亲核取代反应中的溶剂效应

合集下载

芳环的取代反应

芳环的取代反应

芳环上的取代反应:(1)亲电取代反应(2)亲核取代反应 一、芳环的亲电取代反应 A 、芳环上的亲电取代历程:芳香族与亲电试剂作用时,亲电试剂先与离域的π电子结合,生成π络合物,接着亲电试剂从苯环的π体系中得到两个π电子与苯环的一个碳原子形成σ键,生成σ络合物。

此时这个碳原子由sp2杂化变成sp3杂化,苯环中的六个碳原子形成的闭合共轭体系被破环,变成四个π电子离域在五个碳原子上。

根据共轭共振论的观点,σ络合物是三个碳正离子共振结构的共振杂化体,其能量比苯环高,不稳定。

它很容易从sp3杂化碳原子上失去一个质子,碳原子由sp3杂化变成sp2杂化,再形成六个π电子离域的闭合共轭体系——苯环,从而降低了苯环的能量,产物比较稳定,生成取代苯。

1、亲电试剂的产生HNO 3+2H 2SO4NO 2++H 3O ++2HSO 4-亲电试剂2、π-络合物的形成+NO 2π-络合物23、σ-络合物的形成NO 2+HNO2σ-络合物硝基所在碳为sp 3杂化 4、消去-H ++NO 2H NO 2快B 、苯环上亲电取代反应的定位规律:从反应速度和取代基进入的位置进行考虑1、 第一类定位基(邻,对位定位基):(除卤素外,卤素对芳环有致钝作用)具有+I 或是+C 效应,其作用是增大芳环的电子云密度。

致活基NH 2NHR2OHORNHCROPhR致钝基F Cl BrI2、 第二类定位基(间位定位基):具有-I 或-C 效应,使芳环上的电子云密度降低,均为致钝基NO 2NR 3COOHCOORSO 3HCNCHOCROCCl 3C 、影响亲电取代的因素:(1)芳环上取代基对于E +进入芳环位置的影响第一类定位基-邻对位定位基第二类定位基-间位定位基共振式越多, 正电荷分散程度越大,芳正离子越稳定。

(2) 动力学控制与热力学控制: α位取代-动力学控制产物; β位取代-热力学控制产物。

(3) 邻位和对位定向比:a 亲电试剂的活性越高,选择性越低。

高等有机第二章-溶剂化效应

高等有机第二章-溶剂化效应
+ - + +- + -
C、偶极-诱导偶极力 具有永久偶极矩的分子或离子能诱导邻近分子,产 生诱导偶极矩,分子在被诱导的瞬间总是处于诱导 偶极的方向,两者之间有吸引力。非极性分子可极 化率越大,诱导偶极矩也越大。这对偶极分子和离 子在非极性溶剂中的体系最重要。
D、瞬间偶极-诱导偶极力(色散力〕 非极性分子由于电子不断运动,会瞬间产生小的偶极 矩,它使邻近分子产生脉冲性极化,从而产生分子间 的相互吸引力,这称为色散力。
环烷-1,3-二酮与反式烯醇结构存在平衡,由于不存在 分子内氢键,溶剂极性对平衡的影响与前面顺式烯醇 时相反。如,5,5-二甲基-1,3-环己二酮在水中95%烯醇 化,在环己烷稀溶液中烯醇化含量<2%.
O
O
HO
O
四、溶剂对均相化学反应速度的影响
溶剂 V
(C2H5)3N + C2H5I 己烷 乙醚 1 4
2、溶剂和溶质分子间的相互作用 第一类包括定向诱导力和色散力,这些力是非特异性 的,不可能完全饱和。 第二类包括氢键力和电荷转移力,或称电子对授受力。 这类作用有方向并且可以饱和生成化学计量的分子化 合物。
(1)定向诱导和色散力 A、离子-偶极力 中性偶极分子具有永久偶极矩。当偶极分子处于离子 产生的电场中时,将进行定向排列,带有和离子电荷 相反电荷的一端指向离子,这种作用称离子-偶极力, 这种作用对离子化合物在极性溶剂种最重要。作用能 可用下式表述:E= - Z u Cos a/r2 Z 离子电荷。 u永久偶极矩, r 离子到偶极分子中心距 离, a= 0 o 时,偶极分子和离子在一条直线上。 B、偶极-偶极力 两个偶极分子在一定距离内相互吸引时,可按下列二 种方式排列。 -
例:
1. (CH3)3CCl 溶剂 K相对 C2H5OH 1 CH3OH 9

有机化学-卤代烷亲核取代------

有机化学-卤代烷亲核取代------
卤代烷亲核取代-----被氰基取代
操作员:许韩华 分析员: Professor Ho
有机化学
卤代烃的亲核取代反应(解析)
氰解---------卤原子被氰基 (-CN) 取代
• 卤代烷与NaCN或KCN的醇溶液共热,X 被 -CN取代,生成腈。
B rC H 2 C H 2 C H 2 B r + 2 N a C N

稳定性

浓度
与氰化钠作用( Nu=CN-)
RX
+
NaCN
RCN
+
Na X
增长碳链的方法.变为羧基等官能团
( C H 2 O)n
C H 2Cl
NaCN
C H2C N
H Cl
H + ,H 2 O
C H2C N C H 2C O OH
Thanks !
我讲完了!
你们认真听了吗?
R CN
[H]
RCOOH
RCH2NH2
影响亲核取代反应机制的因素
• • (1) 底物卤代烃的结构 (2) 亲核试剂的亲核能力(双分子亲核取代)


(3) 离去基X⊙的离去能力
(4) 溶剂效应
R X + Nu

对亲核试剂的影响 对反应的影响
溶剂
R Nu + X


R的结构 C-X键强度

亲核能力 浓度
3
卤代烃的亲核取代反应机制
反应试剂:卤代烷+氰化钠(钾) / 醇溶液 反应条件:加热 反应产物:腈+卤化钠(钾) 反应应用: 1°有机合成中接长碳链(增加了一个碳原子)
2°CN可进一步转化为–COOH,-CONH2等

芳香族化合物的取代反应

芳香族化合物的取代反应
在芳基正离子机理中,C-H键的断裂不在决速步骤发 生,无同位素效应; 在芳环硝化反应中证实无同位素效应。
(D)H (D)H NO2 H(D) HNO3/H2SO4 H(D) H(D) kH/kD = 1.05 (D)H (D)H NO2 H(D) NO2 H(D)
容易观察到较小的同位素效应 (kH/kD = 1-3,而非正常的6-7): 第一步具有可逆性及由此引起 的分配效应所产生的。
:
:
:
:OMe
+
H
E
H
E :
H
E : :OMe H E
H
E
:OMe
+
:
:OMe
+
H E
H E
+
化学
-I > +C ,钝化苯环:X
Cl
Cl E H H E
B间位定位基 的定位能力次序大致为(从强到弱) 2.
-NR3, -NO2, -CF3, -CCl3, -CN, -SO3H, -CHO, -COR,-COOH, -CONH2。
反 应 进 程
化学
2. 同位素效应 当一个反应进行时,在决定反应速率的步骤中发生 了反应物分子的同位素键的断裂,将显示初级动力 学同位素效应。最常见的是,反应物分子中的氢被 氘取代后,反应时有速率上的不同,这种变化称为 氘同位素效应,用kH/kD表示。 例如下列反应有 动力学同位素效 应,说明质子是 在决速步的失去 的:
CH2CH3 H
CH3CH2 + [AlCl3Br]
CH2CH3
H+
+
HBr AlCl3
化学
特点: 1°常用的催化剂是无水AlCl3,此外 FeCl3、BF3、 无水HF、SnCl4、ZnCl2、H3PO4、H2SO4等都有催 化作用。

第十八章 芳香族亲核取代反应

第十八章 芳香族亲核取代反应
OH OH, 100℃ NO2 NO2 NH2 NO2 ,100℃ NH3 C2H5OH NO2 CH3O , CH3OH O2N NO2 reflux , NO2 O2N NO2 OCH3 NO2 NO2
NO2
离去基团离去的难易,不仅和基团离去后生成的 负离子的稳定性有关,还与亲核试剂的性质有关
第一节 芳香族亲核取代反应机理 18.1.1 双分子SNAr2机理 SNAr2机理是亲核取代反应中最主要的反应机理。
例如:
Cl + NO2 OH + NO2 Cl OH Cl OH NO2
类似与SN2反应,但亲核试剂不能从带有离去基 团的碳原子的侧面进攻底物。
机理的证明: (1)动力学证明
二级动力学
Z a NO2 OCH3 Z
+
b NO2 N
NO2 Br
几种取代基在SNAr2机理中的致活次序
定位效应: 在按SNAr2机理进行的芳香族亲核取代反应里, 吸电子基团引导进入基团定位在邻位和对位。如:
Cl NO2 Ortho I30℃ OH
Cl
OH NO2
Cl
OH O N O
Cl Para NO2
OH I30℃
Cl
OH
Cl
OH
Cl
OH
NO2 Cl OH NO2 NO2 NOT formed OH
NO2
N O O
Cl Meta
No stabilization of charge by nitro group
(2) 按SNAr1机理进行的亲核取代反应
N N N N Me Me
N N

N O O
Cl
14
NH2 NH2
14

高等有机化学第十八章 芳香族亲核取代反应

高等有机化学第十八章 芳香族亲核取代反应

(4)溶剂的影响
Nu=N3- kF/kI=200(甲醇) kF/kI=400(DMF) Nu=N =200(甲醇) Nu=PhS- kF/kI=2.5(甲醇) kF/kI=1(DMF) Nu= =2.5(甲醇)
5
(5)碱催化作用
碱少反应速度提高,碱多反应速度不再提高。
(6)中间体离析 1902年对2,4,6-三硝基苯甲醚和乙氧基离子之间反应的 中间体的分离有力的支持了这一机理。
2
第一节 芳香族亲核取代反应机理 18.1.1 双分子SNAr2机理 SNAr2机理是亲核取代反应中最主要的反应机理。
例如:
Cl + NO2 OH + NO2 Cl OH Cl OH NO2
类似与SN2反应,但亲核试剂不能从带有离去基 团的碳原子的侧面进攻底物。
3
机理的证明: (1)动力学证明 二级动力学
18.2.3 亲核试剂的NO2 OCH3 Z
+
b NO2 N
NO2 Br
11
几种取代基在SNAr2机理中的致活次序
定位效应: 在按SNAr2机理进行的芳香族亲核取代反应里, 吸电子基团引导进入基团定位在邻位和对位。如:
12
Cl NO2 Ortho I30℃ OH
Cl
OH NO2
Cl
OH O N O
Cl OH Para NO2 I30℃
(2)取代基效应 邻硝基氯苯和其对位吸电子基团取代衍生物在和甲醇 钠的反应中的相对速度
4
(3)离去基团的影响 不同离去基团的相对反应速度是对该反应机理 的一个证明。
X NO2 + NO2 H N HX O2N N NO2 + X
n
n n

第三章 溶剂效应

第三章 溶剂效应
-A
+A
-A
B+
A B
A- + B+
A + B+
A B+
在非极性溶剂中有利 在极性溶剂中有利 在极性溶剂中稍有利
B+
B+
+
(4) A+
( 5) A
A B+
在非极性溶剂中稍有利
对溶剂极性不敏感
+ B
A B
A B
反应物
过渡态
产物
如消去反应和亲核取代反应竞争时,溶剂起重要作用。
一般,溶剂的极性大时(如水),容易发生取代反应;
C
C X
同样,由于过渡态的电荷分散程度不同,决定了SN1反 应在极性大的溶剂中进行,E1反应则易于在极性较小 的溶剂中进行。
• 如:三甲基硫正离子的碱性水解速度
(CH3)3S+
+
100oC OH
(CH3)2S + CH3OH
vR H2O 1.0 CH3COOH 19600 • (CH3)3CCl的溶剂分解速度 (CH3)3CCl
5、溶剂化效应的类型:①静电溶剂化效应
②特殊溶剂化效应
6.静电溶剂化效应(靠溶剂的静电作用力) 溶剂化静电理论:用溶剂极性确定相对的溶 剂化能力及其对反应的影响。
(1)溶剂极性对溶质离子化过程的影响;
溶质(R-L)在溶剂S中离子化过程:
R L S [R+L-]
紧密离子对 (A)
[R+ L- ]s
CH 3I + NaCN
CH 3CN + NaI
思考题1.
溶剂: H2O
THF
V = 1.0 V = 5 x 105

第六章 溶剂效应

第六章  溶剂效应

O
NMe2 H O
罗丹明 B
O
C
O
DMSO、DMF、吡啶等 非质子溶剂中无色
水、甲醇、冰乙酸等 (80-100%) 质子性溶剂中红色
16
质子溶剂能和偶极离子式中的羧基负离子形成氢键而使其稳定。
溶剂效应对均相化学反应速率的影响(1)
[AB]≠ Ⅰ ΔGI ≠ G A+B A+B (a) C+D (b) C+D Ⅱ ΔGII≠
Cl-<Br-<I
负离子在质子型溶剂和非质子极性溶剂中的亲核性能刚好相反:Cl->Br->I6
各种溶剂与溶质间的相互作用:非质子溶剂(2)
非质子非极性溶剂对于离子型化合物的溶解力很小; 非质子弱极性溶剂中,正离子和负离子容易发生离子缔合作用而形成离子 对(或缔合离子),只有很少溶剂化的“独立”正离子或“独立”负离子;

溶剂的影响因素包括:介电常数、离子强度、溶剂化能力、酸碱性等。
3
有机溶剂的Parker分类法:质子溶剂和非质子溶剂
非质子非极性溶剂 脂肪烃、芳烃、烷基 卤、叔胺、二硫化碳 ε<15,μ<8.34× 10-30 C· ET(30) m, 约30~40 非氢键给体
非质子弱极性给体 醚类、羧酸酯、吡啶 ε<15,μ <8.34×10-30 C· m,非氢键给体

G GA,I GA,II -ΔGII

ΔGA ΔGB
-GI GB,I GB,II
A
B 平衡反应溶剂化自由焓图
-ΔGII + ΔGA= ΔGB - ΔGI ΔGI -ΔGII = ΔΔG = ΔGB - ΔGA = ΔΔGS 设ΔGB > ΔGA 则IΔGIII >I ΔGI I 反应在溶剂Ⅱ中的平衡位置比在溶剂1中的平衡位置更偏向B方( -ΔG=RTlnK) 15

卤代烃亲核取代和消除反应机理

卤代烃亲核取代和消除反应机理

卤代烃亲核取代和消除反应机理亲核取代反应历程卤代烃的亲核取代反应是⼀类重要反应,由于这类反应可⽤于各种官能团的转变,在有机合成中具有⼴泛的⽤途,因此,对其反应历程的研究也就⽐较重要。

在亲核取代反应中,研究最多的是卤代烃的⽔解,在反应的动⼒学、⽴体化学,以及卤代物的结构,溶剂等对反应速率的影响等都有不少的资料。

根据化学动⼒学的研究及许多实验表明,卤代烃的亲核取代反应是按两种历程进⾏的,即双分⼦亲核取代反应(S N 2反应)和单分⼦亲核取代反应(S N 1反应)。

⼀、双分⼦亲核取代反应(S N 2反应)实验证明:伯卤代烃的⽔解反应为S N 2历程。

RCH 2Br+OH -→RCH 2OH+Br -,v =k [RCH 2Br]·[OH -],v 为⽔解速率,k 为⽔解常数。

因为RCH 2Br 的⽔解速率与RCH 2Br 和OH -的浓度有关,所以叫做双分⼦亲核取代反应(S N 2反应)。

1.S N 2反应机理:亲核试剂(Nu -)从离去基团(L)的背⾯进攻中⼼碳原⼦。

当亲核试剂与中⼼碳原⼦之间逐渐成键时,离去基团与中⼼碳原⼦之间的键逐渐断裂,新键的形成和旧键的断裂是同步进⾏的协同过程,其反应过程如下所⽰。

反应物(sp 3) 过渡态(sp 2)产物(sp 3) 2.S N 2反应的能量变化,可⽤反应进程-势能曲线图表⽰如下:S N 2反应进程中的能量变化3.S N 2反应的⽴体化学:背⾯进攻和构型翻转。

(1)背⾯进攻反应:在S N 2反应中,亲核试剂Nu -可以从离去基团的同⼀边或离去基团的背⾯进攻中⼼碳原⼦(C δ+)。

若从离去基团的同⼀边进攻,则亲核试剂与带负电荷的离去基团(L δ-)之间,除空间障碍外,还因同种电荷相互排斥使反应活化能升⾼,不利于反应的进⾏。

若从离去基团的背⾯进攻,则反应活化能较低,容易形成相对较稳定的过渡态,反应易于进⾏。

(2)构型翻转:在S N 2反应中,中⼼碳原⼦由反应底物时的sp 3杂化转变为过渡态时的sp 2杂化,这时亲核试剂与离去基团分布在中⼼碳原⼦的两边,且与中⼼碳原⼦处在同⼀直线上,中⼼碳原CδδNu C + L -δδNu C + L δδNu C + L -Nu⼦与它上⾯的其他三个基团处于同⼀平⾯内。

物理有机化学 第3章、溶剂效应

物理有机化学 第3章、溶剂效应
溶剂化显色物质一般是那些具有高度极化的基态和极性小得多 的激发态的化合物.可近似地认为激发态的自由能在任何溶剂 中是恒定的,而基态的自由能是随着溶剂极性的增大而大幅度 地改变,即溶剂极性越大,溶剂化作用越强,自由能越低,因 此激发所需要的能量从也将越大,即λmax向光谱的蓝端移动.
E.M.Kosower首先尝试用一个染料的电子跃迁来建立一套溶 剂极性标度.他选择碘化l-乙基-4-甲氧羰基吡啶盐.
在许多有用的经验溶剂参数中,基于溶剂化显色现象的Z值是最全 面的 .
§3.3 非质子极性溶剂
有一些溶剂具有较大的介电常数和电偶极矩, 但不含酸性氢, 不 能形成氢键. 一般称为非质子极性溶剂.
对于负离子与中性分子之间的双分子反应来说,在极性非质子 溶剂中的反应速率要比在质子溶剂中大得多.例如,
这些化合物的特殊的溶剂化性质是由于分子几何形状使它们对 正离子的溶剂化作用远远大于对负离子的溶剂化作用.
1. 必须满足Franck-Condon原理, 即电子跃迁必须发生得比核移 动快, 使成为一个非平衡的激发态, 其中溶剂围绕溶质的排 列如同基态一样; 2. 标准物吡啶盐在许多非极性溶剂中不溶解, 使用在这些非极 性溶剂中有较大溶解性的其它标准物, 可以克服这问题;
3. 在极性最大的溶剂中(基态溶剂化作用强, 自由能降低很多, λ <331nm, 相当于Z>86.4, 即需较大的能量来激发), 则在更强 的吡啶环的π→π*带不能区别出charge transfer band. 后来Dimroth又发展了一套更全面的溶剂极性标度ET, 是将吡啶 苯酚内铵盐作为标准物(Pyridinium-N-phenol betaines)
作为标准物的氯代叔丁烷几乎完全以SN1机理进行溶剂解反应, 但由于溶剂解反应是在大量过量的溶剂中进行的, 不可能以动力 学级数来判断溶剂是否有亲核行为, 因此氯代叔丁烷作为模型化 合物的合理性必须得到验验. 方法就是用其他模型化合物与氯代 叔丁烷的溶剂解速率进行比较,为此曾选择了下列桥头碳原子 的化合物.

化学反应机理的配位溶剂效应

化学反应机理的配位溶剂效应

化学反应机理的配位溶剂效应在化学反应中,溶剂的选择对反应机理和反应速率起着至关重要的作用。

溶剂不仅可以提供反应物的溶解度和反应的环境条件,还可以通过与反应物或中间体之间的配位相互作用来影响反应的机理和速率。

这种被称为配位溶剂效应的现象已经被广泛研究和应用于化学领域。

本文将介绍配位溶剂效应的基本概念、影响因素以及几个常见的例子。

1. 配位溶剂效应的基本概念配位溶剂效应是指溶剂分子与反应物或中间体中的配体形成稳定的配合物,从而改变了反应物或中间体的活性和反应路径。

例如,溶剂分子可以通过给予或接受氢键、形成离子对、配位键或范德华力等方式与反应物或中间体相互作用。

这种配位作用可以改变分子的电子结构、空间构型和活化能垒,从而影响化学反应的速率和选择性。

2. 影响配位溶剂效应的因素配位溶剂效应受多种因素的影响,以下是其中几个重要的因素:(1)溶剂极性:溶剂极性是影响溶剂中分子之间相互作用的重要因素。

极性溶剂通常能够与反应物或中间体形成较强的配位作用,从而促进反应的进行。

例如,在亲核取代反应中,具有较高极性的溶剂可以增强亲核试剂与反应物之间的相互作用,提高亲核试剂的活性。

(2)溶剂酸碱性:溶剂的酸碱性可以影响其与反应物或中间体之间的质子转移反应。

例如,溶剂可以作为质子的给体或接受体,影响反应物的质子转移速率和方向。

具有较高酸性或碱性的溶剂通常能够促进酸碱催化反应的进行。

(3)配位结构:溶剂中存在的配位剂也可以对反应的进行产生影响。

配位剂可以通过与反应物或中间体形成更稳定的配合物,改变反应物的电子结构和催化活性。

例如,水作为常见的配位剂,在配合物催化反应中能够与金属离子形成配位键,影响催化剂的活性和选择性。

3. 配位溶剂效应的例子(1)亲核取代反应:在亲核取代反应中,亲核试剂与反应物通过配位作用发生反应。

例如,溶剂中的水分子可以与溴化物形成溴合离子,增加亲核试剂对溴化物的亲核性。

这种配位溶剂效应可以促进亲核取代反应的进行。

有机官能团的转换

有机官能团的转换
由于SNl反应经碳正离子中间体而实现,后者为平面构 型,亲核试剂可从平面的两边进入,从而使产物发生消 旋化。但在SNl反应的溶液中,生成的碳正离于中间体 并不是完全自由的,它很可能与离去基团组成离子对, 使其溶剂化,而不完全对称,从而有可能使试剂从离子 对背面进攻占优势,结果使部分产物构型发生反转。例 如,(R)—(一)—2—溴辛烷在SNl条件下水解,产物2— 辛醇中,仅34%是外消旋体,83%[66%十1/2(34%)是 反转的产物。
酸基在一定条件下可被一些亲核基因如OH、NH2等所 取代,因此磺酸可作为一些合成反应的中间体。磺化反 应为可逆反应利用水解反应,可将芳环上的磺酸基脱去。 这一结果,提供了利用磺酸基暂时封闭芳环某一位置的 根据。
在磺化时应注意使磺化剂的活性与芳烃活性相一致。 活化的芳烃用一般硫酸即可磺化,而钝化的芳烃则需发 烟硫酸和剧烈的反应条件。由于磺酸基是钝化基团,苯 环上最多只能进入三个磺酸基。
核试剂一般可不受溶剂层的包围而呈所调“裸露”状态, 从而表现出很强的亲核活性,有利于SN2反应的进行。 溶剂极性对SN反应的影响还同过渡态的电荷状态有关。 中性的作用物发生SNl反应时,过渡态的电荷发生分离, 即过渡态的极性增大,这时极性较高的溶剂比较低的溶
剂更能降低过渡态的能量和增加反应速度。相反,正离
如果苯环上含有一个以上的取代基时,新基进入的
位置往往受定位效应最强的取代基支配。取代基定位效 应的相对强度同反应类型和反应条件有关,相同的基团
在不同的反应或不同的反应条件下,其相对活性往往有 所不同。根据单取代苯溴代的相对反应速度一些常见邻 对位定位基的定位效应的相对活性顺序为:
根据单取代苯硝化时,问硝基衍生物的产率,一些间位 定位基的相对强度如下顺序:
当取代芳烃再度发生取代时,环上巳存在的基团将

亲核取代反应

亲核取代反应

AcO AcO
2
hv H C OAc MeCN-H O 2
AcO AcO
2
CH
碳正离子为平面结构或近于平面结构。桥头碳原子不能形成平 面结构,因此,桥头上的SN1反应不能或极难进行。 1-氯莰烷 (1-chlorocamphane)在80%乙醇溶液中与30%KOH一起回流21h 也不能起反应。
Cl 二苯基氯甲烷在液态 SO2溶液中分别与各种浓度的 F、 吡啶和 三乙胺反应,虽然试剂的亲核性不同,其反应速率差不多是一 样的,说明在决定反应速率的步骤中没有亲核试剂的参加。 SO2 Nu Ph CHNu + Ph2CHCl Ph2CH Cl 2
O CHCH3 O2S SO2 O CHCD3 O2S SO2 O CHCD3 O2S SO2 O CHCH3 O2S SO2
CH3 25%
CD3 25%
CH3 25%
CD3 25%
在这里分子内反应之所以不易进行,是因为Nu、 中心碳原子C 和离去基X没法在一条直线上。因此,在SN2反应中, Nu、 中 心碳原子和离去基X在一条直线上是最容易进行的。
慢 快
因为中间体碳正离子为平面结构,亲核试剂从平面两边进攻的几 率应相等,即中心碳原子构型反转和保持的机会相等。如中心碳 原子是手性碳,经SN1反应应得完全外消旋化的产物。但实验结果 比较复杂。反应动力学为一级的亲核取代反应中生成完全外消旋 化产物的例子不少,但也有部分构型反转和部分构型保持的例子。
(-)-HO2CCH2CHClCO2H AgOH
(-)-氯代丁二酸
KOH PCl5
(-)-HO2CCH2CH(OH)CO2H KOH PCl5
(+)-HO2CCH2CH(OH)CO2H AgOH

第十八章 芳香族亲核取代反应

第十八章 芳香族亲核取代反应

NO2
离去基团离去的难易, 离去基团离去的难易,不仅和基团离去后生成的 负离子的稳定性有关, 负离子的稳定性有关,还与亲核试剂的性质有关
Cl Cl Cl OCH3 Cl NH2 Cl Cl Cl NH2 Cl Cl Cl
OTs CH3ONa Cl
OCH3 OTs Cl (CH3)2NCl OTs N(CH3)2
Z NaOCH3 + NO2 Cl Z H N
Z a NO2 OCH3 Z
+
b NO2 N
NO2 Br
几种取代基在S 几种取代基在 NAr2机理中的致活次序 机理中的致活次序
定位效应: 定位效应 在按S 机理进行的芳香族亲核取代反应里, 在按 NAr2机理进行的芳香族亲核取代反应里, 机理进行的芳香族亲核取代反应里 吸电子基团引导进入基团定位在邻位和对位。 吸电子基团引导进入基团定位在邻位和对位。如:
支持这一反应机理的事实: 支持这一反应机理的事实: (1)动力学研究结果表明:反应速度对重氮盐是一 )动力学研究结果表明: 与亲核试剂的浓度无关。 级,与亲核试剂的浓度无关。
(2)当用 重氮盐作为反应物时 )
15
N
N
15
N
N15Biblioteka 15NNN
N
有芳基氯生成, (3)在重氮盐水解过程中加入 -时,有芳基氯生成, )在重氮盐水解过程中加入Cl 的加入不影响反应速度。 但Cl-的加入不影响反应速度。
X NO2 + NO2 H N HX O2N N NO2 + X
相对反应速度: 当X =Cl, Br , I 时,相对反应速度:4.3, 4.3, 1 ,但 但 离去基团的离去能力: 是,离去基团的离去能力: Cl < Br < I 相对反应速度是3300 当X=F 时, 相对反应速度是 = 说明:控制反应速度的一步不包含 - 键的断裂 说明 控制反应速度的一步不包含C-X键的断裂 控制反应速度的一步不包含

亲和取代反应总结

亲和取代反应总结

亲核取代反应总结1、反应定义:亲核取代反应(Nucleophilic Substitution Reaction)是指有机分子中与碳相连的某原子或基团被作为亲核试剂的某原子或基团取代的反应。

在反应过程中,取代基团提供形成新键的一对电子,而被取代的基团则带着旧键的一对电子离去.2、反应意义:这类反应是有机化学中非常重要的一类反应,不论在理论研究中还是在有机合成实际中都是极其有用的一类反应.3、反应分类:亲核取代反应的主要类型为脂肪族饱和碳上的亲核取代反应,即饱和卤代烃与亲核试剂的取代反应,较特殊结构的有苄基卤代物、烯丙基卤代物亲核反应。

其他类型还包括与酰氯、磺酸酯、磺酰卤、卤代苯等的取代反应.从电荷类型来分,亲核取代反应只能有四种类型:(1)中性底物和负离子亲核试剂反应(2)中性底物和中性亲核试剂反应(3)正离子底物和负离子亲核试剂反(4)正离子底物和中性亲核试剂反应亲核试剂包括有机和无机两类分子或离子:无机类亲核试剂:OH—、CN-、X—、H2O、NH3等有机类亲核试剂:ROH、RO—、PhO-、RS—、RMgX、RCOO-等4、反应机理类型分类:(1)双分子亲核取代反应(S N2)有两种分子参与了决定反应速率关键步骤的亲核取代反应称为双分子亲核取代反应。

反应过程中,亲核试剂从反应物离去基团的背面向与它连接的碳原子进攻,先与碳原子形成比较弱的键,同时离去基团与碳原子的键有一定程度的减弱,两者与碳原子成一条直线,碳原子上另外三个键逐渐由伞形转变成平面,这需要消耗能量,即活化能,当反应进行和达到能量最高状态即过渡态后,亲核试剂与碳原子之间的键开始形成,碳原子与离去基团之间的键断裂,碳原子上三个键由平面向另一边偏转,整个过程犹如大风将雨伞由里向外反转一样,这时就要释放能量,形成产物,S N2反应机理一般式表示为:Nu-+R X[Nuδ-···R···Xδ- ] NuR+X—例如,溴甲烷与OH—的水解反应:(2)单分子亲核取代反应(S N1)只有一种分子参与了决定反应速率关键步骤的亲核取代反应称为单分子亲核取代反应,反应中,反应物首先解离成碳正离子与带负电荷的离去基团,这个过程需要能量,是控制反应速率的一步,即慢的一部.当分子解离后,碳正离子马上与亲核试剂结合,速率极快,是快的一步。

dmf在有机反应中的作用

dmf在有机反应中的作用

dmf在有机反应中的作用摘要:I.引言- DMF 简介- 在有机反应中的作用II.DMF 在有机反应中的作用1.催化剂- 金属有机框架(MOFs)- 均相催化剂2.溶剂- 反应机理- 溶剂化效应3.反应底物- 亲核取代反应- 芳香族亲核取代反应4.产物- 手性化合物- 异构化反应III.结论- DMF 在有机反应中的重要性- 未来发展方向正文:DMF(N,N-二甲基甲酰胺)是一种广泛应用于有机反应的化合物,具有高度的反应性和多功能性。

本文将重点介绍DMF 在有机反应中的作用,包括催化剂、溶剂和反应底物等方面。

首先,DMF 可以作为催化剂。

金属有机框架(MOFs)是一种具有高表面积、可调结构和可定制功能的材料。

DMF 可以与金属离子配位,形成稳定的金属有机框架,从而作为催化剂参与有机反应。

此外,DMF 还可以作为均相催化剂,在有机反应中起到关键作用。

其次,DMF 是一种优秀的溶剂。

在有机反应中,溶剂的选择对反应速率和立体化学具有重要影响。

DMF 可以与许多有机化合物相容,从而影响反应机理和溶剂化效应。

因此,DMF 在有机反应中作为溶剂具有重要作用。

此外,DMF 还可以作为反应底物。

在亲核取代反应中,DMF 可以与亲核试剂发生反应,生成新的化合物。

在芳香族亲核取代反应中,DMF 作为反应底物可以引入各种取代基团,从而改变化合物的性质。

最后,DMF 在有机反应中还可以生成手性化合物。

通过DMF 与亲核试剂的反应,可以生成具有手性碳原子的化合物。

此外,DMF 还可以参与异构化反应,进一步丰富有机化合物的结构。

总之,DMF 在有机反应中具有多种作用,包括催化剂、溶剂和反应底物等。

这使得DMF 成为有机化学实验室中不可或缺的试剂。

亲和取代反应总结

亲和取代反应总结

亲核取代反应总结1、反应定义:亲核取代反应(Nucleophilic Substitution Reaction)是指有机分子中与碳相连的某原子或基团被作为亲核试剂的某原子或基团取代的反应。

在反应过程中,取代基团提供形成新键的一对电子,而被取代的基团则带着旧键的一对电子离去。

2、反应意义:这类反应是有机化学中非常重要的一类反应,不论在理论研究中还是在有机合成实际中都是极其有用的一类反应。

3、反应分类:亲核取代反应的主要类型为脂肪族饱和碳上的亲核取代反应,即饱和卤代烃与亲核试剂的取代反应,较特殊结构的有苄基卤代物、烯丙基卤代物亲核反应。

其他类型还包括与酰氯、磺酸酯、磺酰卤、卤代苯等的取代反应。

从电荷类型来分,亲核取代反应只能有四种类型:(1)中性底物和负离子亲核试剂反应(2)中性底物和中性亲核试剂反应(3)正离子底物和负离子亲核试剂反(4) 正离子底物和中性亲核试剂反应亲核试剂包括有机和无机两类分子或离子:无机类亲核试剂:OH -、CN -、X -、H 2O 、NH 3等有机类亲核试剂:ROH 、RO -、PhO -、RS -、RMgX 、RCOO -等4、反应机理类型分类:(1)双分子亲核取代反应(S N 2)有两种分子参与了决定反应速率关键步骤的亲核取代反应称为双分子亲核取代反应。

反应过程中,亲核试剂从反应物离去基团的背面向与它连接的碳原子进攻,先与碳原子形成比较弱的键,同时离去基团与碳原子的键有一定程度的减弱,两者与碳原子成一条直线,碳原子上另外三个键逐渐由伞形转变成平面,这需要消耗能量,即活化能,当反应进行和达到能量最高状态即过渡态后,亲核试剂与碳原子之间的键开始形成,碳原子与离去基团之间的键断裂,碳原子上三个键由平面向另一边偏转,整个过程犹如大风将雨伞由里向外反转一样,这时就要释放能量,形成产物,S N 2反应机理一般式表示为:Nu -+ R X [Nuδ-···R···X δ- ] NuR + X -例如,溴甲烷与OH -的水解反应:(2)单分子亲核取代反应(S N 1)只有一种分子参与了决定反应速率关键步骤的亲核取代反应称为单分子亲核取代反应,反应中,反应物首先解离成碳正离子与带负电荷的离去基团,这个过程需要能量,是控制反应速率的一步,即慢的一部。

亲核取代反应中的溶剂效应

亲核取代反应中的溶剂效应

为过渡态时电荷密度降低的反应,溶剂极性增加,
使反应速度减慢 ; 起始反应物变为过渡态时电荷密变 化很小或无变化的反应,溶剂极性的改变对反应速 度无明显形响。
ቤተ መጻሕፍቲ ባይዱ
起始反应物变为过渡态时电荷密度增加的反应溶剂极性增加使反应速度加快起始反应物变为过渡态时电荷密度增加的反应溶剂极性增加使反应速度加快
亲核取代反应的溶剂效应
任理维
一.溶剂
1. 溶剂的作用
溶解反应物
能与反应物发生相互作用。有机反应中影响到
主反应和副反应的反应速度,还会影响反应方向和
立体化学等。因此,合理地选择溶剂有非常重要的 意义。
2.溶剂的分类
从溶剂的极性和它们形成氢键的能力可分成三类 质子溶剂:能形成氢键作用的溶剂 非质子极性溶剂:分子中的氢与分子内原子结合 牢固,不易给出质子
非极性溶剂:不给出质子,与溶质的作用力弱
二.亲核取代反应的溶剂效应
亲核取代反应的一般表达式为:
RX + Nu → RNu + X:
Ingold提出:
1. SN1机理
2. SN2机理 亲核取代反应的过渡态一般是偶极型过渡态。 Houghes-Ingold规则:通过过渡态理论来处理溶 剂对亲核取代反应的影响。
1.溶剂对SN1反应的影响
亲核受体不带电荷的SN1 R-L → {R&+…L&-}# → R+ + LR+ + Nu- → R-Nu a.过渡态与溶剂形成偶极—偶极健 (1) (2)
b.L- 溶剂化,电荷分散更稳定
亲核受体带有正电荷的SN1
R-L+→ {R&+…L&+}# → R+ + L (3) R+ + Nu- → R-Nu (4)

sn2亲核取代反应特点

sn2亲核取代反应特点

sn2亲核取代反应特点
SN2 亲核取代反应是一种有机化学反应,其中亲核试剂攻击卤代烷分子中的卤原子,形成新的取代产物。

以下是 SN2 亲核取代反应的一些特点:
1. 双分子反应:SN2 反应是一个双分子反应,涉及到亲核试剂和卤代烷分子之间的相互作用。

2. 立体化学:SN2 反应通常遵循瓦尔登反转(Walden inversion)规律,即卤代烷的手性中心在反应过程中发生反转。

这是由于亲核试剂从卤代烷的背面进攻,导致手性中心的构型发生反转。

3. 反应速率:SN2 反应的速率通常受卤代烷的结构和离去基团的性质影响。

卤代烷的烷基结构越庞大,反应速率越慢;离去基团的离去能力越强,反应速率越快。

4. 溶剂效应:溶剂对 SN2 反应的速率和选择性有很大影响。

极性溶剂通常有利于 SN2 反应,因为它们能够稳定反应过渡态并促进亲核试剂的进攻。

5. 亲核试剂:SN2 反应对亲核试剂的性质也有要求。

亲核试剂通常是带有孤对电子的负离子或中性分子,如卤离子、氢氧根离子、胺等。

6. 竞争反应:在存在多种亲核试剂的情况下,SN2 反应可能与其他亲核取代反应(如SN1 反应)或消除反应(E2 反应)竞争。

7. 产物结构:SN2 反应的产物通常具有完全取代的结构,因为亲核试剂进攻卤代烷的碳原子,取代了卤原子。

总之,SN2 亲核取代反应是一种重要的有机反应类型,具有双分子反应、立体化学反转、受卤代烷结构和离去基团性质影响、溶剂效应、亲核试剂要求、竞争反应以及产物结构等特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
亲核取代反应的溶剂效应
任理维
一.溶剂
1. 溶剂的作用
溶解反应物
能与反应物发生相互作用。有机反应中影响到
主反应和副反应的反应速度,还会影响反应方向和
立体化学等。因此,合理地选择溶剂有非常重要的 意义。
2.溶剂的分类
从溶剂的极性和它们形成氢键的能力可分成三类 质子溶剂:能形成氢键作用的溶剂 非质子极性溶剂:分子中的氢与分子内原子结合 牢固,不易给出质子
为过渡态时电荷密度降低的反应,溶剂极性增加,
使反应速度减慢 ; 起始反应物变为过渡态时电荷密变 化很小或无变化的反应,溶剂极性的改变对反应速 度无明显形响。
CH3
CH3
反应物不带电荷的SN2反应
Nu + R-L →{Nu&+…R…l&-}#→ Nu+—R + L-
(8)
a. 过渡态电荷发生分离,能形成偶极 — 偶极健,极性越 强过渡态越稳定
•SN2反应在偶极溶剂中进行比在质子溶剂中快。
总结:起始反应物变为过渡态时电荷密度增加的反
应,溶剂极性增加,使反应速度加快 ;起始反应物变
a.过渡态电荷分散,形成的偶极—偶极健变弱
b.离去基团为中性,溶剂化程度下降
2 .溶剂对SN2反映的影响
有带电荷的反应物的SN2反应 Nu- + R-L →{Nu&-…R…l&-}#→ Nu—R + LNu: + R-L+ →{Nu&+…R…l&+}#→ Nu+—R + L Nu- + R-L+ →{Nu&-…R…l&+}#→ Nu—R + L (5) (6) (7)
非极性溶剂:不给出质子,与溶质的作用力弱
二.亲核取代反应的溶剂效应
u + X:
Ingold提出:
1. SN1机理
2. SN2机理 亲核取代反应的过渡态一般是偶极型过渡态。 Houghes-Ingold规则:通过过渡态理论来处理溶 剂对亲核取代反应的影响。
1.溶剂对SN1反应的影响
亲核受体不带电荷的SN1 R-L → {R&+…L&-}# → R+ + LR+ + Nu- → R-Nu a.过渡态与溶剂形成偶极—偶极健 (1) (2)
b.L- 溶剂化,电荷分散更稳定
亲核受体带有正电荷的SN1
R-L+→ {R&+…L&+}# → R+ + L (3) R+ + Nu- → R-Nu (4)
a.过渡态电荷被分散,形成的偶极—偶极健变弱
b.反应物极性大,溶剂化效应不利于过渡态的形成
例外:a :溶剂化(极性:CH3CH2OH∠H2O)
b: 解离度 (解离:CH3CH2OH∠H2O)
ONa
OCH2 CH2N(CH2CH2)2
OH
NaOH
(CH3CH2)2NCH2CH2 Cl· HCl
CH3
相关文档
最新文档