高分子材料理论知识
药用高分子材料各章知识点总结
药用高分子材料各章知识点总结第一章一、 高分子材料的基本概念1、什么是高分子:高分子是指由多种原子以相同的、多次重复的结构单元并主要由共价键连接起来的、通常是相对分子量为104~106的化合物;2、单 体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子;即合成聚合物的起始原料;3、结构单元:在大分子链中出现的以单体结构为基础的原子团;即构成大分子链的基本结构单元;4、单体单元:聚合物中具有与单体相同化学组成而不同电子结构的单元;5、重复单元 Repeating unit ,又称链节:聚合物中化学组成和结构均可重复出现的最小基本单元;重复单元连接成的线型大分子,类似一条长链,因此重复单元又称为链节;高分子的三种组成情况1.由一种结构单元组成的高分子此时:结构单元=单体单元=重复单元说明:n 表示重复单元数,也称为链节数, 在此等于聚合度;由聚合度可计算出高分子的分子量:M=n. M0 式中:M 是高分子的分子量 M0 是重复单元的分子量2.另一种情况:结构单元=重复单元 单体单元结构单元比其单体少了些原子氢原子和氧原子,因为聚合时有小分子生成,所以此时的结构单元不等于单体单元;注意:对于聚烯烃类采用加成聚合的高分子结构单元与单体的结构是一致的,仅电子排布不同对于缩聚,开环聚合或者在聚合中存在异构化反应的高分子结构单元与单体的结构不一致3.由两种结构单元组成的高分子合成尼龙-66的特征:其重复单元由两种结构单元组成,且结构单元与单体的组成不尽相同,所以,不能称为单体单元;注意:1对于均聚物,即使用一种单体聚合所得的高分子,其结构单元与重复单元是相同的; 聚CH 2 CH CH 2-CH n CH 2 CH n单体体 n H 2N-(--CH 2-)-COOH --NH-(--CH 2-)-CO--n n H 2O +552对于共聚物,即使用两种或者两种以上的单体共同聚合所得的高分子,其结构单元与重复单元是不同的;二、高 分 子 的 命 名1、 习 惯 命 名 法天然高分子:一般有与其来源、化学性能与作用、主要用途相关的专用名称;如纤维素来源、核酸来源与化学性能、酶化学作用;合成高分子:1由一种单体合成的高分子:“聚”+ 单体名称;如乙烯:聚乙烯; 丙烯:聚丙烯; 氯乙烯:聚氯乙烯2以高分子结构特征来命名. 如聚酰胺、聚酯、聚醚、聚砜、聚氨酯、聚碳酸酯等;尼龙-66:聚己二酰己二胺;尼龙-610:聚癸二酰己二胺;尼龙-6:聚己内酰胺或聚ω-氨基己酸2.商品名称:1树脂类未加工成型的原料都称为树脂2橡胶类 3纤维如丁苯橡胶---丁二烯、苯乙烯聚合物 氯纶 PVC 聚氯乙烯乙丙橡胶---乙烯、丙烯共聚物 丙纶 PP 聚丙烯腈纶 PANC 聚丙烯腈3. IUPAC 系统命名法1 确定重复结构单元;2给重复结构单元命名:按小分子有机化合物的IUPAC 命名规则给重复结构单元命名;3给重复结构单元的命名加括弧括弧必不可少,并冠以前缀“聚”;例: COOCH 3CH 3n C CH 2 重复结构单元为: 聚1-甲氧基羰基-1-甲基乙烯 聚1-氯乙烯三、高 分 子 链 结 构1.聚合物的结构:一级结构近程结构:结构单元的化学组成、连接顺序、立体构型,以及支化、交联等;是反映高分子各种特性的最主要结构层次;二级结构远程结构:通常包括高分子链的形态构象以及高分子的大小分子量;与高分子链的柔性和刚性有直接关系;三级结构聚集态结构:聚集态结构也称三级结构,或超分子结构,它是指单位体积内许多大分子链之间的的排列与堆砌方式;包括晶态、非晶态、取向态、液晶态及织态等;2.高分子链的近程结构:高分子链的构型 :构型:是对分子中的最近邻原子间的相对位置的表征,也可以说,是指分子中由化学键所固定的原子在空间的几何排列;1.旋光异构:若高分子中含有手性C 原子,则其立体构型可有D 型和L 型,据其连接方式可分为如下三种:以聚丙烯为例:1 全同立构高分子:主链上的C 的立体构型全部为D 型或L 型, 即DDDDDDDDDD 或C H H C Cl H C H H C Cl H C H H C Cl H C H H CC l HLLLLLLLLLLL;2 间同立构高分子:主链上的C的立体构型各不相同, 即D型与L型相间连接,LDLDLDLDLDLD;立构规整性高分子tactic polymer: C的立体构型有规则连接,简称等规高分子;3 无规立构高分子:主链上的C的立体构型紊乱无规则连接;3、高分子链的远程结构:包括分子量及分子量分布和高分子形态构象;书P8分子量:1.数均分子量:按聚合物中含有的分子数目统计平均的分子量;根据聚合物溶液的依数性测得的,通过依数性方法和端基滴定法测定;2重均分子量:是按照聚合物的重量进行统计平均的分子量;根据聚合物溶液对光的散射性质、扩散性质测得的;通过光散射法测定;分子量分布:分子量分布越窄,聚合物排布越好;4.高分子聚集态结构的特点.1.聚合物晶态总是包含一定量的非晶相,100%结晶的情况是很罕见的;2.聚合物聚集态结构不但与大分子链本身的结构有关,而且强烈地依赖于外界条件;四、聚合与高分子化学反应1.自由基聚合特点:1可概括为慢引发、快增长、速终止;2聚合体系中只有单体和聚合物组成;3单体转化率随聚合时间的延长而逐渐增大;4小量阻聚剂足以使自由基聚合终止;2.本体聚合:只有单体本身在引发剂或热、光、辐射的作用下进行的聚合;3.溶液聚合:单体和引发剂溶于适当溶剂中进行的聚合方法;4.悬浮聚合:单体以小液滴状悬浮在水中的聚合;5.乳液聚合:单体在水介质中由乳化剂分散成乳液状进行的聚合;6.缩聚反应由含有两个或两个以上官能团的单体分子间逐步缩合聚合形成聚合物,同时析出低分子副产物的化学反应,是合成聚合物的重要反应之一;特点:1.每一高分子链增长速率较慢,增长的高分子链中的官能团和单体中的官能团活性相同,所以每一个单体可以与任何一个单体或高分子链反应,每一步反应的结果,都形成稳定的化合物,因此链逐步增长,反应时间长;2.由于分子链中官能团和单体中官能团反应能力相同,所以,在聚合反应初期,单体很快消失,生成了许多两个或两个以上的单体分子组成的二聚体、三聚体和四聚体等,即反应体系中存在分子量大小不等的缩聚物;四、药用高分子材料通论药用高分子材料:指的是药品生产与制造加工过程中使用的高分子材料,药用高分子材料包括作为药物制剂成分之一的药用辅料与高分子药物,以及与药物接触的包装储运高分子材料;第二章一、高分子的分子运动1.高分子运动特点:一运动单元的多重性:1.整链的运动:以高分子链为一个整体作质量中心的移动,即分子链间的相对位移;2.链段的运动:由于主链σ键的内旋转,使分子中一部分链段相对于另一部分链段而运动,但可以保持分子质量中心不变宏观上不发生塑性形变;高弹性:链段运动的结果拉伸—回复;流动性:链段协同运动,引起分子质心位移;3.链节的运动:指高分子主链上几个化学键相当于链节的协同运动,或杂链高分子的杂链节运动4.侧基、支链的运动:侧基、支链相对于主链的摆动、转动、自身的内旋转;二、分子运动的时间依赖性:物质从一种平衡状态在外场作用下,通过分子运动低分子是瞬变过程,高分子是速度过程需要时间达到与外界相适应的另一种平衡状态;三、分子运动的温度依赖性1.活化运动单元:温度升高,增加了分子热运动的能量,当达到某一运动单元运动所需的能量时,就激发这一运动单元的运动;2.增加分子间的自由空间:温度升高,高聚物发生体积膨胀,自由空间加大;当自由空间增加到某种运动单元所需的大小时,这一运动单元便可自由运动;2、高分子的玻璃化转变玻璃态、高弹态和粘流态称为聚合物的力学三态;温度低,聚合物在外力作用下的形变小,具有虎克弹性行为,形变在瞬间完成,当外力除去后,形变又立即恢复,表现为质硬而脆,这种力学状态与无机玻璃相似,称为玻璃态;随着温度的升高,形变逐渐增大,当温度升高到某一程度时,形变发生突变,进入区域II,这时即使在较小的外力作用下,也能迅速产生很大的形变,并且当外力除去后,形变又可逐渐恢复;这种受力能产生很大的形变,除去外力后能恢复原状的性能称高弹性,相应的力学状态称高弹态;由玻璃态向高弹态发生突变的区域叫玻璃化转变区,玻璃态开始向高弹态转变的温度称为玻璃化转变温度,以Tg表示;当温度升到足够高时,聚合物完全变为粘性流体,其形变不可逆,这种力学状称为粘流态;高弹态开始向粘流态转变的温度称为粘流温度,以T f表示,其间的形变突变区域称为粘弹态转变区;二、溶解与高分子溶液一、高聚物的溶解1.非晶态高聚物的溶解条件:足够量的溶剂、一定量的非晶态高聚物溶解过程:溶胀到无限溶胀;溶解过程的关键步骤是溶胀;其中无限溶胀就是溶解,而有限溶胀是不溶解;2.结晶晶态高聚物的溶解非极性结晶高聚物的溶解条件:足够量的溶剂,一定量的非极性结晶高聚物,并且加热到熔点附近;溶解过程:加热使结晶熔化,再溶胀、溶解;极性溶解高聚物的溶解条件:足够量的强极性溶剂,一定量的极性结晶高聚物,不用加热;溶解过程:通过溶剂化作用溶解;二、溶剂的选择1.极性相似原则2.溶剂化原则3.溶解度参数相近原则三、高聚物的力学性能1.应力:单位面积上的内力为应力,其值与外加的应力相等;2.应变:当材料受到外力作用而又不产生惯性移动时,其几何形状和尺寸会发生变化,这种变化称为应变或形变;3.弹性模量:是单位应变所需应力的大小,是材料刚度的表征;4.硬度:是衡量材料抵抗机械压力能力的一种指标;5.强度:是材料抵抗外力破坏的能力;6.高聚物力学性能的最大特点是高弹性和粘弹性:1.高弹性:处于高弹态的高聚物表现出的独特的力学性能;是由于高聚物极大的分子量使得高分子链有许多不同的构象,而构象的改变导致高分子链有其特有的柔顺性;链柔性在性能上的表现就是高聚物的高弹性;橡胶就是具有高弹性的材料;弹性形变的本质也就是高弹性变的本质;2).粘弹性:指高聚物材料不但具有弹性材料的一般特性,同时还具有粘性流体的一些特性; 力学松弛:高聚物的力学性能随时间的变化统称力学松弛;最基本的有:蠕变、应力松弛、滞后、力学损耗;蠕变:在一定的温度和恒定的外力作用下拉力,压力,扭力等,材料的形变随时间的增加而逐渐增大的现象;应力松弛:对于一个线性粘弹体来说,在应变保持不变的情况下,应力随时间的增加而逐渐衰减,这一现象叫应力松弛;滞后现象:高聚物在交变力作用下,形变落后于应力变化的现象;力学损耗:由于力学滞后而使机械功转换成热的现象;第三章一、凝胶与功能水凝胶1.凝胶是指溶胀的三维网状结构高分子,即聚合物分子间相互连接,形成空间网状结构,而在网状结构的孔隙中又填充了液体介质;影响胶凝作用的因素:浓度、温度、电解质;2.凝胶的性质1触变性 2溶胀性 3脱水收缩性 4透过性3.凝胶的分类1物理凝胶:由非共价键氢键或范德华力相互连接,形成网状结构;由于聚合物分子间的物理交联使其具有可逆性,只要温度等外界条件改变,物理链就会破坏,凝胶可重新形成链状分子溶解在溶剂中成为溶液,也称为可逆凝胶;2化学凝胶:是高分子链之间以化学键形成的交联结构的溶胀体,加热不能溶解也不能熔融,结构非常稳定,也称为不可逆凝胶;3冻胶:指液体含量很多的凝胶,通常在90%以上;多数由柔性大分子构成,具有一定的柔顺性,网络中充满的溶剂不能自由流动,所以表现出弹性的半固体状态,通常指的凝胶均为冻胶;4干凝胶:液体含量少的凝胶,其中大部分是固体成分;在吸收适宜液体膨胀后即可转变为冻胶;4.功能水凝胶:对温度或pH等环境因素的变化所给予的刺激有非常明确或显着的应答; 根据环境变化的类型不同,环境敏感水凝胶可分为:温敏水凝胶、pH敏水凝胶、盐敏水凝胶、光敏水凝胶、电场响应水凝胶、形状记忆水凝胶;二、粒子分散结构:有以下四种类型:1.药物粒子分散在高聚物基材中的复合结构,高聚物为连续相,如速释型固体分散制剂;2.药物粒子和高聚物粒子分散于同一或另一高聚物基材中的复合结构,如传统的淀粉基可崩解固体片剂3.药物粒子包裹在聚合物囊膜中,再分散在聚合物基材中4.药物粒子分散在高聚物凝胶网络中的复合结构,这类药物通常是疏水性的,如聚氧乙烯-聚氧丙烯共聚物的水凝胶制成的皮鲁卡品滴眼剂等缓释给药系统;三、缓控释性材料1.缓释制剂:指用药后能在较长时间内持续缓慢释放药物以达到延长药效目的的制剂;系指口服药物在规定释放介质中,按要求缓慢地非恒速释放;2.控释制剂:药物从制剂中按一定规律缓慢、恒速释放,使机体内药物浓度保持相对恒定,体内释药不受pH影响;系指口服药物在规定释放介质中,按要求缓慢地恒速或接近恒速释放;四、分散传质过程药物的扩散过程:1.药物溶出并进入周围的聚合物或孔隙;2.由于浓度梯度,药物分子扩散通过聚合物屏障;3.药物由聚合物解吸附;4.药物扩散进入体液或介质;第四章药用天然高分子材料一、淀粉1.来源淀粉starch广泛存在于绿色植物的须根和种子中,根据植物种类、部位、含量不同,各以特有形状的淀粉粒而存在;药用淀粉多以玉米淀粉为主;2.化学结构和组成淀粉是由许多葡萄糖分子脱水缩聚而成的高分子化合物;结构单元:D-吡喃环型葡萄糖淀粉组成可以分为两类,直链淀粉与支链淀粉;自然淀粉中直链,支链淀粉之比一般约为15-28%比72-85%,视植物种类、品种、生长时期的不同而异;1直链淀粉是以α-1,4苷键连接而成的线型聚合物;直链淀粉由于分子内氢键作用,链卷曲成螺旋形,每个螺旋圈大约有6个葡萄糖单元;2支链淀粉是由D-葡萄糖聚合而成的分支状淀粉,其直链部分也为α-1,4苷键,而分支处则为α-1,6苷键;在各种淀粉中,直链淀粉约占20%-25%,支链淀粉约占75%-85%3.性质1形态与物理常数玉米淀粉为白色结晶粉末,流动性不良,淀粉在干燥处且不受热时,性质稳定;2淀粉的溶解性、含水量与氢键作用力溶解性:呈微弱的亲水性并能分散与水,淀粉不溶于水、乙醇和乙醚等,但有一定的吸湿性; 含水量:在常温、常压下,淀粉有一定的平衡水分,但淀粉含有很高的水分却不显示潮湿而呈干燥的粉末状,这主要是淀粉中的葡萄糖单元存在的众多醇羟基与水分子相互作用形成氢键的缘故;不同淀粉的含水量存在差异,这是由于淀粉分子中羟基自行缔合及与水分子缔合程度不同所致;3淀粉的吸湿与解吸吸湿:淀粉中含水量受空气湿度和温度的影响,在一定的相对湿度和温度条件下,淀粉吸收水分与释放水分达到平衡,此时淀粉所含的水分称为平衡水分;用做稀释剂的淀粉和崩解剂的淀粉,宜用平衡水分下的玉米淀粉;解吸:淀粉中存在的水,分为自由水和结合水两种状态,自由水仍具有普通水的性质,随环境的变化而变化,它具有生理活性,可被微生物利用,而结合水则不能;4淀粉的水化、膨胀、糊化水化:淀粉颗粒中的淀粉分子有的处于有序态晶态,有的处于无序态非晶态它们构成淀粉颗粒的结晶相和无定性相,无定性相是亲水的,进入水中就吸水,先是有限的可以膨胀,而后是整个颗粒膨胀的现象;膨胀:淀粉在60-80℃热水中,能发生膨胀,直链淀粉分子从淀粉粒中向水中扩散,形成胶体溶液,而支链淀粉则仍以淀粉粒残余的形式保留在水中;糊化:若不实施直链淀粉与支链淀粉的分离,在过量水中,淀粉加热至60~80℃时,则颗粒可逆地吸水膨胀,至某一温度时,整个颗粒突然大量膨化、破裂,晶体结构消失,最终变成粘稠的糊,虽停止搅拌,也都下沉的现象;糊化的本质:水分子加入淀粉粒中,结晶相和无定性相的淀粉分子之间的氢键断裂,破坏了缔合状态,分散在水中成为亲水胶体;5淀粉的回升老化、凝沉回生或老化:淀粉糊或淀粉稀溶液再低温静置一段时间,会变成不透明的凝胶或析出沉淀的现象;形成的淀粉称为回生淀粉;4、反应1水解反应存在于淀粉分子中糖基之间的连接键——苷键,可以在酸或酶的催化下裂解,形成相应的水解产物,呈现多糖具备的水解性质;2显色反应淀粉与碘试液作用时形成有色包结物,螺旋结构长颜色深,所以直链淀粉与碘化钾、碘溶液作用呈蓝色,支链淀粉呈紫红色;5.应用淀粉在药物制剂中主要用作片剂的稀释剂、崩解剂、粘合剂、助流剂,崩解剂;淀粉应用安全无毒,同时药典品不得检出大肠杆菌、活蛹,1g淀粉含霉菌应在100个以下,杂菌不得多于1000个;可灭菌玉米淀粉是玉米淀粉经化学及物理改性后的淀粉,遇水或蒸汽灭菌不糊化,是供某些医疗用途的改性淀粉;二、糊精1.来源与制法淀粉水解是大分子逐步降解为小分子的过程,这个过程的中间产物总称为糊精;糊精的制法是在干燥状态下将淀粉水解,其过程有四步:酸化、预干燥、糊精化及冷却;2.分类在药剂学中应用的糊精有白糊精和黄糊精;3.性质糊精为白色、淡黄色粉末;不溶于乙醇95℃、乙醚,缓缓溶于水,易溶于热水三、麦芽糖糊精1.来源与制法麦芽糖糊精是由食用淀粉在有水存在的条件下,将淀粉加热,经合适的酸或者酶部分水解而制得;制法:部分地将淀粉水解可得不同链长的葡萄糖单元的聚合物溶液,然后过滤、浓缩、干燥即得麦芽糖糊精;2.性质为无甜味、无臭的白色粉末或颗粒;易溶于水,微溶于乙醇;若其葡萄糖当量提高,则吸湿性、可压性、溶解度、甜度也随之提高,黏度下降;四、羧甲基淀粉钠1.结构为聚α-葡萄糖的羧甲基醚2.性质为白色至类白色自由流动的粉末,能分散于水,形成凝胶,醇中溶解度约2%,不溶于其它有机溶剂,有较大的吸湿性3.应用羧甲淀粉钠作为胶囊剂和片剂的崩解剂广泛应用于口服药物制剂中,在湿法制粒时,将羧甲淀粉钠加入颗粒内部,其润湿时起黏合剂的作用,而在颗粒干燥后又能起崩解剂的作用;是某些口崩片的理想辅料;也可用作助悬剂;五、纤维素1.来源纤维素存在于一切植物中,是构成植物细胞壁的基础物质;2.结构结构单元是D-吡喃葡萄糖基,相互间以-1,4-苷键连接,分子式为C6H10O5n;3.性质1化学反应性纤维素的氧化、酯化、醚化、分子间形成氢键、吸水、溶胀以及接枝共聚等都与纤维素分子中存在大量羟基有关;2氢键的作用纤维素结晶区和无定形区的羟基,基本上是以氢键形式存在3吸湿性纤维素吸水后,再干燥的失水量,与环境的相对湿度有关,纤维素在经历不同湿度的环境后,其平衡含水量的变化,存在滞后现象,即吸附时的吸着量低于解吸时的吸着量; 4溶胀性纤维素的有限溶胀可分为结晶区间溶胀和结晶区内溶胀;纤维素溶胀能力的大小取决于碱金属离子水化度,纤维素的溶胀是放热反应,温度降低,溶胀作用增加;对同一种碱液并在同一温度下,纤维素的溶胀随其浓度而增加,至某一浓度,溶胀程度达最高值;5机械降解特性机械降解后的纤维素比氧化、水解或热降解的纤维素具有更大的反应能力;6可水解性纤维素大分子的背键对酸的稳定性很低,在酸碱度、温度适合的条件下,能产生水解降解,酸是催化剂,可降低贰键破裂的活化能,增加水解速度;纤维素对碱在一般情况下是比较稳定的,但在高温下,纤维素也产生碱性水解;六、粉状纤维素1.制法将植物纤维材料纤维浆,用%NaOH溶液在20℃处理,不溶解的部分中包括纤维浆中的纤维素和抗碱的半纤维素,用转鼓式干燥器制成片状,再经机械粉碎即得粉状纤维素;2.性质呈白色,无臭,无味,具有纤维素的通性,不同细度的粉末的流动性和堆密度不一,具有一定的可压性,流动性较差;3.应用可用于片剂的稀释剂,硬胶囊或散剂的填充剂;在软胶囊中可用于降低油性悬浮性内容物的稳定剂,以减轻其沉降作用,也可作口服混悬剂的助悬剂;用作片剂干性粘合剂的浓度为5%;-20%,崩解剂浓度为5%-15%,助流剂浓度为1%-2%,不得用作注射剂或吸入剂辅料;在食品工业中可作为无热量食品的添加剂;七、微晶纤维素1.制法将结晶度高的纤维经强酸水解除去其中的无定形部分,所得聚合度约为220,相对分子质量约为36000的结晶性纤维即为微晶纤维素;胶态微晶纤维素:纤维素+亲水性分散剂2.性质白色、无臭、无味,多孔、易流动粉末,不溶于水、稀酸、氢氧化钠液和一般有机溶剂;可压性:具有高度变形性,极具可压性;吸附性:为多孔性微细粉末,可以吸附其他物质如水、油和药物等;分散性:微晶纤维素在水中经匀质器作用,易于分散生成妈油般的凝胶体;反应性能:在稀碱液中少部分溶解,大部分膨化,表现出较高的反应性能;3.应用微晶纤维素PH型广泛用作口服片剂及胶囊剂的稀释剂、吸附剂、崩解剂、抗粘附剂;此外也可作为倍散的稀释剂和丸剂的赋形剂;微晶纤维素RC型作为胶体分散系主要用于干糖浆、混悬剂,有时也作为水包油乳剂和乳膏的稳定剂;微晶纤维素球形颗粒,为具有高圆度和机械强度的球形细粒剂,可作为包衣型缓释制剂、苦味掩盖制剂的核芯,微晶纤维素AvicelPH-300系列具有快速崩解性、较好的流动性、可减小片重差异等优点;Avice KG-801可以提高片剂硬度、降低磨损性、少量添加适于在低压力下压片等优点;纤维素衍生物具有以下性质:具有玻璃化转变温度、溶度参数和表面能、物理配伍相容性、溶胀性、吸湿性、黏度、生物黏附性、热凝胶化和昙点、液晶的形成;八、醋酸纤维素。
《功能高分子材料》知识清单
《功能高分子材料》知识清单一、什么是功能高分子材料功能高分子材料是指那些具有特定的功能作用,如电学、光学、磁学、生物学等性能,且这些性能显著超出了传统高分子材料范畴的一类高分子材料。
它们不仅具备高分子材料的基本特性,如重量轻、耐腐蚀、易加工等,还因其特殊的功能而在众多领域发挥着关键作用。
二、常见的功能高分子材料及其特点1、导电高分子材料导电高分子材料通常具有共轭结构,能通过掺杂等方式提高其电导率。
常见的如聚苯胺、聚吡咯和聚噻吩等。
它们在电子器件、防静电材料、电磁屏蔽等方面有着广泛的应用。
这类材料的特点是电导率可调控,能在一定范围内根据需求进行改变。
2、高分子分离膜具有选择性透过功能,能让某些物质通过而阻止其他物质。
例如反渗透膜、超滤膜等。
其特点是分离效率高、能耗低、操作简便。
在海水淡化、污水处理、食品加工等领域大显身手。
3、高分子吸附剂对特定的物质有较强的吸附能力,如离子交换树脂。
它可以有效地去除溶液中的离子或分子。
特点是吸附容量大、选择性好、可再生使用。
常用于废水处理、药物分离等。
4、生物医用高分子材料这类材料与生物体相容性好,包括人工器官材料(如心脏起搏器的外壳)、药物载体等。
其突出特点是无毒、无刺激性,能在体内稳定存在并发挥作用。
5、感光高分子材料在光的作用下能发生化学或物理变化,如光刻胶。
常用于印刷制版、集成电路制造等。
具有感光度高、分辨率好等特点。
三、功能高分子材料的制备方法1、分子设计从分子水平上设计具有特定功能基团和结构的高分子。
这需要对高分子的化学结构和性能之间的关系有深入的理解。
2、共聚与共混通过共聚将不同性能的单体结合在一起,或者通过共混将不同的高分子材料混合,以获得具有综合性能的功能高分子。
3、接枝与交联在高分子主链上接枝特定的功能侧链,或者通过交联提高高分子的性能和稳定性。
4、掺杂对某些高分子进行掺杂,改变其电子结构和导电性能。
四、功能高分子材料的性能测试1、电学性能测试包括电导率、介电常数、击穿电压等的测定,以评估其导电和绝缘性能。
高一有机高分子材料知识点
高一有机高分子材料知识点有机高分子材料是高一化学课程中的重要内容之一。
本文将从定义、分类、性质和应用等方面介绍有机高分子材料的知识点。
一、定义有机高分子材料是由碳、氢和其他元素(如氮、氧、硫等)组成的大分子化合物。
其分子量通常很大,可以达到数万甚至几百万。
二、分类有机高分子材料可以按照形状、结构和合成方法等不同的角度进行分类。
1. 形状分类有机高分子材料根据形状可以分为线性高分子、支化高分子和网络高分子。
线性高分子是由线性排列的单体重复单元组成;支化高分子在线性结构的基础上引入支链,增加了分子间的交联点;网络高分子是由三维交联结构构成,具有更高的机械强度。
2. 结构分类有机高分子材料可以根据其结构特点分为聚合物、共聚物和聚合物共混物等。
聚合物是由同种单体组成的,例如聚乙烯、聚丙烯等;共聚物由两种或多种不同的单体共同聚合而成,例如丙烯酸-丙烯腈共聚物;聚合物共混物是由两种或多种不同聚合物混合而成,例如聚苯乙烯与聚苯乙烯均聚物的共混物。
3. 合成方法分类有机高分子材料的合成方法多种多样,常见的有聚合反应、缩聚反应和交联反应等。
聚合反应是指通过将单体分子进行化学反应,使其相互连接形成高分子链。
缩聚反应是将两个或以上的小分子通过化学反应互相连接。
交联反应是指通过化学反应或物理交联手段,使高分子链之间产生交联,增加材料的稳定性和机械强度。
三、性质有机高分子材料的性质取决于其分子结构和合成方法等因素。
1. 物理性质有机高分子材料通常是非晶态或有序部分结晶态的。
其物理性质包括密度、硬度、弹性、熔点、玻璃化转变温度等。
不同的有机高分子材料具有不同的物理性质,如聚乙烯具有良好的韧性和柔软性,而聚苯乙烯则具有较高的硬度和脆性。
2. 化学性质有机高分子材料的化学性质表现为与其他物质的反应。
例如,聚氯乙烯在高温下可与溴发生取代反应,聚丙烯可以与氧气发生氧化反应,聚酯可以与醇类发生酯交换反应等。
四、应用有机高分子材料在生活和工业中有广泛的应用。
高分子知识点
什么是高分子?答:由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物,叫高分子化合物。
什么是聚合物的柔顺性?聚合物为什么具有柔顺性?影响聚合物柔顺性的因素有哪些?答:高分子链能够改变其构象的性质称为柔顺性。
高分子由于分子量大,分子链中能够内旋转的化学键众多,内旋转使其具有大量不同卷曲程度的构象状态,因而有良好的柔顺性。
影响因素有主链结构、侧链基结构、侧基极性的强弱、链的长短、分子间作用力、分子链规整度、分子量大小、支化、交联。
什么是液晶?液晶具有什么性质?聚合物都可以形成液晶吗?答:液晶是某些物质在熔融态或在溶液状态下所形成的有序流体的总称。
液晶具有高弹性、粘滞性、流变性。
不可以,形成液晶的物质通常具有液晶基元。
什么是聚合物的力学三态?对应的特征温度是什么?聚合物的力学三态有什么特点?交联聚合物有粘流态吗?答:聚合物的力学三态是玻璃态、高弹态和黏流态。
玻璃态和高弹态之间的转变温度称为玻璃化转变温度,高弹态和黏流态之间的转变温度称为黏流温度。
玻璃态链段运动被冻结,形变小,可逆,模量高;高弹态链段运动被激活,形变大,可逆,模量低;黏流态分子整链运动被激活,形变很大且不可逆,模量很小,处于粘性流动状态。
交联聚合物没有粘流态,原因如下:1.高分子流动是通过链段的位移运动来完成的。
2.小分子流动“孔穴”理论液体流动模型:低分子液体中存在着许多与分子尺寸相当的孔穴。
当没有外力存在时,靠分子的热运动,孔穴周围的分子向孔穴跃迁的几率是相等的,孔穴与分子不断交换位置即产生分子扩散运动。
外力存在使分子沿作用力方向跃迁的几率比其他方向大。
分子向前跃迁后,分子原来占有的位置成了新的孔穴,可让后面的分子向前跃迁。
分子在外力方向上的从优跃迁,使分子通过分子间的孔穴相继向某—方向移动,形成液体的宏观流动现象。
当温度升高,分于热运动能量增加,液体中的孔穴也随着增加和膨胀,使流动的阻力减少。
什么是形变~温度曲线?答:在一定的力学负荷下,高分子材料的形变量与温度的关系成为高聚物的温度-形变曲线。
高分子的基本知识
4、对于高分子的强度等物性,存在着一个临界分子量M0, 超过这个分子量时开始出现强度。当分子量超过MS时强度达 到一定值。
物 性
M0 分子量 分子量与物性的关系图
Ms
H-(CH2)n-H的分子量与性质
n
分子量
性质
名称
用途
1
16
气体
甲烷燃气Biblioteka 6 ~886~114
易挥发液体
石脑油、石油英、 粗汽油
溶剂
18~22
254~310
半固体/油脂状
凡士林
医药、化妆品
20~30
282~422
固体
石蜡
蜡烛等制品
2000~20000
28000~280000
强韧的固体
聚乙烯
薄膜等
第一章 高分子材料概论
第三节 高分子的基本知识
高分子与低分子的区别在于前者分子量很高,通常:
1、分子量高于约10000的称为高分子(polymer); 2、分子量低于约1000的称为低分子;
3、分子量介于两者之间的称为低聚物(oligomer,又称齐聚物)。
4、一般高聚物的分子量为10000~1000000,分子量大于这个范 围的又称为超高分子量聚合物。
5、一般高分子又可称为大分子、聚合物、高聚物等。
Polymer~~聚合物、高聚物
Macromolecule~~大分子、高分子。
低分子
高分子
n CH 2=CH2
n为聚合度
-(CH 2-CH2)-n
1、高分子是有机化合物。 2、分子量高所带来的性质上的变化,主要是使高分子化合 物具有一定的机械强度。这样,高分子化合物就不同于一般 有机化合物,而可以作为材料使用。 3、人们还可以根据高分子的结构特征,利用各种手段,改 变这些结构,以制造出所需性能的产品;还可以引入具有功 能性的基团,制造出有功能的材料。
第一章 高分子材料基础知识
第一章高分子材料基础知识第一节.高分子材料的基本概念一、高分子材料的结构1.高分子的含义:高分子材料是以高分子化合物为主要成分(适当加入添加剂)的材料。
高分子化合物:1.天然:松香、石蜡、淀粉2.合成:塑料、合成橡胶、合成纤维高分子化合物都是一种或几种简单低分子化合物集合而成为分子量很大的化合物,又称为高聚物或聚合物。
通常分子量>5000 高分子材料没有严格界限<500 低分子材料如:同为1000的多糖(低),石蜡(高)一般高分子化合物具有较好的弹性、塑性及强度二、高分子化合物的组成:高分子化合物虽然分子量很大,但化学组成比较简单。
都是由一种或几种简单的低分子化合物聚合而成。
即是由简单的结构单元以重方式相连接。
例:聚乙烯由乙烯聚合而成{ }概念:单体——组成高分子化合物的低分子化合物链节——大分子链由许许多多结构相同的基本单元重复连接构成,组成大分子链的这种结构单元称为链节。
聚合度——链节的重复次数。
n↑导致机械强度↑熔融粘度↑流动性差,不利于成型加工。
n要严格控制。
三、高分子的合成:加聚反应、缩聚反应①加聚反应:指一种或几种单体,打开双键以共价键相互结合成大分子的一种反应例如:乙烯→聚乙烯(均聚)②分类:均聚:同种单体聚合共聚:两种或两种以上单体聚合(非金属合金丁二烯+苯乙烯→丁苯橡胶二元共聚三元共聚ABS:丙烯脂:耐腐蚀表面致密丁二烯:呈橡胶韧性苯乙烯:热塑加工)特点:反应进行很快链节的化学结构和单体的相同反应中没有小分子副产物生成②缩聚反应:指一种或几种单体相互混合儿连接成聚合物,同时析出(缩去)某种低分子物质的反应。
例:尼龙(聚酰胺)氨基酸,缩去一个水分子聚合而成。
特点:由若干步聚合反应构成,逐步进行。
链节化学结构与单体不完全相同,反应中有小分子副产物生成。
总结:目前80%的高分子材料由加聚反应得到。
四、聚合物的分类与命名①按聚合物分子的结构分类a.碳链聚合物:这一类聚合物分子主链是由碳原子一种元素所组成{ }侧基有多种,主要是聚烯烃、聚二烯烃(橡胶)b. 条链聚合物,器结构特点是除碳原子外,还有氧、氮、硫原子。
功能高分子材料知识点
第一章1.什么是材料的功能,什么是材料的性能,举例说明。
第1页材料的功能,从本质上来说是向材料输入某种能量和信息,经过材料的储存、传输或转换等过程,再向外输出的一种特性。
如化学性、导电性、磁性、光敏性、生物活性等。
材料的性能是指材料对外部作用的表征与抵抗的特性,如对外里的抵抗表现为强度、模量,对热的抵抗表现为耐热性,对光、电、化学药品的抵抗表现为材料的耐光性、绝缘性、耐化学药品性等。
2.功能高分子材料的制备方法以及各自的特点。
第4页方法:(1)功能性小分子的高分子化,高分子化学反应引入预期的功能基团。
功能性小分子的高分子化主要优点在于可以使生成的功能高分子功能基团分布均匀,生成的聚合物结构可以通过小分子分析和聚合机理加以预测,产物的稳定性高,但这种方法需在功能性小分子中引入可聚单体,从而使反应较为复杂,同时在反应中反应条件对功能基团会产生一定的影响,需对功能集团加以保护,使材料的成本增加。
例如,高吸水性树脂可以通过将亲水性基团的丙烯酸钠进行自由基聚合实现。
利用高分子化学反应制备功能高分子的主要优点在于合成或天然高分子骨架是现成的,可选择的高分子母体多,来源广,价格低廉。
但是在进行高分子化学反应时,反应不可能100%完成,尤其是在多不得高分子化学反应中,制的的产物中含有未反应的官能团,即功能集团较少,功能基团在分子链上的分布也不均匀。
例如聚苯乙烯、尼龙、淀粉都可以作为高分子母体。
(2)通过特殊加工赋予高分子的功能特性。
许多聚合物通过特定的加工方法和加工工艺,可以较精确地控制其聚集状态结构及宏观状态,从而使之体现出一定的功能性。
例如,许多塑料可以经过适当的制膜工艺,制成具有分离功能的多孔膜和致密膜。
(3)通过普通聚合物与功能材料的复合,制成复合型功能高分子材料。
这种制备方法简便快速,不受场地和设备限制,不受聚合物和功能性化合物官能团反应活性的影响,适用范围宽,功能基团的分布较均匀。
但其共混体不稳定,在使用条件下(如溶胀、成膜等)功能聚合物易由于功能小分子的流失而逐步失去活性,如固定化酶。
(完整版)高分子材料基础知识
名词解释:1. 通用型热塑性塑料:是指综合性能好,力学性能一般,产量大,适用范围广泛,价格低廉的一类树脂。
2. 通用型热固性塑料:为树脂在加工过程中发生化学变化,分子结构从加工前的线型结构转变成为体型结构,再加热后也不会软化流动的一类聚合物。
3. 聚乙烯相对分子量的大小常用熔体流动速率(MFR )来表示。
4. 共混改性是指两种或两种以上聚合物材料以及助剂在一定温度下进行掺混,最终形成一种宏观上均与且力学,热学,光学以及其它性能得到改善的新材料的过程。
5. 茂金属聚苯乙烯:为在茂金属催化剂作用下合成的间同结构聚苯乙烯树脂,它的苯环交替排列在大分子链的两侧。
6. 通常把使用量大、长期使用温度在100~150℃、可作为结构材料7. 使用的塑料材料称为通甩工程塑料,而将使用量较小、价格高、长期使用温度在150℃以上的塑料材料特种工程塑料。
8. 聚酰胺(PA):俗称尼龙,是指分子主链上含有酰胺基团的高分子化合物。
聚酰胺可以由二元胺和二元酸通过缩聚反应制得,也可由w-氨基酸或内酰胺自聚而得。
聚酰胺的命名是二元胺和二元酸的碳原子数来决定的。
9. 单体浇注聚酰胺(MC 聚酰胺),是以氢氧化钠为主催化剂、将聚酰胺6 单体直接浇注到模具内进行聚合并制成制品。
制备的主要特点有:①只要简单的模具就能铸造各种大型机械零件。
②工艺设备及模具都很简单,容易掌握。
③MC 聚酰胺的各项物理机械性能,比一般聚酰胺优越。
④可以浇注成各种型材,并经切削加工成所需要的零件,因此适合多品种,小批量产品的试制。
10. RIM 聚酰胺:是将具有高反应活性的原料在高压下瞬间反应,再注入密封的模具中成型的一种液体注射成型的方法。
11. 共聚甲醛:是以三聚甲醛为原料,与二氧五环作用,在以三氟化硼-乙醚络合物为催化剂的情况下共聚,再经后处理出去大分子链两端不稳定部分而成的。
12. 均聚甲醛:是以三聚甲醛为原料,以三氟化硼-乙醚络合物为催化剂,在石油醚中聚合,再经端基封闭而得到的。
高分子材料的基本知识
高分子材料的基本知识
高分子材料是由高分子化合物组成的一类材料,其基本知识包括以下几个方面:
1. 高分子化合物的定义:高分子化合物是由许多重复单元通过共价键连接而成的聚合物,其相对分子质量通常很高,一般在10000以上。
2. 高分子材料的分类:高分子材料可以根据来源、特性和应用功能进行分类。
按来源分类可分为天然高分子材料和合成高分子材料,按特性分类可分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等,按应用功能分类可分为通用高分子材料、特种高分子材料和功能高分子材料。
3. 高分子材料的性能:高分子材料具有许多优良的性能,如较高的力学性能、良好的化学稳定性、优良的电绝缘性能和耐热性等。
这些性能使得高分子材料在许多领域都有着广泛的应用。
4. 高分子材料的合成与加工:高分子材料的合成通常是通过化学反应将小分子聚合在一起形成的。
在合成过程中,需要选择合适的单体、催化剂、反应条件等,以确保获得的高分子材料具有所需的性能。
高分子材料的加工通常是在高温下进行的,通过热塑或热固的方式将高分子材料制成各种制品。
5. 高分子材料的应用:高分子材料在日常生活和工业生产中都有着广泛的应用。
例如,塑料、橡胶、纤维等高分子材料在汽车、建筑、航空航天、电子
电器、包装等领域都有着广泛的应用。
此外,高分子材料还在医疗、生物工程、环保等领域有着重要的应用。
总的来说,高分子材料的基本知识包括高分子化合物的定义、分类、性能、合成与加工以及应用等方面。
了解这些基本知识可以帮助我们更好地认识高分子材料的性质和用途,并在日常生活和工业生产中更好地应用这些材料。
高分子化学知识要点
高分子化学知识要点一、高分子的基本概念高分子化合物,简称高分子,是指那些由众多原子或原子团主要以共价键结合而成的相对分子质量在一万以上的化合物。
生活中常见的高分子材料有塑料、橡胶、纤维等。
高分子与小分子化合物相比,具有独特的性能。
例如,高分子材料通常具有较好的韧性、弹性和机械强度。
这是因为高分子的长链结构能够有效地分散和承受外力。
高分子的相对分子质量是一个重要的参数。
它不是一个确定的值,而是具有一定的分布范围。
这是由于聚合反应过程中的随机性导致的。
相对分子质量的大小和分布会显著影响高分子材料的性能。
二、高分子化合物的分类高分子化合物的分类方法有多种。
按照来源,可分为天然高分子和合成高分子。
天然高分子如纤维素、蛋白质等,是自然界中原本就存在的;合成高分子则是通过人工化学反应合成的,如聚乙烯、聚苯乙烯等。
根据高分子主链的结构,又可分为碳链高分子、杂链高分子和元素有机高分子。
碳链高分子的主链全部由碳原子组成,像聚乙烯、聚丙烯就属于此类;杂链高分子的主链除了碳原子,还含有氧、氮、硫等杂原子,如聚酯、聚酰胺;元素有机高分子的主链中不含碳原子,而是由硅、磷、铝等元素组成,不过侧基一般是有机基团。
另外,还可以根据用途将高分子分为塑料、橡胶、纤维、涂料、胶粘剂等。
不同类型的高分子在性能和应用方面有着很大的差异。
三、高分子的合成方法高分子的合成方法主要包括加聚反应和缩聚反应。
加聚反应是指由不饱和单体通过加成反应相互结合形成高分子的过程。
在这个过程中,没有小分子副产物生成。
例如,乙烯在引发剂的作用下发生加聚反应生成聚乙烯。
缩聚反应则是由具有两个或两个以上官能团的单体,通过官能团之间的缩合反应逐步形成高分子,同时会产生小分子副产物,如水、醇、氨等。
聚酯的合成就是一个典型的缩聚反应。
此外,还有开环聚合、逐步加成聚合等合成方法。
开环聚合是指环状单体通过开环形成线性高分子的反应;逐步加成聚合则是通过逐步的加成反应形成高分子。
高考化学有机高分子知识点
高考化学有机高分子知识点一、高分子的概念和分类高分子是由许多较简单的分子单元通过共价键相互连接而成的大分子化合物。
高分子可以分为天然高分子和合成高分子两大类。
天然高分子包括蛋白质、纤维素等,而合成高分子则是通过人工合成得到的聚合物,如聚乙烯、聚氨酯等。
二、聚合反应和聚合物聚合反应是指在特定的条件下,将单体分子通过共价键相连形成聚合物的过程。
聚合反应可以分为缩聚和加聚两种类型。
缩聚是指两个或更多的单体分子通过形成共价键而合成出长链聚合物,如酯的缩聚反应。
加聚是指通过单体中碳原子上的双键或三键将多个单体分子连接起来,形成线型聚合物,如乙烯的加聚反应。
三、高分子的结构和性质高分子的结构可以分为线型、支化、网络和交联结构等。
线型结构的高分子比较柔软,易于加工和改性;支化结构的高分子含有分支链,使其分子量增加,从而提高其机械强度和热稳定性;网络结构高分子的分子链相互交织形成网状结构,具有较高的强度和硬度;而交联结构高分子的分子链通过交联点连接,形成三维网络结构,具有较好的弹性和耐热性。
高分子的性质包括物理性质和化学性质两个方面。
物理性质主要涉及熔点、熔融温度、硬度、韧性等,具体取决于高分子的结构;而化学性质则涉及与其他物质的相互作用,例如与溶剂的溶解性、与氧气的氧化性等。
四、合成高分子材料的方法合成高分子材料的方法有很多种,其中常用的有聚合、交联和共聚等。
聚合是通过聚合反应将单体转化为聚合物;交联是将线型聚合物通过交联反应形成具有网络结构的高分子材料;共聚是指在聚合反应中同时使用两个或更多的单体,形成包含多种单体的高分子材料。
五、高分子的应用领域高分子广泛应用于各个领域,如塑料制品、药物载体、纺织品、涂料、电子材料等。
塑料制品是高分子应用最广泛的领域之一,例如聚乙烯、聚丙烯等塑料制品在日常生活中随处可见。
药物载体是指利用高分子材料作为药物的载体,将药物包裹在高分子材料中,以提高其稳定性和控释性。
纺织品广泛使用聚酯纤维等高分子材料制成,具有良好的抗皱性和耐磨损性。
医用高分子材料基础知识
医用高分子材料基础知识一、医用高分子材料的分类合成高分子材料:合成高分子材料是指通过化学反应合成的材料,常见的有聚合物类和聚合物复合材料。
聚合物类包括聚丙烯、聚乙烯、聚酯等,聚合物复合材料则是指在聚合物基础上加入其他物质,如纤维素纤维增强聚合物复合材料。
天然高分子材料:天然高分子材料是指存在于自然界中的高分子材料,常见的有蛋白质、多糖、天然橡胶等。
例如胶原蛋白是人体内最主要的组织结构蛋白,常用于制备生物材料。
二、医用高分子材料的特性1.生物相容性:医用高分子材料必须具有良好的生物相容性,不会引起机体的排斥反应和免疫反应。
2.可加工性:医用高分子材料具有良好的加工性能,可以通过注塑、挤出、吹塑、热压等工艺制备成各种形状和尺寸的产品。
3.生物降解性:一些医用高分子材料具有生物降解性,可以在体内被生物酶或细胞降解,从而减少二次手术。
4.力学性能:医用高分子材料需要满足不同应用领域的力学性能要求,如抗拉强度、伸长率、弹性模量等。
5.导电性:一些医用高分子材料需要具备导电性能,可以用于制作生物传感器和电刺激设备等。
三、医用高分子材料的应用领域1.医疗器械:医用高分子材料广泛应用于医疗器械的制造,如导管、输液管、手术器械等。
2.医用敷料:医用高分子材料可以制备成不同形状和尺寸的敷料,对于伤口的修复和保护具有重要作用。
3.组织工程与再生医学:医用高分子材料可以用于组织工程的材料支架和载体,也可以与干细胞结合用于组织再生医学。
4.药物缓释系统:医用高分子材料可以用于制备药物缓释系统,控制药物的释放速率和时间,提高药物的疗效和稳定性。
5.人工器官:医用高分子材料可以用于制作人工心脏瓣膜、血液透析器、人工血管等人工器官。
总之,医用高分子材料在医学领域中具有广泛的应用前景,具备良好的生物相容性、可加工性、生物降解性、力学性能和导电性能等特性。
随着技术的不断发展,医用高分子材料将为医学诊疗和治疗带来更多创新和进步。
高分子材料知识
⑶ 塑料的性能特点 塑料的优点: 相对密度小(一般为0.9-2.3);耐蚀性、电绝缘性、减
摩、耐磨性好;有消音吸振性能 。 塑料的缺点: 刚性差(为钢铁材料的1/100-1/10),强度低;耐热性
差、热膨胀系数大(是钢铁的10倍)、导热系数小(只 有金属的1/200-1/600);蠕变温度低、易老化。
174℃。用于机械设备等工业。 聚苯醚具有良好的综合性能,用于机电等方面。 聚酰亚胺在260℃下可长期使用。主要用于特殊条件下
使用的精密零件。
⑤热固性塑料 热固性塑料是在树脂中加入固化剂压制成型而形成的
体形聚合物。
酚醛塑料是以酚醛树脂为基,加入填料及其他添加剂 而制成。广泛用于制作各种电讯器材和电木制品(如 插座、开关等),一、高分子材料的基本概念
高分子材料是以高分子化合物为主要组分的材料。常称聚 合物或高聚物。 高分子化合物的分子量一般>104 。 高分子化合物有天然的,也有人工合成的。工业用高分子 材料主要是人工合成的。
二、高分子材料的分类 ⑴ 按用途分塑料、橡胶、纤维、胶粘
体型高聚物的力学状态与交联点的密度 有关。密度小,链段仍可运动,具有高 弹态。密度大,链段不能运动。高聚物 变得硬而脆。
线型晶态高聚物的温度变形曲线
第二节 常用高分子工程材 料
高分子工程材料包括塑料、合成纤维、橡胶和胶 粘剂等。
一、工程塑料
塑料是在玻璃态下使用的高分子材料。在一定温 度、压力下可塑制成型,在常温下能保持其形状 不变。
发生大分子原子的微量位移,产生少量弹性变形。
高聚物呈玻璃态的 最高温度称玻璃化 温 度 , 用 Tg 表 示 。 用于这种状态的材 料有塑料和纤维。
第一章高分子材料的基础知识
2、大分子链的立体构型(同分异构)
构型:是指分子链中由化学键所固定的原子在空间的几何排 列。这种排列是化学稳定的,要改变分子构型必须经过化学 键的断裂和重建。
由构型不同而形成的异构体有两类: ①旋光异构体
②几何异构体
①旋光异构体
正四面体的中心原子(如C、Si、P、N)上四个取代 基或原子如果是不对称的,则可能产生异构体。 结构单元为—CH2C*HR—的高分子,每一链节有两种旋 光异构体。假如高分子全部由一种旋光异构体单元组成,称 为全同立构;由两种旋光异构体交替间接,称为间同立构; 两种旋光异构体完全无规键接时,称为无规立构。 立体异构体之间的性能差别很大。例如:全同立构聚苯 乙烯能结晶,熔点240 ℃,而无规立构聚苯乙烯不能结晶, 软化点仅为80 ℃。 全同立构和间同立构聚合物统称为“等规聚合物”
CH O O ( Si C CH O) n
O ( CH )
O
C ( CH )
聚酯涂料
有机硅橡胶
√主链含有芳杂环时,内旋转难,链柔性差
CH3 O C CH3 O
O C
聚苯 聚碳酸酯PC
√主链中含有孤立C=C双键时,链柔顺性好, 如:聚丁二烯等橡胶
-CH2-CH=CH-CH2-CH=CH-CH2-
√主链中含有共轭双键时,则只有刚性无柔性,如:聚乙炔
只有当化合物的分子量达到一定数值,产生了量变到质变的飞跃, 即在物理、机械等性能具有与低分子化合物有较大差别时,才能称 为高分子化合物,方可作为高分子材料在工程上应用。
高分子化合物分子量的分散性
高分子化合物及大多数天然高分子化合物则是各种长度不同、分子量 不同、化学组成相同的同系高分子混合物,即高分子化合物总是由不 同大小的分子组成。这一现象称为高分子化合物分子量的多分散性。
《高分子材料》课件
广泛应用于航空航天、汽车、 运动器材等领域
高分子材料的环保问题
1 可持续发展
高分子材料能够实现可持 续发展,目前已经研究出 很多再生材料,如可降解 高分子材料。
2 回收利用
高分子材料的回收利用率 较低,仅有少数材料能够 回收利用。
3 环境影响
一些高分子材料会对环境 造成一定的影响,因此需 要注意环保问题。
应用
广泛应用于包装、电子、家电、航空航天、建筑、医疗及生活用品等领域。
高分子材料的分类和特点
塑料
塑料是高分子材料的一类,具有 轻质、廉价、易成型等特点,广 泛应用于日常生活中的各个领域。
合成树脂
合成树脂是一种广泛应用的高分 子材料,具有高强度、防腐蚀等 特点,广泛应用于制造建筑材料、 船舶配件等领域。
高分子材料的未来发展趋势
生物材料
智能材料
生物材料是未来高分子材料的重 要方向,具有良好的生物相容性、 组织可再生等特点。
智能材料具有自我修复、智能感 应等特点,将应用于传感器、信 息储存等领域。
3 D打印技术
3D打印技术将改变传统生产模式, 未来高分子材料的生产方式将更 加灵活高效。
总结和展望
高分子材料作为一种极富前途的材料,在科技进步与环保意识不断提高的背 景下,将会有越来越广泛的应用。我们期待着它们在未来更广泛、更深入的 领域中的重要作用。
通用高分子材料PPT课件
本课程将全面介绍通用高分子材料的分类、特点及广泛应用,帮助您了解更 多关于这一领域的知识。
什么是高分子材料?
定义
高分子是由大量重复单元(称为聚合物)组成的大分子化合物,具有综合性能优异、加工性 好等特点。
第1节 高分子材料概述
第一章塑胶材料知识第一节高分子材料概述高分子材料是由一种或多种简单低分子化合物(单体)聚合而成的聚合物(或高聚物)。
顾名思义,“高分子”是指材料的分子量很大,通常几万到数百万。
高分子材料虽然分子量很大,但组成并不复杂,主要是由C、H、O、N、P、S等原子以共价键方式组成的大分子链。
按其主链所包含原子的种类,可分为:①碳链高分子化合物,主链全部为碳原子,如聚乙烯烃、聚四氟乙烯等。
②杂链高分子化合物,主链除碳原子外,还可有O、N、P、S等元素,如聚酯、聚醚、聚酰胺等。
③元素有机聚合物,主链是由Si、Ti、Al、B等原子和O原子构成,侧基一般为有机基团,如有机硅树脂、有机硅橡胶等。
用来合成聚合物的原料称之为单体,是一些稳定存在的、简单的低分子化合物,如聚乙烯(PE)是由许多乙烯分子(CH2=CH2)合成的,聚氯乙烯(PVC)是由氯乙烯分子(CH2=CHCl)合成的。
高分子材料有许多金属和陶瓷材料不具备的优点,如原料丰富、成本低廉,它们大多可以从石油、天然气或煤中提取;密度小;化学稳定性好,一般对酸、碱和有机溶剂均有良好的抗蚀性能;有良好的电绝缘性能;有优良的耐磨、减摩和自润滑性;能吸振和减小噪声;优良的光学性能等。
一、高分子材料的合成反应:由单体聚合形成高分子化合物的反应称为聚合反应,可以分为加聚反应和缩聚反应二类。
1.1 加聚反应:加聚反应是指由一种或多种单体相互加成而连接成聚合物的反应。
让我们以乙烯形成聚乙烯为例来说明。
加聚反应开始是有条件的,如加压、升温或添加引发剂。
如添加H2O2就可以使乙烯单体中碳、碳原子间双键破坏,形成链节。
一旦反应开始就会自发进行下去,这是由于链节聚合放出的能量大于破坏双键所需能量。
当单体的供应耗竭时,或链的活性消失,如一个活性链端吸引了一个引发基,反应就会终止。
可以通过控制引发剂的数量来控制链的长度,引发剂添加少,链就会长得较长。
加聚反应可以是用一种单体,也可以用几种不同的单体。
高分子基本知识
环保型高分子材料开发
低毒、低污染
开发低毒、低污染的高分子材料,减少对环境和 人体的危害。
节能、低碳
采用节能、低碳的生产工艺和技术,降低高分子 材料的生产能耗和碳排放。
资源化利用
利用可再生资源和废弃物制备高分子材料,实现 资源的循环利用。
高分子材料循环利用技术
物理回收
通过物理方法(如熔融、溶解、 研磨等)对废旧高分子材料进行 回收和再利用。
。
热塑性
部分高分子材料在加热后可塑 化,冷却后固化。
热固性
部分高分子材料在加热和加压 下发生化学反应,形成不溶不
熔的固化物。
高分子化学性质
官能团反应
高分子链上的官能团可与其他 物质发生化学反应,如酯化、
酰胺化等。
降解反应
高分子链在特定条件下可发生 断裂,形成低分子量化合物。
交联反应
通过化学键将高分子链互相连 接起来,提高材料的力学性能 和耐热性。
高分子基本知识
目录
• 高分子概述 • 高分子结构与性质 • 高分子合成与制备方法 • 高分子表征与测试技术 • 高分子材料分类与应用领域 • 高分子发展趋势与挑战
01 高分子概述
高分子定义与特点
高分子定义
高分子化合物是指相对分子质量高达 几千到几百万的化合物,通常由许多 相同的、简单的结构单元通过共价键 重复连接而成。
生物可降解高分子材料研究
天然高分子材料
利用天然高分子材料(如淀粉、纤维素、壳 聚糖等)进行改性和加工,制备出可生物降 解的高分子材料。
合成生物降解高分子材料
通过合成方法制备出具有生物降解性的高分子材料, 如聚乳酸、聚ε-己内酯等。
生物降解性能评价
研究生物降解高分子材料的降解机理、降解 速率和降解产物等,为其应用提供理论支持 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章高分子聚集态结构一、基本概念:1、内聚能、内聚能密度2、晶体;单晶;多晶;非晶;准晶3、纤维状晶体;伸直链晶体;串晶4、折叠链晶片;球晶;黑十字消光现象5、晶体缺陷;结晶度6、取向;取向度(取向因子)7、液晶8、相容性;高分子合金;织态结构9、长程有序;短程有序;晶胞;空间点阵10、微观相分离11、淬火;退火12、增塑作用;内增塑;外增塑13、活性填料;惰性填料;HIPS;复合材料;增强材料二、选择题1、下列四种聚合物中,内聚能密度最大的为()。
A、聚丙烯,B、聚异丁烯,C、聚丁二烯,D、聚氯乙烯2、关于聚合物球晶描述错误的是()。
A、球晶是聚合结晶的一种常见的结晶形态。
B、当从浓溶液析出或由熔体冷结晶时,在存在应力或流动的情况下形成球晶。
C、球晶外形呈圆球形,直径0.5~100微米数量级。
D、球晶在正交偏光显微镜下可呈现特有的黑十字消光图像和消光同心环现象。
3、若聚合度增加一倍,则自由连接链的均方末端距变为原值的()倍。
A、0.5B、1.414C、2D、44、()是有序性最低的液晶晶型。
A、向列型,B、近晶A型,C、近晶C型,D、胆甾型5、关于聚合物片晶描述错误的是()。
A、在极稀(浓度约0.01%)的聚合物溶液中,极缓慢冷却生成B、具有规则外形的、在电镜下可观察到的片晶,并呈现出单晶特有的电子衍射图C、聚合物单晶的横向尺寸几微米到几十微米,厚度10nm左右D、高分子链规则地近邻折叠形成片晶,高分子链平行于晶面6、下列四种研究方法中,最适合鉴别球晶的为()。
A、DSC,B、X-射线衍射,C、偏光显微镜,D、电子显微镜7、纹影织构是()液晶高分子的典型织构。
A、向列型,B、近晶A型,C、近晶C型,D、胆甾型8、聚合物可以取向的结构单元()。
A、只有分子链B、只有链段C、只有分子链和链段D、有分子链、链段、微晶9、结晶度对聚合物性能的影响,错误的描述为()。
A、随结晶度的提高,拉伸强度增加,而伸长率及冲击强度趋于降低;B、随结晶度的提高,相对密度、熔点、硬度等物理性能也有提高。
C、球晶尺寸大,材料的冲击强度要高一些。
D、结晶聚合物通常呈乳白色,不透明,如聚乙烯、尼龙。
10、下列四种实验方法中,除了(),其余方法能测定聚合物的结晶度。
A、密度法,B、广角X射线衍射法,C、DSC法,D、偏光显微镜法11、下列模型中,()是描述聚合物非晶态结构的局部有序模型。
A、40年代Bryant提出缨状胶束模型B、50年代英籍犹太人Keller提出的折叠链结构模型C、50年代Flory提出无规线团模型D、70年代美籍华人Yeh提出两相球粒模型12、()是聚合物最常见的结晶形态。
A、折叠链片晶,B、球晶,C、纤维状晶,D、伸直链晶体13、()是手性分子的典型液晶晶型。
A、向列型,B、近晶A型,C、近晶C型,D、胆甾型14、高分子合金的制备方法中,成本最低且较常用的共混方法是()。
A、机械共混B、溶液共混C、接枝共聚D、嵌段共聚15、下列四种研究方法中,不能测定聚合物结晶度的是()。
A、DSC,B、广角X-射线衍射,C、密度法,D、小角X-射线衍射16、下列聚合物的结晶能力最强的为()。
A、高密度聚乙烯,B、等规聚丙烯,C、无规聚丙烯,D、等规聚苯乙烯17、聚对苯二甲酰对苯二胺(PPTA)是一种()液晶。
A、热致向列型,B、溶致向列型,C、热致胆甾型,D、溶致胆甾型18、液晶纺丝技术是利用()液晶的流变特性进行的。
热致向列相,B、溶致向列相,C、热致胆甾相,D、溶致胆甾相19、从结构观点分析,下列高聚物中结晶能力最弱的是( )A,聚甲醛B,聚对苯二甲酸乙二醇酯, C,聚碳酸酯20、用比容法测定高聚物重量结晶度的计算式为()A,Xc =V a-V/Vc-Va; B,Xc =Va-V/Va-Vc; C,Xc =-Va/Vc-Va.21、从结构观点看, 聚合物球晶属于( )A,单晶体; B,多晶体; C,非晶体三、判断正误题(在括号内写出判断的正确或错误)1、两个尼龙-66纤维试样,用双折射法测得的Δn值完全相同,所以纤维中大分子链的取向状态也完全相同()2、由于高压聚乙烯是在高温高压下聚合而成,因此这种聚乙烯具有伸直链晶片形态()3、等规聚丙烯只有一种结晶结构——单斜晶系,而聚四氟乙烯有多种结晶形态。
()4、虽然同一种结晶聚合物在不同条件下可以生成球晶、单晶、串晶,但三者最基本的结晶单元均是折叠链晶片( )四、填空题1、由()事实证明了结晶高聚物有();Flory由()的实验结果证明非晶态高聚物是由()结构组成。
2、聚乙烯,等规聚丙烯, 聚对苯二甲酸乙二醇酯的晶胞分别属于()、()、()晶系和()、()、()晶格, 在晶胞中分子链分别为:()、()、()构象。
3、塑料、纤维、橡胶三大合成材料,其内聚能密度的大小次序为()>()>()。
4、高分子材料被取向后,在取向方向上力学性能(),在非取向方向上力学性能()。
5、按照外力作用方式,高分子材料的取向可分为()和()两大类。
6、测定结晶聚合物的结晶度较为常用的测定方法有密度法、和等。
7、高分子液晶的晶型有向列相N相、和胆甾相等。
按液晶的形成条件可分为液晶高分子和溶致液晶高分子。
8、研究聚合物的凝聚态结构的常用方法有、、电子衍射(ED)、原子力显微镜(AFM)和偏光显微镜(PLM)等。
9、聚合物随取向条件的不同,取向单元也不同,取向结构单元包括和分子链取向,对于结晶聚合物还可能有的取向。
五、简答题1、高聚物球晶是单晶体还是多晶体,在光学上有何特性?2、目前测定和计算结晶度的方法是以缨状胶束模型为基础的,该法有何局限性,怎样理解不同测定方法所得结果存大很大差异。
3、折叠链晶片、伸直链晶片、纤维状晶体、串晶及球晶的生成条件。
4、晶态高聚物与非晶态高聚物的取向机理有何不同?5、高聚物的取向有单轴与双轴之分, 取向使高聚物的结构发生了怎样的变化,取向的目的何在6、简述两种测定取向度的方法7、高抗冲聚苯乙稀的聚集态结构有哪些特点?8、怎样理解当两种高分子材料共混时,当两组分完全互容时,此材料的性能不一定好,而具有“两相结构”的共混材料其力学性能反而好。
9、聚乙稀为塑料,全同立构聚丙稀也是塑料,为什么其无规共聚物却是橡胶?这样的橡胶有什么突出的优点?10、采用两种方法证明无规聚苯乙稀为热力学液相结构,为什么具有光学透明性?11、涤纶为什么不易染色?12、定向聚合的聚甲基丙稀酸甲酯为什么不透明13、简要说明X-射线衍射分析的基本原理和实验方法及在聚合物结构研究的应用14、简述高聚物晶态结构模型的发展过程15、简述高聚物非晶态结构模型的发展过程16、将涤沦纤维进行拉伸,采用声速各向异性法测得高分子链主轴与纤维轴之间的夹角为30°,试计算此涤沦纤维的取向度及其意义17、已知一聚合物样品中苯乙稀基含量为25%,丁二稀基的含量为75%用什么方法可以证明该样品是共聚物而不是均聚物的混合物18、指出高聚物结晶的主要类型,并描述其形成过程,说明结晶度的意义及两种测定方法和计算方法.19、研究聚集态结构的现代方法有哪些。
20、比较取向态,液晶态与晶态之间的差异。
21、试叙述密度梯度法测聚合物结晶度的原理。
22、高分子的相容性概念与低分子的互溶性概念的相同与不同点是什么? 试说明; 试举两种判断高聚物相容性的实验方法,简要说明如何判别。
23、借助单位球,推导单轴取向函数表达式。
24、PET从Tm以上迅速冷却可得到透明的玻璃体,为什么?25、橡胶与PS共混能提高PS的冲击强度,为什么?26、为何分子链刚柔不同的高聚物形成的玻璃体其密度不同?27、为什么SBS是热塑性弹性体。
28、聚合物的化学老化与物理老化有何区别。
28、欲使不相容聚合物共混材料具有良好的性能需具备什么条件。
29、用何种方法可以测定聚合物的结晶度 ?写出体积分数结晶度(X v c)和重量分数结晶度(X w c)与密度的关系式。
30、试比较聚乙烯、等规聚丙烯、等规聚乙烯醇在晶体中的构象特征,并说明原因。
31、简述两种测定高聚物结晶度的方法及原理32、试述聚合物的结晶和取向态结构对注射成型塑料制品和合成纤维的力学性能影响如何? 解释之。
33、对于高分子材料,为什么引入内聚能或内聚能密度来衡量分子间力的大小?34、内聚能及内聚能密度如何测定?测定内聚能有何意义?六、论述题1、在聚丙稀的抽丝过程中,若牵伸比相同而分别采用冷水冷却和90℃热水冷却,将这两种聚丙烯丝加热到90℃,冷水冷却的收缩率远大于热水冷却的(PP的熔点176℃)2、由大量高聚物的ρa和ρc数据归纳得到ρc/ρa=1.13如果晶区和非晶区的密度存在加和性,试证明可用来粗略估计高聚物结晶度的关系式:ρ/ρa=1+0.13fc v3、在一根聚乙烯醇纤维下端悬挂一只重量适当的法码,然后一起浸入盛的沸水的烧杯中,发现只要是法码悬于水中,则纤维情况不变,但若把法码沉于烧杯底部,则纤维即被溶解,试解释这种现象。
4、高聚物的晶体结构与小分子的晶体结构有什么区别?研究高聚物晶体结构有何意义。
5、晶态高聚物的结晶形态共有几种类型,在结构上各有何特点?七、计算题1、已知全同立构聚丙烯完全结晶时的密度为0.936 g/cm3,完全非晶态的密度为0.854 g/ cm3,现有该聚合物试样一块,体积为1.42×2.96×0.51 cm3,重量1.94 g,计算其体积结晶度2、由x射线衍射法测得规整聚丙烯的晶胞参数为a=0.6666nm、b=2.087nm、 c=0.6488nm、交角β=98.12o,为单斜晶系,每个晶胞有四条H31螺旋链试根据以上数据,预测完全结晶的规整聚丙烯的比容和密度3、由文献查得涤沦树脂的密度ρc=1.50×103kg.m-3和ρa=1.335×103kg.m-3内聚能E=66.67KJ.mol△-1(单元),今有一块1.42×2.96×0.51×10-6-6m3涤沦试样,重量为2.92×10-3kg试由以上数据计算(1)涤沦树脂试样的密度和结晶度;(2)涤沦树脂的内聚能密度;(3)涤沦树脂的溶度参数。
4、有一iPP试样体积1.42×2.96×0.5cm3k,重为1.94g,计算比容、结晶度。
5、聚乙稀有较高的结晶度(一般为70%)当它氯化时,链上的氢原子被氯原子无规取代,发现当少量的氢70%)被取代时则软化点又上升 ,如示意图,试解释之. (10-50%)被取代时 ,其软化点下降,而大量的氢(〉T(O C)Cl(%)图2-3 聚乙稀氯化程度与软化点的关系6、若已知聚甲基丙烯酸甲酯的α=β=γ=90°,a=2.108nm,b=1.217nm,c=1.196nm,测得的ρ=1.23g/cm3,M。