高教热统答案第九章
高中数学第九章统计知识点总结归纳(带答案)
高中数学第九章统计知识点总结归纳单选题1、下面的四个问题中,可以用抽样调查方法的是()A.检验10件产品的质量B.银行对公司10万元存款的现钞的真假检验C.跳伞运动员检查20个伞包及伞的质量D.检验一批汽车的防碰撞性能答案:D分析:根据抽样与普查的概念,分析即可得答案.根据抽样与普查的概念可得,A、B、C一般采用普查方法,需逐一检验,D采用抽样调查的方法.故选:D2、2020年5月我国抗击新冠肺炎疫情工作取得阶段性胜利,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是()A.这11天复工指数和复产指数均逐日增加B.这11天期间,复产指数的极差大于复工指数的极差C.第3天至第11天复工复产指数均超过80%D.第9天至第11天复工指数的增量大于复产指数的增量答案:C分析:根据折线图对选项一一分析即可.对于A,这11天复工指数和复产指数均有升有降,故A错误;对于B,这11天期间,复产指数的极差为11月与1月的差值,复工指数的极差为10月与2月的差值,易知复产指数的极差小于复工指数的极差,故B错误;对于C,第3天至第11天复工复产指数均超过80%,故C正确;对于D,第9天至第11天复工指数的增量小于复产指数的增量,故D错误;故选:C3、下列问题中,最适合用简单随机抽样方法抽样的是()A.某县从该县中、小学生中抽取200人调查他们的视力情况B.从15种疫苗中抽取5种检测是否合格C.某大学共有学生5600人,其中专科生有1300人、本科生3000人、研究生1300人,现抽取样本量为280的样本调查学生利用因特网查找学习资料的情况,D.某学校兴趣小组为了了解移动支付在大众中的熟知度,要对15−75岁的人群进行随机抽样调查答案:B解析:依次判断每个选项的合适的抽样方法得到答案.A. 中学,小学生有群体差异,宜采用分层抽样;B. 样本数量较少,宜采用简单随机抽样;C. 中专科生、本科生、研究生有群体差异,宜采用分层抽样;D. 年龄对于移动支付的了解有较大影响,宜采用分层抽样;故选:B.小提示:本题考查了抽样方法,意在考查学生对于抽样方法的掌握情况.4、已知一组数据x1,x2,x3,…,x10的标准差为2,将这组数据x1,x2,x3,…,x10中的每个数先同时减去2,再同时乘以3,得到一组新数据,则这组新数据的标准差为()A.2B.4C.6D.3√2答案:C分析:利用数据的均值、方差的线性运算直接求得.因为数据x1,x2,x3,…,x10的标准差为2,所以方差为4.由题意知,得到的新数据为3x1−6,3x2−6,3x3−6,…,3x10−6,这组新数据的方差为4×32=36,标准差为6.故选:C5、下列调查适合作抽样调查的是().A.学校调查本届学生某学科水平考的校合格率B.小区居委了解小区内70岁以上老人的生活状况C.环保部门调查5月份黄河某段水域的水质量情况D.班主任了解全班同学本周末参加社区活动的时间答案:C分析:由抽样调查的概念判断由题意,A,B,D适合全面调查,C适合抽样调查,故选:C6、某购物广场开展的“买三免一”促销活动异常火爆,对其中一日8时至22时的销售额进行统计,组距为2小时的频率分布直方图如图所示.已知12时至l6时的销售额为90万元,则10时至12时的销售额为().A.60万元B.80万元C.100万元D.120万元答案:A分析:依据频率分布直方图的性质即可求得10时至12时的销售额.12时至l6时的频率为0.100×2+0.125×2=0.45,10时至12时的频率为0.150×2=0.3010时至12时的销售额0.30×90=60(万元)0.45则故选:A7、为保障食品安全,某监管部门对辖区内一家食品企业进行检查,现从其生产的某种产品中随机抽取100件作为样本,并以产品的一项关键质量指标值为检测依据,整理得到如下的样本频率分布直方图.若质量指标值在[25,35)内的产品为一等品,则该企业生产的产品为一等品的概率约为()A.0.38B.0.61C.0.122D.0.75答案:B分析:利用频率=频率×组距,即可得解.组距根据频率分布直方图可知,质量指标值在[25,35)内的概率P=(0.080+0.042)×5=0.122×5=0.61故选:B8、为了更好地支持“中小型企业”的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:①样本数据落在区间[300,500)的频率为0.45;②如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免税政策;③样本的中位数为480万元.其中正确结论的个数为A.0B.1C.2D.3答案:D解析:根据直方图求出a=0.0025,求出[300,500)的频率,可判断①;求出[200,500)的频率,可判断②;根据中位数是从左到右频率为0.5的分界点,先确定在哪个区间,再求出占该区间的比例,求出中位数,判断③.由(0.001+0.0015+0,002+0.0005+2a)×100=1,a=0.0025,[300,500)的频率为(0.002+0.0025)×100=0.45,①正确;[200,500)的频率为(0.0015+0.002+0.0025)×100=0.55,②正确;[200,400)的频率为0.3,[200,500)的频率为0.55,中位数在[400,500)且占该组的4,5×100=480,③正确.故中位数为400+0.5−0.30.25故选:D.小提示:本题考查补全直方图,由直方图求频率和平均数,属于基础题多选题9、已知一组数据丢失了其中一个,剩下的六个数据分别是3,3,5,3,6,11,若这组数据的平均数与众数的和是中位数的2倍,则丢失的数据可能是()A.−10B.4C.12D.18答案:ABD分析:设丢失数据为x,分别在x≤3、3<x<5和x≥5三种情况下,根据平均数与众数的和是中位数的2倍构造方程求得结果.,众数是3.设丢失的数据为x,则这七个数据的平均数为31+x7∵这组数据的平均数与众数的和是中位数的2倍,∴若x≤3,则中位数为3,此时31+x+3=2×3,解得:x=−10;7+3=2x,解得:x=4;若3<x<5,则中位数为x,此时31+x7+3=2×5,解得:x=18.若x≥5,则中位数为5,此时31+x7综上所述:丢失的数据可能是−10,4,18.故选:ABD.10、在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地答案:AD分析:假设最多一天疑似病例超过7人,根据极差可判断AD;根据平均数可算出10天疑似病例总人数,可判断BC.解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A.根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D.故选:AD.11、对下面三个事件最适宜采用的抽样方法判断正确的是()①从某厂生产的3 000件产品中抽取600件进行质量检验;②在一次诗词朗读比赛中,有10人的成绩在91~100分,40人的成绩在81~90分,10人的成绩低于80分,现在从中抽取12人的成绩了解有关情况;③运动会服务人员为参加400 m决赛的6名同学安排跑道.A.①②适宜采用分层随机抽样B.②③适宜采用分层随机抽样C.②适宜采用分层随机抽样D.③适宜采用简单随机抽样答案:CD分析:根据分层抽样的适用条件,以及简单随机抽样的适用条件,即可容易判断.①从某厂生产的3 000件产品中抽取600件进行质量检验,总体没有明显差异,不满足分层随机抽样的方法;②总体由差异明显且互不重叠的几部分组成,若要从中抽取12人的成绩了解有关情况,适合采用分层随机抽样的方法;③运动会服务人员为参加400 m决赛的6名同学安排跑道,具有随机性,适合用简单随机抽样.故选:CD.小提示:本题考查分层抽样和简单随机抽样的适用条件,属简单题.12、某保险公司销售某种保险产品,根据2020年全年该产品的销售额(单位:万元)和该产品的销售额占总销售额的百分比,绘制出如图所示的双层饼图.根据双层饼图,下列说法正确的是()A.2020年第四季度的销售额为280万元B.2020年上半年的总销售额为500万元C.2020年2月份的销售额为40万元D .2020年12个月的月销售额的众数为60万元 答案:AD分析:结合饼图对选项进行分析,从而确定正确选项.2020年全年的销售额为3000.3=1000万元,故第四季度的销售额为1000×28%=280万元,A 正确; 2020年上半年的总销售额为160+260=420万元,B 错误; 2020年2月份的销售额为1000×5%=50万元,C 错误; 则3、4、12三个月的月销售额均为60万元,D 正确. 故选:AD13、甲、乙两支田径队队员的体重(单位:kg)信息如下:甲队体重的平均数为60,方差为200,乙队体重的平均数为68,方差为300,又已知甲、乙两队的队员人数之比为1:3,则关于甲、乙两队全部队员的体重的平均数和方差的说法正确的是( )A .平均数为67B .平均数为66C .方差为296D .方差为287 答案:BD解析:先利用比重计算全部队员体重的平均值,再利用平均值计算方差即可.依题意,甲的平均数x 1=60,乙的平均数x 2=68,而甲、乙两队的队员人数之比为1:3, 所以甲队队员在所有队员中所占比重为14,乙队队员在所有队员中所占比重为故甲、乙两队全部队员的体重的平均数为:x =60×14+68×34=66;甲、乙两队全部队员的体重的方差为:s 2=14×[200+(60−66)2]+34×[300+(68−66)2]=59+228=287. 故选:BD. 填空题14、《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,问各几何?”其意为:“今有甲带了560钱,乙带了350钱,丙带了180钱,三人一起出关,共需要交关税100钱,依照钱的多少按比例出钱”,则丙应出________钱(所得34结果四舍五入,保留整数).答案:17分析:根据丙所带的钱的比例乘以总关税100钱即得所求. 依照钱的多少按比例出钱,所以丙应该出钱为180560+350+180×100=180001090≈17.所以答案是:17.15、某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,若用分层抽样方法,则40岁以下年龄段应抽取___________人.答案:20解析:本题可利用扇形统计图和分层抽样的知识直接求解.由年龄分布情况图可得40岁以下年龄段应抽取40×50%=20(人),所以答案是:20.16、跳伞运动员检查20个伞包及伞的质量,采取的调查方法应该是______.答案:普查.分析:根据调查的对象和范围,即可确定答案.由于要检查20个伞包及伞的质量,因此采取的调查方式应为普查,所以答案是:普查解答题17、某地区100位居民的人均月用水量(单位:t)的分组及各组的频数如下:[0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2.(1)列出样本的频率分布表;(2)画出频率分布直方图,并根据直方图估计这组数据的平均数、中位数、众数;(3)当地政府制定了人均月用水量为3t的标准,若超出标准加倍收费,当地政府说,85%以上的居民不超过这个标准,这个解释对吗?为什么?答案:(1)分布表见解析;(2)直方图见解析;平均数为2.02,中位数为2.02,众数为2.25;(3)政府的解释是正确的,原因见解析.分析:(1)根据100位居民的人均月用水量(单位:t)的分组及各组的频数列出频率分布表.(2)根据(1)的频率分布表画出直方图,根据众数、中位数和平均数定义求解.(3)先算出人均月用水量在3t以上的居民所占的比例即可.(1)频率分布表如下:众数为:2+2.52=2.25月用水量在[0,2)的频率为:0.04+0.08+0.15+0.22=0.49,∴0.5−0.490.5=0.02中位数为:2+0.02=2.02平均数为:0.04×0.25+0.08×0.75+0.15×1.25+0.22×1.75+0.25×2.25,+0.14×2.75+0.06×3.25+0.04×3.75+0.02×4.25=2.02(3)人均月用水量在3t以上的居民所占的比例为6%+4%+2%=12%即大约有12%的居民月用水量在3t以上,1−12%=88%的居民月用水量在3t以下因此政府的解释是正确的.小提示:本题主要考查频率分布表,频率分布直方图,数字特征及其应用,还考查了数形结合的思想方法,属于中档题.18、某地区全体九年级的3000名学生参加了一次科学测试,为了估计学生的成绩,从不同学校的不同程度的学生中抽取了100名学生的成绩如下:100分12人,90分30人,80分18人,70分24人,60分12人,50分4人.请根据以上数据估计该地区3000名学生的平均分、合格率(60或60分以上均属合格).答案:平均分是79.4分,合格率是96%.分析:利用平均数公式计算可得样本的平均分,进而得出合格率.=79.4(分),平均分为100×12+90×30+80×18+70×24+60×12+50×4100(12+30+18+24+12)÷100×100%=96%,所以样本的平均分是79.4分,合格率是96%,由此来估计总体3000名学生的平均分是79.4分,合格率是96%.。
大学物理第九章热力学基础习题答案精品.doc
习题九9-1 一系统由图示的状态。
经Q&/到达状态。
,系统吸收了320J热量,系统对外作功126J。
⑴若。
沥过程系统对外作功42J,问有多少热量传入系统?(2)当系统由b沿曲线ba返回状态。
,外界对系统作功84 J,试问系统是吸热还是放热?热量是多少?懈]由热力学第一定律Q = \E + A p得星=。
-4在a<b过程中,E b - E = M = 0 - A = 320 -126 = 194/在讪过程中Q2 =^ + 4 = 194 + 42 = 236/o在ba过程中Q, = E. - E b + & = -AE + & = -194-84 = -278J本过程中系统放热。
9-2 2mol氮气由温度为300K,压强为 1.013x10*)(latm)的初态等温地压缩到 2.026 xl05Pa(2atm)o求气体放出的热量。
[解]在等温过程中气体吸收的热量等于气体对外做的功,所以Q T=A=/?TIn-^- = 2x8.3lx300x In-= -3.46x 103JM ]P,2mol 2即气体放热为3.46x103, o9-3 一定质量的理想气体的内能E随体积的变化关系为E- V图上的一条过原点的直线,如图所示。
试证此直线表示等压过程。
[证明]设此直线斜率为奴则此直线方程为E = ki,又E随温度的关系变化式为E = M—Cv ・T = k'TM mo i所以kV = k'T因此堂= C = C(C为恒量)T k又由理想气体的状态方程知,华=。
'(C'为恒量)所以P为恒量即此过程为等压过程。
9-4 2mol氧气由状态1变化到状态2所经历的过程如图所示:⑴沿I一所一2路径。
(2)1 — 2 直线。
试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化。
[解](1)在1-初一2这一过程中,做功的大小为该曲线下所围的面积,氧气对外做负功。
统计学高教版第9章统计指数课后习题答案
A企业
B企业
C企业
D企业
E企业
产品销售率
77.35
92.33
97.97
92.74
87.61
15
资金利税率
90.04
104.06
99.63
84.87
103.32
30
成本利润率
90.37
112.96
99.88
101.07
82.05
15
增加值率
87.24
100.00
98.28
87.59
92.07
10
劳动生产率
第9章统计指数课后习题答案
9.1(1) ;
(2) 。
(3)略。
9.2(1) 。
(2)略。
9.3(1) ;(2) ;(3) ;(4)略。
9.4 ; ; 。
9.5⑴ ;⑵ ;
⑶ ;⑷ 。
9.6依据有关公式列表计算各企业的工业经济效益综合指数如下:
各企业经济效益综合指数一览表(标准比值法)
参评指标
标准比值或个体指数(%)
84.62
60.00
15
增加值率
29.00
25.30
60.00
100.00
94.59
61.08
75.14
10
劳动生产率
7250
5400
68.65
79.89
100.00
90.27
60.00
10
资金周转率
2.10
1.60
60.00
80.00
100.00
84.00
76.0020ຫໍສະໝຸດ 综合指数────
65.50
[高等教育]第9章热力学基础习题解答.doc
第9章热力学基础习题解答9-1 Imol单原了分了理想气体,在4 atm、27°C时体积*=6L,终态体积K2=12L O若过程是:(1)等温;(2)等压;求两种情况下的功、热量及内能的变化。
解:(1)等温过程:M = 0A; E vRTQ T=A T= f;pdV = \—dV = vRT\nV2IV[J;J:V= 8.31x3001n2 = 1728 (J)(2)等压过程:\E = viRAT/2 = 3/?(^2 - )/2 = 3647 (J)A = p(V2 -^) = 2431 (J)Q p— AE A — 6078 (J)9-2 Imol单原子分子理想气体从300 K加热到350 K。
( 1)体积保持不变;(2)压强保持不变;在这两过程中系统各吸收了多少热量?增加了多少内能?气体对外做了多少功?解:(1)等体过程:A v =0Q v =AE = viR\T/2 = 3x8.31 x50/2 = 623.3 (J)(2)等压过程:A =-^) = ^7 = 8.31x50 = 415.5 (J)Q P=\E^A = 623.3 + 415.5 = 1039 (J)9-3将400 J的热量传给标准状态下的2mol纭l气。
(1)若温度不变,纽气的压强、体积各变为多少?(2)若压强不变,纣气的温度、体积各变为多少?(3)若体积不变,氢气的温度、压强各变为多少?哪一过程中它p 。
做功最多?为什么?哪一过程中内能增加最多?为什么?5 , rz vRT. 2x8.31x273 叫。
解:(1)V =— = -------------- =44.8(L)°l.OBxlO 5等温过程:Q T =V RT\X \VJV.K = V () exp-^- = 44.8 exp --- ------- = 48.9 (L)vRT 2x8.31x273P I =p()、)/「=44.8/48.9 = 0.916 (atm) =9.27xl04(Pa) (2)等压过程:Q P =V C P (T 1-T Q )L=£ + L=————+ 273 = 279.9 (K)'vC p 0 2x7x8.31/2V 2 =T*L =279.9x44.8/273 = 45.9 (L)(3)等体过程:0 =“G,(4 一舄)7; =&- + /;)=——竺——+ 273 = 282.6 (K)3 vC v ° 2x5x8.31/2P3 fp/To = 282.6 X1.013 X105 / 273 = 1.049 x 105(Pa)等温过程做功最多,因为热量全部转化为功。
部编版高中数学必修二第九章统计带答案知识点梳理
(名师选题)部编版高中数学必修二第九章统计带答案知识点梳理单选题1、某大学工程学院共有本科生1200人、硕士生400人、博士生200人,要用分层抽样的方法从中抽取一个容量为180的样本,则应抽取博士生的人数为()A.20B.25C.40D.502、2021年是中国共产党成立100周年,某学校团委在7月1日前,开展了“奋斗百年路,启航新征程”党史知识竞赛.团委工作人员将进入决赛的100名学生的分数(满分100分且每人的分值为整数)分成6组:[70,75),[75,80),[80,85),[85,90),[90,95),[95,100]得到如图所示的频率分布直方图,则下列关于这100名学生的分数说法错误的是()A.分数的中位数一定落在区间[85,90)B.分数的众数可能为97C.分数落在区间[80,85)内的人数为25D.分数的平均数约为853、根据气象学上的标准,连续5天的日平均气温低于10℃即为入冬,将连续5天的日平均温度的记录数据(记录数据都是自然数)作为一组样本,现有4组样本①、②、③、④,依次计算得到结果如下:①平均数x̅<4;②平均数x̅<4且极差小于或等于3;③平均数x̅<4且标准差s≤4;④众数等于5且极差小于或等于4.则4组样本中一定符合入冬指标的共有()A.1组B.2组C.3组D.4组4、某个高级中学组织物理、化学学科能力竞赛,全校1000名学生都参加两科考试,考试后按学科分别评出一、二、三等奖和淘汰的这四个等级,现有某考场的两科考试数据统计如下,其中物理科目成绩为二等奖的考生有12人.如果以这个考场考生的物理和化学成绩去估计全校考生的物理和化学成绩分布,则以下说法正确的是()①该考场化学考试获得一等奖的有4人;②全校物理考试获得二等奖的有240人;③如果采用分层抽样从全校抽取200人,则化学考试被淘汰78人.A.①②③B.②③C.①②D.①③5、嫦娥五号的成功发射,实现了中国航天史上的五个“首次”,某中学为此举行了“讲好航天故事”演讲比赛.将报名的30位同学依次编号为01,02,…,30,利用下面的随机数表来决定他们的出场顺序,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,重复的跳过,则选出来的第7个个体的编号为()35 24 10 16 20 33 32 51 26 38 79 78 45 0438 23 16 86 38 42 38 97 01 50 87 75 66 81A.26B.01C.16D.046、下列问题中,最适合用简单随机抽样方法抽样的是()A.某县从该县中、小学生中抽取200人调查他们的视力情况B.从15种疫苗中抽取5种检测是否合格C.某大学共有学生5600人,其中专科生有1300人、本科生3000人、研究生1300人,现抽取样本量为280的样本调查学生利用因特网查找学习资料的情况,D.某学校兴趣小组为了了解移动支付在大众中的熟知度,要对15−75岁的人群进行随机抽样调查7、10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.b>c>a C.c>a>b D.c>b>a8、北京舞蹈学院为了解大一舞蹈专业新生的体重情况,对报到的1000名舞蹈专业生的数据(单位:kg)进行统计,得到如图所示的体重频率分布直方图,则体重在60kg以上的人数为()A.100B.150C.200D.250多选题9、我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A.这11天复工指数和复产指数均逐日增加;B.这11天期间,复产指数增量大于复工指数的增量;C.第3天至第11天复工复产指数均超过80%;D.第9天至第11天复产指数增量大于复工指数的增量;10、已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了440人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为4400011、PM2.5是衡量空气质量的重要指标,下图是某地7月1日到10日的PM2.5日均值(单位:ug/m3)的折线图,则下列关于这10天中PM2.5日均值的说法正确的是A.众数为30B.中位数是31C.平均数小于中位数D.后4天的方差小于前4天的方差填空题12、某中学为了解学生数学课程的学习情况,在2200名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测这2200名学生在该次数学考试中成绩不小于80分的学生有______人.13、某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果分成5组:[13,14),[14,15),[15,16),[16,17),[17,18],得到如图所示的频率直方图,如果从左到右的5个小矩形的面积之比为1∶3∶7∶6∶3,那么成绩的70百分位数约为________秒.部编版高中数学必修二第九章统计带答案(三十五)参考答案1、答案:A分析:直接利用分层抽样,即可计算.因为学院共有本科生1200人、硕士生400人、博士生200人,×180=20.所以应抽取博士生的人数为2001200+400+200故选:A2、答案:B分析:根据小矩形的面积之和等于1,求出b=0.05,根据中位数的求法可判断A;根据众数的求法可判断B;由在区间[80,85)上的概率可判断C;由平均数的的计算公式:小矩形的底边中点横坐标与小矩形面积的乘积之和可判断D.A,由频率分布直方图可得(0.01+0.02×2+0.03+b+0.07)×5=1,解得b=0.05,前三组的概率为(0.02×2+0.05)×5=0.45<0.5,前四组的概率为(0.02×2+0.05+0.07)×5=0.7>0.5,所以分数的中位数一定落在第四组[85,90)内,故A正确;B,分数的众数可能为87.5,故B错误;C,分数落在区间[80,85)内的人数约为0.05×5×100=25,故C正确.D,分数的平均数为:72.5×0.02×5+77.5×0.02×5+82.5×0.05×5+87.5×0.07×5+92.5×0.03×5+97.5×0.01×5=85,故D正确.故选:B3、答案:B分析:举反例否定①;反证法证明②符合要求;举反例否定③;直接法证明④符合要求.①举反例:0,0,0,4,11,其平均数x̅=3<4.但不符合入冬指标;②假设有数据大于或等于10,由极差小于或等于3可知,则此组数据中的最小值为10−3=7,此时数据的平均数必然大于7,与x̅<4矛盾,故假设错误.则此组数据全部小于10. 符合入冬指标;③举反例:1,1,1,1,11,平均数x̅=3<4,且标准差s=4.但不符合入冬指标;④在众数等于5且极差小于等于4时,则最大数不超过9.符合入冬指标.故选:B.4、答案:C分析:由物理二等奖的人数和频率可得该考场总共人数,乘以化学考试获得一等奖的频率可判断①;计算出全校获得物理考试二等奖的频率和总人数相乘可判断②;采用分层抽样从全校抽取200人,乘以化学考试被淘汰的人数的频率可判断③.=50,所以该考场总共有50人,所以化学考试获得一等奖的有50⋅(1−0.16−0.38−由于121−0.4−0.1−0.260.38)=4人,所以①正确;全校获得物理考试二等奖的有1000×0.24=240人,所以②正确;如果采用分层抽样从全校抽取200人,则化学考试被淘汰的人数为200×0.38=76人,所以③错误.故选:C.5、答案:B分析:由随机数表,按照规则选出.依次从数表中读出的有效编号为10,16,20,26,04,23,01,…故选出来的第7个个体的编号为01.故选:B.6、答案:B解析:依次判断每个选项的合适的抽样方法得到答案.A. 中学,小学生有群体差异,宜采用分层抽样;B. 样本数量较少,宜采用简单随机抽样;C. 中专科生、本科生、研究生有群体差异,宜采用分层抽样;D. 年龄对于移动支付的了解有较大影响,宜采用分层抽样;故选:B.小提示:本题考查了抽样方法,意在考查学生对于抽样方法的掌握情况.7、答案:D分析:将数据从小到大重新排列(也可以是从大到小),计算出a,b,c的值即可比较大小. 解:重新排列得:10,12,14,14,15,15,16,17,17,17.则有:a=110×(15+17+14+10+15+17+17+16+14+12)=14.7,b=12×(15+15)=15,c=17.所以c>b>a故选:D.8、答案:D分析:根据频率分布直方图求出体重在60kg以上的小矩形的面积,即为概率,根据总人数即可求解.0.040×5+0.010×5=0.25,1000×0.25=250,故选:D.9、答案:CD分析:注意到折线图中有递减部分,可判定A错误;注意考查第1天和第11天的复工复产指数的差的大小,可判定B错误;根据图象,结合复工复产指数的意义和增量的意义可以判定CD正确.由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B错误;由图可知,第3天至第11天复工复产指数均超过80%,故C正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D正确;小提示:本题考查折线图表示的函数的认知与理解,考查理解能力,识图能力,推理能力,难点在于指数增量的理解与观测,属中档题.10、答案:ABD分析:根据得意求出抽样比,进一步即可判断A,B,D;算出样本中的近视人数即可判断C.由题意,抽样比为2000120000+75000+55000=1125,则B正确;从高中生中抽取了55000×1125=440人,A正确;高中生近视人数约为:55000×80%=44000人,D正确;学生总人数为:250000人,小学生占比:120000250000=1225,同理,初中生、高中生分别占比:310,1150,在2000的样本中,小学生、初中生和高中生分别抽取:960人,600人和440人,则近视人数为:960×30%+600×70%+440×80%=1060人,所以估计该地区中小学总体的平均近视率为:10602000=53%,C错误.故选:ABD.11、答案:AD分析:根据折线图,由众数,中位数,平均数,方差等概念及公式,逐项判断,即可得出结果.众数即是出现次数最多的数字,由折线图可得,众数为30,即A正确;中位数即是处在中间位置的数字,将折线图中数字由小到大依次排序,得到:17,25,30,30,31,32,34,38,42,126;处在中间位置的数字是:31,32,因此中位数为31.5,即B错;由折线图可得,平均数为:17+25+30+30+31+32+34+38+42+12610=40.5>31.5,故C错;前4天的平均数为:38+25+17+304=27.5,后4天的平均数为42+31+32+304=33.75前4天方差为:s12=(38−27.5)2+(25−27.5)2+(17−27.5)2+(30−27.5)24=58.25,后4天方差为:s22=(42−33.75)2+(31−33.75)2+(32−33.75)2+(30−33.75)24=23.1875,所以后4天的方差小于前4天的方差,故D正确.故选:AD.小提示:本题主要考查由折线图计算众数、中位数、平均数、方差等,属于基础题型.12、答案:616分析:计算成绩不低于80的两个小矩形的面积之和,即成绩不低于80的学生的频率,再乘以2200即可.2200×[(0.020+0.008)×10]=2200×0.28=616.所以答案是:616.13、答案:16.5分析:设成绩的70百分位数为x,再估计成绩的70百分位数的区间通过计算即可.设成绩的70百分位数为x,因为1+3+71+3+7+6+3=0.55,1+3+7+61+3+7+6+3=0.85,所以x∈[16,17),所以0.55+(x-16)×61+3+7+6+3=0.70,解得x=16.5. 所以答案是:16.5.。
高中数学第九章统计笔记重点大全(带答案)
高中数学第九章统计笔记重点大全单选题1、国内生产总值(GDP)指按市场价格计算的一个国家(或地区)所有常住单位在一定时期内生产活动的最终成果.下图是我国2014~2018年连续5年的GDP及增速图,则下列结论错误的是()A.连续5年中我国GDP保持6%以上的增长B.2014~2018年我国GDP增速整体呈现下降趋势C.2018年GDP为这5年最高,GDP增速为这5年最低D.2018年GDP相对2014年GDP增长了一倍以上答案:D分析:根据表中的数据,依次分析各选项即可得答案.解:根据表中数据,对于A选项,2018年国民生产总值增长率最低,为6.6%左右,故连续5年中我国GDP保持6%以上的增长,正确;对于B选项,根据增长率折线图可知,2014~2018年我国GDP增速整体呈现下降趋势,故正确;对于C选项,2018年GDP为90万亿,为5年最高,GDP增速为6.6%左右,为5年最低,故正确;对于D选项,由表中数据,2014年GDP为64万亿左右,2018年GDP为90万亿左右,故没有增长一倍以上,故错误.故选:D2、每年的3月15日是“国际消费者权益日”,某地市场监管局在当天对某市场的20家肉制品店、100家粮食加工品店和15家乳制品店进行抽检,要用分层抽样的方法从中抽检27家,则粮食加工品店需要被抽检()A.20家B.10家C.15家D.25家答案:A分析:确定抽样比,即可得到结果.=20(家).解:根据分层抽样原理知,粮食加工品店需要被抽检27×10020+100+15故选:A.3、为了庆祝中国共产党成立100周年,某学校组织了一次“学党史、强信念、跟党走”主题竞赛活动.活动要求把该学校教师按年龄分为35岁以下,35−45岁,45岁及其以上三个大组.用分层抽样的方法从三个大组中抽,则该学校共有教师取一个容量为10的样本,组成答题团队,已知35−45岁组中每位教师被抽到的概率为124()人A.120B.180C.240D.无法确定答案:C分析:根据抽样过程中每个个体被抽到的概率都相等可得答案.因为在抽样过程中,每位教师被抽到的概率都相等,=240人.所以该学校共有教师10÷124故选:C.4、“中国天眼”为500米口径球面射电望远镜,是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜.建造“中国天眼”的目的是()A.通过调查获取数据B.通过试验获取数据C.通过观察获取数据D.通过查询获得数据答案:C分析:直接由获取数据的途径求解即可.“中国天眼”主要是通过观察获取数据.故选:C.5、某工厂的机器上有一种易损元件,这种元件发生损坏时,需要及时维修.现有甲、乙两名工人同时从事这项工作,下表记录了某月1日到10日甲、乙两名工人分别维修这种元件的件数.3件,请利用上表数据估计最少需要增加工人的人数为()A.2B.3C.4D.5答案:A分析:设增加工人后有n名工人,计算出甲、乙两名工人每天维修的元件的平均数后构建关于n的不等式,从而可求最少需要增加工人的人数.设增加工人后有n名工人.因为甲、乙两名工人每天维修的元件的平均数为:110×[(3+5+4+6+4+6+3+7+8+4)+(4+7+4+5+5+4+5+5+4+7)]=10,所以这n名工人每人每天维修的元件的平均数为10n.令10n ≤3,解得n≥103,所以n的最小值为4.为使增加工人后平均每人每天维修的元件不超过3件,至少应增加2名工人.故选:A.6、中国营养学会把走路称为“最简单、最优良的锻炼方式”,它不仅可以帮助减肥,还可以增强心肺功能、血管弹性、肌肉力量等.下图为甲、乙两人在同一星期内日步数的折线统计图:则下列结论中不正确的是()A.这一星期内甲的日步数的中位数为11600B.乙的日步数星期四比星期三增加了1倍以上C.这一星期内甲的日步数的平均值大于乙D.这一星期内甲的日步数的方差大于乙答案:B分析:对于A:直接求出中位数;对于B:求出乙的星期三和星期四步数,计算可得;对于C:分别计算出甲、乙平均数,即可判断;对于D:分别计算出甲、乙方差,即可判断;对于A:甲的步数:16000,7965,12700,2435,16800,9500,11600.从小到大排列为:2435,7965,9500,11600,12700,16000,16800.中位数是11600.故A正确;对于B:乙的星期三步数7030,星期四步数12970.因为129707030≈1.84<2,所以没有增加1倍上.故B不正确;对于C:x甲=17(16000+7965+12700+2435+16800+9500+11600)=11000,x乙=17(14200+12300+7030+12970+5340+11600+10060)=10500.所以x甲>x乙.故C正确;对于D:s甲2=17[(16000−11000)2+(7965−11000)2+(12700−11000)2+(2435−11000)2+(16800−11000)2+(9500−11000)2+(11600−11000)2]≈20958636s乙2=17[(14200−10500)2+(12300−10500)2+(7030−10500)2+(12970−10500)2+(5340−10500)2+(11600−10500)2+(10060−10500)2]≈9014429所以s甲2>s乙2.故D正确;故选:B.7、“二万五千里长征”是1934年10月到1936年10月中国工农红军进行的一次战略转移,是人类历史上的伟大奇迹,向世界展示了中国工农红军的坚强意志,在期间发生了许多可歌可泣的英雄故事.在中国共产党建党100周年之际,某中学组织了“长征英雄事迹我来讲”活动,已知该中学共有高中生2700名,用分层抽样的方法从该校高中学生中抽取一个容量为45的样本参加活动,其中高三年级抽取了14人,高二年级抽取了15人,则该校高一年级学生人数为()A.720B.960C.1020D.1680答案:B解析:根据分层抽样中样本容量比与总体容量比相等可得.由题意高一抽取的学生为45−14−15=16.设高一学生数为n,则n2700=1645,解得n=960.故选:B.8、某射击运动员6次的训练成绩分别为:88,91,89,88,86,85,则这6次成绩的第70百分位数为()A.89B.89.5C.90D.90.5答案:A分析:先将数据按从小到大的顺序排列,计算6×70%=4.2不是整数,则所求的是从小到大排列的第5位数6次考试数学成绩从小到大为:85,86,88,88,89,91,6×70%=4.2,∴这名学生6次训练成绩的第70百分位数为89 .故选:A多选题9、为评估一种农作物的种植效果,选了10块地作试验田.这10块地的亩产量(单位:kg)互不相等,且从小到大分别为x1,x2,⋅⋅⋅,x10,则下列说法正确的有()A.x1,x2,⋅⋅⋅,x10的平均数可以用来评估这种农作物亩产量稳定程度B.x1,x2,⋅⋅⋅,x10的标准差可以用来评估这种农作物亩产量稳定程度C.x10−x1可以用来评估这种农作物亩产量稳定程度D.x1,x2,⋅⋅⋅,x10的中位数为x5答案:BC分析:根据平均数、标准差、极差、中位数的定义即可求解.解:标准差和极差都可以用来评估这种农作物亩产量稳定程度,故BC正确.,故D错.故A错误,中位数为x5+x62故选:BC.10、在新冠疫情期间,全国人民万众一心,众志成城,在抓防控疫情同时,又能促进复工复产.为了响应政府号召,积极恢复生产,某市相关部门对本市1500个大型企业的复工情况进行了调查,调查结果如图所示,则下列说法正确的是()A.其他情况的企业比例为37.4%B.从调查的大型企业中任选一个,该企业是暂未全面恢复生产的概率为0.235C.不超过200个企业倾向于部分岗位恢复生产D.部分岗位恢复生产或暂未复工的企业超过604个答案:AD分析:根据饼图中的数据逐项判断即可.解:对A,100%−23.5%−16.8%−22.3%=37.4%,故A正确;对B,暂未全面恢复生产包括部分岗位恢复生产和暂未复工以及其他,占比为77.7%,故对应概率为0.777,故B错误;对C,倾向于部分岗位恢复生产的企业个数为1500×16.8%=252(个),故C错误;对D,部分岗位恢复生产或暂未复工的企业个数为1500×(16.8%+23.5%)≈605(个),故D正确.故选:AD.11、某地为响应“扶贫必扶智,扶智就是扶知识、扶技术、扶方法”的号召,建立了农业科技图书馆,供农民免费借阅,收集的自2016年至2020年共5年的借阅数据如下表:根据上表,可得y关于x的回归直线方程为y=0.24x+a,下列结论正确的有()A.a=4.68B.4.9,5.1,5.5,5.7,5.8的75%分位数为5.7C.y与x的相关系数r xy>0D.2023年的借阅量一定为6.6万册答案:ABC分析:对A,根据回归直线过样本中心点可得a;对B,根据百分位数的定义可得75%分位数;对C,根据回归直线的斜率可得r xy的正负;对D,根据回归直线的意义可判断.对于A,因为x=15×(1+2+3+4+5)=3,y=15×(4.9+5.1+5.5+5.7+5.8)=5.4,所以5.4=0.24×3+a,得a=4.68,A正确;对于B,因为5×75%=3.75,所以4.9,5.1,5.5,5.7,5.8的75%分位数为5.7,B正确;对于C,由0.24>0,可知C正确;对于D,由A可知回归直线方程为y=0.24×8+4.68=6.6,所以2023年的借阅量约为6.6万册,D错误.故选:ABC.12、PM2.5是衡量空气质量的重要指标,下图是某地7月1日到10日的PM2.5日均值(单位:ug/m3)的折线图,则下列关于这10天中PM2.5日均值的说法正确的是A.众数为30B.中位数是31C.平均数小于中位数D.后4天的方差小于前4天的方差答案:AD分析:根据折线图,由众数,中位数,平均数,方差等概念及公式,逐项判断,即可得出结果.众数即是出现次数最多的数字,由折线图可得,众数为30,即A正确;中位数即是处在中间位置的数字,将折线图中数字由小到大依次排序,得到:17,25,30,30,31,32,34,38,42,126;处在中间位置的数字是:31,32,因此中位数为31.5,即B错;由折线图可得,平均数为:17+25+30+30+31+32+34+38+42+12610=40.5>31.5,故C错;前4天的平均数为:38+25+17+304=27.5,后4天的平均数为42+31+32+304=33.75前4天方差为:s12=(38−27.5)2+(25−27.5)2+(17−27.5)2+(30−27.5)24=58.25,后4天方差为:s22=(42−33.75)2+(31−33.75)2+(32−33.75)2+(30−33.75)24=23.1875,所以后4天的方差小于前4天的方差,故D正确.故选:AD.小提示:本题主要考查由折线图计算众数、中位数、平均数、方差等,属于基础题型.13、某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:103km).A类轮胎:94,96,99,99,105,107.B类轮胎:95,95,98,99,104,109.根据以上数据,下列说法错误的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定答案:ABC分析:A.众数为出现次数最多的数;B.极差为最大数减最小的数;C.求出平均数比较大小即可;D.求出方差,方差越小的稳定性更强.A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,A错误.A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,B错误.A类轮胎行驶的最远里程的平均数为100+−6−4−1−1+5+76=100,B类轮胎行驶的最远里程的平均数为100+−5−5−2−1+4+96=100,C错误.A类轮胎行驶的最远里程的方差为(94−100)2+(96−100)2+(99−100)2×2+(105−100)2+(107−100)26=643,B类轮胎行驶的最远里程的方差为(95−100)2×2+(98−100)2+(99−100)2+(104−100)2+(109−100)26=763>643,故A类轮胎的性能更加稳定,D正确.填空题14、某学校有高中学生1000人,其中高一年级、高二年级、高三年级的人数分别为320,300,380,为了调查学生参加“社区志愿服务”的意向,现采用分层抽样的方法从该校学生中抽取一个样本量为200的样本,那么应抽取高二年级学生的人数为________答案:60分析:根据分层抽样,每层的抽样比相同计算即可.因为学校有高中学生1000人,抽取一个样本量为200的样本,故应抽取高二年级学生的人数为2001000×300=60.所以答案是:6015、我国在贵州省平塘县修建的500米口径球面射电望远镜(FAST)是目前世界上最大单口径射电望远镜.截至2021年5月,该射电望远镜发现脉冲星逾370颗.脉冲星就是旋转的中子星,每一颗脉冲星每两脉冲间隔时间(脉冲星的自转周期)是一定的,最小的自转周期小到0.0014秒,最长的也不过11.765735秒.某天文研究机构观测并统计了其中93颗脉冲星的自转周期,绘制了如图所示的频率分布直方图.在这93颗脉冲星中,自转周期在2秒至10秒的颗数大约为___________ 颗.答案:79分析:根据频率分布直方图计算出自转周期在2秒至10秒的频率后可求相应的颗数.由频率分布直方图可知,自转周期在0秒至2秒的频率为0.05×2=0.1,自转周期在10秒至12秒的频率为0.025×2=0.05,所以自转周期在2秒至10秒的频率为1-(0.1+0.05)=0.85,所以自转周期在2秒至10秒的颗数大约为0.85×93=79.05≈79.所以答案是:79.16、为了解网课学习效果,组织了一次网上测试.并利用分层抽样的方法从高中3个年级的学生中随机抽取了150人的测试成绩,其中高一、高二年级各抽取了40人,50人,若高三年级有学生1200人,则该高中共有学生_________人.答案:3000解析:先求出高三年级抽取的人数为60人,由分层抽样的性质可得答案.由已知高三年级抽取的学生人数为:150−40−50=60人.设该校高中的学生总数为n,则601200=150n,解得n=3000所以该高中共有学生3000所以答案是:3000解答题17、某校有高中生2000人,其中男女生比例约为5:4,为了获得该校全体高中生的身高信息,采取了以下两种方案:方案一:采用比例分配的分层随机抽样方法,抽收了样本容量为n的样本,得到频数分布表和频率分布直方图.方案二:采用分层随机抽样方法,抽取了男、女生样本量均为25的样本,计算得到男生样本的均值为170,方差为16,女生样本的均值为160,方差为20.频数m p q 6 4(1)根据图表信息,求n,q并补充完整频率分布直方图,估计该校高中生的身高均值;(同一组中的数据以这组数据所在区间中点的值为代表)(2)计算方案二中总样本的均值及方差;(3)计算两种方案总样本均值的差,并说明用方案二总样本的均值作为总体均值的估计合适吗?为什么?答案:(1)n=,q=16,频率分布直方图见解析,身高均值167.2(2)均值为165,方差为43;(3)总样本均值的差为2.2,不合适,理由见解析.分析:(1)利用身高在区间[185,195]的频率和频数即可求n的值,进而可得∀x∈(0,+∞),3x<x3的值,求出各组的频率即可补全频率分布直方图,由平均数的计算公式即可求身高均值;(2)把男生样本记为:x1,x2,x3,⋯,x25,其均值为x,方差为s x2,把女生样本记为:y1,y2,y3,⋯,y25,其均值为y,方差为s y2,则总体样本均值为z=2525+25x+2525+25y,根据方差公式和平均数公式变形即可得样本总体方差.(3)两个方案的均值相减即可求均值差,由于没有进行等比例的分层抽样,每个个体被抽到的可能性不同,代表性较差,因此不合适.(1)因为身高在区间[185,195]的频率为0.008×10=0.08,频数为4,所以样本容量为n=40.08=50,m=0.008×10×50=4,p=0.04×10×50=20,q=50−4−20−6−4=16,所以身高在[165,175)的频率为1650=0.32,小矩形的高为0.032, 所以身高在[175,185)的频率为650=0.12,小矩形的高为0.012, 由此补全频率分布直方图:由频率分布直方图可知:样本的身高均值为:(150×0.008+160×0.04+170×0.032+180×0.012+190×0.008)×10=12+64+54.4+21.6+15.2=167.2,所以由样本估计总体可知,估计该校高中生的身高均值为167.2(2)把男生样本记为:x 1,x 2,x 3,⋯,x 25,其均值为x ,方差为s x 2,把女生样本记为:y 1,y 2,y 3,⋯,y 25,其均值为y ,方差为s y 2,总体样本均值记为z ,方差记为s 2,所以z =2525+25x +2525+25y =25×170+25×16050=165,又因为∑(x i −x )25i=1=∑x i −25x 25i=1=0,所以∑2(x i −x )25i=1(x −z )=2(x −z )∑(x i −x )25i=1=0,同理可得:∑2(y j −y)25j=1(y −z )=0,所以s 2=150[∑(x i −z )2+∑(y j −z)225j=125i=1]=150[∑(x i −x +x −z )2+∑(y j −y +y −z)225j=125i=1]=1{25[s x2+(x−z)2]+25[s y2+(y−z)2]}50{25[16+(170−165)2]+25[20+(160−165)2]}=43,=150(3)两种方案总样本均值的差为167.2−165=2.2,所以用方案二总体样本均值作为总体均值的估计不合适,原因是没有进行等比例的分层抽样,每个个体被抽到的可能性不同,因此代表性较差.18、一个农技站为了考查某种大麦穗生长的分布情况,在一块试验田里抽取了100株麦穗,量得长度如下(单位:cm):6 .5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.65 .8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.86 .2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.56 .8 6.0 6.3 5.5 5.0 6.3 5.2 6.0 7.0 6.46 .4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.7 7.46 .0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.65 .3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.05 .6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.75 .8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.06 .3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3根据上面的数据列出频率分布表,绘制出频率分布直方图,并估计在这块试验田里长度在5.75~6.35 cm之间的麦穗所占的百分比.答案:分布表见解析,直方图见解析,41%分析:首先计算出极差,从而确定组距,再决定分点,最后统计频数,列出频率分布表,画出频率分布直方图,由频率分布表可得试验田里长度在5.75~6.35 cm之间的麦穗所占的百分比.解:(1)计算极差:7.4-4.0=3.4.(2)决定组距与组数:若取组距为0.3,因为3.4≈11.3,需分为12组,组数合适,所以取组距为0.3,组数为12.0.3(3)决定分点:使分点比数据多一位小数,并且把第1小组的起点稍微减小一点,那么所分的12个小组可以是3.95~4.25,4.25~4.55,4.55~4.85,…,7.25~7.55.(4)列频率分布表:.从表中看到,样本数据落在5.75~6.35之间的频率是0.28+0.13=0.41,于是可以估计,在这块试验田里长度在5.75~6.35 cm之间的麦穗约占41%.小提示:本题考查绘制频率分布表及频率分布直方图及其应用,属于基础题.。
《热工基础(张学学 高教》课后答案 第八章-第九章
第八章 习 题8-1. 一大平板,高3m ,宽2m ,厚 0.02m ,导热系数为45 W/(m ·K),两侧表面温度分别为1001=t ℃、502=t ℃,试求该板的热阻、热流量、热流密度。
解:解:由傅立叶导热定律: 热阻 W K A R /407.7452302.0=⨯⨯==λδm 热流量 W t t A Q w w 67500002.050100452321=⨯⨯⨯-=-=δλ热流密度 2/11250023675000m W S Q q =⨯==8-2. 空气在一根内径50mm ,长2.5m 的管子内流动并被加热,已知空气平均温度为80℃,管内对流换热的表面传热系数为70=h W/(m 2 ·K),5000=q W/m 2,试求管壁温度及热流量。
解:由牛顿冷却公式:()f w t t h q -=得到 C t h q t f w 042.15180705000=+=+=W s q Q 53.2405.045.250002=⨯⨯⨯⨯=π=8-3. 一单层玻璃窗,高1.2m ,宽1m ,玻璃厚0.3mm ,玻璃的导热系数为051.=λ W/(m ·K),室内外的空气温度分别为20℃和5℃,室内外空气与玻璃窗之间对流换热的表面传热系数分别为51=h W/(m 2 ·K)和202=h W/(m 2 ·K),试求玻璃窗的散热损失及玻璃的导热热阻、两侧的对流换热热阻。
解:对流换热计算公式: W h h t t s Q f f 9.7120105.10003.05152012.1112121=+⨯⨯++-⨯=+-=λδ导热热阻为:W K R /000286.005.10003.01===λδ 内侧对流换热热阻为:W K h R /2.051112===外侧对流换热热阻为:W K h R /05.0201123===8-4. 如果采用双层玻璃窗,玻璃窗的大小、玻璃的厚度及室内外的对流换热条件与1-3题相同,双层玻璃间的空气夹层厚度为5mm ,夹层中的空气完全静止,空气的导热系数为025.0=λ W/(m ·K)。
高中数学必修二第九章统计知识点汇总(带答案)
高中数学必修二第九章统计知识点汇总单选题1、为调查参加考试的高二级1200名学生的成绩情况,从中抽查了100名学生的成绩,就这个问题来说,下列说法正确的是()A.1200名学生是总体B.每个学生是个体C.样本容量是100D.抽取的100名学生是样本答案:C分析:根据总体、个体、样本容量、样本的定义,结合题意,即可判断和选择.根据题意,总体是1200名学生的成绩;个体是每个学生的成绩;样本容量是100,样本是抽取的100名学生的成绩;故正确的是C.故选:C.2、根据2021年《第七次全国人口普查公报》,就我国2020年每十万人中拥有的各类受教育程度的人口情况,绘制了如图所示的扇形统计图,则()A.每十万人中拥有高中(含中专)文化程度的人数最少B.每十万人中拥有大专及以上文化程度的人数少于2万C.每十万人中拥有小学文化程度的人数最多D.每十万人中拥有初中和高中(含中专)文化程度的人数占比不到50%答案:B分析:根据扇形图的比例数据,结合各选项的描述直接判断正误即可.A:每十万人中其他文化程度的人数最少,占比为10%,错误;B:每十万人中拥有大专及以上文化程度的人数为10×15%=1.5万,正确.C:每十万人中拥有初中文化程度的人数最多,占比为35%,错误;D:每十万人中拥有初中和高中(含中专)文化程度的人数占比为50%,错误.故选:B.3、某单位有男职工56人,女职工42人,按性别分层,用分层随机抽样的方法从全体职工中抽出一个样本,如果样本按比例分配,男职工抽取的人数为16人,则女职工抽取的人数为()A.12B.20C.24D.28答案:A分析:根据题意,结合分层抽样的计算方法,即可求解.根据题意,设抽取的样本人数为n,=16,所以n=28,因此女职工抽取的人数为28−16=12(人).因男职工抽取的人数为56n56+42故选:A.4、下表是某校校级联欢晚会比赛中12个班级的得分情况,则得分的30百分位数是()答案:D分析:根据百分位数的定义求解即可.12×30%=3.6,把12个班级的得分按照从小到大排序为7,7,8,9,9,10,10,10,11,13,13,14,可得30百分位数是第4个得分数,即9.故选:D5、每年的3月15日是“国际消费者权益日”,某地市场监管局在当天对某市场的20家肉制品店、100家粮食加工品店和15家乳制品店进行抽检,要用分层抽样的方法从中抽检27家,则粮食加工品店需要被抽检()A.20家B.10家C.15家D.25家答案:A分析:确定抽样比,即可得到结果.=20(家).解:根据分层抽样原理知,粮食加工品店需要被抽检27×10020+100+15故选:A.6、下列调查方式合适的是().A.为了了解一批头盔的抗压能力,采用普查的方式B.为了了解一批玉米种子的发芽率,采用普查的方式C.为了了解一条河流的水质,采用抽查的方式D.为了了解一个寝室的学生(共5个人)每周体育锻炼的时间,采用抽查的方式答案:C分析:根据抽查和普查的特点,对每个选项进行逐一分析,即可判断和选择.对于选项A,采用普查的方式测试头盔的抗压能力,成本较高,不适合,故A错误;对于选项B,采用普查的方式测试玉米种子的发芽率,较为繁琐且工作量较大,不适合,故B错误;对于选项C,采用抽查的方式了解河流的水质,适合,故C正确;对于选项D,为了了解5个人每周体育锻炼的时间,适合采用普查的方式,故D错误.故选:C.7、2020年12月31日,国务院联防联控机制发布,国药集团中国生物的新冠病毒灭活疫苗已获药监局批准附条件上市,其保护效力达到世界卫生组织及药监局相关标准要求,现已对18至59岁的人提供.根据某地接种年龄样本的频率分布直方图(如图)估计该地接种年龄的中位数为()A.40B.39C.38D.37答案:C分析:利用中位数左右两边的小矩形的面积都等于0.5即可求解.年龄位于[18,24)的频率为0.013×6=0.078,年龄位于[24,30)的频率为0.023×6=0.138,年龄位于[30,36)的频率为0.034×6=0.204,年龄位于[36,42)的频率为0.040×6=0.240,因为0.078+0.138+0.204=0.42<0.5,而0.078+0.138+0.204+0.240=0.42=0.66>0.5,所以中位数位于[36,42),设中位数为x,则0.078+0.138+0.204+(x−36)×0.04=0.5,解得:x=38,故选:C.8、从某班50名学生中抽取6名学生进行视力状况的统计分析,下列说法正确的是()A.50名学生是总体B.每个被调查的学生是个体C.抽取的6名学生的视力是一个样本D.抽取的6名学生的视力是样本容量答案:C分析:根据总体、样本、个体、样本容量的概念判断.从某班50名学生中抽取6名学生进行视力状况的统计分析,则50个学生的视力状况是总体,抽取的6名学生的视力是一个样本,每个被调查的学生的视力状况是个体,样本容量是6,结合所给的选项,只有C正确.故选:C.多选题9、小陈为学校动漫社制作了宣传片,邀请全班同学进行观看并给出评分(0-10分).由于小陈不太好意思直接询问同学意见,因此他制作了包含如下两个问题的调查问卷:①你的学号是否为奇数;②你对视频的评分是否在5分以上(含5分).每位同学完成问卷后不需要填写答案,只需要填写回答“是”的个数.最后经统计,有40%的同学回答了两个“是”,则下列说法正确的有().A.全班约有60%的同学对视频的评分在5分以上B.全班约有80%的同学对视频的评分在5分以上C.记全班同学评分的均值为x̅,则可估计x̅在4到9分之间D.记全班同学评分的均值为x̅,则可估计x̅在3到8分之间答案:BC分析:由有40%的同学回答了两个“是”可推出对视频的评分是在5分以上同学的比例,再由此确定平均分的估计值.全班约有一半的同学学号为奇数,由于学号是否为奇数与对视频的评分无关,因此40%的同学回答了两个“是”意味着约有80%的同学对视频的评分在5分以上,A选项错误,B选项正确;由此可以估计x̅满足0×0.2+5×0.8≤x̅<5×0.2+10×0.8,即4≤x̅<9,x̅大致在4分到9分之间,C选项正确,D选项错误.故选:BC.10、成立时间少于10年.估值超过10亿美元且未上市的企业,称为独角兽企业.2021年中国新经济独角兽企业分布较广泛、覆盖居民生活的各个方面.如图为2021年中国新经济独角兽企业TOP200的行业分布图,中国新经济独角兽企业TOP200榜单中,京、沪、粤三地的企业数量共同占比达到69%.下列说法正确的是()A.随着智能出行与共享经济观念的普及,汽车交通行业备受投资者关注B.这12个行业TOP200榜单中独角兽企业数量的中位数是17C.中国新经济独角兽企业TOP200榜单中,京、沪、粤三地的企业超过130家D.2021年中国新经济独角兽企业TOP200榜单中汽车交通、企业服务、文化娱乐的企业数量共同占比超过40%答案:ABC分析:结合图表对选项进行分析,由此确定正确选项.A选项,由图可知,汽车交通行业独角兽企业TOP200榜单中数量最多,是由A选项正确.=17,B选项正确.B选项,数据为8,8,12,13,16,17,17,18,18,19,25,29,中位数为17+172C选项,200×69%=138>130,所以C选项正确.×100%=36.5%<40%,D选项错误.D选项,汽车交通、企业服务、文化娱乐占比29+25+19200故选:ABC11、甲、乙两班举行电脑汉字录入比赛,参赛学生每分钟录入汉字的个数经统计计算后填入下表,某同学根据表中数据分析得出的结论正确的是()B.甲班的成绩波动比乙班的成绩波动大C.乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀)D .甲班成绩的众数小于乙班成绩的众数 答案:ABC解析:根据图表直接计算平均数、方差和众数与甲、乙两班学生每分钟输入汉字数≥150个的人数分析即可.甲、乙两班学生成绩的平均数都是35,故两班成绩的平均数相同,A 正确;s 甲2=191>110=s 乙2,甲班成绩不如乙班稳定,即甲班的成绩波动较大,B 正确.甲、乙两班人数相同,但甲班的中位数为149,乙班的中位数为151,从而易知乙班不少于150个的人数要多于甲班,C 正确;由题表看不出两班学生成绩的众数,D 错误. 故选:ABC小提示:本题主要考查了根据平均数、方差和众数分析实际意义的问题,属于基础题型. 填空题12、一个容量为100的样本,其数据的分组与各组的频数如下表:答案:0.52分析:根据图表,样本数据落在[10,40)上的频数为13+24+15=52,根据频率公式即可得解. 样本数据落在[10,40)上的频数为13+24+15=52. 则样本数据落在[10,40)上的频率为52100=0.52.所以答案是:0.5213、某市A 、B 、C 三个区共有高中学生20000人,其中A 区高中学生7000人,现采用分层抽样的方法从这三个区所有高中学生中抽取一个容量为600人的样本进行学习兴趣调查,则A 区应抽取__________________. 答案:210分析:根据总体数和要抽取的样本数,得到每个个体被抽到的概率,利用这个概率乘以A 区的人数,得到A 区要抽取的人数.解:由题意知A 区在样本中的比例为700020000×600=210.∴A区应抽取的人数是700020000所以答案是:210.14、下表是13~17岁未成年人的身高的主要百分位数(单位:cm).______女性同龄人.答案:13.5万分析:根据身高163cm的百分位数计算.=13.5(万).小丽身高为164cm,身高163cm的百分位数是75,18×75100所以答案是:13.5万.解答题15、从甲、乙两人中选选拔一人参加射击比赛,对他们的射击水平进行了测试,两人在相同条件下各射击10次,命中的环数如下:甲78686591074乙9578768677(1)分别计算甲、乙两人射击命中环数的平均数:(2)选派谁去参赛更好?请说明理由.答案:(1)甲乙的平均数均为7;(2)选派乙,理由见解析.分析:(1)应用平均数的求法求甲乙平均数;(2)由(1)知甲乙平均数相同,求出甲乙的方差并比较大小,即可确定选派方法.=7,(1)由题设,甲的平均数为x̅1=7+8+6+8+6+5+9+10+7+410=7.乙的平均数为x̅2=9+5+7+8+7+6+8+6+7+710(2)甲的方差为s12=110∑(x i−x̅1)210i=1=0+1+1+1+1+4+4+9+0+910=3,乙的方差为s22=110∑(x i−x̅2)210i=1=4+4+0+1+0+1+1+1+0+010=1.2.由(1)知:x̅1=x̅2,而s12>s22,所以选派乙去参赛更好.。
高中数学第九章统计测评习题含解析第二册
第九章测评(时间:120分钟满分:150分)一、单项选择题(本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1。
在抽签法中,确保样本代表性的关键是()A.编号B.制签、搅拌均匀C.逐一抽取D.抽取不放回2。
一组数据分成5组,第一,三组的频率之和为0。
24,第四组的频率是0.5,第二,五组的频率之比为3∶10,那么第二,五组的频率分别为()A。
0.2,0。
06B。
0。
6,0.02C.0。
06,0。
2D。
0。
02,0。
6各个小组的频率和是1,∴第二,五组的频率之和为1—0。
24—0.5=0.26;又∵第二,五组的频率之比为3∶10,∴第二组的频率是0.26×=0。
06,第五组的频率是0。
26-0。
06=0.2,故选C.3。
某婴幼儿奶粉事件发生后,质检总局紧急开展了关于液态奶三聚氰胺的专项检查.假设甲,乙,丙三家公司生产的某批次液态奶分别是2 400箱,3 600箱和4 000箱,现从中抽取500箱进行检验,则这三家公司生产的液态奶依次应被抽取的箱数是()A。
120,180,200B。
100,120,280C。
120,160,220D.100,180,220,故甲,乙,丙三家公司依次应被抽取的液态奶箱数为2 400×=120,3 600×=180,4 000×=200,故选A。
4.某企业六月中旬生产A,B,C三种产品共3 000件,根据分层随机抽样的结果,企业统计员制作了如下的统计表格:产品A B C由于不小心,表格中A ,C 产品的有关数据已被污染看不清楚,统计员只记得A 产品的样本量比C 产品的样本量多10,请你根据以上信息确定表格中a 的值是( )A 。
70B 。
80C 。
90D 。
100x ,则×1 300=130,∴x=300.∴A 产品和C 产品在样本中共有300-130=170(件)。
由表格知,C 产品的样本量为a ,则a+a+10=170,∴a=80.故选B 。
热统第九章讲稿(1)
1
dQ
ds
1 (dU Ydy ) k (dU Ydy ) kd (ln Z ln Z ) T
积分得
S k (ln Z ln Z )
→看出,只要求出Z,可得U.p.S,三公式与玻尔兹曼公式比较,完全类似,只是少了N
解释:E是系统的能量,而不象以前一样是粒子的能量 四.能量涨落 Es E 为能量与平均值的偏差,该偏差的平方的平均值称为能量的涨落(方差) 1.能量涨落
dq1...dq3 N dp1...dp3 N
由于
( rij ) 1 i j i 1 ... e dp ... dp e dq1...dq3 N 1 3 N 3N N !h
3N
pi2 2m
... e
其中
i 1
3N
pi2 2m
1 2 m 3 N 2 z ( 2 ) Q N! h
i j i j i j
N 上式第一项积分为 V N,保留第一项则 Q V ,相当于所有的 (rij ) 0 或 fij 0,即属于理想气体. 对于第二项中的 f12 ,只相当1.2分子在力程之内 f12 才不为零
对于第三项, f12 f34 不仅要1.2分子在力程之内,同时要求3.4分子也在力程之内,它 才不等于零,依此类推.
l
1 E ( q. p ) Z e d Nr N !h
d dq1...dqNr dp1...dpNr
第五节
正则分布的热力学公式
∵考虑有确定N.T.V的系统,系统可与热源交换能量 1 s 一.能量 U E E 1 E e s 1 ( e ) ( Z ) ln Z s s s Z s Z s Z s
北京科技大学热工学第9章和第12章重点思考题和习题解答
第9章和第12章重点思考题和习题解答第9章习 题9-4 图9-44为比较法测量材料热导率的装置示意图。
标准试件的厚度151=δ mm ,热导率15.01=λ W/(m ⋅K);待测试件的厚度162=δ mm 。
试件边缘绝热良好。
稳态时测得壁面温度45w1=t °C 、23w2=t °C 、18w3=t °C 。
忽略试件边缘的散热损失。
试求待测试件的热导率2λ。
解:根据题意:22113221λδλδw w w w t t t t q −−==得到:2016.0182315.0015.02345λ−−=K m W ⋅=/704.02λ9-6 热电厂有一外径为100 mm 的过热蒸汽管道(钢管),用热导率为04.0=λ W/(m ⋅K)的玻璃绵保温。
已知钢管外壁面温度为400 °C ,要求保温层外壁面温度不超过50 °C ,并且每米长管道的散热损失要小于160 W ,试确定保温层的厚度。
解:根据圆筒壁稳态导热计算公式: 1601.0ln 04.02150400ln 2121221=×−−=d d d t t q w w ππλ=解得mm d 3.1732= 所以保温层厚度为mm d d l 65.362)(12=−=9-7 某过热蒸汽管道的内、外直径分别为150 mm 和160 mm ,管壁材料的热导率为45 W/(m ⋅K)。
管道外包两层保温材料:第一层厚度为40 mm ,热导率为0.1 W/(m ⋅K);第二层厚度为50 mm ,热导率为0.16 W/(m ⋅K)。
蒸汽管道内壁面温度为400 °C ,保温层外壁面温度为50 °C 。
试求:(1)各层导热热阻;(2) 每米长蒸汽管道的散热损失;(3)各层间的接触面温度。
解: W m K d d R /000228.0150160ln 4521ln211211⋅=×==ππλ W m K d d R /645.0160240ln 1.021ln212322⋅=×==ππλ (注意:d 3=d 2+2δ) W m K d d R /347.0240340ln 16.021ln213433⋅=×==ππλ 根据圆筒壁稳态导热计算公式: m W R R R t t q w w /9.352347.0645.0000228.05040032141=++−++−==由32132143322141R t t R t t R t t R R R t t q w w w w w w w w −=−=−++−==得到:C q t t w w 019.399000228.09.352400R 12=×−=×−=C R q t t w w 0214.172)645.0000228.0(9.352400)R (13=+×−=+×−=第12章 习题12-7 已知热-冷流体的进、出口温度3001=′t °C 、2001=′′t °C 、302=′t °C 、1202=′′t °C ,试计算下列流动布置时换热器的对数平均温差:(1) 顺流; (2) 逆流; 解:(1)对顺流:C t t t 02127030300'''=−=−=∆, C t t t 021********''''''=−=−=∆ C t t t t t m 02.156'''ln '''=∆∆∆−∆=∆ (2)对逆流:C t t t 021*********''''=−=−=∆, C t t t 021********'''''=−=−=∆C t t t t t m 0175'''ln '''=∆∆∆−∆=∆ 12-8有一台逆流式油-水换热器,已知油的进口温度1001=′t °C ,出口温度601=′′t °C ,油的密度8601=ρ kg/m 3,比热容1.2=p c kJ/(kg ⋅K);冷却水的进口温度202=′t °C ,出口温度502=′′t °C ,流量32=m q kg/s 。
第9章统计热力学练习题练习题及答案
第9章统计热力学练习题练习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(第9章统计热力学练习题练习题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为第9章统计热力学练习题练习题及答案的全部内容。
(完整word版)第9章统计热力学练习题练习题及答案亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~第九章统计热力学练习题一、是非题1、由理想气体组成的系统是独立子系统。
( )2、由非理想气体组成的系统是非独立子系统。
( )3、由气体组成的统计系统是离域子系统。
( )4、由晶体组成的统计系统是定域子系统.( )5、假设晶体上被吸附的气体分子间无相互作用,则可把该气体系统视为定域的独立子系统。
( )6、独立子系统必须遵守∑∑==iiiii N N N εε的关系,式中ε为系统的总能量,εi 为粒子在i 能级上的能量,N 系统总粒子数,Ni 为分布在能级i 上的粒子数。
( )7、平动配分函数与体积无关。
( ) 8、振动配分函数与体积无关.( )9、设分子的平动、振动、转动、电子等配分函数分别以等表示,则分子配分函数q 的因子分解性质可表示为:e r v t q q q q q ln ln ln ln ln +++=。
( )10、对离域子系统,热力学函数熵S 与分子配分函数q 的关系为ln N U q S Nk Nk T N=++.( )二、选择题1、按照统计热力学系统分类原则,下述系统中属于非定域独立子系统的是:( )(1)由压力趋于零的氧气组成的系统。
部编版高中数学必修二第九章统计带答案考点题型与解题方法
(名师选题)部编版高中数学必修二第九章统计带答案考点题型与解题方法单选题1、甲、乙两组数据的频率分布直方图如图所示,两组数据采用相同的分组方法,用x̅1和x̅2分别表示甲、乙的平均数,s 12,s 22分别表示甲、乙的方差,则( )A .x̅1=x̅2,s 12<s 22B .x̅1=x̅2,s 12>s 22C .x̅1<x̅2,s 12=s 22D .x̅1>x̅2,s 12=s 222、下列调查中,适合普查的是( )A .一批手机电池的使用寿命B .中国公民保护环境的意识C .你所在学校的男女同学的人数D .了解全国人民对建设高铁的意见 3、下列调查方式合适的是( ).A .为了了解一批头盔的抗压能力,采用普查的方式B .为了了解一批玉米种子的发芽率,采用普查的方式C .为了了解一条河流的水质,采用抽查的方式D .为了了解一个寝室的学生(共5个人)每周体育锻炼的时间,采用抽查的方式4、某校高一共有10个班,编号为01,02,…,10,现用抽签法从中抽取3个班进行调查,设高一(5)班被抽到的可能性为a ,高一(6)班被抽到的可能性为b ,则( ) A .a =310,b =29B .a =110,b =19C .a =310,b =310D .a =110,b =1105、某地教育局为了解“双减”政策的落实情况,在辖区内高三年级在校学生中抽取100名学生,调查他们课后完成作业的时间,根据调查结果绘制如下频率直方图.根据此频率直方图,下列结论中不正确的是()A.所抽取的学生中有25人在2小时至2.5小时之间完成作业B.该地高三年级学生完成作业的时间超过3小时的概率估计为35%C.估计该地高三年级学生的平均做作业的时间超过2.7小时D.估计该地高三年级有一半以上的学生做作业的时间在2小时至3小时之间6、已知100个数据的第75百分位数是9.3,则下列说法正确的是()A.这100个数据中一定有75个数小于或等于9.3B.把这100个数据从小到大排列后,9.3是第75个数据C.把这100个数据从小到大排列后,9.3是第75个与第76个数据的平均数D.把这100个数据从小到大排列后,9.3是第75个与第74个数据的平均数7、下列命题是真命题的是()A.有甲、乙、丙三种个体按3:1:2的比例分层抽样调查,如果抽取的甲个体数为9,则样本容量为30B.若甲组数据的方差为5,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是甲C.数据1,2,3,4,4,5的平均数、众数、中位数相同D.某单位A、B、C三个部门平均年龄为38岁、24岁和42岁,又A,B两部门人员平均年龄为30岁,B、C两部门人员平均年龄为34岁,则该单位全体人员的平均年龄为35岁8、嫦娥五号的成功发射,实现了中国航天史上的五个“首次”,某中学为此举行了“讲好航天故事”演讲比赛.若将报名的30位同学编号为01,02,…,30,利用下面的随机数表来决定他们的出场顺序,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,重复的跳过,则选出来的第7个个体的编号为()4567321212310201045215200112512932049234493582 003623486969387481A.12B.20C.29D.23多选题9、最近几个月,新冠肺炎疫情又出现反复,各学校均加强了疫情防控要求,学生在进校时必须走测温通道,每天早中晚都要进行体温检测并将结果上报主管部门.某班级体温检测员对一周内甲乙两名同学的体温进行了统计,其结果如图所示,则下列结论正确的是()A.甲同学体温的极差为0.4℃B.乙同学体温的众数为36.4℃,中位数与平均数相等C.乙同学的体温比甲同学的体温稳定D.甲同学体温的第60百分位数为36.4℃10、学校为了了解本校学生上学的交通方式,在全校范围内进行了随机调查,将学生上学的交通方式归为四类方式:A—结伴步行,B—自行乘车,C—家人接送,D—其他方式.并把收集的数据整理分别绘制成柱形图和扇形图,下面的柱形图和扇形图只给出了部分统计信息,则根据图中信息,下列说法正确的是()A.扇形图中D的占比最小B.柱形图中A和C一样高C.无法计算扇形图中A的占比D.估计该校学生上学交通方式为A或C的人数占学生总人数的一半11、最近几个月,新冠肺炎疫情又出现反复,各学校均加强了疫情防控要求,学生在进校时必须走测温通道,每天早中晚都要进行体温检测并将结果上报主管部门.某班级体温检测员对一周内甲、乙两名同学的体温进行了统计,其结果如图所示,则下列结论中正确的是()A.甲同学体温的极差为0.4℃B.甲同学体温的第75百分位数为36.6℃C.乙同学体温的众数,中位数、平均数相等D.乙同学的体温比甲同学的体温稳定填空题12、为了解某高级中学学生的体重状况,打算抽取一个容量为n的样本,已知该校高一、高二、高三学生的数量之比依次为4:3:2,现用分层抽样的方法抽出的样本中高三学生有10人,那么样本容量n为______.13、已知一组样本数据5、2、3、6,则该组数据的第70百分位数为__________.部编版高中数学必修二第九章统计带答案(四)参考答案1、答案:B分析:由平均数和方差的定义和性质判断即可得出结果.平均数是每个矩形的底边中点的横坐标乘以本组频率(对应矩形面积)再相加,因为两组数据采取相同分组且面积相同,故x̅1=x̅2,由图观察可知,甲的数据更分散,所以甲方差大,即s12>s22,故选:B.2、答案:C分析:根据抽样调查和普查的特点即可判断.由题调查一批手机电池的使用寿命,中国公民保护环境的意识,了解全国人民对建设高铁的意见适合用抽样调查,调查所在学校的男女同学的人数适合普查.故选:C.3、答案:C分析:根据抽查和普查的特点,对每个选项进行逐一分析,即可判断和选择.对于选项A,采用普查的方式测试头盔的抗压能力,成本较高,不适合,故A错误;对于选项B,采用普查的方式测试玉米种子的发芽率,较为繁琐且工作量较大,不适合,故B错误;对于选项C,采用抽查的方式了解河流的水质,适合,故C正确;对于选项D,为了了解5个人每周体育锻炼的时间,适合采用普查的方式,故D错误.故选:C.4、答案:C分析:根据简单随机抽样的定义,分析即可得答案.由简单随机抽样的定义,知每个个体被抽到的可能性相等,故高一(5)班和高一(6)班被抽到的可能性均为3.10故选:C5、答案:D分析:对A,利用直方图中2小时至2.5小时之间的频率判断A;对B,计算超过3小时的频率可判断B;对C,根据直方图中平均数的公式计算,可判断C;对D,计算做作业的时间在2小时至3小时之间的频率,可判断D.对A,直方图中2小时至2.5小时之间的频率为(2.5−2)×0.5=0.25,故所抽取的学生中有100×0.25=25人在2小时至2.5小时之间完成作业,故A正确;对B,由直方图得超过3小时的频率为0.5×(0.3+0.2+0.1+0.1)=0.35,所以B正确;对C,直方图可计算学生做作业的时间的平均数为:1.25×0.05+1.75×0.15+2.25×0.25+2.75×0.20+ 3.25×0.15+3.75×0.10+4.25×0.05+4.75×0.05=2.75>2.7,所以C正确;对D,做作业的时间在2小时至3小时之间的频率为0.5×(0.5+0.4)=0.45<0.5,所以D错误.故选:D.6、答案:C分析:举反例否定选项AB;依据第75百分位数的定义去判断选项CD.若100个数据全为9.3,满足题意,但不满足选项A,故A错误;当这100个数据均为9.3时,把这100个数据从小到大排列后,9.3不一定是第75个数据.选项B判断错误;把这100个数据从小到大排列后,9.3是第75个与第76个数据的平均数.则选项C判断正确,选项D判断错误.故选:C7、答案:D分析:对于选项A根据分层抽样的定义可判断正误,对于选项B求出乙组数据的方程,与甲组数据的方差比较,可判断正误,对于选项C求出数据的平均数、众数、中位数即可判断正误,对于选项D设A,B,C三个部门的人数为a,b,c,根据题意可得a=3b4,c=5b4,从而求出该单位全体人员的平均年龄.解:对于选项A:如果抽取的甲个体数为9,则样本容量为936=18,故选项A是假命题,对于选项B:乙组数据的平均数为5+6+9+10+55=7,方差为15[(5−7)2+(6−7)2+(10−7)2+(5−7)2]=185,因为乙组数据的方程比甲组数据的方差小,所以这两组数据中较稳定的是乙,故选项B是假命题,对于选项C:数据1,2,3,4,4,5的平均数为196、众数为4、中位数为72,故选项C是假命题,对于选项D:设A,B,C三个部门的人数为a,b,c,则有:38a+24ba+b =30,化简得a=3b4,24b+42cb+c =34,化简得c=5b4,所以该单位全体人员的平均年龄为38a+24b+42ca+b+c =38×3b4+24b+42×5b43b4+b+5b4=105b3b=35岁,故选项D是真命题,故选:D.8、答案:C分析:依次从数表中读出答案.依次从数表中读出的有效编号为:12,02,01,04,15,20,01,29,得到选出来的第7个个体的编号为29.故选:C.9、答案:ABC分析:根据给定的折线图,逐一分析判断各个选项即可作答.观察折线图知,甲同学体温的极差为36.6−36.2=0.4℃,A正确;乙同学体温从小到大排成一列:36.3℃,36.3℃,36.4℃,36.4℃,36.4℃,36.5℃,36.5℃,乙同学体温的众数为36.4℃,中位数为36.4℃,平均数x=17(36.3×2+36.4×3+36.5×2)=46.4℃,B正确;乙同学的体温波动较甲同学的小,极差为0.2℃,也比甲同学的小,因此乙同学的体温比甲同学的体温稳定,C正确;将甲同学的体温从小到大排成一列:36.2℃,36.2℃,36.4℃,36.4℃,36.5℃,36.5℃,36.6℃,因7×60%=4.2,则甲同学体温的第60百分位数为36.5℃,D不正确.故选:ABC10、答案:ABD分析:根据柱形图和扇形图,可求得总人数,逐一分析各个选项,即可得答案.对于A:由扇形图可得,D的占比最小,故A正确;对于B:因为D的人数为18,且D占比为15%,所以总人数为1815%=120人,所以A组人数为120−42−30−18=30,所以柱形图中A和C一样高,故B正确;对于C:由(2)可得,A组30人,占比为30120=0.25=25%,故C错误;对于D:A或C的人数和为60人,总人数为120,占学生总人数的一半,故D正确,故选:ABD11、答案:ACD分析:由折线图计算甲同学体温的极差,判断A;将甲同学的体温从小到大排成一列可计算出第75百分位数,判断B;将乙同学体温从小到大排成一列,计算出众数,中位数、平均数,判断C;比较甲乙两人的体温波动情况,可判断D.观察折线图知甲同学体温的极差为36.8∘C−36.4∘C=0.4∘C,A正确;将甲同学的体温从小到大排成一列:36.4℃,36.4℃,36.6℃,36.6℃,36.7℃,36.7℃,36.8℃,因为7×75%=5.25,所以甲同学体温的第75百分位数为36.7°C,B错误;乙同学体温从小到大排成一列:36.5℃,36.5℃,36.6℃,36.6℃,36.6℃.36.7℃,36.7℃,乙同学体温的众数为36.6∘C,中位数为36.6∘C,平均数为x̅=17×(36.5×2+36.6×3+36.7×2)=36.6°C,C正确;乙同学的体温波动较甲同学的小,极差为0.2∘C,也比甲同学的小,因此乙同学的体温比甲同学的体温稳定,D正确.故选:ACD12、答案:45解析:设样本容量为n,由高一、高二、高三学生的数量之比依次为4:3:2,且高三学生中抽取的人数为10,可得29=10n,即可求解.∵高一、高二、高三学生的数量之比依次为4:3:2,采用分层抽样抽出高三学生10人,∴24+3+2=10n,解得n=45.所以答案是:4513、答案:5分析:首先计算指数,再由百分位数的定义可得答案.解:这组样本数据5、2、3、6,从小到大排列为2、3、5、6,又4×70%=2.8,则该组数据的第70百分位数为第3个数5,所以答案是:5.。
部编版高中数学必修二第九章统计带答案知识点总结归纳完整版
(名师选题)部编版高中数学必修二第九章统计带答案知识点总结归纳完整版单选题1、某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论错误的是()注:90后指1990年及以后出生,80后指1980−1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后一定比80前多D.互联网行业中从事技术岗位的人数90后一定比80后多2、下表是某校校级联欢晚会比赛中12个班级的得分情况,则得分的30百分位数是()3、为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间4、有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X甲)=E(X乙),方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计()A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较5、2020年12月31日,国务院联防联控机制发布,国药集团中国生物的新冠病毒灭活疫苗已获药监局批准附条件上市,其保护效力达到世界卫生组织及药监局相关标准要求,现已对18至59岁的人提供.根据某地接种年龄样本的频率分布直方图(如图)估计该地接种年龄的中位数为()A.40B.39C.38D.376、2020年广东12月份天气预报历史记录中1号至8号的数据如表所示,则()C.这8天的最低气温的极差为5°C D.这8天的最低气温的中位数为11.5°C7、从某班50名学生中抽取6名学生进行视力状况的统计分析,下列说法正确的是()A.50名学生是总体B.每个被调查的学生是个体C.抽取的6名学生的视力是一个样本D.抽取的6名学生的视力是样本容量8、为了更好地支持“中小型企业”的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:①样本数据落在区间[300,500)的频率为0.45;②如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免税政策;③样本的中位数为480万元.其中正确结论的个数为A.0B.1C.2D.3多选题9、中国的华为公司是全球领先的ICT(信息与通信)基础设施和智能终端提供商,其致力于把数字世界带给每个人、每个家庭、每个组织,构建万物互联的智能世界.其中华为的5G智能手机是全世界很多年轻人非常喜欢的品牌.为了研究某城市甲、乙两个华为5G智能手机专卖店的销售状况,统计了2020年4月到9月甲、乙两店每月的营业额(单位:万元),得到如下的折线图,则下列说法正确的是()A.根据甲店的营业额折线图可知,该店月营业额的平均值在[31,32]内B.根据乙店的营业额折线图可知,该店月营业额总体呈上升趋势C.根据甲、乙两店的营业额折线图可知乙店的月营业额极差比甲店小D.根据甲、乙两店的营业额折线图可知7、8、9月份的总营业额甲店比乙店少10、如图所示的曲线图是2020年1月25日至2020年2月12日陕西省及西安市新冠肺炎累计确诊病例的曲线图,则下列判断正确的是()A.1月31日陕西省新冠肺炎累计确诊病例中西安市占比超过了13B.1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势C.2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了97例D.2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率大于2月6日到2月8日的增长率11、甲、乙、丙、丁四人各掷骰子5次(骰子每次出现的点数可能为1,2,3,4,5,6),并分别记录每次出现的点数,四人根据统计结果对各自的试验数据分别做了如下描述,可以判断一定没有出现6点的描述是()A.中位数为3,众数为5B.中位数为3,极差为3C.中位数为1,平均数为2D.平均数为3,方差为2填空题12、已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是_____.13、某汽车研究院现有300名研究员,他们的学历情况如图所示该研究院今年计划招聘一批新研究员,并决定不再招聘本科生,且使得招聘后本科学历的研究员比例下降到15%,硕士学历的研究员比例不变,则该研究院今年计划招聘的硕士学历的研究员人数为______.部编版高中数学必修二第九章统计带答案(十七)参考答案1、答案:D解析:根据整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,对四个选项逐一分析,即可得出正确选项.对于选项A,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术和运营岗位的人数占的比分别为39.6%和17%,则“90后”从事技术和运营岗位的人数占总人数的56%×(39.6%+17%)≈31.7%.“80前”和“80后”中必然也有从事技术和运营岗位的人,则总的占比一定超过三成,故选项A正确;对于选项B,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术岗位的人数占的比为39.6%,则“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%.“80前”和“80后”中必然也有从事技术岗位的人,则总的占比一定超过20%,故选项B正确;对于选项C,“90后”从事运营岗位的人数占总人数的比为56%×17%≈9.5%,大于“80前”的总人数所占比3%,故选项C正确;选项D,“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%,“80后”的总人数所占比为41%,条件中未给出从事技术岗位的占比,故不能判断,所以选项D错误.故选:D.小提示:关键点点睛:本题考查利用扇形统计图和条形统计图解决实际问题,解本题的关键就是利用条形统计图中“90后”事互联网行业岗位的占比乘以“90后”所占总人数的占比,再对各选项逐一分析即可.2、答案:D分析:根据百分位数的定义求解即可.12×30%=3.6,把12个班级的得分按照从小到大排序为7,7,8,9,9,10,10,10,11,13,13,14,可得30百分位数是第4个得分数,即9.故选:D3、答案:C分析:根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.02+0.04=0.06=6%,故A正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.04+0.02×3=0.10=10%,故B正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.10+0.14+0.20×2=0.64=64%> 50%,故D正确;该地农户家庭年收入的平均值的估计值为3×0.02+4×0.04+5×0.10+6×0.14+7×0.20+8×0.20+ 9×0.10+10×0.10+11×0.04+12×0.02+13×0.02+14×0.02=7.68(万元),超过6.5万元,故C错误.综上,给出结论中不正确的是C.故选:C.小提示:本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于频率组距×组距.4、答案:B分析:可以用样本的方差估计总体的方差,方差越小,分蘖越整齐.解:已知样本方差:D(X乙)=3.4,D(X甲)=11由此估计,乙种水稻的方差约为3.4,甲种水稻的方差约为11. 因为3.4<11所以乙种水稻比甲种水稻分蘖整齐故选:B.5、答案:C分析:利用中位数左右两边的小矩形的面积都等于0.5即可求解.年龄位于[18,24)的频率为0.013×6=0.078,年龄位于[24,30)的频率为0.023×6=0.138,年龄位于[30,36)的频率为0.034×6=0.204,年龄位于[36,42)的频率为0.040×6=0.240,因为0.078+0.138+0.204=0.42<0.5,而0.078+0.138+0.204+0.240=0.42=0.66>0.5,所以中位数位于[36,42),设中位数为x,则0.078+0.138+0.204+(x−36)×0.04=0.5,解得:x=38,故选:C.6、答案:D分析:由极差等于一组数据中的最大值与最小值的差,并根据中位数的定义,求最高、最低气温数据的中位数即可判断各项的正误.=22°C,这8天的最低气温的这8天的最高气温的极差为23−19=4°C,这8天的最高气温的中位数为21+232=11.5°C,故选:D.极差为15−9=6°C,这8天的最低气温的中位数为11+1227、答案:C分析:根据总体、样本、个体、样本容量的概念判断.从某班50名学生中抽取6名学生进行视力状况的统计分析,则50个学生的视力状况是总体,抽取的6名学生的视力是一个样本,每个被调查的学生的视力状况是个体,样本容量是6,结合所给的选项,只有C正确.故选:C.8、答案:D解析:根据直方图求出a=0.0025,求出[300,500)的频率,可判断①;求出[200,500)的频率,可判断②;根据中位数是从左到右频率为0.5的分界点,先确定在哪个区间,再求出占该区间的比例,求出中位数,判断③.由(0.001+0.0015+0,002+0.0005+2a)×100=1,a=0.0025,[300,500)的频率为(0.002+0.0025)×100=0.45,①正确;[200,500)的频率为(0.0015+0.002+0.0025)×100=0.55,②正确;[200,400)的频率为0.3,[200,500)的频率为0.55,中位数在[400,500)且占该组的45,故中位数为400+0.5−0.30.25×100=480,③正确.故选:D.小提示:本题考查补全直方图,由直方图求频率和平均数,属于基础题9、答案:ABD解析:计算出甲店的月营业额的平均值即可判断A;由图可直接判断B;分别计算出甲、乙两店的月营业额极差和7、8、9月份的总营业额即可判断CD.对于A,根据甲店的营业额折线图可知,该店月营业额的平均值为14+21+26+30+52+476=1906≈31.7,故A正确;对于B,根据乙店的营业额折线图可知,该店月营业额总体呈上升趋势,故B正确;对于C,可得甲店的月营业额极差为52−14=38,乙店的月营业额极差为53−7=46,故C错误;对于D,甲店7、8、9月份的总营业额为30+52+47=129,乙店7、8、9月份的总营业额为33+44+ 53=130,故D正确.故选:ABD.10、答案:ABC分析:根据曲线图可得ABC正确,2月8日到2月10日西安新冠肺炎累计确诊病例增加了544,2月6日到2月8日西安新冠肺炎累计确诊病例增加了737,D说法不正确.1月31日陕西省新冠肺炎累计确诊病例共有87例,其中西安32例,所以西安所占比例为3287>13,故A正确;由曲线图可知,1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势,故B正确;2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了213−116=97例,故C正确;2月8日到2月10日西安新冠肺炎累计确诊病例增加了98−8888=544,2月6日到2月8日西安新冠肺炎累计确诊病例增加了88−7474=737,显然737>544,故D错误.故选:ABC.11、答案:AD分析:根据数字特征的定义,依次对选项分析判断即可对于A,由于中位数为3,众数为5,所以这5个数从小到大排列后,第3个数是3,则第4和5个为5,所以这5个数中一定没有出现6,所以A正确,对于B,由于中位数为3,极差为3,所以这5个数可以是3,3,3,4,6,所以B错误,对于C,由于中位数为1,平均数为2,所以这5个数可以是1,1,1,1,6,所以C错误,对于D,由平均数为3,方差为2,可得x1+x2+x3+x4+x5=15,15[(x1−3)2+(x2−3)2+(x3−3)2+ (x4−3)2+(x5−3)2]=2,若有一个数为6,取x1=6,则x2+x3+x4+x5=9,(x2−3)2+(x3−3)2+ (x4−3)2+(x5−3)2=1,所以(x2−3)2≤1,(x3−3)2≤1,(x4−3)2≤1,(x5−3)2≤1,所以x2,x3,x4,x5这4个数可以是4,3,3,3或2,3,3,3,与x2+x3+x4+x5=9矛盾,所以x1≠6,所以这5个数一定没有出现6点,所以D正确,故选:AD12、答案:2分析:根据平均数的公式进行求解即可.∵数据4,2a,3−a,5,6的平均数为4∴4+2a+3−a+5+6=20,即a=2.所以答案是:2.小提示:本题主要考查平均数的计算和应用,比较基础.13、答案:40分析:根据题意,设今年招聘的硕士生x人,博士生y人,由扇形图分析可得现有本科生和硕士生的人数,进而可得方程组,变形解可得x的值,即可得答案.解:根据题意,设今年招聘的硕士生x人,博士生y人,又由现有研究员300人,其中本科生300×20%=60人,硕士生300×40%=120人,则有{60300+x+y=0.15120+x 300+x+y =0.4,解得{x=40y=60;所以答案是:40.。
统计学原理第九章(相关与回归)习题答案
第九章相关与回归一.判断题部分题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。
()答案:×题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。
()答案:√题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。
()答案:×题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。
()答案:×题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。
()答案:×题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。
()答案:√题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。
()答案:×题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。
()答案:×题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。
()答案:√题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。
()答案:×题目11:完全相关即是函数关系,其相关系数为±1。
()答案:√题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。
()答案×二.单项选择题部分题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。
A.相关关系B.函数关系C.回归关系D.随机关系答案:B题目2:现象之间的相互关系可以归纳为两种类型,即()。
A.相关关系和函数关系B.相关关系和因果关系第 3 页共27页C.相关关系和随机关系D.函数关系和因果关系答案:A题目3:在相关分析中,要求相关的两变量()。
A.都是随机的B.都不是随机变量C.因变量是随机变量D.自变量是随机变量答案:A题目4:测定变量之间相关密切程度的指标是()。
热力学统计物理第九章答案
热力学统计物理第九章答案【篇一:热力学统计物理课后习题答案】t>8.4求弱简并理想费米(玻色)气体的压强公式.解:理想费米(玻色)气体的巨配分函数满足ln?????lln1?e?????ll??在弱简并情况下:2?v2?v3/23/22ln???g3?2m???1/2ln1?e?????ld???g3?2m???d?3/2ln1?e??? ??l30hh0????????2?v3/22?3/2??g3?2m????ln1?e?????l3?h?????0?3/2dln1?e???????l???? ?2?vd?3/22 ??g3?2m????3/2????l30he?1与(8.2.4)式比较,可知ln??再由(8.2.8)式,得3/23/2??1n?h2??1?h2?????????nkt?1??ln???nkt?1?????v2?mkt??2?mkt?????42???42???2?u 3?e??n?h2?????v?2?mkt??3/2?3/2h2???n????? ????e?????v?t?2?mkt??n?n v3/23/2??1?n?h2????n?n?h2?????????p?ln??kt?1???nkt?1???????v2?mkt?t2?mkt?t???? ???42????42??8.10试根据热力学公式 s?熵。
解:(8-4-10)式给出光子气体的内能为u?cv??u?dt及光子气体的热容量c???,求光子气体的v?t??t?v?2k415c3?4vt-------(1) 3?u4?2k4)v?vt3---------(2)则可以得到光子气体的定容热容量为cv?(33?t15c?根据热力学关于均匀系统熵的积分表达式(2-4-5),有s??[cv?pdt?()vdv]?s0----------(3) t?t取积分路线为(0,v)至(t,v)的直线,即有t4?2k44?2k423s?vtdt?vt----------------(4) 3333?015c?45c?其中已经取积分常量s0为零。
(精选试题附答案)高中数学第九章统计真题
(名师选题)(精选试题附答案)高中数学第九章统计真题单选题1、从某网络平台推荐的影视作品中抽取400部,统计其评分数据,将所得400个评分数据分为8组:[66,70)、[70,74)、⋯、[94,98],并整理得到如下的频率分布直方图,则评分在区间[82,86)内的影视作品数量是()A.20B.40C.64D.80答案:D分析:利用频率分布直方图可计算出评分在区间[82,86)内的影视作品数量.由频率分布直方图可知,评分在区间[82,86)内的影视作品数量为400×0.05×4=80.故选:D.2、设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为()A.0.01B.0.1C.1D.10答案:C分析:根据新数据与原数据关系确定方差关系,即得结果.因为数据ax i+b,(i=1,2,⋯,n)的方差是数据x i,(i=1,2,⋯,n)的方差的a2倍,所以所求数据方差为102×0.01=1故选:C小提示:本题考查方差,考查基本分析求解能力,属基础题.3、为调查参加考试的高二级1200名学生的成绩情况,从中抽查了100名学生的成绩,就这个问题来说,下列说法正确的是()A.1200名学生是总体B.每个学生是个体C.样本容量是100D.抽取的100名学生是样本答案:C分析:根据总体、个体、样本容量、样本的定义,结合题意,即可判断和选择.根据题意,总体是1200名学生的成绩;个体是每个学生的成绩;样本容量是100,样本是抽取的100名学生的成绩;故正确的是C.故选:C.4、嫦娥五号的成功发射,实现了中国航天史上的五个“首次”,某中学为此举行了“讲好航天故事”演讲比赛.将报名的30位同学依次编号为01,02,…,30,利用下面的随机数表来决定他们的出场顺序,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,重复的跳过,则选出来的第7个个体的编号为()35 24 10 16 20 33 32 51 26 38 79 78 45 0438 23 16 86 38 42 38 97 01 50 87 75 66 81A.26B.01C.16D.04答案:B分析:由随机数表,按照规则选出.依次从数表中读出的有效编号为10,16,20,26,04,23,01,…故选出来的第7个个体的编号为01.故选:B.5、为了鼓励学生积极锻炼身体,强健体魄,某学校决定每学期对体育成绩在年级前100名的学生给予专项奖励.已知该校高三年级共有500名学生,如图是该年级学生本学期体育测试成绩的频率分布直方图.据此估计,能够获得该项奖励的高三学生的最低分数为()A.89B.88C.87D.86答案:B分析:根据题意确定出前100名的频率,进而判断出第100名的区间,然后根据频率求出答案.由题意,100500=0.2,[90,95)的频率为:0.02×5=0.1,[85,90)的频率为:0.05×5=0.25,则0.1<0.2<0.25,则第100名在[85,90)中,设分数为x,[x,90)的频率为:0.2−0.1=0.1,所以90−x5=0.2−0.10.25=0.10.25=25⇒x=88.故选:B.6、某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002, (699)700,从中抽取70个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第8个样本编号是()322118342978645407325242064438122343567735789056428442125331345786073625300732862345788907236896080432567808436789535577348994837522535578324577892345A.623B.368C.253D.072答案:B解析:从表中第5行第6列开始向右读取数据,每3个数为一个编号,不在编号范围内或重复的排除掉,第8个数据即为答案.从表中第5行第6列开始向右读取数据,依次得到253,313,457,860(舍),736(舍),253(舍),007,328,623,457(舍),889(舍),072,368由此可得出第8个样本编号是368故选:B7、要完成下列两项调查:(1)某社区有100户高收入家庭,210户中等收入家庭,90户低收入家庭,从中抽取100户调查有关消费购买力的某项指标;(2)从某中学高一年级的10名体育特长生中抽取3人调查学习情况;应采用的抽样方法分别是()A.(1)用简单随机抽样,(2)用分层随机抽样B.(1)(2)都用简单随机抽样C.(1)用分层随机抽样,(2)用简单随机抽样D.(1)(2)都用分层随机抽样答案:C分析:根据简单随机抽样、分层抽样的适用条件进行分析判断.因为有关消费购买力的某项指标受家庭收入的影响,而社区家庭收入差距明显,所以①用分层抽样;从10名体育特长生中抽取3人调查学习情况,个体之间差别不大,且总体和样本容量较小,所以②用简单随机抽样.故选:C8、甲、乙两名射击运动爱好者在相同条件下各射击10次,中靶环数情况如图所示.则甲、乙两人中靶环数的方差分别为()A.7,7B.7,1.2C.1.1,2.3D.1.2,5.4答案:D分析:求出平均数,利用方差公式即可求解. 实线的数字为:2,4,6,8,7,7,8,9,9,10,虚线的数字为:9,5,7,8,7,6,8,6,7,7,所以x乙=110(2+4+6+8+7+7+8+9+9+10)=7,x 甲=110(9+5+7+8+7+6+8+6+7+7)=7,S甲2=110[(9-7)2+(5-7)2+(7−7)2+(8−7)2+⋯+(7−7)2]=1.2S 乙2=110[(2-7)2+(4-7)2+(6−7)2+(8−7)2+⋯+(10−7)2]=5.4.故选:D9、每年的3月15日是“国际消费者权益日”,某地市场监管局在当天对某市场的20家肉制品店、100家粮食加工品店和15家乳制品店进行抽检,要用分层抽样的方法从中抽检27家,则粮食加工品店需要被抽检()A.20家B.10家C.15家D.25家答案:A分析:确定抽样比,即可得到结果.解:根据分层抽样原理知,粮食加工品店需要被抽检27×10020+100+15=20(家).故选:A.10、“二万五千里长征”是1934年10月到1936年10月中国工农红军进行的一次战略转移,是人类历史上的伟大奇迹,向世界展示了中国工农红军的坚强意志,在期间发生了许多可歌可泣的英雄故事.在中国共产党建党100周年之际,某中学组织了“长征英雄事迹我来讲”活动,已知该中学共有高中生2700名,用分层抽样的方法从该校高中学生中抽取一个容量为45的样本参加活动,其中高三年级抽取了14人,高二年级抽取了15人,则该校高一年级学生人数为()A.720B.960C.1020D.1680答案:B解析:根据分层抽样中样本容量比与总体容量比相等可得.由题意高一抽取的学生为45−14−15=16.设高一学生数为n,则n2700=1645,解得n=960.故选:B.填空题11、设某组数据均落在区间[10,60]内,共分为[10,20),[20,30),[30,40),[40,50),[50,60]五组,对应频率分别为p1,p2,p3,p4,p5.已知依据该组数据所绘制的频率分布直方图为轴对称图形,给出下列四个条件:①p1=0.1,p3=0.4;②p2=2p5;③p1+p4=p2+p5=0.3;④p1⩽2p2⩽4p3⩽2p4⩽p5.其中能确定该组数据频率分布的条件有__________.答案:①④分析:由已知对称性加下四个条件中的一个能求出p1,p2,p3,p4,p5,即符合题意.已知p 1=p 5,p 2=p 4,p 1+p 2+p 3+p 4+p 5=1, 若①p 1=0.1,p 3=0.4,则p 2=0.2,p 4=0.2,p 5=0.1; 若②p 2=2p 5,则p 3+6p 1=1,不能得出p 1,p 3;若③p 1+p 4=p 2+p 5=0.3,则可得p 3=0.4,但p 1,p 2,p 4,p 5的解不确定, 若p 1⩽2p 2⩽4p 3⩽2p 4⩽p 5.则p 1=2p 2=4p 3=2p 4=p 5,可得p 3=113,p 1=p 5=413,p 2=p 4=213,所以答案是:①④.小提示:本题考查频率分布直方图的性质,本题实质就是由频率分布直方图得出p 1=p 5,p 2=p 4,p 1+p 2+p 3+p 4+p 5=1,然后判断再加哪个条件能求得各频率即可,通过解方程组可得.12、中小学生的视力状况受到社会的关注.某市有关部门从全市6万名高一学生中随机抽取400名学生,对他们的视力状况进行一次调查统计,将所得到的有关数据绘制成频率分布直方图,如图所示,从左至右五个小组的频率之比为5:7:12:10:6,则抽取的这400名高一学生中视力在[3.95,4.25)范围内的学生有______人.答案:50分析:利用频率分布直方图的性质求解即可. 第五组的频率为0.5×(5.45−5.15)=0.15, 第一组所占的频率为0.15×56=0.125,则随机抽取400名学生视力在[3.95,4.25)范围内的学生约有400×0.125=50人. 所以答案是:50.13、抗击疫情期间,小志参与了社区志愿者工作.现在要对服务时长排名前20%的志愿者进行表彰.该社区的志愿者服务时长(单位:小时)如下:186 .0 102.0 22.0 64.0 36.0 68.0 106.0 126.0 110.0 210.0124 .0 226.0 154.0 230.0 58.0 162.0 70.0 162.0 166.0 16.0根据以上数据,该社区志愿者服务时长的第80百分位数是___________.(精确到0.1)答案:176.0分析:20×8000⁄=16,根据百分位数的计算方法可知,把服务时长从小到大排列,计算第16和第17个数的平均数作为第80百分位数.20×8000⁄=16,则把服务时长从小到大排列,选择第16个和第17个数的平均数作为社区志愿者服务时长的=176.0,第80百分位数,即166.0+186.02所以答案是:176.014、某市某次高中数学统测学生测试成绩频率分布直方图如图所示.现按测试成绩由高到低分成A,B,C,D四个等级,其中A等占25%,B等占40%,C等占30%,D等占5%的比例,规定达到C等级及以上才能通过考试,则要通过本次考试的学生分数至少为___________.答案:24分析:根据频率分布直方图可得答案.由图可知,分数在20分以下的比例为0.001×20=0.02,在40分以下的比例为(0.001+0 .0075)×20=0.17,=24,所以通过本次考试分数至少为24.因此5%分位数位于[20,40)内,由20+20×0.05−0.020.15所以答案是:24.15、为了解中学生课外阅读情况,现从某中学随机抽取200名学生,收集了他们一年内的课外阅读量(单位:本)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生阅读量的平均数可能是26本;②这200名学生阅读量的75%分位数在区间[30,40)内;③这200名学生的初中生阅读量的中位数一定在区间[20,30)内;④这200名学生中的初中生阅读量的25%分位数可能在区间[20,30)内.所有合理推断的序号是__________.答案:②③④分析:根据平均数的运算判断①,由百分位数的定义计算可判断②④,根据中位数的定义运算可判断③ .×[24.5×(7+31+25+30+4)+25 .5×(8+29+26+在①中,这200名学生阅读量的平均数为: x̅=120032+8)]=25.015,所以这200名学生阅读量的平均数不可能是26本,故①错误;在②中,200×75%=150,阅读量在[0,30)的人数有7+8+31+29+25+26=126人,在[30,40)的人数有62人,所以这200名学生阅读量的75%分位数在区间[30,40)内,故②正确;在③中,设在区间[0,10)内的初中生人数为x,则x∈[0,15],x∈N*,=58,当x=0时,初中生总人数为25+36+44+11=116人,1162此时区间[0,20)内有25人,区间[20,30)内有36人,所以中位数在[20,30)内,=65.5,当x=15时,初中生总人数为15+25+36+44+11=131人,1312区间[0,20)内有15+25=40人,区间[20,30)内有36人,所以中位数在[20,30)内,所以当区间[0,10)内人数取最小值和最大值时,中位数都在[20,30)内,所在这200名学生的初中生阅读量的中位数一定在区间[20,30)内,故③正确;在④中,设在区间[0,10)内的初中生人数为x,则x∈[0,15],x∈N*,当x=0时,初中生总人数为116人,116×25%=29,此时区间[0,20)有25人,区间[20,30)有36人,所以25%分位数在[20,30)内,当x=15时,初中生总人数为131人,131×25%=32.75,区间[0,20)有15+25=40人,所以25%分位数在[0,20)内,所以这200名学生中的初中生阅读量的25%分位数可能在区间[20,30)内,故④正确.所以答案是:②③④解答题16、某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分与中位数(结果保留2位小数);(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[60,70)之间的人数.答案:(1)0.005(2)平均分73;中位数71.67(3)20分析:(1)利用频率分布直方图中各小矩形面积之和等于1,即可得出答案.(2)根据频率分布直方图中平均数及中位数的意义即可得出平均分及中位数;(3)由这100名学生的语文成绩在[60,70)之间的人数与数学成绩相应分数段的人数之比,即可得到数学成绩在[60,70)之间的人数.(1)由频率分布直方图可得:10×(2a+0.02+0.03+0.04)=1,解得a=0.005(2)由频率分布直方图可得平均分为:(55×0.005+65×0.04+75×0.03+85×0.02+95×0.005)×10=73(分)∵[50,70)的频率为(0.005+0.04)×10=0.45,[70,80)的频率为0.03×10=0.3∵中位数为:70+0.5-0.450.3×10=2153≈71.67(3)数学成绩在[60,70)的人数为100×0.04×10×12=20(人)17、某机械厂三个车间共有工人1000名,各车间男、女工人数如下表:已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0.13,其中第三车间的男女比例为3:2.(1)求x,y,z的值.(2)现用分层抽样的方法在全厂男工人中抽取55名工人进行技术比武,则在第三车间抽取多少名男工人?答案:(1)x=130,y=160,z=240;(2)24名.分析:(1)根据题意可得x1000=0.13,可求出x,再由第三车间的工人数是1000−350−250=400,以及男女比例即可求解.(2)根据分层抽样比即可求解.解:(1)由x1000=0.13,得x=130.因为第一车间的工人数是170+180=350,第二车间的工人数是120+130=250,所以第三车间的工人数是1000−350−250=400.所以y=400×25=160,z=400×35=240.(2)设应从第三车间抽取m名工人,共有男工人180+130+240=550,则由m240=55550,得m=24,所以应在第三车间抽取24名男工人.18、2019年下半年以来,各地区陆续出台了“垃圾分类”的相关管理条例,实行“垃圾分类”能最大限度地减少垃圾处置量,实现垃圾资源利用,改善垃圾资源环境,某部门在某小区年龄处于[20,45]岁的人中随机地抽取x人,进行了“垃圾分类”相关知识掌握和实施情况的调查,并把达到“垃圾分类”标准的人称为“环保族”,得到如图示各年龄段人数的频率分布直方图和表中的统计数据.(1)求x、y、z的值;(2)根据频率分布直方图,估计这x人年龄的平均值(同一组数据用该区间的中点值代替,结果按四舍五入保留整数);(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,并在这9人中选取2人作为记录员,求选取的2名记录员中至少有一人年龄在[30,35]中的概率.答案:(1){x=200y=0.625z=6;(2)30.75;(3)1318.分析:(1)由频率分布直方图和频数分布表能求出x、y、z;(2)根据频率分布直方图,能估计这x人年龄的平均值;(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,[25,30)中选5人,分别记为A、B、C、D、E,[30,35]中选4人,分别记为a、b、c、d,在这9人中选取2人作为记录员,利用列举法列举出所有的基本事件,然后利用古典概型的概率公式可求得所求事件的概率.(1)由题意得:{x=450.750.06×5=200y=25200×0.04×5=0.625z=200×0.03×5×0.2=6;(2)根据频率分布直方图,估计这x人年龄的平均值为:x=22.5×0.3+27.5×0.2+32 .5×0.2+37.5×0.15+42.5×0.15=30.75;(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,从[25,30)中选:9×2525+20=5人,分别记为A、B、C、D、E,从[30,35]中选:9×2025+20=4人,分别记为a、b、c、d,在这9人中选取2人作为记录员,所有的基本事件有:(A,B)、(A,C)、(A,D)、(A,E)、(A,a)、(A,b)、(A,c)、(A,d)、(B,C)、(B,D)、(B,E)、(B,a)、(B,b)、(B,c)、(B,d)、(C,D)、(C,E)、(C,a)、(C,b)、(C,c)、(C,d)、(D,E)、(D,a)、(D,b)、(D,c)、(D,d)、(E,a)、(E,b)、(E,c)、(E,d)、(a,b)、(a,c)、(a,d)、(b,c)、(b,d)、(c,d),共36种,选取的2名记录员中至少有一人年龄在[30,35]包含的基本事件有:(A,a)、(A,b)、(A,c)、(A,d)、(B,a)、(B,b)、(B,c)、(B,d)、(C,a)、(C,b)、(C,c)、(C,d)、(D,a)、(D,b)、(D,c)、(D,d)、(E,a)、(E,b)、(E,c)、(E,d)、(a,b)、(a,c)、(a,d)、(b,c)、(b,d)、(c,d),共26种,因此,选取的2名记录员中至少有一人年龄在[30,35]中的概率P=2636=1318.小提示:本题考查频率、平均数、概率的求法,考查频数分布表、频率分布直方图、分层抽样、古典概型的性质等基础知识,考查数据分析能力、运算求解能力,是基础题.19、2020年“双十一”购物节之后,某网站对购物超过1000元的20000名购物者进行年龄调查,得到如下统计表:(1)从这20000名购物者中随机抽取1人,求该购物者的年龄不低于50岁的概率;(2)从年龄在[50,70]的购物者中用分层抽样的方法抽取7人进一步做调查问卷,再从这7人中随机抽取2人中奖,求中奖的2人中年龄在[50,60),[60,70]内各有一人的概率.答案:(1)0.35;(2)47.解析:(1)根据参与调查的总人数确定a的值,进而求得购物者的年龄不低于50岁的概率;(2)年龄在[50,70]的购物者中用分层抽样的方法抽取7人,则年龄在[60,70]的应抽取4人,年龄在[50,60)的应抽取3人,利用古典概型,确定中奖的2人中年龄在[50,60),[60,70]内各有一人的概率.(1)因为参与调查的总人数为20000人,由表中数据可得5500+4500+3a+3000+4a=20000,解得a=1000,所以从这20000名购物者中随机抽取1人,该购物者的年龄不低于50岁的概率为P1=3000+4a20000=700020000=0.35.(2)由(1)知,这20000名购物者中,年龄在[50,60)的有3000人,年龄在[60,70]的有4000人,从年龄在[50,70]的购物者中用分层抽样的方法抽取7人,则年龄在[60,70]的应抽取4人,用A1,A2,A3,A4表示,年龄在[50,60)的应抽取3人,用B1,B2,B3表示.在这7人中随机取出2人中奖的所有可能情况有:A1A2,A1A3,A1A4,A1B1,A1B2,A1B3,A2A3,A2A4,A2B1,A2B2,A2B3,A3A4,A3B1,A3B2,A3B3,A4B1,A4B2,A4B3,B1B2,B1B3,B2B3,共21种情况,其中中奖的2人中在[50,60),[60,70]内各有一人有:A1B1,A1B2,A1B3,A2B1,A2B2,A2B3,A3B1,A3B2,A3B3,A4B1,A4B2,A4B3,共12种情况,所以所求的概率为P2=1221=47.小提示:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.。
传热学第四版课后题答案第九章总结
第九章思考题1、试述角系数的定义。
“角系数是一个纯几何因子”的结论是在什么前提下得出的?答:表面1发出的辐射能落到表面2上的份额称为表面]对表面2的角系数。
“角系数是一个纯几何因子”的结论是在物体表面性质及表面湿度均匀、物体辐射服从兰贝特定律的前提下得出的。
2、角系数有哪些特性?这些特性的物理背景是什么?答:角系数有相对性、完整性和可加性。
相对性是在两物体处于热平衡时,净辐射换热量为零的条件下导得的;完整性反映了一个由几个表面组成的封闭系统中。
任一表面所发生的辐射能必全部落到封闭系统的各个表面上;可加性是说明从表面1发出而落到表面2上的总能量等于落到表面2上各部份的辐射能之和。
3、为什么计算—个表面与外界之间的净辐射换热量时要采用封闭腔的模型?答:因为任一表面与外界的辐射换热包括了该表面向空间各个方向发出的辐射能和从各个方向投入到该表面上的辐射能。
4、实际表面系统与黑体系统相比,辐射换热计算增加了哪些复杂性?答:实际表面系统的辐射换热存在表面间的多次重复反射和吸收,光谱辐射力不服从普朗克定律,光谱吸收比与波长有关,辐射能在空间的分布不服从兰贝特定律,这都给辐射换热计算带来了复杂性。
5、什么是一个表面的自身辆射、投入辐射及有效辐射?有效辐射的引入对于灰体表面系统辐射换热的计算有什么作用?答:由物体内能转变成辐射能叫做自身辐射,投向辐射表而的辐射叫做投入辐射,离开辐射表面的辐射叫做有效辐射,有效辐射概念的引入可以避免计算辐射换热计算时出现多次吸收和反射的复杂性。
6、对于温度已知的多表面系统,试总结求解每一表面净辐射换热量的基本步骤。
答:(1)画出辐射网络图,写出端点辐射力、表面热阻和空间热阻;(2)写出由中间节点方程组成的方程组;(3)解方程组得到各点有效辐射;(4)由端点辐射力,有效辐射和表面热阻计算各表面净辐射换热量。
7、什么是辐射表面热阻?什么是辐射空间热阻?网络法的实际作用你是怎样认识的?答:出辐射表面特性引起的热阻称为辐射表面热阻,由辐射表面形状和空间位置引起的热阻称为辐射空间热阻,网络法的实际作用是为实际物体表面之间的辐射换热描述了清晰的物理概念和提供了简洁的解题方法。
热力学与统计物理——第09章系综理论习题解ok1
第九章 系综理论习题9.1证明在正则分布中熵可表为ln s s sS k ρρ=-∑其中1sE s eZβρ-=是系统处在s 态的概率。
证:熵的统计表达式是ln (ln )Z S k Z ββ∂=-∂(1)多粒子配分函数111,sssE E E s sseZ eZ eZβββρρ---==⇒==∑∑∑(2)()ln kkkE E k kkkE kE e EeZ Zeββββ-----∂==∂∑∑∑ (3)由(2)知sE s eZ βρ-=(4)1ln ln ln ln s s s s E Z E Z βρρβ⇒-=+⇒-=+⎡⎤⎣⎦(5)(4)X(5)代至(3)得ln 111ln ln ln ln s s ssssZ Z Z ρρρρββββ∂=+=+⎡⎤⎣⎦∂∑∑;于是ln ln ln s ss Z S k Z k βρρβ⎛⎫∂=-=- ⎪∂⎝⎭∑证明2:准备工作11ln ln1(ln )11ln ln ()ln ln ln ln ln (ln )sssssssssE E s s ssE s sE E s ssE E ssE E ssS k k eeZZk eE Z Z k eE k eZZZ Z kekeZZ Zk ekeZ ZZ kk Z Z Zk k Z Z k Z βββββββββρρββββββββββββ---------=-=-=---=+∂=-+∂∂=-+∂∂=-+∂∂=-+∂∂=-∂∑∑∑∑∑∑∑∑∑习题9.2试用正则分布求单原子分子理想气体的物态方程,内能和熵证: ()222112sNE i xi yi zsi Z eE p p p mβ-===++∑∑符号 ixiy iz idp dpdp dp =∏ i i iid q d x d y d z =∏()()2222222112222333/2()2331!!2!!NNixiyizix iy iz mi i xyzN p p p p p p mNNNN N N p p p mx y z NNVZ edpdq edpN h N hVVm e dp dp dp Z N hN hβββπβ==+∞-++-++-∞+∞-++-∞∑∑==⎡⎤⎛⎫=⇒=⎢⎥⎪⎝⎭⎣⎦⎰⎰⎰3/23/23ln 23ln ln !2N N N N Z V m U NkT N h πβββββ⎡⎤⎛⎫∂∂∂=-=-==⎢⎥⎪∂∂∂⎝⎭⎢⎥⎣⎦3/23ln 1211ln ln !N N NN ZV m p V NkT V V N h Vπβββββ⎡⎤⎛⎫∂∂∂====⎢⎥⎪∂∂∂⎝⎭⎢⎥⎣⎦3/233/233/233/22ln 23(ln )(ln )ln !223ln ln !223ln ln 225ln 2N N N N N N Z V m S k Z k Z U k N k N h V m k k N N k h V m N k kN N kN N k h V m kT N k N k N h πββββπβπβπ⎡⎤⎛⎫∂=-=+=+⎢⎥⎪∂⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫=-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦习题9.5 试根据正则分布导出实际气体分子的速度分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 系综理论习题9.1证明在正则分布中熵可表为∑-=ss s k S ρρln 其中sE s e Zβρ-=1是系统处在s 态的概率。
证: )ln (ln ββ∂∂-=Z Z k S 多粒子配分函数)1(1ss E s E e Z e Z ββρ--=⇒=∑)2(ln ∑∑---=∂∂kE kE k kke e E Zβββ由(1)知 []s s s s s E Z E Z E Z e s ρβρβρβln ln 1;ln ln +=-+=-⇒=-代至(2)得[]∑∑+=+=∂∂ss ss s s Z Z Z ρρββρρββln 1ln 1ln ln 1ln ;于是 ∑-=⎪⎪⎭⎫⎝⎛∂∂-=s s s k Z Z k S ρρββln ln ln 习题9.2试用正则分布求单原子分子理想气体的物态方程,内能和熵 证: ()222121;iz iy ix Ni s sE p p p mE eZ s++==∑∑=-β 符号∏=iiz iy ix dp dp dp dp符号∏=ii i i dz dy dx dq()()2/33)(232332!!!!1222122212222N NNNp p p m N N p p p m NNp p p N m h N V Z dp e h N V dp eh N V dpdq e hN Z z y x Ni iziy ix Ni iz iy ix m⎪⎪⎭⎫ ⎝⎛=⇒⎥⎦⎤⎢⎣⎡=∑=∑=⎰⎰⎰∞+∞-++-∞+∞-++-++-==βπβββ利用式(9.5.3)VNTkV Z Z Z P =∂∂=∂∂=⇒βββ1ln 1类似求S U ,。
习题9.3体积内盛有两种组元的单原子混合理想气体,其摩尔数为1n 和2n ,温度为T 。
试由正则分布导出混合理想气体的物态方程,内能和熵。
解:()()[]∏∏⎰∑=+++++-+jj j i i i i iz iy ix p p p p p p m n n dq dp dz dy dx dp dp dp e h n n Z jz jy jx iz iy ix 222222212)(321!!1β()2/3)(321)(2121212!!n n n n n n m h n n V Z +++⎪⎪⎭⎫ ⎝⎛=⇒βπ()kT n n PV VkT n n V Z P )(ln 12121+=⇒+=∂∂=⇒β习题9.5利用范氏气体的配分函数,求内能和熵。
解: Q m N Z N 2/32!1⎪⎪⎭⎫⎝⎛=βπ()()()Z Q m N Q N N m Z U N N N /2!12/3!2ln 2/32/312/3⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∂∂⎪⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡=∂∂-=--ββπβπβ dr f V N V Q Q Q N N N⎰--+=∂∂-=121212;1)2/3(ββ()φββφφβββ----=∂∂⇒-=∂∂=∂∂⇒⎰e f e f dr f V N Q r N 121212121;212 ()⎰⎰⎰-----++=-=∂∂⇒drf V N V dre V N NTk U dr e V N Q N N N N 12121212122/3;22βφβφφφβ一般认为dr f VN 1222较小; V a kNT dr f V NV dre V N NTk U N N /2/32122/312212-≈⎪⎪⎭⎫ ⎝⎛++=⎰⎰--βφφ 习题9.6被吸附在液体表面的分子形成一种二维气体,考虑分子间的相互作用,试用 正则分布证明,二维气体的物态方程为[]S B NTk pS /1+=,其中:()⎰--=-S rdr eN B kT;212/πφ为液体的面积,φ为两分子的互作用势。
解: 二维气体∏∏⎰⎪⎪⎭⎫ ⎝⎛++-∑∑=<i i iy ixp p N dy dx dp dpe hN Z ji i iy ix m φβ)(22221!1Q m N dpdqedq ehN Nr Niy p ixp m ji ij )2(!1!1)22(21)(2βπβφβ=∑∑=⎰⎰+-<- 其中 n r dr dr dr eQ ji ij 21)(⎰∑=<-φβ定义1)(-=-ij r ij ef βφn ji ij n ji ij dr dr f dr dr dr f Q 121)1()()1(⎰∑⎰∏<<+=+=⇒只保留前部分⎰⎰⎰∑-<=+=2112211;dr dr f V dr dr f dr dr f S N n ij ji n ij N 其中⎰-+=2112222dr dr f S N S Q N N变量代换()1221;2/r r r r r R -=+= ⎰-+=⇒dr f S N S Q N N12122⎰⎰+≈⎥⎦⎤⎢⎣⎡++=dr fS N S N dr f VN S N Q 1221222ln 21ln ln ln 据式(9.5.3)⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=⇒∂∂=∂∂=⇒⎰S B kNT dr f S N NTk PV S Q Z P 121ln 1ln 112βββ习题9.7仿照三维固体的地拜理论,计算长度为L 的线形原子链在高温和低温下的内 能和热容量。
解:一维线形原子链,......1,0,/2,±===n L n k ck πωπωωωπc Ld d D Ldk dn 2/)(;2/==共有N 个振动,存在最大频率D ω⎰⎰=⇒=⇒=L Nc N d c LN d D D D/22)(0πωωπωωω ωωπωωωωωd e c L U d eD U U kTkT⎰⎰-+=+=1002)( 令kTdx d x kT =⇒=ωω / ⎰⎰-+=-+=12)1(2220220x x e xdx c k LT U e dx xT k c LU U ππ高温近似⎰+=+≈<<kNT U dx c k LT U U x 02202;1 π低温近似D e x kNT U dx ck LT U U xθππ6/22201220+=+≈⎰- 其中D D k ωθ =习题9.8仿照三维固体的德拜理论,计算长度为L 的线形原子链(一维晶体)在高温和低温下的内能和热容量。
解: 二维:面积S 内,y x dk dk 波矢范围内辐射场振动自由度为 2244πϕπskdkd dk sdk y x = 横波按频率ω分布为ωωπϕππd c S d Skdk 2120224⎰=纵波按频率ω分布为ωωπϕππd c S d Skdk 2220224⎰= ()()()⎥⎦⎤⎢⎣⎡+==⎥⎦⎤⎢⎣⎡+=+=22212221112112c c S B d B d c c Sd D d D d D πωωωωπωωωωωω纵横()ωωωωωωωωωd eB U ed D U U DDktkt⎰⎰-+=-+=0200011令kTdx d x kT==ωω, dx e x kT B U dx kT e x kT B U U kTx xD ⎰⎰-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛+=⇒ω 023022011 低温近似 300230404.21⎪⎭⎫⎝⎛+=-⎪⎭⎫⎝⎛+≈⎰∞kT B U dx e x kT B U U x 高温近似 23003021⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+≈⎰kT kT B U dx x kT B U U D kTDωω v C 计算略。
习题9.9利用德拜频谱求固体在高温和低温下配分函数对数Z ln ,从而求内能和熵。
BNN BN d D D DD4222)(22=⇒=⇒=⎰ωωωωω解:式(3.9.4)∑----+=ie e e Z ωβωββφ 1ln ln ln 2德拜频谱 BN D 93=ω 对于振动 ())(1ln 1ln ln ln 2020020x d e e B d D e e e Z D D=⎪⎪⎪⎭⎫⎝⎛-+-=⎪⎪⎪⎭⎫ ⎝⎛-+=⎰⎰-----ωβωωβφωωωωβωβωωβωββφ 代换 ()()dx x e B d B D Dx 203201ln 2⎰⎰---⎪⎭⎫⎝⎛+-=ωωββωωβωβφ()340340151531⎪⎪⎭⎫⎝⎛+-=+-=D N U B U ωβπββπβ S 计算略高温近似, ∞→T , 0→ωβ()⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=⎰⎰3ln 1ln ln 30020ωωββφωωωββφωωd B d B Z D D()⎥⎦⎤⎢⎣⎡---=⎰D d B ab ωωωωβωβφ0203031ln 3()B B DD9ln 3330ωωβωβφ+--=()NN +--=ωββφ ln 30(计算略)习题9.10固体的结合能0U 和德拜特征温度D θ都是体积V 的函数。
利用上题求得的Z ln 求低温条件下固体的物态方程。
令VDln ln ∂∂-=θν,试证明,在高温及低温下,固体的物态方程都可表为:VU U dV dU p 00-+-=ν。
解: 以低温为例()3030340115ln -+-=⎪⎪⎭⎫ ⎝⎛+-=⎪⎪⎭⎫ ⎝⎛+-=D D D A U A U N U Z βθββθβωβπβ 据正则分布热力学公式(9.5.3),将0U 及D θ视为体积V 的函数。
VA V U V Z p VA V U V Z DDDD∂∂-∂∂-=∂∂=∂∂-=∂∂-=∂∂----θθββθθββ4404403ln 13ln (1)据热力学式(9.5.1)得出:4403ln ----=∂∂D A U Z θββ4403ln --+=∂∂-=D A U Z U θββ(2) 联立(1)(2)得出:()VU U V U p DD ∂∂--∂∂-=θθ00 ()VU U dV dU V V U U dV dU D0000ln ln -+-=∂∂---=νθ 其中VDln ln ∂∂-=θν; 原式得证。
高温情况可作类似处理(略) 习题9.11 固体中某种准粒子遵从玻色分布,具有以下的色散关系4Ak =ω。
试证明在低温范围内,这种准粒子的激发所导致的热容量与23T 成比例。
(铁磁铁中的自旋波具有这种性质)证: 色散关系2Ak =ω;N 粒子体系(固体) ()dk k V d dkd k V dk dk dk Vd D z y x 22202302030sin 44πϕθθππωωππππ⎰⎰⎰⎰=== ωωπωωωπd AV AAd AV 2/12/32222==令2/322AVB π==,()⎰⎰==DDN d B d D ωωωωωω02/10BND2323=⇒ω ()()⎰⎰-+=-+=DDd eD B U d eD U U kTkTωωωωωωωωωω02300011()⎰-+==⇒Dd eD B U U kTωωωωω02301代换kTx =ω ; ⎰-⎪⎭⎫ ⎝⎛+=⇒Ddx e x kT kT BU U x ω 0232301当0→T 时; ()⎰∞-+=023232501dx exkT BU U x()()250kT U U ∝-⇒;于是23T C TUv ∝=∂∂ 习题9.14用巨正则分布导出单原子分子理想气体的物态方程,内能,熵和化学势。