等差数列前n项和1导学案(公开课)
等差数列的前n项和(一)
![等差数列的前n项和(一)](https://img.taocdn.com/s3/m/442ea3719b6648d7c0c74611.png)
2.已知一个等差数列 前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的前n项和的公式吗?
3.等差数列 中,已知 , , ,求n.
4.等差数列{ }中, =-15,公差d=3,求 .
5.已知 等差数列 中, , ,求 和 。
6.已知等差数列 中, , ,求公差 。
7.已知等差数列 中, , ,求公差 和 。
8.已知等差 数列 中, ,求 。
归纳总结
知识
网络
巩固
训练
1.在等差数列 中, ,那么 ().
A. 12 B. 24 C. 36 D. 48
2.在50和350之间,所有末位数字是1的整数之和是( ).
A.5880B.5684C.4877D.4566
3.已知等差数列的前4项和为21,末4项和为67,前n项和为286,则项数n为()
A. 24 B. 26 C. 27 D. 28
4.在等差数列 中, , ,则 .
5.在等差数列 中, , ,则 .
6.下列数列是等差数列的是().
A. B. C. D.
7.等差数列{ }中,已知 ,那么 ().
A. 3 B. 4 C. 6 D. 12
8.等差数列{ }的前m项和为30,前2m项和为100,则它的前3m项和为().
一般地,称为数列 的前n项的和,用 表示,即
=
根据下列各题中的条件,求相应的等差数列 的前n项和 .
⑴
⑵ .
2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的统治》.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?
导学案029等差数列及其前n项和
![导学案029等差数列及其前n项和](https://img.taocdn.com/s3/m/0eb4202fa5e9856a56126096.png)
等差数列及其前n项和考纲要求1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.了解等差数列与一次函数的关系.考情分析1.等差数列的通项公式与前n项和公式是考查重点.2.归纳法、累加法、倒序相加法、方程思想、运用函数的性质解决等差数列问题是重点,也是难点.3.题型以选择题、填空题为主,与其他知识点结合则以解答题为主.教学过程基础梳理一、等差数列的有关概念1.定义:如果一个数列从起,每一项与它的前一项的都等于同一个常数,那么这个数列就叫做等差数列.符号表示为(n∈N*,d为常数).2.等差中项:数列a,A,b成等差数列的充要条件是,其中A 叫做a,b的.二、等差数列的有关公式1.通项公式:an=.2.前n项和公式:Sn== . 三、等差数列的性质1.若m,n,p,q∈N*,且m+n=p+q,{an}为等差数列,则.2.在等差数列{an}中,ak,a2k,a3k,a4k,…仍为等差列,公差为.3.若{an}为等差数列,则Sn,S2n-Sn,S3n-S2n,¡仍为等差数列,公差为.4.等差数列的增减性:d>0时为数列,且a1<0时前n项和Sn有最值.d<0时为数列,且当a1>0时前n项和Sn有最值.5.等差数列{a n}的首项是a1,公差为d.若其前n项之和可以写成S n=An2+Bn,则A=,B=,当d≠0时它表示函数,数列{a n}的前n项和S n=An2+Bn是{a n}成等差数列的 条件.双基自测1.(2011·重庆高考)在等差数列{an }中,a 2=2,a 3=4,则a 10=( )A .12B .14C .16D .182.(教材习题改编)在等差数列{a n }中,a 2+a 6=3π2,则sin ⎝⎛⎭⎫2a 4-π3=( )A.32B.12C .-32D .-123.(教材习题改编)已知数列{an },其通项公式为an =3n -17,则其前n 项和Sn 取得最小值时n 的值为( )A .4B .5C .6D .74.(2011·湖南高考)设Sn 是等差数列{an }(n ∈N*)的前n 项和,且a 1=1,a 4=7,则S 5=______.5.(2011·辽宁高考)Sn 为等差数列{an }的前n 项和,S 2=S 6,a 4=1,则a 5=________.典例分析考点一、等差数列的判断与证明[例1] (2011·北京宣武一模)数列{a n }的前n 项和为S n ,若a 1=3,点(S n ,S n +1)在直线y=n +1nx +n +1(n ∈N *)上.(1)求证:数列{Sn n }是等差数列;(2)求S n .变式1本例条件不变,若数列{bn }满足bn =an ·an2,{bn }的通项公式.变式2.(2012·银川模拟)数列{a n }中,a 1=2,a 2=1,2a n =1a n +1+1a n -1(n ≥2,n ∈N *),则其通项公式为a n =________.1.证明{a n }为等差数列的方法①用定义证明:a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列; ②用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; ③通项法:a n 为n 的一次函数⇔{a n }为等差数列;2.用定义证明等差数列时,常采用的两个式子a 1+n -a n =d 和aa n n 1--=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义. 考点二、等差数列的基本运算[例2] (2011·福建高考)已知等差数列{an }中,a 1=1,a 3=-3. (1)求数列{an }的通项公式;(2)若数列{an }的前k 项和Sk =-35,求k 的值.变式2.(2012·北京西城区期末)设{an }是等差数列,若a 2= 4,a 5=7,则数列{an }的前10项和为( )A .12B .60C .75D .1201.等差数列的通项公式a n =a 1+(n -1)d 及前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d ,共涉及五个量a 1,a n ,d ,n ,S n , 知其中三个就能求另外两个,体现了用方程的思想解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法. 考点三、等差数列的性质 [例3] (2011·重庆高考)在等差数列{an }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________.[例4](2010·全国卷Ⅱ)如果等差数列{an}中,a3+a4+a5=12,那么a1+a2+…+a7等于()A.14 B.21C.28 D.35变式3.(2012·无锡联考)已知等差数列{an}的前n项和为Sn,且S10=10,S20=30,则S30=________.变式4.(2012·遵义模拟)已知数列{an}是等差数列.前四项和为21,末四项和为67,且前n 项和为286,则n=________.1.等差数列的性质是等差数列的定义、通项公式以及前n项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.应用等差数列的性质解答问题的关键是寻找项数之间的关系.一个推导利用倒序相加法推导等差数列的前n项和公式:S n=a1+a2+a3+…+a n,①S n=a n+a n-1+…+a1,②①+②得:S n=n a1+a n2.两个技巧已知三个或四个数组成等差数列的一类问题,要善于设元.(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.四种方法等差数列的判断方法(1)定义法:对于n≥2的任意自然数,验证a n-a n-1为同一常数;(2)等差中项法:验证2a n-1=a n+a n-2(n≥3,n∈N*)都成立;(3)通项公式法:验证a n=pn+q;(4)前n项和公式法:验证S n=An2+Bn.注后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.本节检测1.(2011·江西高考){a n}为等差数列,公差d=-2,S n为其前n项和.若S10=S11,则a1=() A.18B.20C.22 D.242.已知数列{a n}中,a3=2,a7=1,若{1a n+1}为等差数列,则a11=()A.0 B.1 2C.23D.23.若{a n}是公差为1的等差数列,则{a2n-1+2a2n}是()A.公差为3的等差数列B.公差为4的等差数列C.公差为6的等差数列D.公差为9的等差数列4.一个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差为()A.-2 B.-3C.-4 D.-65.已知等差数列{a n}的前n项和为S n,并且S10>0,S11<0,若S n≤S k对n∈N*恒成立,则正整数k的取值为()A.5 B.6 C.4 D.76.已知数列{a n}为等差数列,S n为其前n项和,a7-a5=4,a11=21,S k=9,则k=________.7.设等差数列{a n}、{b n}的前n项和分别为S n、T n,若对任意自然数n都有S nT n=2n-34n-3,则a9b5+b7+a3b8+b4的值为__________.自我反思。
《等差数列的前 n 项和》 导学案
![《等差数列的前 n 项和》 导学案](https://img.taocdn.com/s3/m/357115a105a1b0717fd5360cba1aa81144318fac.png)
《等差数列的前 n 项和》导学案一、学习目标1、掌握等差数列前 n 项和公式及其推导方法。
2、能够熟练运用等差数列前 n 项和公式解决相关问题。
3、体会等差数列前 n 项和公式的应用价值,提高数学思维能力。
二、学习重难点1、重点(1)等差数列前 n 项和公式的推导和应用。
(2)利用等差数列前 n 项和公式解决实际问题。
2、难点(1)等差数列前 n 项和公式的推导过程中数学思想方法的理解。
(2)灵活运用等差数列前 n 项和公式进行变形和求解。
三、知识回顾1、等差数列的定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母 d 表示。
2、等差数列的通项公式:\(a_n = a_1 +(n 1)d\)(\(a_1\)为首项,\(n\)为项数,\(d\)为公差)四、引入新课在日常生活中,我们经常会遇到这样的问题:一个等差数列的各项之和是多少?例如,一堆按等差数列排列的钢管,如何快速计算它们的总数?这就涉及到等差数列的前 n 项和。
五、等差数列前 n 项和公式的推导方法一:倒序相加法设等差数列\(\{a_n\}\)的首项为\(a_1\),公差为\(d\),前\(n\)项和为\(S_n\),则\(S_n = a_1 + a_2 + a_3 +\cdots +a_n\)①我们将上式倒过来写可得:\(S_n = a_n + a_{n 1} + a_{n 2}+\cdots + a_1\)②①+②得:\\begin{align}2S_n&=(a_1 + a_n) +(a_2 + a_{n 1})+(a_3 + a_{n 2})+\cdots +(a_n + a_1)\\&=(a_1 + a_n) +(a_1 + a_n) +(a_1 + a_n) +\cdots +(a_1 + a_n)\\&=n(a_1 + a_n)\end{align}\所以\(S_n =\frac{n(a_1 + a_n)}{2}\)又因为\(a_n = a_1 +(n 1)d\),所以\(S_n =\frac{n(a_1 +a_1 +(n 1)d)}{2} =\frac{n2a_1 +(n 1)d}{2}\)方法二:通项公式法由等差数列的通项公式\(a_n = a_1 +(n 1)d\)可得:\\begin{align}S_n&=a_1 +(a_1 + d) +(a_1 + 2d) +\cdots + a_1 +(n 1)d\\&=na_1 + d(1 + 2 +\cdots +(n 1))\\&=na_1 +\frac{n(n 1)}{2}d\end{align}\六、等差数列前 n 项和公式的应用1、已知\(a_1\),\(d\),\(n\),求\(S_n\)例 1:在等差数列\(\{a_n\}\)中,\(a_1 = 2\),\(d =3\),\(n = 10\),求\(S_{10}\)。
等差数列前n项和(公开课)PPT课件
![等差数列前n项和(公开课)PPT课件](https://img.taocdn.com/s3/m/a306fb4702d8ce2f0066f5335a8102d276a26185.png)
组合数学
等差数列的前n项和公式可以应 用于组合数学中,解决一些组合 问题,如计算组合数的公式等。
数列求和
等差数列的前n项和公式是数列 求和的一种重要方法,可以用于
解决等差数列的求和问题。
在物理中的应用
力学
在物理学中,等差数列的 前n项和公式可以应用于求 解一些力学问题,如计算 多自由度振动的周期等。
简化计算
等差数列的前n项和公式在日常生活 和科学研究中有着广泛的应用,如计 算存款利息、解决生产计划问题等。
对于一些较大的等差数列,使用前n 项和公式可以大大简化计算过程,提 高计算效率。
验证答案
使用前n项和公式可以快速验证一些 等差数列求和问题的答案,确保计算 的准确性。
实例解析
简单实例
例如,一个等差数列1, 4, 7, 10... ,使用前n项和公式可以快速求出
统计学
在统计学中,等差数列的 前n项和公式可以用于计算 平均值、中位数等统计指 标。
信号处理
在信号处理中,等差数列 的前n项和可以用于计算信 号的频谱、滤波等操作。
在计算机科学中的应用
数据结构
在计算机科学中,等差数列的前n项和公式可以应用于一些数据结 构的设计,如数组、链表等。
算法设计
等差数列的前n项和公式可以用于设计一些算法,如排序算法、查 找算法等。
详细描述
等差数列是一种特殊的数列,其中任意两个相邻的项之间的 差是一个固定的值,这个值被称为公差。等差数列的通项公 式为 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项,a_1 是首项 ,d 是公差。
性质
总结词
等差数列具有一些重要的性质,包括对称性、中项性质和等差中项性质等。
等差数列前n项和(公开课)PPT课件
![等差数列前n项和(公开课)PPT课件](https://img.taocdn.com/s3/m/ae52b7f4c67da26925c52cc58bd63186bceb92b0.png)
等差数列的前n项和公式也可以用于数学建模,例如在解决一 些实际问题时,可以利用等差数列的前n项和来建立数学模型 ,从而更好地理解和解决这些问题。
在物理中的应用
物理学中的等差数列
在物理学中,有些物理量呈等差数列 分布,例如光的波长、音阶的频率等 ,等差数列的前n项和公式可以用于 计算这些物理量的总和。
物理学中的级数求和
在物理学中,有些级数的求和问题可 以用等差数列的前n项和公式来解决 ,例如在求解一些物理问题的近似解 时,可以利用等差数列的前n项和来 简化计算。
在经济中的应用
金融投资
在金融投资中,有些投资组合的收益 呈等差数列分布,例如定期存款、基 金定投等,等差数列的前n项和公式 可以用于计算这些投资组合的总收益 。
CHAPTER 02
等差数列的前n项和公式
等差数列前n项和的定义
01
02
03
定义
等差数列的前n项和是指 从第一项到第n项的所有 项的和。
符号表示
记作Sn,其中S表示总和 ,n表示项数。
举例
对于等差数列2, 4, 6, ..., 2n,前n项和为Sn = 2 + 4 + 6 + ... + 2n。
等差数列前n项和(公开 课)ppt课件
汇报人:可编辑
2023-12-23
CONTENTS
目录
• 等差数列的概念 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的应用 • 习题与解答
CHAPTER 01
等差数列的概念
等差数列的定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常
等差数列前n项和的公式推导
推导方法
等差数列的前n项和(第一课时)
![等差数列的前n项和(第一课时)](https://img.taocdn.com/s3/m/6b3c655ffe4733687e21aa31.png)
n(a1 an ) Sn . 2
③
这个公式表明:等差数列前n项的和等于首末两项的 和与项数乘积的一半,参见下图.
a5 a4 a3 a2 a1 a1 a1 a1 a1 a1
d d d d a1 a1 d d d d a1 a2 d d d d a1 a3 d d d d a1 a4 d d d d a1
a5
将an=a1+(n-1)d代入③式,得
n( n 1) Sn na1 d. 2
特别地,当 a1 1, d 1时,n个连续正整数的和
④
n( n 1) Sn 1 2 3 n . 2 n(n 1) 200 对于本节开头的问题,即转化为求满足 S n 2
Sn=____________
题型一 与前n项和有关的基本量的运算
例1 求前n个正奇数的和. 解 由等差数列前n项和公式,得
n(1 2n 1) 1 3 5 (2n 1) n2. 2
变式训练1:课本第17页 练习 2
【训练2】 在等差数列{an}中,a6=10,S5=5,求a8和S8. 解 : 设数列{an}的首项a1,公差d,由已知,得
n n -1 n n -1 3 23 ∴S n= na1+ d=-10n + ×3= n 2- n . 2 2 2 2
规律方法 首项a1和公差d是等差数列的基本元素,其余的量均可与 它们联系,故当条件与结论的联系不明显时,可先依据题目条件,列
方程组,先求出a1和d,再解决其他问题,这是求Sn的基本方法
S9 9a1 9(9 1) 98 d 99 9 405(块). 2 2
等差数列的前n项求和公式市公开课获奖课件省名师示范课获奖课件
![等差数列的前n项求和公式市公开课获奖课件省名师示范课获奖课件](https://img.taocdn.com/s3/m/cabab83826d3240c844769eae009581b6ad9bd7c.png)
1指出S1,S2 S12中哪个最大,并说明理由;
2求公差d的取值范围.
解:1 S12
0, S13
0
aa76
a7 a7
0 0
a6 a7
0 0
S6最大
2
1212 1312
2d 2d
66d 78d
0 0
24 d 3 7
练习
1、已知 a6+a9+a12+a15=192,求 S20 2、一种项数为36旳数列旳前四项和是21,后四项和是67, 求这个数列旳和。 3、{an}是等差数列,S10>0,S11<0,则求使an<0旳n旳最小值
根据等差数列旳前n项求和公式
Sn
n
a1
nn 1
2
d
得
SS20102100aa1 12100222100- 11dd
310 1220
解得 a1=4,d=6 将此成果代入上面旳求和公式,得Sn=4n+n(n-1)×3=3n2+n
所以,等差数列旳前n项和旳公式是 Sn 3n2 n
解:根据题意,由7n<100 得 n<100/7
解1: 3a 3d 11a 55d
8a 52d a 13 d 0 d 0
2
Sn
na1
nn 1 d
2
n2
14n 2
d
解2: S3 S11 a1 0
由等差数列构成旳函数图象,可知 n=(3+11)/2=7时,Sn最大
即 n=7
例8.等差数列an 若令A=d/2,B=a1-d/2,则 S=An2+Bn
将等差数列旳前n项和公式写成上 述形式,有利于求其前n项和旳极值:
等差数列前n项和(公开课)PPT课件
![等差数列前n项和(公开课)PPT课件](https://img.taocdn.com/s3/m/c87b7a3c1611cc7931b765ce05087632311274e3.png)
04
第二题答案:16;解析:设等差数列的首项为a,公 差为d,根据题意有4a + 6d = 12,解得a+d=2,所 以这个等差数列共有(a+d)×(n-2)/2 +4 =16。
感谢您的观看
THANKS
习题答案与解析
进阶习题答案与解析
01
输标02入题
第一题答案:42;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 10d = 25,解得a+d=5, 所以第6项到第10项的和为5a+35d=42。
03
第三题答案:25;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 20d = 80,解得a+4d=8,
第二题答案:18;解析:设等差数列的首项为a,公差为d,根据题意有3a + 3d = 15,解得a+d=5,所以这个等差数列共有(a+d)×(n-2)/2 +3 =18。
习题答案与解析
• 第三题答案:30;解析:设等差数列的首项为a,公差为d,根据题意有5a + 45d = 200,解得a+d=5,所以这个等差数 列共有(a+d)×(n-2)/2 +10 =30。
公式5
$S_n - S_{n-1} = a_n$
公式6
$S_n = S_{n-1} + a_n$
公式之间的联系与区别
联系
公式1、2、3都是求等差数列前n项 和的基本公式,而公式4、5、6则是 基于这些基本公式的推导或变种。
区别
公式1和公式2形式较为简洁,而公式 3则更便于观察等差数列的对称性质。 公式4、5、6则更注重于相邻两项和 之间的关系,可以用于求解某些特定 问题。
4.2.2等差数列的前n项和公式第1课时 超好用的公开课课件高二上学期数学人教A版(2019)选择性
![4.2.2等差数列的前n项和公式第1课时 超好用的公开课课件高二上学期数学人教A版(2019)选择性](https://img.taocdn.com/s3/m/cd8656f432d4b14e852458fb770bf78a65293a65.png)
3ห้องสมุดไป่ตู้
1
解 (1)∵a15= +(15-1)d=- ,∴d=- .
6
2
6
nn-1
又 S n =na1+
d=-5,
2
解得 n=15 或 n=-4(舍).
8a1+a8 84+a8
(2)由已知,得 S 8=
=
=172,
2
2
解得 a8=39,
又∵a8=4+(8-1)d=39,∴d=5.
例7 已知一个等差数列的前10项和是310,前 20项和是1220,求该数列的
∴S10,S20-S10,S30-S20 也成等差数列,
5
(2)若a1=2,a2= ,求S10;
2
(1)若a1=7,a50=101,求S50;
1
(3)若a1= ,d=
2
1
,
6
-
解: (1) =
( + )
Sn = -5,求n.
( + )
=
=
(2) = - = -2=
×
= +
在问题中高斯运用的是“两两配对”的方法,它使不同数求和问题转化为相
同数(即101)的求和,从而简化运算,那对于一般等差数列的求和问题,也能否
这样处理呢? 不行,当n不一定是偶数,这样就不好“两两配对”了
你能用高斯的方法求1+2+…+100+101吗?
能否设法避免分类讨论?
某仓库堆放的一堆钢管(如图),最上面的一层有4根钢管,下面的每一层都
Sn=a 1+a 2+a 3+…… + a n
再将项的次序反过来,Sn可以写成
新教材高中数学第四章数列:第1课时等差数列的前n项和学案新人教A版选择性必修2(含答案)
![新教材高中数学第四章数列:第1课时等差数列的前n项和学案新人教A版选择性必修2(含答案)](https://img.taocdn.com/s3/m/68fdf20d53d380eb6294dd88d0d233d4b14e3fe6.png)
新教材高中数学学案新人教A 版选择性必修2:等差数列的前n 项和公式新课程标准学业水平要求1.探索并掌握等差数列的前n 项和公式,理解等差数列的通项公式与前n 项和公式的关系.2.能在具体的问题情境中,发现数列的等差关系,并解决相应的问题.1.借助教材实例了解等差数列前n 项和公式的推导过程.(数学运算)2.借助教材掌握a 1,a n ,d ,n ,S n 的关系.(数学运算)3.掌握等差数列的前n 项和公式、性质及其应用.(数学运算)4.能利用等差数列的通项公式、前n 项和公式解决实际问题、最值问题等相关问题.(数学运算、数学建模) 第1课时 等差数列的前n 项和必备知识·自主学习导思1.什么是等差数列的前n 项和公式?2.怎样推导等差数列的前n 项和公式?1.等差数列的前n 项和公式已知量 首项,末项与项数首项,公差与项数求和公式S n =1n n(a a )2+S n =1n(n 1)na d 2-+ 在等差数列{a n }中,涉及a 1,d ,n ,a n 及S n 五个基本量,它们分别表示等差数列的首项,公差,项数,项和前n 项和.依据方程的思想,在等差数列前n 项和公式中已知其中三个量可求另外两个量,即“知三求二”.求等差数列的前n 项和时,如何根据已知条件选择等差数列的前n 项和公式? 提示:求等差数列的前n 项和时,若已知首项、末项和项数,则选用公式S n =n (a 1+a n )2;若已知首项、公差和项数,则选用公式S n =na 1+n (n -1)2 d.2.等差数列的前n 项和公式与二次函数的关系将等差数列前n 项和公式S n =na 1+n (n -1)2 d 整理成关于n 的函数可得S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2 n.等差数列的前n 项和一定是n 的二次函数吗?提示:不一定,当公差d≠0时,前n 项和是n 的二次函数,当公差d =0时,前n 项和是n 的一次函数.1.辨析记忆(对的打“√”,错的打“×”).(1)公差为零的等差数列不能应用等差数列前n 项和公式求和.( × ) (2)数列{n 2}可以用等差数列的前n 项和公式求其前n 项和.( × )(3)若数列{a n }的前n 项和为S n =n 2+2n +1,则数列{a n }一定不是等差数列.( √ ) (4)在等差数列{a n }中,当项数为偶数2n 时,S 偶-S 奇=a n +1( × ) 提示:(1)不管公差是不是零,都可应用公式求和.(2)因为数列{n 2}不是等差数列,故不能用等差数列的前n 项和公式求和.(3)等差数列的前n 项和是关于n 的缺常数项的二次函数,S n =n 2+2n +1中有常数项,故不是等差数列.(4)当项数为偶数2n 时,S 偶-S 奇=nd.2.已知等差数列{a n }的首项a 1=1,公差d =-2,则前10项和S 10=( ) A .-20 B .-40 C .-60 D .-80【解析】选D.由等差数列前n 项和公式得,S 10=10×1+12 ×10×9×(-2)=-80.3.已知等差数列{a n }中,a 1=2,a 17=8,则S 17=( ) A.85B .170C .75D .150【解析】选A.S 17=12×17×(2+8)=85.4.已知等差数列{a n }中,a 1=1,S 8=64,则d =________. 【解析】S 8=8×1+12 ×8×7×d=64,解得d =2.答案:2关键能力·合作学习类型一 等差数列前n 项和的计算(数学运算)1.已知a 1=32 ,d =-12 ,S n =-15,求n 和a 12.【解析】因为S n =n·32 +n (n -1)2 ·⎝ ⎛⎭⎪⎫-12 =-15,整理得n 2-7n -60=0. 解得n =12或n =-5(舍去). 所以a 12=32 +(12-1)×⎝ ⎛⎭⎪⎫-12 =-4.2.已知a 1=1,a n =-512,S n =-1 022,求公差d. 【解析】由S n =n (a 1+a n )2 =n (1-512)2 =-1 022,解得n =4.又由a n =a 1+(n -1)d ,即-512=1+(4-1)d ,解得d =-171. 3.已知a 1=6,a 3+a 5=0,求S 6.【解析】由a 3+a 5=2a 4=0,得a 4=0,a 4-a 1=3d =-6,d =-2. 故S 6=6a 1+15d =6×6+15×(-2)=6.等差数列中基本量计算的两个技巧(1)利用基本量求值.等差数列的通项公式和前n 项和公式中有五个量a 1,d ,n ,a n 和S n ,一般是利用公式列出基本量a 1和d 的方程组,解出a 1和d ,便可解决问题.解题时注意整体代换的思想.(2)利用等差数列的性质解题.等差数列的常用性质:若m +n =p +q(m ,n ,p ,q∈N +),则a m +a n =a p +a q ,常与求和公式S n =n (a 1+a n )2结合使用.【补偿训练】1.(2021·青岛高二检测)等差数列{}a n 的前n 项和为S n ,若a 14=-8,S 9=-9,则S 18=( )A .-162B .-1C .3D .-81 【解析】选D.设等差数列{}a n 的公差为d ,因为a 14=-8,S 9=-9,所以⎩⎪⎨⎪⎧a 1+13d =-89a 1+36d =-9 ,化简得⎩⎪⎨⎪⎧a 1+13d =-8,a 1+4d =-1, 所以⎩⎪⎨⎪⎧a 1=199,d =-79,所以S 18=18a 1+153d =-81.2.已知等差数列{a n }满足a 1=1,a m =99,d =2,则其前m 项和S m 等于________. 【解析】由a m =a 1+(m -1)d ,得99=1+(m -1)×2, 解得m =50,所以S 50=50×1+50×492 ×2=2 500.答案:2 5003.(1)已知a 1=56 ,a 15=-32 ,S n =-5,求d 和n ;(2)已知a 1=4,S 8=172,求a 8和d.【解析】(1)因为a 15=56 +(15-1)d =-32 ,所以d =-16 .又S n =na 1+n (n -1)2 d =-5,所以56 n +n (n -1)2 ×⎝ ⎛⎭⎪⎫-16 =-5,解得n =15或n =-4(舍).(2)由已知,得S 8=8(a 1+a 8)2 =8(4+a 8)2 =172,解得a 8=39,又因为a 8=4+(8-1)d=39,所以d =5.类型二 等差数列前n 项和的性质(数学运算) 【典例】在等差数列{a n }中. (1)若a 4=2,求S 7; (2)若S 5=3,S 10=7,求S 15; (3)若S 10=100,S 100=10,求S 110.续表题后 反思等差数列前n 项和具有“片段和”性质:S n ,S 2n -S n ,S 3n -S 2n ,…构成公差为n 2d 的等差数列,在解决单纯的前n 项和问题时有简化运算的功效.等差数列的前n 项和常用的性质(1)等差数列的依次k 项之和,S k ,S 2k -S k ,S 3k -S 2k …组成公差为k 2d 的等差数列.(2)数列{a n }是等差数列⇔S n =an 2+bn(a ,b 为常数)⇔数列⎩⎨⎧⎭⎬⎫S n n 为等差数列.(3)若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d. ①当项数为偶数2n 时,S 偶-S 奇=nd ,S 奇S 偶 =a na n +1 ;②当项数为奇数2n -1时,S 奇-S 偶=a n ,S 奇S 偶 =nn -1.1.(2021·茂名高二检测)设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18B .17C .16D .15【解析】选A.设{a n }的公差为d , 则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14 ,a 11+a 12+a 13+a 14=S 4+40d =18.2.等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.【解析】因为a n =2n +1,所以a 1=3,所以S n =n (3+2n +1)2 =n 2+2n ,所以S n n=n +2,所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92 ×1=75.答案:753.两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,若S n T n =7n +2n +3 ,则a 5b 5 的值为__________.【解析】a 5b 5 =2a 52b 5 =9(a 1+a 9)9(b 1+b 9)=S 9T 9 =7×9+29+3 =6512 . 答案:6512类型三 等差数列前n 项和的应用(数学运算) 角度1 等差数列前n 项和的最值【典例】在等差数列{a n }中,a 10=18,前5项的和S 5=-15. (1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和的最小值,并指出何时取最小值.【思路导引】(1)直接根据等差数列的通项公式和前n 项和公式列关于首项a 1和公差d 的方程,求得a 1和d ,进而得解;(2)可先求出前n 项和公式,再利用二次函数求最值的方法求解,也可以利用通项公式,根据等差数列的单调性求解.【解析】(1)由题意得11a 9d 18545a d 152⎧⎪⎨⨯⨯⎪⎩+=,+=-, 解得a 1=-9,d =3,所以a n =3n -12. (2)方法一:S n =n (a 1+a n )2 =12 (3n 2-21n)=32 ⎝ ⎛⎭⎪⎫n -72 2 -1478 , 所以当n =3或4时,前n 项的和取得最小值S 3=S 4=-18. 方法二:设S n 最小,则n n 1a 0a 0≤⎧⎨≥⎩+,,即3n 1203(n 1)120≤⎧⎨≥⎩-,+-,解得3≤n≤4, 又n∈N +,所以当n =3或4时,前n 项的和取得最小值S 3=S 4=-18.(变条件)把例题中的条件“S 15=-15”改为“S 5=125”,其余不变,则数列{a n }的前n 项和有最大值还是有最小值?并求出这个最大值或最小值. 【解析】S 5=12 ×5×(a 1+a 5)=12 ×5×2a 3=5a 3=125,故a 3=25,a 10-a 3=7d , 即d =-1<0,故S n 有最大值, a n =a 3+(n -3)d =28-n.设S n最大,则n n 1a 0a 0≥⎧⎨≤⎩+,,解得27≤n≤28,即S 27和S 28最大,又a 1=27,故S 27=S 28=378.求等差数列的前n 项和S n 的最值的解题策略(1)将S n =na 1+n (n -1)2 d =d 2 n 2+⎝ ⎛⎭⎪⎫a 1-d 2 n 配方,转化为求二次函数的最值问题,借助函数单调性来解决. (2)邻项变号法当a 1>0,d<0时,满足n n 1a 0a 0≥⎧⎨≤⎩+,的项数n 使S n取最大值;当a 1<0,d>0时,满足n n 1a 0a 0≤⎧⎨≥⎩+,的项数n 使S n 取最小值.角度2 等差数列前n 项和的实际应用【典例】某人用分期付款的方式购买一件家电,价格为1 150元,购买当天先付150元,以后每月的这一天都交付50元,并加付欠款利息,月利率为1%.若交付150元后的一个月开始算分期付款的第一个月,则分期付款的第10个月该交付多少钱?全部贷款付清后,买这件家电实际花费多少钱?【思路导引】每月付的款构成等差数列,最后的全部款项是该数列的前n 项和. 【解析】设每次交款数额依次为a 1,a 2,…,a 20,则 a 1=50+1 000×1%=60(元), a 2=50+(1 000-50)×1%=59.5(元), …a 10=50+(1 000-9×50)×1%=55.5(元), 即第10个月应付款55.5元. 由题知,20个月贷款还清.由于{a n }是以60为首项,以-0.5为公差的等差数列, 所以有S 20=60+(60-19×0.5)2 ×20=1 105(元),即全部付清后实际付款1 105+150=1 255(元).应用等差数列解决实际问题的一般思路1.(2021·平顶山高二检测)设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ) A .6 B .7 C .8 D .9 【解析】选A.设等差数列的公差为d , 因为a 4+a 6=-6,所以2a 5=-6, 所以a 5=-3.又因为a 1=-11,所以-3=-11+4d ,所以d =2. 所以S n =-11n +n (n -1)2 ×2=n 2-12n =(n -6)2-36,故当n =6时,S n 取得最小值.2.为了贯彻落实十九大提出的“精准扶贫”政策,某地政府投入16万元帮助当地贫困户通过购买机器办厂的形式脱贫,假设该厂第一年需投入运营成本3万元,从第二年起每年投入运营成本比上一年增加2万元,该厂每年可以收入20万元,若该厂n(n∈N *)年后,年平均盈利额达到最大值,则n 等于_______.(盈利额=总收入-总成本)【解析】设每年的运营成本为数列{a n },依题意该数列为等差数列, 且a 1=3,d =2.所以n 年后总运营成本S n =n 2+2n ,因此,年平均盈利额为:20n -(n 2+2n )-16n=-n-16n +18≤-2n ×16n+18=10,当且仅当n =4时等号成立.答案:4【补偿训练】在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. 【解析】由S 17=S 9,得25×17+17×(17-1)2 d =25×9+9×(9-1)2 d ,解得d =-2,方法一:S n =25n +n (n -1)2 ×(-2)=-(n -13)2+169.由二次函数性质得,当n =13时,S n 有最大值169. 方法二:因为a 1=25>0,d =-2<0,由⎩⎪⎨⎪⎧a n =25-2(n -1)≥0,a n +1=25-2n≤0, 得⎩⎪⎨⎪⎧n≤1312,n≥1212, 即1212 ≤n≤1312 .又n∈N *,所以当n =13时,S n 有最大值169.课堂检测·素养达标1.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32 n 2+n2B .-32 n 2-n2C .32 n 2+n2D .32 n 2-n 2【解析】选A.因为a n =2-3n ,所以a 1=2-3=-1, 所以S n =n (-1+2-3n )2 =-32 n 2+n2.2.若等差数列{a n }的前5项的和S 5=25,且a 2=3,则a 7等于( ) A .12B .13C .14D .1511 【解析】选B.因为S 5=5a 3=25,所以a 3=5.所以d =a 3-a 2=5-3=2,所以a 7=a 2+5d =3+10=13.3.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .763C .665D .663【解析】选C.设符合题意的数所组成的等差数列为{a n }. 因为a 1=2,d =7,2+(n -1)×7<100,所以n<15,所以符合题意的数共14个,故S 14=14×2+12×14×13×7=665. 4.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________.【解析】数列{a n }的前n 项和为S n =An 2+Bn ,所以当n≥2时,a n =S n -S n -1=An 2+Bn -A(n -1)2-B(n -1)=2An +B -A , 当n =1时满足,所以d =2A.答案:2A5.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________.【解析】因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,所以S m m +S m +2m +2 =2S m +1m +1, 即-2m +3m +2=0,解得m =4.经检验,m =4符合题意. 答案:4。
等差数列前n项和公式导学案(一)
![等差数列前n项和公式导学案(一)](https://img.taocdn.com/s3/m/36927754e518964bcf847c8c.png)
等差数列的前n 项和(一)一、等差数列前n 项和 1、数列{}n a 的前n 项和n s2、引入100s =1+2+3+…+100=?3、等差数列{}n a 的前n 项和n s二、公式基本应用例1:(1)求等差数列-10,-6,-2,2,…前10项的和。
(2)等差数列-10,-6,-2,2,…前多少项和是54?变式练习1、求等差数列1,4,7,10…的前100项的和。
(2)如图,一个堆放铅笔的V 形架的最下面一层放一支铅笔,往上每一层都比下面一层多放一支,最上面放有120支,这个V 形架上共放多少支铅笔?例2、根据下列条件,求相应的等差数列{a n }的Sn (3)a 1=-8,a 20=106,求s 20变式练习2、根据下列条件,求相应的等差数列前n 项的和 (1)a 1=100,d =-2,n=50 (2)a 1=-4,a 8=-18,n=8; (3)a 1=14.5,d=0.7,a n =32 (4) 5,142==a a ,求5S三、“知三求二” 例3、等差数列{}n a 的前n 项和n s ,公差d 。
(1)1201,22a s ==,求6s ; (2)151,,562n a d s ==-=-,求n 及n a ;(3)11,512,1024n n a a s ==-=-,求d。
1(1)5,95,10;na a n ===1(2)100,2,50;a d n ==-=变式练习3、等差数列{}n a 的前n 项和n s ,公差d 。
(1)499,6,63n a a s ==-=,求n ; (2)120,54,999n n a a s ===,求d及n 。
(3)2,15,10n d a ===-,求1a 及n s ;例4、在小于100的正整数集合中,有多少个数是7的倍数?并求它们的和.变式练习4、(1)在小于100的正整数集合中,有多少个数是5的倍数?并求它们的和.(2)在小于100的正整数集合中,有多少个数是2或3的倍数?并求它们的和.四、已知n s ,求n a 。
等差数列的前n项和公式的性质省公开课获奖课件市赛课比赛一等奖课件
![等差数列的前n项和公式的性质省公开课获奖课件市赛课比赛一等奖课件](https://img.taocdn.com/s3/m/88b2533424c52cc58bd63186bceb19e8b9f6ec7c.png)
公式一:Sn
n(a1 2
an )
公
式
二:Sn
na1
n(n 2
1)
d
议(5分钟)
『知识探究(一)——等差数列与前n项和旳关系』
思索1:若数列{an}旳前n和
Sn
n(a1 2
an )
那么数列{an}是等差数列吗?
{an}是等差数列
Sn
n(a1 2
an )
思索2:将等差数列前n项和公式
Sn
讨论二次函数旳性质
措施2:讨论数列{an} 旳通项,找出正负临界项。 (1)若a1>0,d<0,则Sn有大值,且Sn最大时旳n
满足an≥0且an+1<0; (2)若a1<0,d>0,则Sn有小值,且Sn最小时旳n
满足an≤0且an+1>0;
『变式探究』
1.首项为正数旳等差数列{an},它旳前3项和与前11项 和相等,则此数列前___7_____项和最大?
na1
n(n 1) 2
d
看作是一种有关n旳函数,这个函数有什么特点?
Sn
d 2
n2
(a1
d )n 2
当d≠0时,Sn是常数项为零旳二次函数.
思索3:一般地,若数列{an}旳前n和Sn=An2+Bn,那 么数列{an}是等差数列吗?若Sn=An2+Bn+C 呢? (1)数列{an}是等差数列 Sn=An2+Bn (2)数列{an} 旳前n项和是Sn=An2+Bn+C ,则:
解析:当n=1时,a1=S1=12-12=11;当n≥2时, an=Sn-Sn-1=12n-n2-[12(n-1)-(n-1)2]=13-2n. ∵n=1时适合上式,∴{an}旳通项公式为an=13-2n. 由an=13-2n≥0,得n≤ ,
等差数列前N项和的性质及其应用上课讲义
![等差数列前N项和的性质及其应用上课讲义](https://img.taocdn.com/s3/m/9da288a64b73f242326c5f6b.png)
肥东锦弘中学高一年级数学公开课教案授课教师:吴晗 班级:高一(11) 时间:3月31号下午第一节课 课题:等差数列前n 项和的性质及其应用 教学目标:(1) 进一步熟练掌握等差数列的通项公式和前n 项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前n项和公式研究n S 的最值。
(2) 经历公式应用过程。
(3) 通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生善于观察生活,从生活中发现问题,并用数学方法解决问题。
教学重点:熟练掌握等差数列求和公式。
教学难点:灵活应用求和公式解决问题。
教学方法:启发探究 学法指导:自主学习教学用具:粉笔、黑板、PPT 教学过程: 一、复习回顾(1) 等差数列的定义、通项公式、性质; (2) 等差数列前n 项和公式及其推导。
二、新课讲解探究一:等差数列前n 项和公式可以转化为关于n 的一元二次方程,n da n d d n n na S n )2(22)1(121-+=-+=,反过来如果一个数列的前n 项和是关于n 的一元二次方程,那么这个数列一定是等差数列吗?例1、如果一个数列{}n a 的前n 项和为n n S n 212+=,求这个数列的通项公式,这个数列一定是等差数列吗?如果是,它的首项和公差分别是什么? 解:时,当2≥n 212)1(21)1(21221-=⎥⎦⎤⎢⎣⎡-+--+=-=-n n n n n S S a n n n 时,当1=n 2311==S a 也满足上式。
所以数列{}212-=n a a n n 的通项公式为 由此可见,{}的等差数列,公差为是一个首项为数列223n a课堂练习1、如果一个数列{}n a 的前n 项和为1212++=n n S n ,求这个数列的通项公式,这个数列一定是等差数列吗?如果是,它的首项和公差分别是什么? 课本第45页的探究等差数列前n 项和的性质一:{}2,2ABn An S a n n 公差为是等差数列数列+=⇔探究二:既然等差数列的前n 项和n S 是关于n 的一元二次方程,那么它的最值怎么求呢?例2:已知等差数列Λ1,3,5的前n 项和为n S ,求使n S 最大的序号n 的值? 解1:由已知条件知,该等差数列首项2-,51==d a 公差 9)3(6)2(2)1(522+--=+-=--+=n n n n n n S n ∴使n S 最大的序号n 的值为3.解2:由已知条件知,52,72)1(251+-=+-=--=+n a n n a n n由⎩⎨⎧≤≥+001n n a a 解得2725≤≤n3=∴n等差数列前n 项和的性质二:不等式法求n S 的最值:若且0,01<>d a ⎩⎨⎧≤≥+001n n a a ,则n S 有最大值,若且0,01><d a ⎩⎨⎧≥≤+01n n a a ,则n S 有最小值。
等差数列的前n项和(第1课时)(同步课件)-2024-2025学年高二数学课堂
![等差数列的前n项和(第1课时)(同步课件)-2024-2025学年高二数学课堂](https://img.taocdn.com/s3/m/2bc16b4b0166f5335a8102d276a20029bd64632c.png)
【解析】解:(1)∵a1=7,a10=-43,∴S10=
(2)∵a1=100,d=-2,∴S50=50a1+
×
( + )
=50×100+
=
(−)
×
=-180;
×(-2)=2550.
课本练习
3.在等差数列{an}中,
Sn
an
例 2.两个等差数列{an},{bn}的前 n 项和分别为 Sn,Tn,若T =
,求b .
n
n
3n+1
a1+a2n-1 na1+a2n-1
S2n-1
22n-1
2n-1
2
2
an
解:b =
=
=
=
=
.
b
+b
nb
+b
T
32n-1+1
3n-1
n
1
2n-1
1
2n-1
2n-1
2
2
等差数列的前 n 项和的常用性质
(2)a1=-13,d=2,an=7,∴7=-13+2(n-1),解得n=11,S7=
(3)a1=8,n=5.an= ,∴ =8+(5-1)d,解得d=(4)an=2,n=12,Sn=90,∴S12=
∴13+(12-1)d=2,解得d=-1.
( + )
,∴S5=
×(−+)
可知该数列是以 为首项,以 为公差的等差数列,
∴前20项的和为20× +
《等差数列的前 n 项和》 导学案
![《等差数列的前 n 项和》 导学案](https://img.taocdn.com/s3/m/336ade6d30126edb6f1aff00bed5b9f3f90f7290.png)
《等差数列的前 n 项和》导学案一、学习目标1、掌握等差数列前 n 项和公式的推导过程。
2、理解等差数列前 n 项和公式的特点,能熟练运用公式解决相关问题。
3、体会等差数列前n 项和公式中蕴含的数学思想,如倒序相加法。
二、学习重难点1、重点(1)等差数列前 n 项和公式的推导和应用。
(2)理解等差数列前 n 项和公式与二次函数的关系。
2、难点(1)倒序相加法的理解和应用。
(2)灵活运用等差数列前 n 项和公式解决综合性问题。
三、知识回顾1、等差数列的通项公式:$a_n = a_1 +(n 1)d$,其中$a_1$为首项,$d$为公差,$n$为项数。
2、等差数列的性质:(1)若$m + n = p + q$,则$a_m + a_n = a_p + a_q$。
(2)$a_n a_m =(n m)d$。
四、新课导入高斯是德国著名的数学家,他在小学时就表现出了非凡的数学才能。
有一次,老师让同学们计算 1 + 2 + 3 +… + 100 的和。
高斯很快就得出了答案 5050。
他是怎么算的呢?原来,高斯发现 1 + 100 = 101,2 + 99 = 101,3 + 98 =101,……,50 + 51 = 101,一共有 50 组这样的和,所以总和为50×101 = 5050。
这种方法可以推广到求任意等差数列的前 n 项和。
五、等差数列前 n 项和公式的推导方法一:倒序相加法设等差数列$\{a_n\}$的首项为$a_1$,公差为$d$,前 n 项和为$S_n$。
则$S_n = a_1 + a_2 + a_3 +\cdots + a_n$ ①将上式倒序可得:$S_n = a_n + a_{n 1} + a_{n 2} +\cdots + a_1$ ②①+②得:\\begin{align}2S_n&=(a_1 + a_n) +(a_2 + a_{n 1})+\cdots +(a_n +a_1)\\&=(a_1 + a_n) +(a_1 + a_n) +\cdots +(a_1 + a_n)\\&=n(a_1 + a_n)\end{align}\所以$S_n =\frac{n(a_1 + a_n)}{2}$方法二:通项公式法因为$a_n = a_1 +(n 1)d$所以$S_n = a_1 +(a_1 + d) +(a_1 + 2d) +\cdots + a_1 +(n 1)d$\\begin{align}S_n&=na_1 + d(1 + 2 + 3 +\cdots +(n 1))\\&=na_1 +\frac{n(n 1)}{2}d\end{align}\又因为$a_n = a_1 +(n 1)d$,所以$a_1 + a_n = a_1 + a_1 +(n 1)d = 2a_1 +(n 1)d$则$S_n =\frac{n(a_1 + a_n)}{2}$六、等差数列前 n 项和公式的性质1、若数列$\{a_n\}$是等差数列,$S_n$为其前 n 项和,则$S_{2n 1} =(2n 1)a_n$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.3等差数列的前n 项和导学案(第一课时)
知识与技能:掌握等差数列前n 项和公式及其获取思路;会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题.
过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.
情感态度与价值观:通过公式的推导过程,展现数学中的对称美.
重点:等差数列前n 项和公式及其应用.
难点:等差数列前n 项和公式的推导思路的获得.
复习回顾
1.数列{}n a 的前n 项和的概念:
一般地,称 为数列{}n a 的前n 项的和,
用n S 表示,即=n S
2.n S 与n a 的关系:(1)(2)
n n a n =⎧=⎨≥⎩ 3.等差数列}{n a 中,若m+n=p+q,(m,n,p,q 为常数)则有: ;
一般地,1n a a += = ......
问题一:一个堆放铅笔的V 形架的最下面一层放1支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。
这个V 形架上共放着多少支铅笔?
思考:
(1)问题转化求什么?能用最短时间算出来吗? (2)
(3)如果换成1+2+3+…+200=?我们能否快速求和?
问题二:?n 321S n =+⋯+++=(小组讨论,总结方法)
高斯算法:
倒序相加法:
探究:能把以上问题的解法推广到求一般等差数列的前n 项和吗?
问题三:已知等差数列}{n a 中,首项为1a ,公差为d ,第n 项为n a ,如何计算前n 项和n S ?
新知:等差数列前n 项和公式:
公式一:
公式二:
问题四 :比较以上两个公式的结构特征,类比于问题一,你能给出它们的几何解释吗?
公式一: 公式二:
问题五:两个求和公式有何异同点?能够解决什么问题?
1. 应用公式(知三求二)
例1.已知等差数列}{n a 中,
(1)751=a ,1057=a , 求7S ;
(2)101-=a ,4=d , 54=n S ,求n ;
(3)255=S ,10010=S ,求1a 及d 。
解:(1) (2)
(3)
例2. 2000年11月14日教育部下发了关于在中小学实施“校校通”工程的通知,某市据此提出了实施“校校通”工程的总目标:从2001年起用10年的时间,在全市中小学建成不同标准的校园网。
据测算,2001年该市用于“校校通”工程的经费为500万元。
为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元。
那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?
2.变用公式
例3.已知一个等差数列的前10项和是310,前20项的和是1220,由这些条件能确定这个等差数列的前n 项和的公式吗?
3.公式探究
例4.已知数列的前n 项和为21=2
n S n n +,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?
问题六:如果一个数列}{n a 的前n 项和r qn pn S n ++=2,(其中r q p ,,为常数,且
0≠p )那么这个数列一定是等差数列吗?若是,说明理由,若不是,说明n S 必须满足的
条件。
1.课后作业:
☆课本习题2.3A 组1-6
☆创新设计相关习题
2.对求和史的了解:
我国数列求和的概念起源很早,在北朝时,张丘建始创等差数列求和解法。
他在《张
丘建算经》中给出等差数列求和问题:今有女子不善织布,每天所织的布以同数递减,初
日织五尺,末一日织一尺,共织三十日,问共织几何?
学习反思:。