 解 由题意,设△ABC 的角B 、C 的对边分别为b 、c ,则S =12bc sin A =12.AB →·AC →=bc cos A =3>0,∴A ∈⎝⎛⎭⎫0,π2,cos A =3sin A . 又sin 2A +cos 2A =1,∴sin A =1010,cos A =31010.由题意cos B =35,得sin B =45.∴cos(A +B )=cos A cos B -sin A sin B =1010.∴cos C =cos [π-(A +B )]=-1010.课后练习区 1.D [因为a·b =6-m =0,所以m =6.] 2.D [由(2a +3b )·(k a -4b )=0得2k -12=0,∴k =6.]3.C [∵S △ABC =12|a ||b |sin ∠BAC =154,∴sin ∠BAC =12.又a·b <0,∴∠BAC 为钝角.∴∠BAC =150°.] 4.C [由(2a +b )·b =0,得2a·b =-|b |2.cos 〈a ,b 〉=a·b|a||b |=-12|b |2|b |2=-12. ∵〈a ,b 〉∈[0°,180°],∴〈a ,b 〉=120°.] 5.B [因为a·b =|a|·|b |·cos 〈a ,b 〉, 所以,a 在b 上的投影为|a |·cos 〈a ,b 〉=a·b |b |=21-842+72=1365=655.] 6.35解析 ∵a·b =cos 2α+2sin 2α-sin α=25,∴1-2sin 2α+2sin 2α-sin α=25,∴sin α=35.7.120°解析 设a 与b 的夹角为θ,∵c =a +b ,c ⊥a , ∴c·a =0,即(a +b )·a =0.∴a 2+a·b =0. 又|a |=1,|b |=2,∴1+2cos θ=0.∴cos θ=-12,θ∈[0°,180°]即θ=120°.8.(-1,0)或(0,-1)解析 设n =(x ,y ),由m·n =-1, 有x +y =-1.①由m 与n 夹角为3π4,有m·n =|m|·|n |cos 3π4,∴|n |=1,则x 2+y 2=1.②由①②解得⎩⎪⎨⎪⎧ x =-1y =0或⎩⎪⎨⎪⎧x =0y =-1,∴n =(-1,0)或n =(0,-1).9.解 设存在点M ,且OM →=λOC →=(6λ,3λ) (0≤λ≤1), MA →=(2-6λ,5-3λ),MB →=(3-6λ,1-3λ).…………………………………………(4分) ∵MA →⊥MB →,∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,………………………………………………(8分)即45λ2-48λ+11=0,解得λ=13或λ=1115.∴M 点坐标为(2,1)或⎝⎛⎭⎫225,115.故在线段OC 上存在点M ,使MA →⊥MB →,且点M 的坐标为(2,1)或(225,115).………(12分)10.(1)证明 ∵a·b =cos(-θ)·cos ⎝⎛⎭⎫π2-θ+sin ()-θ·sin ⎝⎛⎭⎫π2-θ =sin θcos θ-sin θcos θ=0.∴a ⊥b .……………………………………………………(4分) (2)解 由x ⊥y 得,x·y =0,即[a +(t 2+3)b ]·(-k a +t b )=0, ∴-k a 2+(t 3+3t )b 2+[t -k (t 2+3)]a·b =0,∴-k |a |2+(t 3+3t )|b |2=0.………………………………………………………………(6分) 又|a |2=1,|b |2=1,∴-k +t 3+3t =0,∴k =t 3+3t .…………………………………………………………(8分) ∴k +t 2t =t 3+t 2+3t t =t 2+t +3=⎝⎛⎭⎫t +122+114.……………………………………………………………………………(10分) 故当t =-12时,k +t 2t 有最小值114.………………………………………………………(12分)11.解 (1)f (x )=a·b =2cos ⎝⎛⎭⎫x +π6+2sin x =2cos x cos π6-2sin x sin π6+2sin x=3cos x +sin x =2sin ⎝⎛⎭⎫x +π3.…………………………………………………………(5分) 由π2+2k π≤x +π3≤3π2+2k π,k ∈Z , 得π6+2k π≤x ≤7π6+2k π,k ∈Z . 所以f (x )的单调递减区间是⎣⎡⎦⎤π6+2k π,7π6+2k π (k ∈Z ).……………………………………………………………(8分)(2)由(1)知f (x )=2sin ⎝⎛⎭⎫x +π3. 又因为2sin ⎝⎛⎭⎫x +π3=85, 所以sin ⎝⎛⎭⎫x +π3=45,……………………………………………………………………(11分) 即sin ⎝⎛⎭⎫x +π3=cos ⎝⎛⎭⎫π6-x =cos ⎝⎛⎭⎫x -π6=45. 所以cos ⎝⎛⎭⎫2x -π3=2cos 2⎝⎛⎭⎫x -π6-1=725.………………………………………………(14分)。
【人教A版】高中数学必修4第二章课后习题解答
新课程标准数学必修4第二章课后习题解答第二章 平面向量2.1平面向量的实际背景及基本概念 练习(P77)1、略.2、AB ,BA . 这两个向量的长度相等,但它们不等.3、2AB =, 2.5CD =,3EF =,22GH =4、(1)它们的终点相同; (2)它们的终点不同. 习题2.1 A 组(P77) 1、(2). 3、与DE 相等的向量有:,AF FC ;与EF 相等的向量有:,BD DA ; 与FD 相等的向量有:,CE EB .4、与a 相等的向量有:,,CO QP SR ;与b 相等的向量有:,PM DO ; 与c 相等的向量有:,,DC RQ ST5、332AD =. 6、(1)×; (2)√; (3)√; (4)×. 习题2.1 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM 同向的共有6对,与AM 反向的也有6对;与AD 同向的共有3对,与AD 反向的也有64对;模为2的向量有2对2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA ; (2)CB .4、(1)c ; (2)f ; (3)f ; (4)g .练习(P87)1、图略.2、DB ,CA ,AC ,AD ,BA .3、图略. 练习(P90) 1、图略.2、57AC AB =,27BC AB =-.说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC 与AB 反向.3、(1)2b a =; (2)74b a =-; (3)12b a =-; (4)89b a =.4、(1)共线; (2)共线.5、(1)32a b -; (2)111123a b -+; (3)2ya . 6、图略.习题2.2 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km ;(3)向东北走km ;(4)向西南走;(5)向西北走km ;(6)向东南走km. 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km. 3、解:如右图所示:AB 表示船速,AD 表示河水的流速,以AB 、AD 为邻边作□ABCD ,则AC 表示船实际航行的速度.在Rt △ABC 中,8AB =,2AD =,所以228AC AB AD =+==因为tan 4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是km/h ,船航行的方向与河岸的夹角约为76°. 4、(1)0; (2)AB ; (3)BA ; (4)0; (5)0; (6)CB ; (7)0. 5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略.8、(1)略; (2)当a b ⊥时,a b a b +=-9、(1)22a b --; (2)102210a b c -+; (3)132a b +; (4)2()x y b -.10、14a b e +=,124a b e e -=-+,1232310a b e e -=-+. 11、如图所示,OC a =-,OD b =-,DC b a =-,BC a b =--.(第11题)12、14AE b =,BC b a =-,1()4DE b a =-,34DB a =,34EC b =,1()8DN b a=-,11()48AN AM a b ==+.13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =,即12EF AC =;同理,12HG AC =,所以EF HG =.习题2.2 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b 不共线时它们不相等.3、证明:因为MN ANAM =-,而13AN AC =,13AM AB =, 所以1111()3333MN AC AB AC AB BC =-=-=.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.证明:∵AB DC =,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形. 证明:因为OA OB BA -=,OD OC CD -= 而OA OC OB OD +=+所以OA OB OD OC -=- 所以BA CD =,即AB ∥. 因此,四边形ABCD 为平行四边形.(第12题)(第1题)(第4题(2))(第4题(3))(第5题)2.3平面向量的基本定理及坐标表示 练习(P100)1、(1)(3,6)a b +=,(7,2)a b -=-; (2)(1,11)a b +=,(7,5)a b -=-; (3)(0,0)a b +=,(4,6)a b -=; (4)(3,4)a b +=,(3,4)a b -=-.2、24(6,8)a b -+=--,43(12,5)a b +=.3、(1)(3,4)AB =,(3,4)BA =--; (2)(9,1)AB =-,(9,1)BA =-; (3)(0,2)AB =,(0,2)BA =-; (4)(5,0)AB =,(5,0)BA =-4、AB ∥CD . 证明:(1,1)AB =-,(1,1)CD =-,所以AB CD =.所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3- 7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =,得32AP PB =-(,)(2,3)(2,A P x y x y =-=--,(4,3)(,)(4,3)PB x y x y =--=---∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题2.3 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题. 2、123(8,0)F F F ++=3、解法一:(1,2)OA =--,(53,6(1))(2,7)BC =---=而AD BC =,(1,5)OD OA AD OA BC =+=+=. 所以点D 的坐标为(1,5). 解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++,(53,6(1))(2,7)BC =---=由AD BC =可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =,(2,4)AB =-. 1(1,2)2A C A B ==-,2(4,8)AD AB ==-,1(1,2)2AE AB =-=-. (0,3)O C O A A C =+=,所以,点C 的坐标为(0,3); (3,9)O D O A A D =+=-,所以,点D 的坐标为(3,9)-; (2,1)O E O A A E =+=-,所以,点E 的坐标为(2,1)-. 5、由向量,a b 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-. 6、(4,4)AB =,(8,8)CD =--,2CD AB =-,所以AB 与CD 共线. 7、2(2,4)OA OA '==,所以点A '的坐标为(2,4);3(3,9)O B O B '==-,所以点B '的坐标为(3,9)-; 故 (3,9)(2,4)(5,5)A B ''=--=- 习题2.3 B 组(P101) 1、(1,2)OA =,(3,3)AB =.当1t =时,(4,5)OP OA AB OB =+==,所以(4,5)P ; 当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=,所以57(,)22P ; 当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--,所以(5,4)P --; 当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=,所以(7,8)P .2、(1)因为(4,6)AB =--,(1,1.5)AC =,所以4AB AC =-,所以A 、B 、C 三点共线; (2)因为(1.5,2)PQ =-,(6,8)PR =-,所以4PR PQ =,所以P 、Q 、R 三点共线; (3)因为(8,4)EF =--,(1,0.5)EG =--,所以8EF EG =,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=,得2121e e λλ=-. 所以12,e e 是共线向量,与已知12,e e 是平面内的一组基底矛盾, 因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)19OP = (2)对于任意向量12OP xe ye =+,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=. 2、当0a b ⋅<时,ABC ∆为钝角三角形;当0a b ⋅=时,ABC ∆为直角三角形.3、投影分别为0,-图略 练习(P107)1、2(3)5a =-,252b =+=35427a b ⋅=-⨯+⨯=-.2、8a b ⋅=,()()7a b a b +-=-,()0a b c ⋅+=,2()49a b +=.3、1a b ⋅=,13a =,74b =,88θ≈︒. 习题2.4 A 组(P108)1、63a b ⋅=-222()225a b a a b b +=+⋅+=-25a b +=-2、BC 与CA 的夹角为120°,20BC CA ⋅=-.3、22223a b a a b b +=+⋅+=,22235a b a a b b -=-⋅+=. 4、证法一:设a 与b 的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λ与b ,a 与b λ的夹角都为θ,所以 ()cos cos a b a b a b λλθλθ⋅== ()c o s a b a b λλθ⋅= ()cos cos a b a b a b λλθλθ⋅== 所以 ()()()a b a b a b λλλ⋅=⋅=⋅;(3)当0λ<时,a λ与b ,a 与b λ的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-()cos cos a b a b a b λλθλθ⋅==-()cos(180)cos a b a b a b λλθλθ⋅=︒-=- 所以 ()()()a b a b a b λλλ⋅=⋅=⋅; 综上所述,等式成立.证法二:设11(,)a x y =,22(,)b x y =,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+所以 ()()()a b a b a b λλλ⋅=⋅=⋅;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--,(3,4)(5,2)(2,2)BC =-=-∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=,(1,6)(2,3)(1,3)AC =-----=-∴2117(3)0AB AC ⋅=⨯+⨯-=∴AB AC ⊥,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-,(10,7)(5,2)(5,5)BC =-=∴35350BA BC ⋅=-⨯+⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=,于是可得6a b ⋅=-,1cos 2a ba bθ⋅==-,所以120θ=︒.8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-,(8,4)(5,2)(3,6)BC =--=,(8,4)(4,6)(4,2)DC =-=-∴AB DC =,43(2)60AB BC ⋅=⨯+-⨯= ∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =,则2292x y yx ⎧+=⎪⎨=⎪⎩,解得5x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩.于是35(,55a =或35(55a =--. 11、解:设与a 垂直的单位向量(,)e x y =,则221420x y xy ⎧+=⎨+=⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩.于是5(,55e =-或5(,55e =-. 习题2.4 B 组(P108)1、证法一:0()0()a b a c a b a c a b c a b c ⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥- 证法二:设11(,)a x y =,22(,)b x y =,33(,)c x y =.先证()a b a c a b c ⋅=⋅⇒⊥-1212a b x x y y ⋅=+,1313a c x x y y ⋅=+由a b a c ⋅=⋅得12121313x x y y x x y y +=+,即123123()()0x x x y y y -+-= 而2323(,)b c x x y y -=--,所以()0a b c ⋅-= 再证()a b c a b a c ⊥-⇒⋅=⋅由()0a b c ⋅-=得 123123()()0x x x y y y -+-=, 即12121313x x y y x x y y +=+,因此a b a c ⋅=⋅2、cos cos cos sin sin OA OB AOB OA OBαβαβ⋅∠==+.3、证明:构造向量(,)u a b =,(,)v c d =.c o s ,u v u v u v ⋅=<>,所以,ac bd u v +=<>∴2222222222()()()cos ,()()ac bd a b c d u v a b c d +=++<>≤++4、AB AC ⋅的值只与弦AB 的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =又cos AB AC AB AC BAC ⋅=∠,而AM BAC AC∠=所以212AB AC AB AM AB ⋅==5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=证明:∵AB CB CA =-∴2222()2AB CB CA CB CA CB CA =-=-⋅+. 由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅= ∴222CA CB AB +=(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+,,DB AB AD =-∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-.∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -= ∴0AC DB ⋅=,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+.∴22()()AB AD AB AD +=-,所以22AC BD =,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可. 2.5平面向量应用举例 习题2.5 A 组(P113) 1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--,(,)(1,0)(1,0)AP x y x =-=-由2RA AP =得11(1,)2(1,)x y x y --=-,即11232x x y y =-+⎧⎨=-⎩(第4题)代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =. 2211()()3323AO BO BA BF a b a a a b =-=+=-+=+(2)因为1()2AE a b =+所以23AO AE =,因此,,A O E 三点共线,而且2AOOE = 同理可知:2,2BO CO OF OD ==,所以2AO BO COOE OF OD === 3、解:(1)(2,7)B A v v v =-=-; (2)v 在A v 方向上的投影为135A Av v v ⋅=. 4、解:设1F ,2F 的合力为F ,F 与1F 的夹角为θ,则31F =+,30θ=︒; 331F =+,3F 与1F 的夹角为150°.习题2.5 B 组(P113)1、解:设0v 在水平方向的速度大小为x v ,竖直方向的速度的大小为y v ,则0cos x v v θ=,0sin y v v θ=.设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩为重力加速度 所以,最大高度为220sin 2v gθ,最大投掷距离为20sin 2v gθ.2、解:设1v 与2v 的夹角为θ,合速度为v ,2v 与v 的夹角为α,行驶距离为d .则1sin 10sin sin v vvθθα==,0.5sin 20sin v d αθ==. ∴120sin d vθ=. 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短. 3、(1)(0,1)-解:设(,)P x y ,则(1,2)AP x y =--. (2,AB =-.(第2题)(第4题)将AB 绕点A 沿顺时针方向旋转4π到AP ,相当于沿逆时针方向旋转74π到AP ,于是7777(2)(1,3)4444AP ππππ=+-=--所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==-(2)32y x=-解:设曲线C 上任一点P 的坐标为(,)x y ,OP 绕O 逆时针旋转4π后,点P 的坐标为(,)x y '' 则cos sin 44sincos44x x y y xy ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即)2)x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=-第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-,1()2AD a b =+4、略解:2133DE BA MA MB a b ==-=-+2233AD a b =+,1133BC a b =+1133EF a b =--,1233FA DC a b ==-1233CD a b =-+,2133AB a b =-CE a b =-+5、(1)(8,8)AB =-,82AB =(2)(2,16)OC =-,(8,8)OD =-; (3)33OA OB ⋅=. 6、AB 与CD 共线.证明:因为(1,1)AB =-,(1,1)CD =-,所以AB CD =. 所以AB 与CD 共线. 7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C ===(第4题)11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=,所以(2)n m m -⊥.12、1λ=-. 13、13a b +=,1a b -=. 14、519cos ,cos 820θβ==第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-.222()2a b a b a b a b +=+=++⋅,222()2a b a b a b a b -=-=+-⋅. 因为a b ⊥,所以0a b ⋅=,于是22a b a b a b +=+=-.再证a b a b a b +=-⇒⊥.由于222a b a a b b +=+⋅+,222a b a a b b -=-⋅+ 由a b a b +=-可得0a b ⋅=,于是a b ⊥所以a b a b a b +=-⇔⊥. 【几何意义是矩形的两条对角线相等】 3、证明:先证a b c d =⇒⊥22()()c d a b a b a b ⋅=+⋅-=- 又a b =,所以0c d ⋅=,所以c d ⊥ 再证c d a b ⊥⇒=.由c d ⊥得0c d ⋅=,即22()()0a b a b a b +⋅-=-=所以a b = 【几何意义为菱形的对角线互相垂直,如图所示】4、12AD AB BC CD a b =++=+,1142AE a b =+而34EF a =,14EM a =,所以1111(4242AM AE EM a b a =+=++=5、证明:如图所示,12OD OP OP =+,由于1230OP OP OP ++=,所以3OP OD =-,1OD = 所以11OD OP PD == 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.(第3题)P 2(第5题)(第6题)6、连接AB .由对称性可知,AB 是SMN ∆的中位线,222MN AB b a ==-. 7、(18=(千米/时), 沿与水流方向成60°的方向前进; (2)实际前进速度大小为 沿与水流方向成90︒+的方向前进. 8、解:因为OA OB OB OC ⋅=⋅,所以()0OB OA OC ⋅-=,所以0OB CA ⋅= 同理,0OA BC ⋅=,0OC AB ⋅=,所以点O 是ABC ∆的垂心. 9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦cos θ=;(4)d =。
高中数学第二章平面向量2.3.1平面向量基本定理学案(含解析)新人教A版必修4
2.3.1 平面向量基本定理考试标准学法指导1.平面向量基本定理既是本节的重点,也是本节的难点.2.为了更好地理解平面向量基本定理,可以通过改变向量的方向及模的大小作图观察λ1,λ2取不同值时的图形特征,得到平面上任一向量都可以由这个平面内两个不共线的向量e 1,e 2表示出来.3.在△ABC 中,明确AC →与AB →的夹角与CA →与AB →的夹角互补.1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.状元随笔 平面向量基本定理的理解(1)e →1,e →2是同一平面内的两个不共线的向量,e →1,e →2的选取不唯一,即一个平面可以有多组的基底.(2)平面内的任一向量a →都可以沿基底进行分解. (3)基底e →1,e →2确定后,实数λ1、λ2是唯一确定的. 2.关于两向量的夹角(1)两向量夹角的概念:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ,叫作向量a 与b 的夹角.①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向.(2)垂直:如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 状元随笔 两向量夹角概念的正确理解(1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底.( ) (2)若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( )(3) 若a e 1+b e 2=c e 1+d e 2(a ,b ,c ,d ∈R ),则a =c ,b =d .( ) 答案:(1)× (2)√ (3)×2.设O 是平行四边形ABCD 两对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( )A .①②B .①③C .①④ D.③④解析:①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA →与DC →不共线;④OD →=-OB →,则OD →与OB →共线.由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.答案:B3.在△ABC 中,向量AB →,BC →的夹角是指( )A .∠CAB B .∠ABC C .∠BCAD .以上都不是解析:由两向量夹角的定义知,AB →与BC →的夹角应是∠ABC 的补角,故选D. 答案:D4.如图所示,向量OA →可用向量e 1,e 2表示为________.解析:由图可知,OA →=4e 1+3e 2. 答案:OA →=4e 1+3e 2类型一 平面向量基本定理的理解例1 设e 1,e 2是不共线的两个向量,给出下列四组向量: ①e 1与e 1+e 2; ②e 1-2e 2与e 2-2e 1; ③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,∴e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,2+λ=0,无解,∴e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底. ③∵e 1-2e 2=-12(4e 2-2e 1),∴e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎪⎨⎪⎧1-λ=0,1+λ=0,无解,∴e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③由基底的定义知,平面α内两个不共线的向量e →1、e →2叫做表示这一平面内所有向量的一组基底,要判断所给的两个向量能否构成基底,只要看这两个向量是否共线即可.方法归纳对基底的理解(1)两个向量能否作为一组基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以由这组基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则{ x 1=x 2,y 1=y 2.提醒:一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.跟踪训练1 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可以作为基底中的向量.其中正确的说法是( )A.①② B .②③ C .①③ D .①②③解析:平面内向量的基底是不唯一的,在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;零向量可看成与任何向量平行,故零向量不可以作为基底中的向量,故B 项正确.答案:B平面内任意一对不共线的向量都可以作为该平面内所有向量的基底,一定要注意“不共线”这一条件,在做题时容易忽略此条件而导致错误,同时还要注意零向量不能作基底.类型二 用基底表示平面向量例2 如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE 与BF 交于点G ,若AB →=a ,AD →=b ,试用a ,b 表示向量DE →,BF →.【解析】 DE →=DA →+AB →+BE →=-AD →+AB →+12BC →=-AD →+AB →+12AD →=a -12b .BF →=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .解决此类问题的关键在于以一组不共线的向量为基底,通过向量的加、减、数乘以及向量共线的结论,把其他相关的向量用这一组基底表示出来.方法归纳用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.跟踪训练2 (1)本例条件不变,试用基底a ,b 表示AG →;(2)若本例中的基向量“AB →,AD →”换为“CE →,CF →”即若CE →=a ,CF →=b ,试用a ,b 表示向量DE →,BF →.解析:(1)由平面几何知识知BG =23BF ,故AG →=AB →+BG →=AB →+23BF →=a +23⎝ ⎛⎭⎪⎫b -12a =a +23b-13a =23a +23b . (2)DE →=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF →=BC →+CF →=2EC →+CF →=-2CE →+CF →=-2a +b .用基底表示平面向量,要充分利用向量加法、减法的三角形法则或平行四边形法则. 类型三 向量的夹角例3 已知|a |=|b |,且a 与b 的夹角为120°,求a +b 与a 的夹角及a -b 与a 的夹角.【解析】 如图,作OA →=a ,OB →=b ,∠AOB =120°,以OA →,OB →为邻边作平行四边形OACB ,则OC →=a +b ,BA →=a -b .因为|a |=|b |,所以平行四边形OACB 为菱形. 所以OC →与OA →的夹角∠AOC =60°,BA →与OA →的夹角即为BA →与BC →的夹角∠ABC =30°.所以a +b 与a 的夹角为60°,a -b 与a 的夹角为30°.作图,由图中找到a →-b →与a →的夹角,利用三角形、四边形的知识求角. 方法归纳两个向量夹角的实质及求解的关键(1)实质:两个向量的夹角,实质上是从同一起点出发的两个非零向量构成的角. (2)关键:求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,然后按照“一作二证三算”的步骤,并结合平面几何知识求出两个向量的夹角.跟踪训练3 已知|a |=|b |=2,且a 与b 的夹角为60°,求a +b 与a 的夹角,a -b 与a 的夹角.解析:如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB , 则OC →=OA →+OB →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形. 所以∠OAB =60°=∠ABC . 即a -b 与a 的夹角为60°. 因为|a |=|b |,所以▱OACB 为菱形.所以OC ⊥AB ,所以∠COA =90°-60°=30°. 即a +b 与a 的夹角为30°.作出向量a →,b →,a →+b →,a →-b →,利用平面几何知识求解. 2.3.1[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( )A .不共线B .共线C .相等D .不确定 解析:∵a +b =3e 1-e 2,∴c =2(a +b ).∴a +b 与c 共线. 答案:B2.当向量a 与b 共线时,则这两个向量的夹角θ为( ) A .0° B.90°C .180°D .0°或180°解析:当向量a 与b 共线,即两向量同向时夹角θ=0°,反向时夹角θ=180°. 答案:D3.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a解析:如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD →-AB →=2b -a .答案:B4.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 解析:如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 答案:D5.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( )55C.85D.45解析:∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.答案:C二、填空题(每小题5分,共15分)6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.解析:因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.答案:37.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.解析:AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b .答案:2a -b8.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.解析:BE →=BC →+CE →=AD →-12AB →=b -12a .2三、解答题(每小题10分,共20分)9.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .解析:因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .10.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB→=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.解析:NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).[能力提升](20分钟,40分)11.设非零向量a ,b ,c 满足|a |=|b |=|c |,a +b =c ,则向量a ,b 的夹角为( ) A .150° B.120° C .60° D.30°解析:设向量a ,b 的夹角为θ,作BC →=a ,CA →=b ,则c =a +b =BA →(图略),a ,b 的夹角为180°-∠C .∵|a |=|b |=|c |,∴∠C =60°,∴θ=120°.答案:B 12.如图,在△ABC 中,已知AB =2,BC =3,∠ABC =60°,AH ⊥BC 于H ,M 为AH 的中点,若AM →=λAB →+μBC →,则λ+μ=________.解析:因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1,又M 为AH 的中点,BC =3,所以AM →=12AH →=12(AB →+BH →)=12(AB →+13BC →)=12AB →+16BC →,所以λ+μ=23. 答案:2313.如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,试以a ,b 为基底表示OM →.解析:根据平面向量基本定理可设OM →=m a +n b (m ,n ∈R ),则AM →=OM →-OA →=(m -1)a +n b ,AD →=OD →-OA →=12b -a =-a +12b , ∵A 、M 、D 三点共线,∴AM →=λAD →(λ为实数),∴AM →=-λa +λ2b , ∴⎩⎪⎨⎪⎧ m -1=-λ,n =12λ,消去λ得m +2n =1.而CM →=OM →-OC →=⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b , ∵C 、M 、B 三点共线,∴CM →=μCB →(μ为实数),∴CM →=-μ4a +μb ,∴⎩⎪⎨⎪⎧ m -14=-14μ,n =μ,消去μ得4m +n =1.由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1解得⎩⎪⎨⎪⎧ m =17,n =37,∴OM →=17a +37b . 14.在△ABC 中,AB =3,BC =1,AC =2,D 是AC 的中点.求:(1)AD →与BD →夹角的大小;(2)DC →与BD →夹角的大小.解析:(1)如图所示,在△ABC 中,AB =3,BC =1,AC =2,所以AB 2+BC 2=(3)2+1=22=AC 2,所以△ABC 为直角三角形.因为tan A =BC AB =13=33, 所以A =30°.又因为D 为AC 的中点,所以∠ABD =∠A =30°,AD →=DC →.在△ABD 中,∠BDA =180°-∠A -∠ABD =180°-30°-30°=120°,所以AD →与BD →的夹角为120°.(2)因为AD →=DC →,所以DC →与BD →的夹角也为120°.。
(2021年整理)人教版高中数学必修4课后习题答案
人教版高中数学必修4课后习题答案
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版高中数学必修4课后习题答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版高中数学必修4课后习题答案的全部内容。
人教版高中数学必修4课后习题答案。
人教版高中数学高一A版必修4 第二章第四节平面向量的数量积(第三课时)
第二章第四节平面向量的数量积第三课时整体设计教学分析平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定方法,本节是平面向量数量积的第二部分.前面我们学习了平面向量的数量积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示.教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.三维目标1.通过探究平面向量的数量积的坐标运算,掌握两个向量数量积的坐标表示方法.2.掌握两个向量垂直的坐标条件以及能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.3.通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力和创新能力,提高学生的数学素质.重点难点教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.课时安排1课时教学过程导入新课思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.推进新课新知探究提出问题①平面向量的数量积能否用坐标表示?②已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),怎样用a 与b 的坐标表示a·b 呢?③怎样用向量的坐标表示两个平面向量垂直的条件?④你能否根据所学知识推导出向量的长度、距离和夹角公式?活动:教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充.推导过程如下:∵a =x 1i +y 1j ,b =x 2i +y 2j ,∴a·b =(x 1i +y 1j )·(x 2i +y 2j )=x 1x 2i 2+x 1y 2i·j +x 2y 1i·j +y 1y 2j 2.又∵i·i =1,j·j =1,i·j =j·i =0,∴a·b =x 1x 2+y 1y 2.教师给出结论性的总结,由此可归纳如下:1°平面向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和,即a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.2°向量模的坐标表示若a =(x ,y ),则|a |2=x 2+y 2,或|a |=x 2+y 2. 如果表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1)、(x 2,y 2),那么 a =(x 2-x 1,y 2-y 1),|a |=(x 2-x 1)2+(y 2-y 1)2. 3°两向量垂直的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.4°两向量夹角的坐标表示设a 、b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,根据向量数量积的定义及坐标表示,可得cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.讨论结果:略.应用示例例1已知A (1,2),B (2,3),C (-2,5),试判断△ABC 的形状,并给出证明.活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.解:在平面直角坐标系中标出A (1,2),B (2,3),C (-2,5)三点,我们发现△ABC 是直角三角形.下面给出证明.∵AB →=(2-1,3-2)=(1,1),AC →=(-2-1,5-2)=(-3,3),∴AB →·AC →=1×(-3)+1×3=0.∴AB →⊥AC →.∴△ABC 是直角三角形.点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你例2(1)已知三点A (2,-2),B (5,1),C (1,4),求∠BAC 的余弦值;(2)a =(3,0),b =(-5,5),求a 与b 的夹角.活动:教师让学生利用向量的坐标运算求出两向量a =(x 1,y 1)与b =(x 2,y 2)的数量积a·b =x 1x 2+y 1y 2和模|a |=x 21+y 21,|b |=x 22+y 22的积,其比值就是这两个向量夹角的余弦值,即cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0≤θ≤π.学生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.解:(1)AB →=(5,1)-(2,-2)=(3,3),AC →=(1,4)-(2,-2)=(-1,6),∴AB →·AC →=3×(-1)+3×6=15.又∵|AB →|=32+32=32,|AC →|=(-1)2+62=37,∴cos ∠BAC =AB →·AC →|AB →||AC →|=1532·37=57474. (2)a·b =3×(-5)+0×5=-15,|a|=3,|b |=5 2.设a 与b 的夹角为θ,则cos θ=a·b |a||b |=-153×52=-22. 又∵0≤θ≤π,∴θ=3π4. 点评:本题考查的是利用向量的坐标表示来求两向量的夹角.利用基本公式进行运算与例3已知|a |=3,b =(2,3),试分别解答下面两个问题:(1)若a ⊥b ,求a ;(2)若a ∥b ,求a .活动:对平面中的两向量a =(x 1,y 1)与b =(x 2,y 2),要让学生在应用中深刻领悟其本质属性,向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,两向量垂直是a·b =0,而共线是方向相同或相反.教师可多加强反例练习,多给出这两种类型的变形训练.解:(1)设a =(x ,y ),由|a |=3且a ⊥b ,得⎩⎪⎨⎪⎧x 2+y 2=|a |2=9,2x +3y =0, 解得⎩⎨⎧ x =-91313,y =61313或⎩⎨⎧ x =91313,y =-61313. ∴a =(-91313,61313)或a =(91313,-61313). (2)设a =(x ,y ),由|a |=3且a ∥b ,得⎩⎪⎨⎪⎧x 2+y 2=|a |2=9,3x -2y =0, 解得⎩⎨⎧ x =61313,y =91313或⎩⎨⎧ x =-61313,y =-91313.∴a =(61313,91313)或a =(-61313,-91313). 点评:本题主要考查学生对公式的掌握情况,学生能熟练运用两向量的坐标运算来判断知能训练课本本节练习.解答:1.|a|=5,|b|=29,a·b =-7.2.a·b =8,(a +b )·(a -b )=-7,a·(a +b )=0,(a +b )2=49.3.a·b =1,|a|=13,|b|=74,θ≈88°.课堂小结1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.作业课本习题2.4 A组8、9、10.设计感想由于本节课是对平面向量的进一步探究与应用,是对平面向量几何意义的综合研究提高,因此教案设计流程是探究、发现、应用、提高,这符合新课程理念,符合新课标要求.我们知道平面向量的数量积是本章最重要的内容,也是高考中的重点,既有选择题、填空题,也有解答题(大多同立体几何、解析几何综合考查),故学习时要熟练掌握基本概念和性质及其综合运用.而且数量积的坐标表示又是向量运算的一个重要内容,用坐标表示直角坐标平面内点的位置,是解析几何的一个基本特征,从而以坐标为桥梁可以建立向量与解析几何的内在联系.以三角函数表示点的坐标,又可以沟通向量与三角函数的相互关系,由此就产生出一类向量与解析几何及三角函数交汇的综合性问题.平面向量数量积的坐标表示使得向量数量积的应用更为方便,也拓宽了向量应用的途径.通过学习本节的内容,要更加加深对向量数量积概念的理解,同时善于运用坐标形式运算解决数量问题,尤其是有关向量的夹角、长度、垂直等,往往可以使问题简单化.灵活使用坐标形式,综合处理向量的线性运算、数量积、平行等,综合地解决向量综合题,体现数形结合的思想.在本节的学习中可以通过对实际问题的抽象来培养学生分析问题、解决问题和应用知识解决问题的意识与能力.备课资料一、|a·b|≤|a||b|的应用若a=(x1,y1),b=(x2,y2),则平面向量的数量积的性质|a·b|≤|a||b|的坐标表示为x1x2+y1y2≤x21+y21x22+y22⇔(x1x2+y1y2)2≤(x21+y21)(x22+y22).不等式(x1x2+y1y2)2≤(x21+y21)(x22+y22)有着非常广泛的应用,由此还可以推广到一般(柯西不等式):(a1b1+a2b2+…+a n b n)2≤(a21+a22+…+a2n)(b21+b22+…+b2n).例1(1)已知实数x,y满足x+y-4=0,则x2+y2的最小值是________;(2)已知实数x,y满足(x+2)2+y2=1,则2x-y的最大值是________.解析:(1)令m=(x,y),n=(1,1).∵|m·n|≤|m||n|,∴|x+y|≤x2+y2·2,即2(x2+y2)≥(x+y)2=16.∴x2+y2≥8,故x2+y2的最小值是8.(2)令m=(x+2,y),n=(2,-1),2x-y=t.由|m·n|≤|m||n|,得|2(x+2)-y|≤(x+2)2+y2·5=5,即|t+4|≤ 5.解得-4-5≤t≤5-4.故所求的最大值是5-4.答案:(1)8 (2)5-4例2已知a,b∈R,θ∈(0,π2),试比较a2cos2θ+b2sin2θ与(a+b)2的大小.解:构造向量m=(acosθ,bsinθ),n=(cosθ,sinθ),由|m·n|≤|m||n|得(a cos θcos θ+b sin θsin θ)2≤(a 2cos 2θ+b 2sin 2θ)(cos 2θ+sin 2θ), ∴(a +b )2≤a 2cos 2θ+b 2sin 2θ. 同类变式:已知a ,b ∈R ,m ,n ∈R ,且mn ≠0,m 2n 2>a 2m 2+b 2n 2,令M =m 2+n 2,N =a +b ,比较M 、N 的大小.解:构造向量p =(a n ,b m),q =(n ,m ),由|p ·q |≤|p ||q |得 (a n ×n +b m ×m )2≤(a 2n 2+b 2m 2)(m 2+n 2)=a 2m 2+b 2n 2n 2m 2(m 2+n 2)<m 2+n 2, ∴M >N .例3设a ,b ∈R ,A ={(x ,y )|x =n ,y =na +b ,n ∈Z },B ={(x ,y )|x =m ,y =3m 2+15,m ∈Z },C ={(x ,y )|x 2+y 2≤144}是直角坐标平面xOy 内的点集,讨论是否存在a 和b ,使得A ∩B ≠∅与(a ,b )∈C 能同时成立.解:此问题等价于探求a 、b 是否存在的问题,它满足⎩⎪⎨⎪⎧na +b =3n 2+15,①a 2+b 2≤144. ② 设存在a 和b 满足①②两式,构造向量m =(a ,b ),n =(n,1).由|m ·n |2≤|m |2|n |2得(na +b )2≤(n 2+1)(a 2+b 2),∴(3n 2+15)2≤144(n 2+1)⇒n 4-6n 2+9≤0.解得n =±3,这与n ∈Z 矛盾,故不存在a 和b 满足条件.二、备用习题1.若a =(2,-3),b =(x,2x ),且a ·b =43,则x 等于( ) A .3 B.13C .-13D .-3 答案:C2.设a =(1,2),b =(1,m ),若a 与b 的夹角为钝角,则m 的取值范围是( )A .m >12B .m <12C .m >-12D .m <-12答案:D3.若a =(cos α,sin α),b =(cos β,sin β),则( )A .a ⊥bB .a ∥bC .(a +b )⊥(a -b )D .(a +b )∥(a -b )答案:C4.与a =(u ,v )垂直的单位向量是( )A .(-v u 2+v 2,u u 2+v2) B .(v u 2+v 2,-u u 2+v2) C .(v u 2+v 2,u u 2+v 2) D .(-v u 2+v 2,u u 2+v 2)或(v u 2+v 2,-u u 2+v2) 答案:D5.已知向量a =(cos23°,cos67°),b =(cos68°,cos22°),u =a +t b (t ∈R ),求u 的模的最小值.答案:解:|a |=cos 223°+cos 267°=cos 223°+sin 223°=1,同理有|b |=1.又a ·b =cos23°cos68°+cos67°cos22°=cos23°cos68°+sin23°sin68°=cos45°=22, ∴|u |2=(a +t b )2=a 2+2t a·b +t 2b 2=t 2+2t +1=(t +22)2+12≥12. 当t =-22时,|u |min =22. 6.已知△ABC 的三个顶点为A (1,1),B (3,1),C (4,5),求△ABC 的面积.答案:分析:S △ABC =12|AB →||AC →|sin ∠BAC ,而|AB →|,|AC →|易求,要求sin ∠BAC 可先求出cos ∠BAC .解:∵AB →=(2,0),AC →=(3,4),|AB →|=2,|AC →|=5,∴cos ∠BAC =AB →·AC →|AB →||AC →|=2×3+0×42×5=35. ∴sin ∠BAC =45. ∴S △ABC =12|AB →||AC →|sin ∠BAC =12×2×5×45=4. 三、新教材新教法的二十四个“化”字诀新课导入新颖化,揭示概念美丽化;纵横相联过程化,探索讨论热烈化;探究例题多变化,引导思路发散化;学生活动主体化,一石激浪点拨化;大胆猜想多样化,论证应用规律化;变式训练探究化,课堂教学艺术化;学法指导个性化,对待学生情感化;作业抛砖引玉化,选题质量层次化;学生学习研究化,知识方法思想化;抓住闪光激励化,教学相长平等化;教学意识超前化,与时俱进媒体化;灵活创新智慧化,学生素质国际化.。
高中数学第二章平面向量2.3.3平面向量的坐标运算练习(含解析)新人教A版必修4
高中数学第二章平面向量2.3.3平面向量的坐标运算练习(含解析)新人教A版必修4A级基础巩固一、选择题1.已知向量i=(1,0),j=(0,1),对坐标平面内的任一向量a,给出下列四个结论:①存在唯一的一对实数x,y,使得a=(x,y);②若x1,x2,y1,y2∈R,a=(x1,y1)≠(x2,y2),则x1≠x2,且y1≠y2;③若x,y∈R,a=(x,y),且a≠0,则a的起点是原点O;④若x,y∈R,a≠0,且a的终点坐标是(x,y),则a=(x,y).其中正确结论的个数是( )A.1 B.2 C.3 D.4解析:由平面向量基本定理知①正确;若a=(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a=(x,y)与a的起点是不是原点无关,故③错误;当a的终点坐标是(x,y)时,a=(x,y)是以a的起点是原点为前提的,故④错误.答案:A2.设向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2c,2(a -c),d的有向线段首尾相连能构成四边形,则向量d的坐标为( )A.(2,6) B.(-2,6) C.(2,-6) D.(-2,-6)解析:由题意,得4a+4b-2c+2(a-c)+d=0,则d=-4a-4b+2c-2(a-c)=-6a -4b+4c=(-2,-6).答案:D3.已知点A(1,3),B(4,-1),则与向量AB→同方向的单位向量为( )A.⎝⎛⎭⎪⎫35,-45B.⎝⎛⎭⎪⎫45,-35C.⎝⎛⎭⎪⎫-35,45D.⎝⎛⎭⎪⎫-45,35解析:AB→=(3,-4),则与AB→同方向的单位向量为AB→|AB→|=15(3,-4)=⎝⎛⎭⎪⎫35,-45.答案:A4.设向量a=(1,-3),b=(-2,4),若表示向量4a,3b-2a,c的有向线段首尾相接能构成三角形,则向量c等于( )A .(1,-1)B .(-1,1)C .(-4,6)D .(4,-6)解析:因为4a ,3b -2a ,c 对应有向线段首尾相接,所以4a +3b -2a +c =0,故有c =-2a -3b =-2(1,-3)-3(-2,4)=(4,-6).答案:D5.设向量a =(m ,n ),b =(s ,t ),定义两个向量a ,b 之间的运算“⊗”为a ⊗b =(ms ,nt ).若向量p =(1,2),p ⊗q =(-3,-4),则向量q =( )A .(-3,2)B .(3,-2)C .(-2,-3)D .(-3,-2)解析:设向量q =(x ,y ),根据题意可得x =-3,2y =-4,解得x =-3,y =-2,即向量q =(-3,-2).答案:D二、填空题6.设向量a ,b 满足a =(1,-1),|b |=|a |,且b 与a 的方向相反,则b 的坐标为________. 解析:因为向量a 与b 的方向相反,且|b |=|a |,所以b =-a =-(1,-1)=(-1,1).答案:(-1,1)7.作用于原点的两个力F 1=(1,1),F 2=(2,3),为使它们平衡,需加力F 3=________. 解析:因为F 1+F 2+F 3=0,所以F 3=-F 1-F 2=-(1,1)-(2,3)=(-3,-4).答案:(-3,-4)8.已知点A (-1,-5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为________.解析:OA →=(-1,-5),AB →=3a =(6,9),故OB →=OA →+AB →=(5,4),故点B 的坐标为(5,4).答案:(5,4)三、解答题9.在平面直角坐标系xOy 中,向量a ,b ,c 的方向如图所示,且|a |=2,|b |=3,|c |=4,分别计算出它们的坐标.解:设a =(a 1,a 2),b =(b 1,b 2),c =(c 1,c 2),则a 1=|a |cos 45°=2×22= 2. a 2=|a |sin 45°=2×22=2, b 1=|b |cos 120°=3×⎝ ⎛⎭⎪⎫-12=-32,b 2=|b |sin 120°=3×32=332, c 1=|c |cos(-30°)=4×32=23, c 2=|c |sin(-30°)=4×⎝ ⎛⎭⎪⎫-12=-2. 所以a =(2,2),b =⎝ ⎛⎭⎪⎫-32,332,c =(23,-2). 10.已知向量AB →=(4,3),AD →=(-3,-1),点A (-1,-2).(1)求线段BD 的中点M 的坐标;(2)若点P (2,y )满足PB →=λBD →(λ∈R),求λ与y 的值.解:(1)设B (x 1,y 1),因为AB →=(4,3),A (-1,-2),所以(x 1+1,y 1+2)=(4,3),所以⎩⎪⎨⎪⎧x 1+1=4,y 1+2=3,所以⎩⎪⎨⎪⎧x 1=3,y 1=1.所以B (3,1). 同理可得D (-4,-3),设BD 的中点M (x 2,y 2),则x 2=3-42=-12,y 2=1-32=-1, 所以M ⎝ ⎛⎭⎪⎫-12,-1.(2)由PB →=(3,1)-(2,y )=(1,1-y ),BD →=(-4,-3)-(3,1)=(-7,-4), 又PB →=λBD →(λ∈R),所以(1,1-y )=λ(-7,-4)=(-7λ,-4λ),所以⎩⎪⎨⎪⎧1=-7λ,1-y =-4λ,所以⎩⎪⎨⎪⎧λ=-17,y =37.B 级 能力提升1.对于向量m =(x 1,y 1),n =(x 2,y 2),定义m ⊗n =(x 1x 2,y 1y 2).已知a =(2,-4),且a +b =a ⊗b ,那么向量b 等于( )A.⎝ ⎛⎭⎪⎫2,45 B.⎝ ⎛⎭⎪⎫-2,-45 C.⎝ ⎛⎭⎪⎫2,-45 D.⎝⎛⎭⎪⎫-2,45 解析:设b =(x ,y ),由新定义及a +b =a ⊗b ,可得(2+x ,y -4)=(2x ,-4y ),所以2+x =2x ,y -4=-4y .解得x =2,y =45,所以向量b =⎝ ⎛⎭⎪⎫2,45. 答案:A2.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →=________.解析:PQ →-PA →=AQ →=(1,5)-(4,3)=(-3,2),因为点Q 是AC 的中点,所以AQ =QC →,所以PC →=PQ →+QC →=(1,5)+(-3,2)=(-2,7).因为BP →=2PC →,所以BC →=BP →+PC →=3PC →=3(-2,7)=(-6,21).答案:(-6,21)3.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n 的值;(3)求M ,N 的坐标及向量MN →的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)因为mb +nc =(-6m +n ,-3m +8n )=a =(5,-5),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1. (3)设O 为坐标原点,因为CM →=OM →-OC →=3c ,所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20),所以M (0,20).又因为CN →=ON →-OC →=-2b ,所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2),所以N (9,2),所以MN →=(9,-18).。
(word完整版)人教版高中数学必修4课后习题答案(2021年整理)
(word完整版)人教版高中数学必修4课后习题答案(word版可编辑修改) 编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)人教版高中数学必修4课后习题答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)人教版高中数学必修4课后习题答案(word版可编辑修改)的全部内容。
人教版高中数学必修4课后习题答案。
数学必修4第二章课后习题解答[唐金制]-推荐下载
模为 1 的向量有 18 对. 其中与 AM 同向的共有 6 对,与
AM 反向的也有 6 对;与 AD 同向的共有 3 对,与 AD 反向的也有 6 对;模为 2 的向量共有
4 对;模为 2 的向量有 2 对 2.2 平面向量的线性运算 练习(P84)
1、图略.
4、(1) c ; (2) f ;
B
D C
.
练习(P87)
1、图略.
2、 DB , CA , AC , AD , BA .
3、图略.
练习(P90)
1、图略.
2、
AC
5
AB
,
BC
2
AB
.
7
7
说明:本题可先画一个示意图,根据图形容易得出正确答案.
第二章 平面向量
2.1 平面向量的实际背景及基本概念
练习二章课后习题解答
2、 AB , BA . 这两个向量的长度相等,但它们不等.
3、 AB 2 , CD 2.5 , EF 3 , GH 2 2 .
4、(1)它们的终点相同; (2)它们的终点不同. 习题 2.1 A 组(P77)
4、(1) 0 ; (2) AB ; (3) BA ; (4) 0 ; (5) 0 ; (6) CB ; (7) 0 .
5、略
6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向
量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.
AC 表示船实际航行的速度.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课程标准数学必修4第二章课后习题解答
第二章 平面向量
2.1平面向量的实际背景及基本概念 练习(P77)
1、略.
2、AB ,BA . 这两个向量的长度相等,但它们不等.
3、2AB =, 2.5CD =,3EF =,22GH =
4、(1)它们的终点相同; (2)它们的终点不同. 习题2.1 A 组(P77) 1、
(2
)
. 3、与DE 相等的向量有:,AF FC ;与EF 相等的向量有:,BD DA ; 与FD 相等的向量有:,CE EB .
4、与a 相等的向量有:,,CO QP SR ;与b 相等的向量有:,PM DO ; 与c 相等的向量有:,,DC RQ ST
5、33
2
AD =
. 6、(1)×; (2)√; (3)√; (4)×. 习题2.1 B 组(P78)
1、海拔和高度都不是向量.
2、相等的向量共有24对. 模为1的向量有18对. 其中与AM 同向的共有6对,与AM 反向的也有6对;与
AD 同向的共有3对,与AD 反向的也有64对;模为2的向量有2对
2.2平面向量的线性运算 练习(P84)
1、图略.
2、图略.
3、(1)DA ; (2)CB .
4、(1)c ; (2)f ; (3)f ; (4)g .
练习(P87)
1、图略.
2、DB ,CA ,AC ,AD ,BA .
3、图略. 练习(P90) 1、图略.
2、57AC AB =,2
7
BC AB =-.
说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC 与AB 反向.
3、(1)2b a =; (2)74b a =-; (3)12b a =-; (4)8
9
b a =.
4、(1)共线; (2)共线.
5、(1)32a b -; (2)111
123
a b -+; (3)2ya . 6、图略.
习题2.2 A 组(P91)
1、(1)向东走20 km ; (2)向东走5 km ;
(3)向东北走km ;
(4)向西南走
;(5)向西北走
km ;(6)向东南走km. 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km. 3、解:如右图所示:AB 表示船速,AD 表示河水
的流速,以AB 、AD 为邻边作□ABCD ,则
AC 表示船实际航行的速度.
在Rt △ABC 中,8AB =,2AD =,
所以22
8AC AB AD =
+==因为
tan 4CAD ∠=,由计算器得76CAD ∠≈︒
所以,实际航行的速度是km/h ,船航行的方向与河岸的夹角约为76°. 4、(1)0; (2)AB ; (3)BA ; (4)0; (5)0; (6)CB ; (7)0. 5、略
6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.
7、略.
8、(1)略; (2)当a b ⊥时,a b a b +=-
9、(1)22a b --; (2)102210a b c -+; (3)132a b +; (4)2()x y b -.
10、14a b e +=,124a b e e -=-+,1232310a b e e -=-+. 11、如图所示,OC a =-,OD b =-,
DC b a =-,BC a b =--.
(第11题)
12、14AE b =
,BC b a =-,1()4DE b a =-,3
4DB a =,
34EC b =,1()8DN b a
=-,11
()48
AN AM a b ==+.
13、证明:在ABC ∆中,,E F 分别是,
AB BC 的中点,
所以EF AC //且1
2
EF AC =,
即1
2
EF AC =;
同理,1
2HG AC =,
所以EF HG =.
习题2.2 B 组(P92)
1、丙地在甲地的北偏东45°方向,距甲地1400 km.
2、不一定相等,可以验证在,a b 不共线时它们不相等.
3、证明:因为MN AN
AM =-,而13AN AC =,1
3
AM AB =, 所以1111
()3333
MN AC AB AC AB BC =-=-=.
4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.
证明:∵1
3
AD BC =,
∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.
证明:∵AB DC =,
∴AB DC //且AB DC =
∴四边形ABCD 为平行四边形 又AB AD =
∴四边形ABCD 为菱形.
5、(1)通过作图可以发现四边形ABCD 为平行四边形. 证明:因为OA OB BA -=,OD OC CD -= 而OA OC OB OD +=+
所以OA OB OD OC -=- 所以BA CD =,即AB ∥. 因此,四边形ABCD 为平行四边形.
(第12题)
(第1题)
(第4题(2))
(第4题(3))
(第5题)
2.3平面向量的基本定理及坐标表示 练习(P100)
1、(1)(3,6)a b +=,(7,2)a b -=-; (2)(1,11)a b +=,(7,5)a b -=-; (3)(0,0)a b +=,(4,6)a b -=; (4)(3,4)a b +=,(3,4)a b -=-.
2、24(6,8)a b -+=--,43(12,5)a b +=.
3、(1)(3,4)AB =,(3,4)BA =--; (2)(9,1)AB =-,(9,1)BA =-; (3)(0,2)AB =,(0,2)BA =-; (4)(5,0)AB =,(5,0)BA =-
4、AB ∥CD . 证明:(1,1)AB =-,(1,1)CD =-,所以AB CD =.所以AB ∥CD .
5、(1)(3,2); (2)(1,4); (3)(4,5)-.
6、10(,1)3或14
(,1)3- 7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =,得3
2AP PB =-
(,)(2,3)(
2,A P x y x y =-=--,(4,3)(,)(4,3)PB x y x y =--=---
∴3(2,3)(4,3)2x y x y --=---- ∴32(4)2
33(3)
2
x x y y ⎧
-=--⎪⎪⎨⎪-=---⎪⎩
∴8
15x y =⎧⎨=-⎩
,所以点P 的坐标为(8,15)-.
习题2.3 A 组(P101)
1、(1)(2,1)-; (2)(0,8); (3)(1,2).
说明:解题时可设(,)B x y ,利用向量坐标的定义解题. 2、123(8,0)F F F ++=
3、解法一:(1,2)OA =--,(53,6(1))(2,7)BC =---=
而AD BC =,(1,5)OD OA AD OA BC =+=+=. 所以点D 的坐标为(1,5). 解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++,
(53,6(1))(2,7)BC =---=
由AD BC =可得,12
27
x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).。