高中一轮复习__含绝对值的函数
高考数学含绝对值的不等式的解法
![高考数学含绝对值的不等式的解法](https://img.taocdn.com/s3/m/3bec2ebeb9d528ea81c779e7.png)
三 灵与肉
我站在镜子前,盯视着我的面孔和身体,不禁惶惑起来。我不知道究竟盯视者是我,还是被 盯视者是我。灵
魂和肉体如此不同,一旦相遇,彼此都觉陌生。我的耳边响起帕斯卡尔的话 语:肉体不可思议,灵魂更不可思议,最不可思议的是肉体居然能和灵魂结合在一起。 人有一个肉体似乎是一件尴尬事。那个丧子的母亲终于停止哭泣,端起饭碗,因为她饿了。 那个含情脉脉的姑娘不得不离
您一定愿意静静地听这个生命说:'我愿意静静地听您说话…… '我从不愿把您想像成一个思想家或散文家,您不会为此生气吧。 "也许再过好多年之后,我已经老了,那时候,我相信为了年轻时读过的您的那些话语,我 要用心说一声:谢谢您!" 信尾没有落款,只有这一行字:"生
命本来没有名字吧,我是,你是。"我这才想到查看信 封,发现那上面也没有寄信人的地址,作为替代的是"时光村落"四个字。我注意了邮戳, 寄自河北怀来。
高三第一轮复习
含绝对值不等式的解法
1、绝对值的意义: 其几何意义是数轴的点A(a)离开原点的距离
OA a
a, a 0
a
0,
a
0
a, a 0
2、含有绝对值不等式的解法: (解绝对值不等式的关键在于去掉绝对值的符号)
(1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝
卡尔的话:肉体是奇妙的,灵魂更奇妙,最奇妙的是肉体居然能和灵魂 结合在一起。
四 动与静
喧哗的白昼过去了,世界重归于宁静。我坐在灯下,感到一种独处的满足。 我承认,我需要到世界上去活动,我喜欢旅行、冒险、恋爱、奋斗、成功、失败。日子过得
平平淡淡,我会无聊,过得冷冷清清,我会寂寞。但是,我更需要宁静的独处,更喜欢过一 种沉思的生活。总是活得轰轰烈烈热热闹闹,没有时间和自己待一会儿,我就会非常不安, 好像丢了魂一样。 我身上必定有两个自我。一个好动,什么都要尝试,什么都想经历。另一个喜静,
高考数学一轮复习考点知识专题讲解72---绝对值不等式
![高考数学一轮复习考点知识专题讲解72---绝对值不等式](https://img.taocdn.com/s3/m/50c1ff2f30126edb6f1aff00bed5b9f3f90f72b7.png)
高考数学一轮复习考点知识专题讲解绝对值不等式考点要求1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-c|≤|a-b|+|b-c|(a,b,c∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c .知识梳理1.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集不等式a>0a=0a<0|x|<a (-a,a)∅∅|x|>a(-∞,-a)∪(a,+∞)(-∞,0)∪(0,+∞)R(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c⇔-c≤ax+b≤c.②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想. ②利用“零点分段法”求解,体现了分类讨论的思想.③通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 2.含有绝对值的不等式的性质(1)如果a ,b 是实数,则||a |-|b ||≤|a ±b |≤|a |+|b |.(2)如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若|x |>c 的解集为R ,则c ≤0.(×) (2)不等式|x -1|+|x +2|<2的解集为∅.(√)(3)对|a +b |≥|a |-|b |当且仅当a >b >0时等号成立.(×) (4)对|a -b |≤|a |+|b |当且仅当ab ≤0时等号成立.(√) 教材改编题1.不等式3≤|5-2x |<9的解集为() A .[-2,1)∪[4,7) B.(-2,1]∪(4,7] C .(-2,-1]∪[4,7) D.(-2,1]∪[4,7) 答案D解析由题意得⎩⎨⎧ |2x -5|<9,|2x -5|≥3,即⎩⎨⎧-9<2x -5<9,2x -5≥3或2x -5≤-3,解得⎩⎨⎧-2<x <7,x ≥4或x ≤1,∴不等式的解集为(-2,1]∪[4,7).2.不等式|x-1|-|x-5|<2的解集为______.答案(-∞,4)解析①当x≤1时,原不等式可化为1-x-(5-x)<2,∴-4<2,不等式恒成立,∴x≤1;②当1<x<5时,原不等式可化为x-1-(5-x)<2,∴x<4,∴1<x<4;③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立.综上,原不等式的解集为(-∞,4).3.设a,b∈R,|a-b|>2,则关于实数x的不等式|x-a|+|x-b|>2的解集是________.答案R解析∵|x-a|+|x-b|≥|(x-a)-(x-b)|=|b-a|=|a-b|.又∵|a-b|>2,∴|x-a|+|x-b|>2恒成立,即该不等式的解集为R.题型一绝对值不等式的解法例1(2021·全国乙卷)已知函数f(x)=|x-a|+|x+3|.(1)当a=1时,求不等式f(x)≥6的解集;(2)若f(x)>-a,求a的取值范围.解(1)当a=1时,f(x)=|x-1|+|x+3|,即求|x-1|+|x+3|≥6的解集,当x ≥1时,2x +2≥6,得x ≥2;当-3<x <1时,4≥6,此时没有x 满足条件; 当x ≤-3时,-2x -2≥6,得x ≤-4. 综上,不等式f (x )≥6的解集为 {x |x ≤-4或x ≥2}.(2)f (x )=|x -a |+|x +3|≥|(x -a )-(x +3)|=|a +3|, 当且仅当(x -a )(x +3)≤0时,等号成立. 所以f (x )min =|a +3|>-a , 当a <-3时,-a -3>-a ,无解; 当a ≥-3时,a +3>-a ,解得a >-32,综上所述,a 的取值范围是⎝ ⎛⎭⎪⎫-32,+∞.教师备选已知f (x )=|x +1|+|x -1|. (1)求不等式f (x )<4的解集;(2)若不等式f (x )-|a +1|<0有解,求a 的取值范围.解(1)f (x )=|x +1|+|x -1|=⎩⎨⎧-2x ,x ≤-1,2,-1<x ≤1,2x ,x >1,∵f (x )<4, ∴⎩⎨⎧-2x <4,x ≤-1或⎩⎨⎧2<4,-1<x ≤1或⎩⎨⎧2x <4,x >1,∴-2<x ≤-1或-1<x ≤1或1<x <2,故不等式的解集为(-2,2). (2)∵f (x )=|x +1|+|x -1| ≥|(x +1)-(x -1)|=2,∴f (x )min =2,当且仅当(x +1)(x -1)≤0时取等号, ∵f (x )-|a +1|<0有解, ∴|a +1|>f (x )min =2, ∴|a +1|>2,∴a +1<-2或a +1>2,即a <-3或a >1, 故a 的取值范围是(-∞,-3)∪(1,+∞). 思维升华 解绝对值不等式的基本方法(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式. (2)当不等式两端均为正数时,可通过两边平方的方法,转化为不含绝对值符号的普通不等式.(3)利用绝对值的几何意义,数形结合求解.跟踪训练1(2021·全国甲卷)已知函数f (x )=|x -2|,g (x )=|2x +3|-|2x -1|. (1)画出y =f (x )和y =g (x )的图象; (2)若f (x +a )≥g (x ),求a 的取值范围. 解(1)f (x )=⎩⎨⎧x -2,x ≥2,2-x ,x <2,g (x )=⎩⎪⎨⎪⎧-4,x <-32,4x +2,-32≤x <12,4,x ≥12,作出图象,如图所示.(2)由(1)得f (x )=⎩⎨⎧x -2,x ≥2,2-x ,x <2,函数f (x +a )的图象即为将函数f (x )的图象向左或向右平移|a |个单位长度,当a ≤0时,即为将函数f (x )的图象向右平移|a |个单位长度得到f (x +a )的图象,此时函数f (x +a )的图象始终有部分图象位于函数g (x )的图象下方,无法满足f (x +a )≥g (x ),则要满足f (x +a )≥g (x ), 需a >0,f (x +a )=|x +a -2|,当函数y =|x +a -2|的图象过点⎝⎛⎭⎪⎫12,4时,⎪⎪⎪⎪⎪⎪12+a -2=4, 解得a =112或a =-52(舍去), 根据图象可得若f (x +a )≥g (x ),则a ≥112,即a ∈⎣⎢⎡⎭⎪⎫112,+∞.题型二 利用绝对值不等式的性质求最值 例2已知函数f (x )=|2x +1|+|x -4|. (1)解不等式f (x )≤6;(2)若不等式f (x )+|x -4|<a 2-8a 有解,求实数a 的取值范围.解(1)由已知得f (x )=⎩⎪⎨⎪⎧-3x +3,x <-12,x +5,-12≤x ≤4,3x -3,x >4,当x <-12时,-3x +3≤6,即x ≥-1,∴-1≤x <-12;当-12≤x ≤4时,x +5≤6,即x ≤1,∴-12≤x ≤1;当x >4时,3x -3≤6,即x ≤3(舍去). 综上得f (x )≤6的解集为[-1,1].(2)f (x )+|x -4|=|2x +1|+|2x -8|≥9,⎝⎛⎭⎪⎫当且仅当-12≤x ≤4时取等号 ∵f (x )+|x -4|<a 2-8a 有解, ∴a 2-8a >9,(a -9)(a +1)>0,a <-1或a >9,∴实数a 的取值范围是(-∞,-1)∪(9,+∞). 教师备选已知f (x )=|x -3|,g (x )=|x -k |(其中k ≥2). (1)若k =4,求f (x )+g (x )<9的解集;(2)∀x ∈[1,2],不等式f (x )-g (x )≥k -x 恒成立,求实数k 的值. 解(1)若k =4,则f (x )+g (x )<9,即|x -3|+|x -4|<9, 即⎩⎨⎧x <3,3-x +4-x <9或⎩⎨⎧3≤x ≤4,x -3+4-x <9或⎩⎨⎧x >4,x -3+x -4<9,解得-1<x <3或3≤x ≤4或4<x <8, ∴原不等式的解集为{x |-1<x <8}. (2)∵k ≥2,且x ∈[1,2], ∴x -3<0,x -k ≤0,∴f (x )=|x -3|=3-x ,g (x )=|x -k |=k -x , 则∀x ∈[1,2],不等式f (x )-g (x )≥k -x 恒成立, 即∀x ∈[1,2],x +3≥2k 恒成立, ∴4≥2k ,即k ≤2, 又k ≥2,∴k =2.思维升华 求含绝对值函数的最值时,常用的方法有三种 (1)利用绝对值的几何意义.(2)利用绝对值的三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||. (3)利用零点分区间法,转化为分段函数求最值. 跟踪训练2已知f (x )=|x +1|-|2x -1|. (1)求不等式f (x )>0的解集;(2)若x ∈R 时,不等式f (x )≤a +x 恒成立,求a 的取值范围. 解(1)由题意得|x +1|>|2x -1|, 所以|x +1|2>|2x -1|2,整理可得x 2-2x <0,解得0<x <2, 故原不等式的解集为{x |0<x <2}. (2)由已知可得,a ≥f (x )-x 恒成立, 设g (x )=f (x )-x ,则g (x )=⎩⎪⎨⎪⎧-2,x <-1,2x ,-1≤x ≤12,-2x +2,x >12,由g (x )的单调性可知,当x =12时,g (x )取得最大值,且最大值为1,所以a 的取值范围是[1,+∞). 题型三 绝对值不等式的综合应用 例3设函数f (x )=|2x +1|+|x -1|. (1)画出y =f (x )的图象;(2)当x ∈[0,+∞)时,f (x )≤ax +b ,求a +b 的最小值.解(1)f (x )=⎩⎪⎨⎪⎧-3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.y =f (x )的图象如图所示.(2)由(1)知,y =f (x )的图象与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a ≥3且b ≥2时,f (x )≤ax +b 在[0,+∞)上恒成立,因此a +b 的最小值为5. 教师备选(2020·全国Ⅱ)已知函数f (x )=|x -a 2|+|x -2a +1|. (1)当a =2时,求不等式f (x )≥4的解集; (2)若f (x )≥4,求a 的取值范围. 解(1)当a =2时,f (x )=|x -4|+|x -3|=⎩⎨⎧7-2x ,x ≤3,1,3<x <4,2x -7,x ≥4.当x ≤3时,令7-2x ≥4,解得x ≤32;当3<x <4时,1≥4,无解;当x ≥4时,令2x -7≥4,解得x ≥112. 因此,不等式f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x ≤32或x ≥112. (2)将题目转化为f (x )≥4恒成立,即f (x )min ≥4.因为f (x )=|x -a 2|+|x -2a +1|≥|a 2-2a +1|=(a -1)2,所以(a -1)2≥4,即|a -1|≥2.解得a ≥3或a ≤-1. 所以a 的取值范围是(-∞,-1]∪[3,+∞).思维升华 (1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决.(2)数形结合是解决与绝对值有关的综合问题的常用方法.跟踪训练3(2022·白山联考)已知函数f (x )=|x -2|-a |x +1|.(1)当a =1时,求不等式f (x )<x 的解集;(2)当a =2时,若关于x 的不等式f (x )>m +1恰有2个整数解,求实数m 的取值范围. 解(1)由已知不等式|x -2|-|x +1|<x ,得|x -2|<x +|x +1|,当x ≥2时,不等式为x -2<x +x +1,解得x >-3,所以x ≥2;当-1<x <2时,不等式为2-x <x +x +1,解得x >13,所以13<x <2; 当x ≤-1时,不等式为2-x <x -x -1,解得x >3,此时无解.综上,原不等式的解集为⎝ ⎛⎭⎪⎫13,+∞. (2)由题意,函数f (x )=|x -2|-2|x +1|,可得f (x )=⎩⎨⎧ x +4,x ≤-1,-3x ,-1<x <2,-x -4,x ≥2,f (x )的图象如图.f (-3)=1,f (-2)=2,f (-1)=3,f (0)=0,因为关于x 的不等式f (x )>m +1恰有2个整数解,由图可知,1≤m +1<2,所以0≤m <1,故m 的取值范围为[0,1).课时精练1.已知函数f (x )=|x -1|+|x -a |.(1)若函数f (x )的值域为[2,+∞),求实数a 的值;(2)若f (2-a )≥f (2),求实数a 的取值范围.解(1)∵|x -1|+|x -a |≥|(x -1)-(x -a )|=|a -1|,∴|a -1|=2,解得a =3或a =-1.(2)由f (2-a )≥f (2),得3|a -1|-|a -2|≥1,则⎩⎨⎧ a ≤1,3(1-a )-(2-a )≥1或⎩⎨⎧ 1<a ≤2,3(a -1)-(2-a )≥1或⎩⎨⎧ a >2,3(a -1)-(a -2)≥1,解得a ≤0或32≤a ≤2或a >2, 综上,实数a 的取值范围是(-∞,0]∪⎣⎢⎡⎭⎪⎫32,+∞. 2.已知函数f (x )=|x +1|-|x |+a .(1)若a =0,求不等式f (x )≥0的解集;(2)若方程f (x )=x 有三个不同的解,求实数a 的取值范围.解(1)当a =0时,f (x )=|x +1|-|x |=⎩⎨⎧ -1,x <-1,2x +1,-1≤x <0,1,x ≥0.所以当x <-1时,f (x )=-1<0,不符合题意;当-1≤x <0时,f (x )=2x +1≥0,解得-12≤x <0;当x ≥0时,f (x )=1>0,符合题意.综上可得f (x )≥0的解集为⎣⎢⎡⎭⎪⎫-12,+∞. (2)设u (x )=|x +1|-|x |,y =u (x )的图象和y =x 的图象如图所示.易知y =u (x )的图象向下平移1个单位长度内(不包括1个单位长度),与y =x 的图象始终有3个交点,从而-1<a <0.所以实数a 的取值范围为(-1,0).3.已知函数f (x )=|2x +a |-|x -3|(a ∈R ).(1)若a =-1,求不等式f (x )+1>0的解集;(2)已知a >0,若f (x )+3a >2对于任意x ∈R 恒成立,求a 的取值范围.解(1)因为a =-1,所以f (x )=⎩⎪⎨⎪⎧-x -2,x <12,3x -4,12≤x ≤3,x +2,x >3,所以不等式f (x )+1>0等价于 ⎩⎨⎧ x <12,-x -2+1>0或⎩⎨⎧ 12≤x ≤3,3x -4+1>0或⎩⎨⎧x >3,x +2+1>0,解得x <-1或x >1.所以不等式f (x )+1>0的解集为{x |x <-1或x >1}.(2)因为a >0,所以f (x )=⎩⎪⎨⎪⎧ -x -a -3,x <-a 2,3x +a -3,-a 2≤x ≤3,x +a +3,x >3.根据函数的单调性可知函数f (x )的最小值为f ⎝ ⎛⎭⎪⎫-a 2=-a 2-3, 因为f (x )+3a >2恒成立,所以-a 2-3+3a >2,解得a >2. 所以实数a 的取值范围是(2,+∞).4.(2022·郑州模拟)已知函数f (x )=|2x +a |+1.(1)当a =2时,解不等式f (x )+x <2;(2)若存在a ∈⎣⎢⎡⎦⎥⎤-13,1,使得不等式f (x )≥b +|2x +a 2|的解集非空,求b 的取值范围. 解(1)当a =2时,函数f (x )=|2x +2|+1,解不等式f (x )+x <2化为|2x +2|+1+x <2,即|2x +2|<1-x ,∴x -1<2x +2<1-x (x <1),解得-3<x <-13,∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ -3<x <-13. (2)由f (x )≥b +|2x +a 2|, 得b ≤|2x +a |-|2x +a 2|+1,设g (x )=|2x +a |-|2x +a 2|+1,则不等式的解集非空,等价于b ≤g (x )max ,由g (x )≤|(2x +a )-(2x +a 2)|+1=|a 2-a |+1,∴b ≤|a 2-a |+1.由题意知存在a ∈⎣⎢⎡⎦⎥⎤-13,1,使得上式成立, 而函数h (a )=|a 2-a |+1在a ∈⎣⎢⎡⎦⎥⎤-13,1上的最大值为h ⎝ ⎛⎭⎪⎫-13=139, ∴b ≤139, 即b 的取值范围是⎝⎛⎦⎥⎤-∞,139. 5.设f (x )=|x +1|-|2x -1|.(1)求不等式f (x )≤x +2的解集;(2)若不等式f (x )≤12|x |(|a -2|+|a +1|)对任意实数x (x ≠0)恒成立,求实数a 的取值范围.解(1)根据题意可知,原不等式为|x +1|-|2x -1|≤x +2,等价于⎩⎨⎧ x <-1,-x -1+2x -1≤x +2或⎩⎨⎧ -1≤x ≤12,x +1+2x -1≤x +2或⎩⎨⎧ x >12,x +1-2x +1≤x +2,解得x <-1或-1≤x ≤12或x >12. 综上可得不等式f (x )≤x +2的解集为R .(2)不等式f (x )≤12|x |(|a -2|+|a +1|)等价于|x +1|-|2x -1||x |≤12(|a -2|+|a +1|), 因为⎪⎪⎪⎪⎪⎪|x +1|-|2x -1||x | =⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪1+1x -⎪⎪⎪⎪⎪⎪2-1x ≤⎪⎪⎪⎪⎪⎪1+1x +2-1x =3, 当且仅当⎝⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫2-1x ≤0时取等号, 因为|x +1|-|2x -1||x |≤12(|a -2|+|a +1|), 所以|a -2|+|a +1|≥6,解得a ≤-52或a ≥72, 故实数a 的取值范围为⎝ ⎛⎦⎥⎤-∞,-52∪⎣⎢⎡⎭⎪⎫72,+∞.。
2023年高考数学一轮复习精讲精练(新高考专用)专题08:函数值域的常见求法(讲解版)
![2023年高考数学一轮复习精讲精练(新高考专用)专题08:函数值域的常见求法(讲解版)](https://img.taocdn.com/s3/m/6c1d5a2003020740be1e650e52ea551810a6c931.png)
专题08:函数值域的常见求法精讲温故知新一 求函数值:特别是分段函数求值例1 已知函数11,1()2,1x f x xx a x ⎧->⎪=⎨⎪-+≤⎩在R 上满足:对任意12x x ≠,都有()()12f x f x ≠,则实数a 的取值范围是( )A .(,2]-∞B .(,2]-∞-C .[2,)+∞D .[2,)-+∞【答案】C 【分析】根据题意,得到11,1()2,1x f x x x a x ⎧->⎪=⎨⎪-+≤⎩在R 上单调递减,进而可求出结果.【详解】由题意,得到11,1()2,1x f x x x a x ⎧->⎪=⎨⎪-+≤⎩在R 上单调递减,因此只需112a -≤-+,解得2a ≥. 故选:C. 【点睛】本题主要考查由分段函数单调性求参数,属于基础题型.二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。
1.利用常见函数的值域来求(直接法)一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ;反比例函数)0(≠=k x ky 的定义域为{x|x ≠0},值域为{y|y ≠0};二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{a b ac y y 4)4(|2-≤}.例2 求下列函数的值域① y=3x+2(-1≤x ≤1) ②)(3x 1x32)(≤≤-=x f ③ xx y 1+=(记住图像) 解:①∵-1≤x ≤1,∴-3≤3x ≤3,∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5] ②略③ 当x>0,∴x x y 1+==2)1(2+-x x 2≥, 当x<0时,)1(x x y -+--==-2)1(2----xx -≤ ∴值域是 ]2,(--∞[2,+∞).(此法也称为配方法) 函数xx y 1+=的图像为: 2.二次函数在区间上的值域(最值):例3 求下列函数的最大值、最小值与值域:①142+-=x x y ; ②;]4,3[,142∈+-=x x x y ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;解:∵3)2(1422--=+-=x x x y ,∴顶点为(2,-3),顶点横坐标为2. ①∵抛物线的开口向上,函数的定义域R ,∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y ≥-3 }. ②∵顶点横坐标2∉[3,4],当x=3时,y= -2;x=4时,y=1;∴在[3,4]上,min y =-2,m ax y =1;值域为[-2,1]. ③∵顶点横坐标2∉ [0,1],当x=0时,y=1;x=1时,y=-2, ∴在[0,1]上,min y =-2,m ax y =1;值域为[-2,1].④∵顶点横坐标2∈ [0,5],当x=0时,y=1;x=2时,y=-3, x=5时,y=6, ∴在[0,1]上,min y =-3,m ax y =6;值域为[-3,6].注:对于二次函数)0()(2≠++=a c bx ax x f , ⑴若定义域为R 时, ①当a>0时,则当a bx 2-=时,其最小值a b ac y 4)4(2min -=; ②当a<0时,则当a bx 2-=时,其最大值ab ac y 4)4(2max -=; ⑵若定义域为x ∈ [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b]. ①若0x ∈[a,b],则)(0x f 是函数的最小值(a>0)时或最大值(a<0)时, 再比较)(),(b f a f 的大小决定函数的最大(小)值.②若0x ∉[a,b],则[a,b]是在)(x f 的单调区间内,只需比较)(),(b f a f 的大小即可决定函数的最大(小)值.注:①若给定区间不是闭区间,则可能得不到最大(小)值;②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论. 3. 单调性法例4 求函数y=4x -x 31-(x ≤1/3)的值域。
江苏省高三数学一轮复习之 含绝对值的函数的解答题)
![江苏省高三数学一轮复习之 含绝对值的函数的解答题)](https://img.taocdn.com/s3/m/50a7dbc43968011ca2009188.png)
含绝对值的函数的解答题类型一简单的前面系数确定的绝对值函数1.(1)用分段函数的形式表示该函数;(2)在所给的坐标系中画出该函数的图象;(3)写出该函数的定义域、值域、单调增区间、单调减区间(不要求证明).2.(1)用分段函数的形式表示该函数;(2)在右边所给的坐标第中画出该函数的图象;(3)写出该函数的定义域、值域、单调区间(不要求证明).3.(1(2.(回答上述3个小题都只需直接写出结果,不需给出演算步骤)4.(1(2.5.(1)指出函数的单调区间并求出函数最小值;(2)若0)(>+x f a 恒成立,求a 的取值范围.6. 设函数|4||12|)(--+=x x x f .(1)解不等式2)(>x f ;(2)求函数)(x f y =的值域.7. 设函数a x x x f -+++=|2||1|)(.(1)当5=a 时,求函数)(x f 的定义域;(2)若函数)(x f 的定义域为R ,试求a 的取值范围.8. 已知函数ax x x f ++=|1|)((R a ∈).(1)画出当2=a 时的函数)(x f 的图象;(2)若函数)(x f 在R 上具有单调性,求a 的取值范围. 9. 对a 、R b ∈,记⎪⎩⎪⎨⎧<≥=ba b b a a b a , ,},max{,函数)( |}2| |,1max{|)(R x x x x f ∈-+=. (1)作出)(x f 的图像,并写出)(x f 的解析式;(2)若函数)()(2x f x x h λ-=在(]1,-∞-上是单调函数,求λ的的取值范围.10. 已知函数)4(||)(-=x x x f .(1)画出的图象;(2)利用图象写出函数的单调区间;(3)若关于x 的方程k x f =)(有三个不同的根,求k 的取值集合.11. 已知函数)1(||)(+=x x x f ,试画出函数)(x f 的图象,并根据图象解决下列两个问题.(1)写出函数)(x f 的单调区间;(2)求函数)(x f 在区间]21 ,1[-的最大值. 12. 已知函数)33( 1||2)(2<<-++-=x x x x f .(1)画出函数)(x f 的图象,并根据图象写出)(x f 的单调区间;(2.13.(1(2.14.(1(2(3.15. ).(1(2.(316. ”:(1R上的”?(2R上的”?若存在,求(31)中的”.17.(1(2(3围.18.(1.(219.(1(2围;(3.20.(1(2.21.(1)求满足2)(=x f 的x 值;(2)是否存在实数a 、b ,且10<<<b a ,使得函数)(x f y =在区间],[b a 上的值域为]2 ,[b a ,若存在,求出a 、b 的值;若不存在,请说明理由.22. 设函数)0( 11)(>-=x xx f . (1)求)(x f 的单调区间;(2)是否存在正实数a 、b (b a <),使函数)(x f 的定义域为],[b a 时值域为]6,6[b a ?若存在,求a 、b 的值,若不存在,请说明理由.23. 已知函数)0( 11)(>-=x xx f . (1)判断函数的单调性;(2)当b a <<0,且)()(b f a f =时,求ba 11+的值; (3)是否存在实数a 、b (b a <),使得函数)(x f y =的定义域、值域都是] ,[b a ?若存在,请求出a 、b的值,若不存在,请说明理由.24. 已知函数31)(-=xx f ,),0(+∞∈x . (1)画出)(x f y =的大致图象,并根据图像写出函数)(x f y =的单调区间;(2)设910<<a ,31>b ,试比较)(a f 、)(b f 的大小. (3)是否存在实数a 、b ,使得函数)(x f y =在],[b a 上的值域也是],[b a ?若存在,求出a 、b 的值,若不存在,说明理由.25. 已知函数|12|)(-=x x f .(1)求函数零点;(2;(3.26.(1(2.27. 如果满足:(1明理由;(2.28. 如果满足:(1)请说明理由;(2(33为上界的有界函数,29. 如果满足:(1理由;(2(3.类型二绝对值前有常系数1.(1(2(3......,不需给出演算步骤........).2.(1(2(3.类型三绝对值内有参数、绝对值外系数确定1. .(1(2.2.(1(2(3.3.(1(2(3.4.(1(2(3.5.(1(2.6.相等.(1(2(37..(1(28. ).(1(2.9..(1类型四其他1.(1(2(3(4.2.(1(23.(1(2(3.4.(1(2(35.(1(2.6.(1(2(3明理由.7.(1(2(3.8.(1(2.9.(1m的取值范围;(2m的取值范围.10.(1(2(3.11.(1(2(3.12.(1(2(3.13.(1(2)(ⅰ)(ⅱ)14.(1(2.15.(1(2(3....(不需给出演算步骤).16.(1(2.(317.(1(2(3.18.(1的值域;(2的最大值;(3.19.(1(2(3)对于(2取值范围.20.(13接近0(2(3.明).。
高三一轮复习课件绝对值不等式的解法(共16张PPT)
![高三一轮复习课件绝对值不等式的解法(共16张PPT)](https://img.taocdn.com/s3/m/701867d0b9d528ea81c779ad.png)
3.数学思想 由特殊到一般,数形结合,分类讨论,化归等数学思想.
高三一轮复习
课外作业
(2017全国Ⅰ卷23)已知函数 f (x) x2 ax 4, g(x) x 1 x 1.
(1)当a 1时,求不等式f (x) ≥ g(x)的解集; (2)若不等式f (x) ≥ g(x)的解集包含[1,1], 求a取值范围.
(3)平方
原不等式可化为
(
x
x 1 1)2 ≥ (
0 x
1)
2
或
x
1≤ xR
0
高三一轮复习
典例导练
例2.解不等式 x 1 x 1 ≤ 4. 解析:(1)几何意义
所以原不等式的解集为[2,2].
高三一轮复习
典例导练
例2.解不等式 x 1 x 1 ≤ 4.
2x, x 1
解析:(2)零点分段,因为 x 1 x 1 2, 1≤ x ≤1,所以原不等式等价于
高三一轮复习
谢 谢观 看
有些烦恼都是自找的,因为怀里揣着过去而放弃了现在的努力。有些痛苦也是自找的,因为无所事事而一直活在未来的憧憬里。决定一个人成就的, 不是靠天,也不是靠运气,而是坚持和付出,是不停地做,重复的做,用心去做,当你真的努力了付出了,你会发现自己潜力无限!再大的事,到 了明天就是小事,再深的痛,过去了就把它忘记,就算全世界都抛弃了你,——你依然也要坚定前行,因为,你就是自己最大的底气。埋怨只是一 种懦弱的表现;努力,才是人生的态度。不安于现状,不甘于平庸,就可能在勇于进取的奋斗中奏响人生壮美的乐间。原地徘徊一千步,抵不上向 前迈出第一步;心中想过无数次,不如撸起袖子干一次。世界上从不缺少空想家,缺的往往是开拓的勇气和勤勉的实干。不要被内心的犹疑和怯懦 束缚,行动起来,你终将成为更好的自己。人生就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者,也不要 做安于现状的平凡人。不谈以前的艰难,只论现在的坚持。人生就像舞台,不到谢幕,永远不要认输!努力是一种生活态度,和年龄无关!生活要 有激情,只要你有前进的方向和目标,什么时候开始都不晚,负能量的脑袋不会给你正能量的人生!简简单单,学最好的别人,做最好的自己。路 是一步一步的走出来的 ,只有脚踏实地的往前走。不管遇到多大的风雨,坚持走下去,阳光灿烂的笑容,在风雨后等着你我。笑着走下去,一定 会见到最美的长虹。每个人都是通过自身的努力,去决定生活的样子,每一次付出,都会在以后的日子一点点回报在你身上。生活不会亏待努力的 人,也不会同情假勒奋的人。别让未来的你怨恨今天的自己。耐心点,坚强点;总有一天,你承受过的疼痛会有助于你。世界不会在意你的自尊, 人们看的只是你的成就。在你没有成就以前,切勿过分强调自尊。喜欢一个人,就是两个人在一起很开心;而爱一个人,即使不开心也想和他在一 起。身体最重要,上网不要熬通宵。时间没有等我,是你忘了带我走,我们就这样迷散在陌生的风雨里,从此天各一方,两两相忘。心有多大,舞 台就有多大。思考的越多,得到的越多。因为思考可以释放能量。福报不够的人,就会常常听到是非;福报够的人,从来就没听到过是非。因为清 楚地明白得不到我想要的,所以就选择了放弃;不知道这样做是对还是错,那么就让时间来裁决吧。时间没有等我,是你忘了带我走,我左手是过 目不忘的萤火,右手里是十年一个漫长的打坐。少年的时候想逃家,青年的时候想成家,成年的时候想离家,老年的时候想回家。生命中,不断的 有人离开或进入,于是,看见的看不见了,记住的遗忘了;生命中不断的有得到和失落,于是,看不见的看见了,遗忘的记住了。通过云端的道路, 只亲吻攀登者的足迹许多人企求着生活的完美结局,殊不知美根本不在结局,而在于追求的过程。学会宽恕就是学会顺从自己的心,“恕”字拆开就 是“如心”。人生的道路是何其地漫长,在这漫长的人生道路之上,唯有不断地求索才能真正地感悟到人生的真谛。我爱你时,你说什么就是什么。 我不爱你时,你说你是什么。人生是需要用苦难浸泡的,没有了伤痛,生命就少了炫彩和厚重。没有汽车是郁闷的生活,有了汽车是闷气的生活; 没有好车是羡慕的生活,有了好车是提防的生活。有时候不是不懂,只是不想懂;有时候不是不知道,只是不想说出来;有时候不是不明白,而是 明白了也不知道该怎么做,于是就保持了沉默。真正的放弃是悄无声息的。别想一下造出大海,必须先由小河川开始。还记得你说世界美好事情真 的特别多,只是很容易擦肩而过。善待自己,幸福无比,善待别人,快乐无比,善待生命,健康无比。承认自己的伟大,就是认同自己的愚疑。每 个人都有自己鲜明的主张和个性,不要试图去改变他人,同样,也不要被他人所改变生活,匀速的是爱,不匀速则变成一种伤害。时间给空想者痛 苦,给创造者幸福。遇上什么人是命运的事,但爱上什么人离开什么人,则是自己的事。生命不是躯体,而是心性;人生不是岁月,而是永恒;云 水不是景色,而是襟怀;日出不是早晨,而是朝气;风雨不是天象,而是锤炼;沧桑不是自然,而是经历;幸福不是状态,而是感受。初恋:就想 一见钟情!热恋:就想以身相许!留恋:就想百依百顺!失恋:就想你东我西!爱情如花,友情如酒,花开一阵,酒香一生。即使没有风,我也可 以飞舞。即使逆着别人的方向,我也可以前进。拿望远镜看别人,拿放大镜看自己。4、我只能拼,因为我想赢。轻装上阵,不要让太多的昨天占 据了你的今天。人需要沉淀,要有足够的时间去反思,才能让自己变得更完美。当你觉得你可以为之奋斗的时候,别放弃。
高考数学一轮复习第12章选修4系列第3讲绝对值不等式讲义理含解析
![高考数学一轮复习第12章选修4系列第3讲绝对值不等式讲义理含解析](https://img.taocdn.com/s3/m/0198e45327d3240c8547ef26.png)
第3讲绝对值不等式1.绝对值不等式(1)定理如果a,b是实数,那么|a+b|≤□01|a|+|b|,当且仅当□02ab≥0时,等号成立.(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|.当且仅当□03(a-b)(b-c)≥0时,等号成立,即b落在a,c之间.(3)由绝对值不等式定理还可以推得以下几个不等式①|a1+a2+…+a n|≤|a1|+|a2|+…+|a n|.②||a|-|b||≤|a±b|≤|a|+|b|.2.绝对值不等式的解法(1)形如|ax+b|≥|cx+d|的不等式,可以利用两边平方的形式转化为二次不等式求解.(2)①绝对值不等式|x|>a与|x|<a的解集.②|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法.|ax+b|≤c⇔□03-c≤ax+b≤c(c>0),|ax+b|≥c⇔□04ax+b≤-c或ax+b≥c(c>0).1.概念辨析(1)不等式|x-1|+|x+2|<2的解集为∅.( )(2)若|x|>c的解集为R,则c≤0.( )(3)|ax+b|≤c(c≥0)的解集,等价于-c≤ax+b≤c.( )(4)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.( )答案 (1)√ (2)× (3)√ (4)√ 2.小题热身(1)设a ,b 为满足ab <0的实数,那么( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<||a |-|b || D .|a -b |<|a |+|b | 答案 B解析 ∵ab <0,∴|a -b |=|a |+|b |>|a +b |.(2)若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________. 答案 2解析 由|kx -4|≤2⇔2≤kx ≤6.∵不等式的解集为{x |1≤x ≤3},∴k =2. (3)函数y =|x -3|+|x +3|的最小值为________. 答案 6解析 因为|x -3|+|x +3|≥|(x -3)-(x +3)|=6,当-3≤x ≤3时,|x -3|+|x +3|=6,所以函数y =|x -3|+|x +3|的最小值为6.(4)不等式|x -1|-|x -5|<2的解集是________. 答案 (-∞,4)解析 |x -1|-|x -5|表示数轴上对应的点x 到1和5的距离之差.而数轴上满足|x -1|-|x -5|=2的点的数是4,结合数轴可知,满足|x -1|-|x -5|<2的解集是(-∞,4).题型 一 解绝对值不等式设函数f (x )=|2x +1|-|x -4|. (1)解不等式f (x )>2; (2)求函数y =f (x )的最小值.解 (1)解法一:令2x +1=0,x -4=0分别得x =-12,x =4.原不等式可化为:⎩⎪⎨⎪⎧x <-12,-x -5>2或⎩⎪⎨⎪⎧-12≤x <4,3x -3>2或⎩⎪⎨⎪⎧x ≥4,x +5>2.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-7或x >53. 解法二:f (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧-x -5,x <-12,3x -3,-12≤x <4,x +5,x ≥4.画出f (x )的图象,如图所示.求得y =2与f (x )图象的交点为(-7,2),⎝ ⎛⎭⎪⎫53,2. 由图象知f (x )>2的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-7或x >53. (2)由(1)的解法二知,f (x )min =-92.条件探究 把举例说明中函数改为“f (x )=|x +1|-|2x -3|”,解不等式|f (x )|>1.解 f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,y =f (x )的图象如图所示.由f (x )的表达式及图象,当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5,故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >5.所以|f (x )|>1的解集为{|x x <13或1<x <3或x >5.解|x -a |+|x -b |≥c 或|x -a |+|x -b |≤c 的一般步骤 (1)零点分段法①令每个含绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排序并以这些根为端点把实数集分为若干个区间; ③由所分区间去掉绝对值符号组成若干个不等式,解这些不等式,求出解集; ④取各个不等式解集的并集求得原不等式的解集. (2)利用|x -a |+|x -b |的几何意义数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a |+|x -b |≥|x -a -(x -b )|=|a -b |.(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.见举例说明.提醒:易出现解集不全的错误.对于含绝对值的不等式,不论是分段去绝对值号还是利用几何意义,都要不重不漏.1.求不等式|x -1|+|x +2|≥5的解集.解 当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3;当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,无解; 当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2. 综上,不等式的解集为{x |x ≤-3或x ≥2}.2.若关于x 的不等式|ax -2|<3的解集为{|x -53<x <13,求a 的值.解 ∵|ax -2|<3,∴-1<ax <5. 当a >0时,-1a <x <5a ,-1a =-53,且5a =13无解; 当a =0时,x ∈R ,与已知条件不符; 当a <0时,5a <x <-1a ,5a =-53,且-1a =13,解得a =-3.题型 二 绝对值不等式性质的应用角度1 用绝对值不等式的性质求最值 1.设函数f (x )=|2x -3|.(1)求不等式f (x )>5-|x +2|的解集;(2)若g (x )=f (x +m )+f (x -m )的最小值为4,求实数m 的值. 解 (1)∵f (x )>5-|x +2|可化为|2x -3|+|x +2|>5, ∴当x ≥32时,原不等式化为(2x -3)+(x +2)>5,解得x >2,∴x >2;当-2<x <32时,原不等式化为(3-2x )+(x +2)>5,解得x <0,∴-2<x <0;当x ≤-2时,原不等式化为(3-2x )-(x +2)>5,解得x <-43,∴x ≤-2.综上,不等式f (x )>5-|x +2|的解集为(-∞,0)∪(2,+∞). (2)∵f (x )=|2x -3|,∴g (x )=f (x +m )+f (x -m )=|2x +2m -3|+|2x -2m -3|≥|(2x +2m -3)-(2x -2m -3)|=|4m |,∴依题意有4|m |=4,解得m =±1.角度2 用绝对值不等式的性质证明不等式 (多维探究)2.设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .证明 因为|x -1|<a 3,|y -2|<a3, 所以|2x +y -4|=|2(x -1)+(y -2)| ≤2|x -1|+|y -2|<2×a 3+a3=a .即|2x +y -4|<a .结论探究 举例说明条件不变,求证:|x -2y +1|<a +2. 证明 |x -2y +1|=|(x -1)-2(y -1)|<|x -1|+|2(y -1)|=|x -1|+|2(y -2)+2|<|x -1|+2|y -2|+2a 3+2·a3+2=a +2.1.证明绝对值不等式的三种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明. (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,利用数形结合进行证明. 2.用绝对值不等式的性质求最值的方法利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R ),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以求最值.(2018·江西南昌模拟)已知函数f (x )=|2x -a |+|x -1|. (1)若不等式f (x )≤2-|x -1|有解,求实数a 的取值范围; (2)当a <2时,函数f (x )的最小值为3,求实数a 的值. 解 (1)由题意f (x )≤2-|x -1|,即为⎪⎪⎪⎪⎪⎪x -a 2+|x -1|≤1.而由绝对值的几何意义知⎪⎪⎪⎪⎪⎪x -a2+|x -1|≥⎪⎪⎪⎪⎪⎪a2-1, 由不等式f (x )≤2-|x -1|有解,∴⎪⎪⎪⎪⎪⎪a2-1≤1,即0≤a ≤4.∴实数a 的取值范围是[0,4].(2)由2x -a =0得x =a2,由x -1=0得x =1, 由a <2知a2<1,∴f (x )=⎩⎪⎨⎪⎧-3x +a +1⎝ ⎛⎭⎪⎫x <a 2,x -a +1⎝ ⎛⎭⎪⎫a 2≤x ≤1,3x -a -x函数的图象如图所示.∴f (x )min =f ⎝ ⎛⎭⎪⎫a 2=-a2+1=3,解得a =-4.题型 三 与绝对值不等式有关的参数范围问题(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解 (1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >12. (2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1,不符合题意;若a >0,|ax -1|<1的解集为0<x <2a ,所以2a≥1,故0<a ≤2.综上,a 的取值范围为(0,2].条件探究 把举例说明函数改为“f (x )=|2x -1|-|x -a |”,若x ∈(-1,0)时,f (x )>1有解,求a 的取值范围.解 当x ∈(-1,0)时,f (x )>1有解⇔|x -a |<-2x 有解⇔2x <x -a <-2x 有解⇔3x <a <-x 有解,∵3x >-3,-x <1,∴-3<a <1,即实数a 的取值范围是(-3,1).两招解不等式问题中的含参问题(1)第一招是转化.①把存在性问题转化为求最值问题;②不等式的解集为R 是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .(2)第二招是求最值.求含绝对值的函数最值时,常用的方法有三种:①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||;③利用零点分区间法.已知f (x )=|x -a |,a ∈R .(1)当a =1时,求不等式f (x )+|2x -5|≥6的解集;(2)若函数g (x )=f (x )-|x -3|的值域为A ,且[-1,2]⊆A ,求实数a 的取值范围. 解 (1)当a =1时,不等式为|x -1|+|2x -5|≥6. 当x ≤1时,不等式可化为-(x -1)-(2x -5)≥6, 解得x ≤0,所以x ≤0;当1<x <52时,不等式可化为(x -1)-(2x -5)≥6,解得x ≤-2,所以x ∈∅;当x ≥52时,不等式可化为(x -1)+(2x -5)≥6,解得x ≥4,所以x ≥4.综上所述,原不等式的解集为{x |x ≤0或x ≥4}. (2)因为|g (x )|=||x -a |-|x -3|| ≤|x -a -(x -3)|=|a -3|, 所以g (x )∈[-|a -3|,|a -3|],所以函数g (x )的值域A =[-|a -3|,|a -3|], 因为[-1,2]⊆A ,所以⎩⎪⎨⎪⎧-|a -3|≤-1,|a -3|≥2,解得a ≤1或a ≥5.所以实数a 的取值范围是(-∞,1]∪[5,+∞).。
重视“绝对值函数”的复习教学
![重视“绝对值函数”的复习教学](https://img.taocdn.com/s3/m/c60acdf7fab069dc50220174.png)
水平, 呈“ —\ - _ ” 或“ - / _” 形.
例3 ( 1 ) 不等式 a ≥I +1 I —I 一 2 I 恒成立 , 则a 的取值范围是 ; ( 2 ) 不等 式 a ≥I +1 l +I 一 2 I 恒 有解 , 则 a的
取值 范 围是 .
在 轴上 方 , 它是 去 掉 ) 图象 在 轴 下方 部分 , 保
例5 函 数厂 ( ) =∑ I x — n l 的最小值为
( )
留 轴上方部分 , 再加上 轴下方部分关 于 轴的
对 称 图形.
( A) 1 9 0
( B) 1 7 0
为3 , 而a > - g ( x ) 恒 有解甘 口 ≥g ( ) , 所以n ≥3 .
单 调 递 减, 在 f 、 - 垒 . , + 。 。 1 上 单 调 递 增 .
例 4 设 函数 ) = 2 川
2 的 的取值 范 围.
, 求使 f ( ) ≥
侈 n 一 对 口 , 6 ∈ R , 记 m a x 口 , 6 = { : : ; 函
・
7 4・
《 数学之友》
2 0 1 3 年第 2 O期
区间[ n , 口 ] 中的值时 ) 最小值为 ( 口 一 口 ) + ( 。 一 1 — 2 )+… +( 血 + 1 一口 ) .
) 图象在 y 轴左边的部分 , 保 留Y轴右边部分 , 再 加上右边部分关于 Y 轴的对称图形 ; , , = ) I 图象
据绝对值的几何意义 , 点( , 0 ) 与点( 一 1 , 0 ) , ( 1 , 0 )
的距离 之 差不 小 于÷, 易得 点 ( , 0) 必 在点
( 3 4 , 0 ) 或 其 右 侧 , 所 以 暑.
2020版高考数学复习课件: 绝对值函数与分段函数 (共27张PPT)
![2020版高考数学复习课件: 绝对值函数与分段函数 (共27张PPT)](https://img.taocdn.com/s3/m/dc10d45031b765ce0508142f.png)
第14页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第21页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
微难点1 绝对值函数与分段函数
7. 已知函数f(x)=x2+2x-a(x∈R,a为常数). (1) 当a=2时,讨论函数f(x)的单调性; (2) 若a>-2,函数f(x)的最小值为2,求实数a的值.
【解答】(1)
当a=2时,f(x)=x2+|2x-2|=
x2+2x-2,x≥1, x2-2x+2,x<1,
结合图象知,
函数y=f(x)的增区间为[1,+∞),减区间为(-∞,1].
第22页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
微难点1 绝对值函数与分段函数
(2) 易知f(x)=xx22-+22xx+-aa,,xx<≥a2a2,, 因为a>-2,所以a2>-1,结合图象可知: 当a≥2时,f(x)min=f(1)=a-1=2,解得a=3,符合题意; 当-2<a<2时,f(x)min=f a2=a42=2,无解.
当x≥0时,f(x)=x+4 2-1,令f(x)=0,即x+4 2-1=0,
(第4题)
解得x=2;令f(x)=1,即
4 x+2
-1=1,解得x=0.易知函数f(x)在[0,+∞)上为减函
数,又f(x)为偶函数,所以f(x)在(-∞,0)上为增函数,且f(-2)=0,根据图象可
2011届新课标人教版高中第1轮总复习理科数学课件第2讲含绝对值的不等式和一元二次不等式
![2011届新课标人教版高中第1轮总复习理科数学课件第2讲含绝对值的不等式和一元二次不等式](https://img.taocdn.com/s3/m/68c50e85ec3a87c24028c4cc.png)
原不等式x(x-1)<00<x<1, 原不等式 , 所以选C. 所以选
4.(2010广州一模 ) 已知 : 关于 广州一模) 已知p: 关于x 广州一模 的不等式x 的解集是R, 的不等式 2+2ax-a>0的解集是 , 的解集是 q:-1<a<0,则p是q的( ) C , 是 的 A.充分非必要条件 B.必要非充分条件 充分非必要条件 必要非充分条件 C.充要条件 充要条件 D.既非充分又非必要条件 既非充分又非必要条件
点评
含绝对值不等式的解法: 含绝对值不等式的解法: ( 1)讨论法 : 讨论绝对值中的式子大 ) 讨论法: 于零还是小于零, 于零还是小于零,然后去掉绝对值符 转化为一般不等式. 号,转化为一般不等式 适 合 解 这 类 绝 对 值 不 等 式 : |x-a|+|xb|≤c或|x-a|+|x-b|≥c. 或
不等式x 的解集是R等 不等式 2+2ax-a>0的解集是 等 的解集是 价于 4a2+4a<0, 即 -1<a<0 , 故 , 选C.
5.(2010广东潮州实验中学一模)若集合 广东潮州实验中学一模) 广东潮州实验中学一模 A={x|ax2-ax+1<0}=,则实数 的取值 则实数a的取值 范围是( 范围是 D ) A.{a|0<a<4} B.{a|0≤a<4} C.{a|0<a≤4} D.{a|0≤a≤4}
⑧
{x|x< . {x|x<x1 . 或x>x2} > {x|x1<x <. <x2}.
⑨
b . {x|x≠ 2 a
R . }
11
12
.
13
.
要点指南
微难点1 含有绝对值的函数与分段函数
![微难点1 含有绝对值的函数与分段函数](https://img.taocdn.com/s3/m/7aa99923844769eae009edaf.png)
(a>0, 且 a≠1)在 R 上单调递减,
且关于 x 的方程|f(x)|=2-x 恰有两个不相等的实数解,则 a 的取值范围是( C ) A. C.
2 0, 3 1 2 3 , ∪ 3 3 4
B. D.
2 3 , 3 4 1 2 3 , ∪ 3 3 4
m x1+x2+…+xm m m-1 1,相加得 = 2 ,故 xi=m.当 m 为奇数,其和为 2× 2 +1=m, 2 i=1
m
故 xi=m.
i=1
第20页
m
栏目导航
高考总复习 一轮复习导学案 ·数学文科
微难点1
含有绝对值的函数与分段函数
5.设函数 f(x)=x2+|2x-a|(x∈R,a 为常数). (1)当 a=2 时,求函数 f(x)的单调性; (2)若 a>-2 时,函数 f(x)的最小值为 2,求 a 的值.
(第5题)
第22页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
微难点1
含有绝对值的函数与分段函数
a 2 x +2x-a,x≥2, (2)f(x)= x2-2x+a,x<a, 2
a 因为 a>-2,所以2>-1,结合图象,当 a≥2
时,函数 y=f(x)的最小值为 f(1)=a-1=2,解得 a=3,符合题意;当-2<a<2 时, 函数 y=f(x)的最小值为 f
所以 0
a a f(x)在-∞,2上单调递增,在2,a上单调递减,在(a,+∞)上单调递增,所以
<a≤3.综上,a 的取值范围是(-∞,3].
第15页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
微难点1
含有绝对值的函数与分段函数
【学海导航】高三数学第一轮总复习6.5含有绝对值的不等式课件
![【学海导航】高三数学第一轮总复习6.5含有绝对值的不等式课件](https://img.taocdn.com/s3/m/a4a3723d0740be1e650e9ae7.png)
拓展练习 若对一切实数x,不等式|x+1|+|x-
2|>a恒成立,求实数a的取值范围.
解:设f(x)=|x+1|+|x-2|,
则f(x)>a
f(x)]min>a.
因为f(x)=|x+1|+|x-2|≥|(x+1)-(x-2)|=3,
ห้องสมุดไป่ตู้
当且仅当(x+1)(x-2)≤0,即-1≤x≤2时取等号,
所以[f(x)]min=3.故a的取值范围是(-∞,3).
11
题型2 求含绝对值的不等式的解集
2. 解下列不等式:
(1)|x-x2-2|>x2-3x-4;
(2)| 3x 1 |≤1(a>- 1,为常数).
x-a
3
解:(1)解法1:原不等式等价于x-x2-2>x2-
3x-4或x-x2-2<-(x2-3x-4),
所以0<x<1.
7
已知不等式|2x-t|+t-1<0的解集为(- 1
2
, 1 ),则______.
2
解:依题意|2x-t|<1-t,所以t-1<2x-t<
1-t,
即2t-1<2x<1,即t- 1 <x< 1 ,所以
2
2
t=0.
8
题型1 比较含绝对值的代数式的大小 1. 设f(x)= -x,已知|x-a|<1,比较
盘点指南:①||a|-|b||;②|a|+|b|;③||a|-|b||;④
|a|+|b|;⑤a;⑥-a;⑦f2(x)≤g2(x); ⑧
f f
(x) (x)
g(x)
-g(x);⑨
f(x)≥g(x)或f(x)≤-g(x) .
高考数学一轮经典例题 含绝对值的不等式解法 理
![高考数学一轮经典例题 含绝对值的不等式解法 理](https://img.taocdn.com/s3/m/7e29f4be6f1aff00bed51ea5.png)
例1 不等式|8-3x|>0的解集是 [ ]A B RC {x|x }D {83}...≠.∅83分析∵->,∴-≠,即≠.|83x|083x 0x 83答 选C .例2 绝对值大于2且不大于5的最小整数是[ ]A .3B .2C .-2D .-5分析 列出不等式.解 根据题意得2<|x|≤5.从而-5≤x <-2或2<x ≤5,其中最小整数为-5,答 选D .例3 不等式4<|1-3x|≤7的解集为________.分析 利用所学知识对不等式实施同解变形.解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A .分析 转化为解绝对值不等式.解 ∵2<|6-2x|<5可化为2<|2x -6|<5即-<-<,->或-<-,52x 652x 622x 62⎧⎨⎩即<<,>或<,12x 112x 82x 4⎧⎨⎩解之得<<或<<.4x x 211212因为x ∈N ,所以A ={0,1,5}.说明:注意元素的限制条件.例5 实数a ,b 满足ab <0,那么[ ]A .|a -b|<|a|+|b|B .|a +b|>|a -b|C .|a +b|<|a -b|D .|a -b|<||a|+|b||分析 根据符号法则及绝对值的意义.解 ∵a 、b 异号,∴ |a +b|<|a -b|.答 选C .例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为[ ]A .a =1,b =3B .a =-1,b =3C .a =-1,b =-3D a b .=,=1232 分析 解不等式后比较区间的端点.解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得.a b 1a b 2a b -=-+=,解之得=,=.⎧⎨⎩1232答 选D .说明:本题实际上是利用端点的位置关系构造新不等式组.例7 解关于x 的不等式|2x -1|<2m -1(m ∈R)分析 分类讨论.解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112式的解集为;∅若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12x <m .综上所述得:当≤时原不等式解集为;当>时,原不等式的解集为m m 1212∅{x|1-m <x <m}.说明:分类讨论时要预先确定分类的标准.例解不等式-+≥.8 3212||||x x分析 一般地说,可以移项后变形求解,但注意到分母是正数,所以能直接去分母. 解 注意到分母|x|+2>0,所以原不等式转化为2(3-|x|)≥|x|+2,整理得|x|x {x|x }≤,从而可以解得-≤≤,解集为-≤≤.4343434343说明:分式不等式常常可以先判定一下分子或者分母的符号,使过程简便.例9 解不等式|6-|2x+1||>1.分析以通过变形化简,把该不等式化归为|ax+b|<c或|ax+b|>c型的不等式来解.解事实上原不等式可化为6-|2x+1|>1①或 6-|2x+1|<-1②由①得|2x+1|<5,解之得-3<x<2;由②得|2x+1|>7,解之得x>3或x<-4.从而得到原不等式的解集为{x|x<-4或-3<x<2或x>3}.说明:本题需要多次使用绝对值不等式的解题理论.例10 已知关于x的不等式|x+2|+|x-3|<a的解集是非空集合,则实数a的取值范围是________.分析可以根据对|x+2|+|x-3|的意义的不同理解,获得多种方法.解法一当x≤-2时,不等式化为-x-2-x+3<a即-2x+1<a有解,而-2x+1≥5,∴a>5.当-2<x≤3时,不等式化为x+2-x+3<a即a>5.当x>3是,不等式化为x+2+x-3<a即2x-1<a有解,而2x-1>5,∴a>5.综上所述:a>5时不等式有解,从而解集非空.解法二 |x+2|+|x-3|表示数轴上的点到表示-2和3的两点的距离之和,显然最小值为3-(-2)=5.故可求a的取值范围为a>5.解法三利用|m|+|n|>|m±n|得|x+2|+|x-3|≥|(x+2)-(x-3)|=5.所以a>5时不等式有解.说明:通过多种解法锻炼思维的发散性.例11 解不等式|x+1|>2-x.分析一对2-x的取值分类讨论解之.解法一原不等式等价于:①-≥+>-或+<-2x0x12x x1x2⎧⎨⎩或②-<∈2x0 x R⎧⎨⎩由①得≤>或<-x2x1212⎧⎨⎪⎩⎪即≤>,所以<≤;x2x x21212⎧⎨⎪⎩⎪由②得x>2.综合①②得>.所以不等式的解集为>.x {x|x }1212分析二 利用绝对值的定义对|x +1|进行分类讨论解之.解法二 因为 |x 1| x 1x 1x 1x 1+=+,≥---,<-⎧⎨⎩ 原不等式等价于:①≥>或②<>x x x x x x ++-⎧⎨⎩+---⎧⎨⎩10121012由①得≥>即>;x x -⎧⎨⎪⎩⎪11212x由②得<-->即∈.x 112 x ⎧⎨⎩∅所以不等式的解集为>.{x|x }12例12 解不等式|x -5|-|2x +3|<1.分析 设法去掉绝对值是主要解题策略,可以根据绝对值的意义分区间讨论,事实上,由于=时,-=,=-时+=.x 5|x 5|0x |2x 3|032所以我们可以通过-,将轴分成三段分别讨论.325x解当≤-时,-<,+≤所以不等式转化为x x 502x 3032-(x -5)+(2x +3)<1,得x <-7,所以x <-7;当-<≤时,同理不等式化为32x 5-(x -5)-(2x +3)<1,解之得>,所以<≤;x x 51313当x >5时,原不等式可化为x -5-(2x +3)<1,解之得x >-9,所以x >5.综上所述得原不等式的解集为>或<-.{x|x x 7}13说明:在含有绝对值的不等式中,“去绝对值”是基本策略.例13 解不等式|2x -1|>|2x -3|.分析 本题也可采取前一题的方法:采取用零点分区间讨论去掉绝对值,但这样比较复杂.如果采取两边平方,即根据>>解|a||b|a b 22 之,则更显得流畅,简捷.解 原不等式同解于(2x -1)2>(2x -3)2,即4x2-4x +1>4x2-12x +9,即8x >8,得x >1.所以原不等式的解集为{x|x >1}.说明:本题中,如果把2x 当作数轴上的动坐标,则|2x -1|>|2x -3|表示2x 到1的距离大于2x 到3的距离,则2x 应当在2的右边,从而2x >2即x >1.。
高三数学《师说》系列一轮复习 不等式选讲课件 理 新人教B
![高三数学《师说》系列一轮复习 不等式选讲课件 理 新人教B](https://img.taocdn.com/s3/m/9584c03178563c1ec5da50e2524de518964bd32b.png)
点评 解法一主要是分类讨论去绝对值,关键是确定讨论的区 间.解法二主要是根据具体问题结合数轴可得解集(即图象法).
变式迁移 1 不等式|2x+1|+|x-2|>4 的解集为________.
答案 {x|x<-1 或 x>1}
解析 当 x≤-12时, 原不等式可化为-2x-1+2-x>4 ∴x<-1.
②作商法:欲证 A>B,若 B>0,只需证AB>1;若 B<0,只 需证明AB<1.
步骤:作商 变形 判断商与“1”的大小. 注意 在比较商式与“1”的大小关系时,应注意函数(特别是 指数函数)的性质(特别是单调性)的运用.
(2)分析法. ①方法:分析法是从需求证的不等式出发,分析使这个不等式 成立的充分条件,通过肯定这些充分条件都已具备,从而断定原不 等式成立. ②特点:执果索因,即从“未知”看“需知”,逐步靠拢“已 知”. 注意 用分析法证明不等式往往把“逆求”错误用做为“逆 推”,分析过程只需寻求充分条件即可,而不是充要条件.
(5)放缩法. 欲证 A≥B,可通过适当放大或缩小,借助一个或多个中间量, 使得 B≤B1,B1≤B2,…,Bi≤A,或 A≥A1,A1≥A2,…,Ai≥B, 再利用传递性,达到欲证的目的,这种方法叫做放缩法. (6)用数学归纳法证明不等式 ①用数学归纳法证明不等式必须严格遵循数学归纳法的基本程 序“两步一结论” ②由于不等式的特殊性,在 n=k n=k+1 的过程中,假设成 立的结论代入后与目标结论尚有较大差异,此时要综合运用不等式 的证明方法.
平方和不等式:若 a,b∈R,则 a2+b2≥12(a+b)2; 重要不等式:a,b 均为正数,则a+2 b≥ ab,a,b∈R,则 a2 +b2≥2ab; 倒数和不等式,若 a,b 均为正数,则(a+b)(1a+1b)≥4.
高考数学含绝对值的不等式的解法
![高考数学含绝对值的不等式的解法](https://img.taocdn.com/s3/m/bf5ae64cb84ae45c3b358c75.png)
x aa 0 a x a
x aa 0 x a或x a
ax b cc 0 c ax b c
ax b cc 0 ax b c或ax b c
f x g x g x f x g x
x 2 x 1,求 a : b : c
例3、若 x 2 x 1 a恒成立,求实数a的取值范围。
几何法,或绝对值不等式法
例4、在一条公路上,每隔100千米有个仓库(如图), 共有五个仓库,一号仓库存有10吨货物,二号仓库存 有20吨货物,五号仓库存有40吨货物,其余两个仓库 是空的,现在想把所有的货物集中存放在一个仓库里, 如果每吨货物运输一千米需要0.5元运输费,那么最少 要多少运费才行? A1(0) A3(200) A4(300)
2 2 3x 5
3 x 2 3 2 x
定义法
同解变形
同解变形或数形结合 同解变形 平方法 零点分析法 同解变形
41 2 3x 4
5 x x 1
6 x 2 x 1 3
7 ax 2 2
例2、设 a 0,不等式 ax b c 的解集为
f x gx f x gx或f x gx
a f x bb a 0 a f x b或 b f x a
3、不等式的解集都要用集合形式表示,不要使用 不等式的形式。
例1、解下列不等式Leabharlann 1 2 3x 2 3x
高三第一轮复习
含绝对值不等式的解法
1、绝对值的意义:
其几何意义是数轴的点A(a)离开原点的距离
OA a
a, a 0 a 0, a 0 a, a 0
高考数学一轮复习第二章不等式第三节绝对值不等式学案解析版
![高考数学一轮复习第二章不等式第三节绝对值不等式学案解析版](https://img.taocdn.com/s3/m/fe8b7ddcdd88d0d233d46aad.png)
第三节 绝对值不等式1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值不等式|x |<a 与|x |>a 的解法: 不等式 a >0 a =0a <0|x |<a {}x |-a <x <a ∅∅ |x |>a{}x |x >a 或x <-a{}x |x ∈R 且x ≠0R(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法: ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c . [小题体验]1.不等式|2x -1|>3的解集为________. 答案:{x |x <-1或x >2}2.不等式|x +1|-|x -2|≥1的解集为________. 答案:{}x |x ≥13.函数y =|x -4|+|x +4|的最小值为________. 解析:∵|x -4|+|x +4|≥|(x -4)-(x +4)|=8, 即函数y 的最小值为8. 答案:81.对形如|f (x )|>a 或|f (x )|<a 型的不等式求其解集时,易忽视a 的符号直接等价转化造成失误.2.绝对值不等式||a |-|b ||≤|a ±b |≤|a |+|b |中易忽视等号成立的条件.如|a -b |≤|a |+|b |,当且仅当ab ≤0时等号成立,其他类似推导.[小题纠偏]1.设a ,b 为满足ab <0的实数,那么( )A .|a +b |>|a -b |B .|a +b |<|a -b |C .|a -b |<||a |-|b ||D .|a -b |<|a |+|b |解析:选B ∵ab <0, ∴|a -b |=|a |+|b |>|a +b |.2.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________. 解析:∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3, ∴-3≤a -1≤3,∴-2≤a ≤4. 答案:[-2,4]考点一 绝对值不等式的解法基础送分型考点——自主练透[题组练透]1.若关于x 的不等式|ax -2|<3的解集为⎝ ⎛⎭⎪⎫-53,13,则实数a =________. 解析:由|ax -2|<3,得-1<ax <5, ∵-53<x <13,∴a =-3.答案:-32.解不等式|2x -1|+|2x +1|≤6.解:法一:当x >12时,原不等式转化为4x ≤6⇒12<x ≤32;当-12≤x ≤12时,原不等式转化为2≤6,恒成立;当x <-12时,原不等式转化为-4x ≤6⇒-32≤x <-12.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32. 法二:原不等式可化为⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12≤3,其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x=32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.3.已知函数f (x )=|x +1|-|2x -3|.(1)画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.解:(1)由题意得f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或1<x <3或x >5. [谨记通法]解绝对值不等式的基本方法(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式; (2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.考点二 绝对值不等式的证明重点保分型考点——师生共研[典例引领](2019·成都外国语学校模拟)已知函数f (x )=|x -1|. (1)解不等式f (2x )+f (x +4)≥8; (2)若|a |<1,|b |<1,a ≠0,求证:f ab |a |>f ⎝ ⎛⎭⎪⎫b a . 解:(1)f (2x )+f (x +4)=|2x -1|+|x +3|=⎩⎪⎨⎪⎧-3x -2,x <-3,-x +4,-3≤x <12,3x +2,x ≥12,当x <-3时,由-3x -2≥8,解得x ≤-103;当-3≤x <12时,-x +4≥8无解;当x ≥12时,由3x +2≥8,解得x ≥2.所以不等式f (2x )+f (x +4)≥8的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-103或x ≥2. (2)证明:f ab |a |>f ⎝ ⎛⎭⎪⎫b a 等价于f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a ,即|ab -1|>|a -b |. 因为|a |<1,|b |<1,所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2)=(a 2-1)(b 2-1)>0, 所以|ab -1|>|a -b |.故所证不等式成立.[由题悟法]证明绝对值不等式主要的3种方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明. (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,数形结合进行证明.[即时应用]已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证明:∵|x +5y |=|3(x +y )-2(x -y )|.∴由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )|=3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1.考点三 绝对值不等式的综合应用重点保分型考点——师生共研[典例引领]已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3,即⎪⎪⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪⎪⎪12-x ≥3-a 2.又⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪⎪⎪12-x min =⎪⎪⎪⎪⎪⎪12-a 2,所以⎪⎪⎪⎪⎪⎪12-a 2≥3-a 2,解得a ≥2. 所以a 的取值范围是[2,+∞).[由题悟法](1)研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,将原函数转化为分段函数,然后利用数形结合解决问题,这是常用的思想方法.(2)f (x )<a 恒成立⇔f (x )max <a .f (x )>a 恒成立⇔f (x )min >a .[即时应用]已知定义域为R 的奇函数f (x )=x |x +m |. (1)解不等式f (x )≥x ;(2)若对任意的x 1,x 2∈[1,1+a ],恒有|f (x 1)-f (x 2)|≤2成立,求实数a 的取值范围. 解:因为f (x )=x |x +m |是定义域为R 的奇函数, 所以m =0,即f (x )=x |x |.(1)由x |x |≥x ,得⎩⎪⎨⎪⎧x >0,x 2≥x 或⎩⎪⎨⎪⎧x ≤0,-x 2≥x ,即x ≥1或-1≤x ≤0,所以不等式f (x )≥x 的解集为[-1,0]∪[1,+∞).(2)f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,则f (x )在R 上单调递增,所以f (x )在[1,1+a ]上单调递增,所以f (1+a )-f (1)≤2,即(1+a )|1+a |-1≤2,又1+a >1,故可得0<a ≤ 3-1,所以实数a 的取值范围是(0,3-1].一抓基础,多练小题做到眼疾手快1.已知a ,b ∈R ,则使不等式|a +b |<|a |+|b |一定成立的条件是( ) A .a +b >0 B .a +b <0 C .ab >0D .ab <0解析:选D 当ab >0时,|a +b |=|a |+|b |,当ab <0时,|a +b |<|a |+|b |,故选D.2.设集合A ={x ||4x -1|<9,x ∈R},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪xx +3≥0,x ∈R ,则(∁R A )∩B =( ) A .(-∞,-3)∪⎣⎢⎡⎭⎪⎫52,+∞B .(-3,-2]∪⎣⎢⎡⎭⎪⎫0,52C .(-∞,-3]∪⎣⎢⎡⎭⎪⎫52,+∞ D .(-3,-2]解析:选A 由题意得A =⎝⎛⎭⎪⎫-2,52,B =(-∞,-3)∪[0,+∞),∴(∁R A )∩B =(-∞,-3)∪⎣⎢⎡⎭⎪⎫52,+∞.3.不等式|x +2|>3x +145的解集是( )A .(-3,-2)B .(-2,0)C .(0,2)D .(-∞,-3)∪(2,+∞)解析:选D 不等式即为5(x +2)>3x +14或5(x +2)<-(3x +14),解得x >2或x <-3,故选D.4.不等式|x -1|-|x -5|<2的解集为____________. 解析:不等式|x -1|-|x -5|<2等价于⎩⎪⎨⎪⎧x <1,-x -1+x -5<2或⎩⎪⎨⎪⎧1≤x ≤5,x -1+x -5<2或⎩⎪⎨⎪⎧x >5,x -1-x -5<2,即⎩⎪⎨⎪⎧x <1,-4<2或⎩⎪⎨⎪⎧1≤x ≤5,2x <8或⎩⎪⎨⎪⎧x >5,4<2,故原不等式的解集为{x |x <1}∪{x |1≤x <4}∪∅={x |x <4}. 答案:{x |x <4}5.不等式|x (x -2)|>x (x -2)的解集为________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案:{x |0<x <2}二保高考,全练题型做到高考达标1.(2018·台州联考)不等式(1+x )(1-|x |)>0的解集是( ) A .{x |0≤x <1} B .{x |x <0且x ≠-1} C .{x |-1<x <1}D .{x |x <1且x ≠-1}解析:选D 不等式等价于⎩⎪⎨⎪⎧x ≥0,1-x 2>0或⎩⎪⎨⎪⎧x <0,1+x 2>0,解得0≤x <1或x <0且x ≠-1.故选D.2.已知a ,b ∈R ,则“|a |+|b |>1”是“b <-1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 令a =0,b =2,则|a |+|b |>1成立,但推不出b <-1;反之,若b <-1,则|b |>1,又|a |≥0,所以|a |+|b |>1.所以“|a |+|b |>1”是“b <-1”的必要不充分条件.3.不等式|x -5|+|x +3|≥10的解集是( ) A .[-5,7]B .[-4,6]C. (-∞,-5]∪[7,+∞)D. (-∞,-4]∪[6,+∞)解析:选D 当x ≤-3时,|x -5|+|x +3|=5-x -x -3=2-2x ≥10,即x ≤-4,∴x ≤-4.当-3<x <5时,|x -5|+|x +3|=5-x +x +3=8≥10,不成立,∴无解.当x ≥5时,|x -5|+|x +3|=x -5+x +3=2x -2≥10,即x ≥6,∴x ≥6.综上可知,不等式的解集为(-∞,-4]∪[6,+∞).4.不等式x 2-|x -1|-1≤0的解集为( ) A .{x |-2≤x ≤1} B .{x |-1≤x ≤2} C .{x |1≤x ≤2}D .{x |-1≤x ≤1}解析:选A 当x -1≥0时,原不等式化为x 2-x ≤0,解得0≤x ≤1.∴x =1; 当x -1<0时,原不等式化为x 2+x -2≤0, 解得-2≤x ≤1.∴-2≤x <1. 综上,-2≤x ≤1.所以原不等式的解集为{x |-2≤x ≤1},故选A.5.(2018·长沙六校联考)设f (x )=1ax 2-bx +c ,不等式f (x )<0的解集是(-1,3),若f (7+|t |)>f (1+t 2),则实数t 的取值范围为( )A .(-3,1)B .(-3,3)C .(-1,3)D .(-1,1)解析:选B ∵f (x )<0的解集是(-1,3), ∴a >0,f (x )的对称轴是x =1,且ab =2. ∴f (x )在[1,+∞)上单调递增. 又∵7+|t |≥7,1+t 2≥1,∴由f (7+|t |)>f (1+t 2),得7+|t |>1+t 2. ∴|t |2-|t |-6<0,解得-3<t <3. 故选B.6.已知函数f (x )=|x +6|-|m -x |(m ∈R),若不等式f (x )≤7对任意实数x 恒成立,则m 的取值范围为________.解析:由绝对值三角不等式得f (x )=|x +6|-|m -x |≤|x +6+m -x |=|m +6|,由题意得|m +6|≤7,则-7≤m +6≤7,解得-13≤m ≤1,故m 的取值范围为[-13,1].答案:[-13,1]7.设|x -2|<a 时,不等式|x 2-4|<1成立,则正数a 的取值范围为____________. 解析:由|x -2|<a 得2-a <x <a +2, 由|x 2-4|<1,得3<x 2<5, 所以-5<x <-3或3<x < 5. 因为a >0,所以由题意得⎩⎨⎧3≤2-a ,a +2≤ 5.解得 0<a ≤5-2,故正数a 的取值范围为(0,5-2]. 答案:(0,5-2]8.(2018·杭州五校联考)已知不等式|x 2-4x +a |+|x -3|≤5的x 的最大值为3,则实数a 的值是____________.解析:∵x ≤3,∴|x -3|=3-x .若x 2-4x +a <0,则原不等式化为x 2-3x +a +2≥0. 此不等式的解集不可能是集合{x |x ≤3}的子集, ∴x 2-4x +a <0不成立. 于是,x 2-4x +a ≥0,则原不等式化为x 2-5x +a -2≤0.∵x ≤3,令x 2-5x +a -2=(x -3)(x -m )=x 2-(m +3)x +3m ,比较系数,得m =2,∴a=8.答案:89.已知|2x -3|≤1的解集为[m ,n ]. (1)求m +n 的值;(2)若|x -a |<m ,求证:|x |<|a |+1.解:(1)不等式|2x -3|≤1可化为-1≤2x -3≤1, 解得1≤x ≤2,所以m =1,n =2,m +n =3.(2)证明:若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1.即|x |<|a |+1. 10.(2018·杭州质检)已知函数f (x )=|x -4|+|x -a |(a ∈R)的最小值为a . (1)求实数a 的值; (2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a , 从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,令-2x +6≤5,得12≤x ≤2,当2<x ≤4时,显然不等式成立, 当x >4时,令2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤112. 三上台阶,自主选做志在冲刺名校1.(2018·金丽衢十二校联考)设a ,b 为实数,则“|a -b 2|+|b -a 2|≤1”是“⎝ ⎛⎭⎪⎫a -122+⎝ ⎛⎭⎪⎫b -122≤32”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选 A ⎝ ⎛⎭⎪⎫a -122+⎝ ⎛⎭⎪⎫b -122≤32⇔a 2-a +14+b 2-b +14≤32⇔a 2-a +b 2-b ≤1⇔b 2-a+a 2-b ≤1,令b 2-a =x ,a 2-b =y ,则|x |+|y |≥|x +y |≥x +y ,所以|x |+|y |≤1⇒x +y ≤1,故充分性成立,必要性不成立,故选A.2.已知函数f (x )=|x -1|+|x -a |(a >1).(1)若不等式f (x )≥2的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤12或x ≥52,求a 的值; (2)若对任意的x ∈R ,都有f (x )+|x -1|≥1,求实数a 的取值范围. 解:(1)f (x )=|x -1|+|x -a |=⎩⎪⎨⎪⎧2x -a -1,x ≥a ,a -1,1≤x <a ,-2x +a +1,x <1,当x ≥a 时,由2x -a -1≥2,解得x ≥a +32=52;当x <1时,由-2x +a +1≥2,解得x ≤a -12=12. 综上得a =2.(2)由x ∈R ,f (x )+|x -1|≥1,可得2|x -1|+|x -a |≥1.当x ≥a 时,只需3x -2-a ≥1恒成立即可,此时只需3a -2-a ≥1⇒a ≥32;当1≤x <a 时,只需x -2+a ≥1恒成立即可,此时只需1-2+a ≥1⇒a ≥2;当x <1时,只需-3x +2+a ≥1恒成立即可,此时只需-3+2+a ≥1⇒a ≥2.综上可得,a 的取值范围为[2,+∞).。
高三一轮复习课件绝对值不等式的解法
![高三一轮复习课件绝对值不等式的解法](https://img.taocdn.com/s3/m/3e89eb4d580216fc700afd85.png)
x
x
“合”:设g(x) ax, x (0,1), 当a 0时不合题意,
当a
0时,00≤≤
g(0) ≤ 2 g(1) ≤ 2
,即a
(0,
2].
高三一轮复习
课堂小结
1. f (x) g(x)和 f (x) g(x)型不等式的一般解法 f (x) g(x) f (x) g(x)或f (x) g(x) f (x) g(x) g(x) f (x) g(x)
变式2.不等式 2x 1 x 1 ≤ 4的解集为 [6,2] .
解析:(1)
x
1 2
或
1 2
≤
x
≤
1 2
或
x
1 2
4x ≤ 4 2 ≤ 4
4x ≤ 4
(2)
x1 2
x 2 ≤
4
或
1≤x 2 3x ≤
≤1或 4
或 1
x
x ≥1 1≥ x
1
解得x ≤ 0或x
所以原不等式的解集为( ,0].
高三一轮复习
典例导练
江西省宁都中学
变式2.解不等式 x 1 ≥ x 1 .
解析:பைடு நூலகம்(2)函数图像
(3)平方
原不等式可化为
(
x
x 1 1)2 ≥ (
0 x
1)2
或
x
(1)当a 1时,求不等式f (x) ≥ g(x)的解集; (2)若不等式f (x) ≥ g(x)的解集包含[1,1], 求a取值范围.
高三一轮复习
高三一轮复习 不等式选讲
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案17 含绝对值的函数
一、课前准备:
【自主梳理】含绝对值的函数本质上是分段函数,往往需要先去绝对值再结合函数图像进行研究,主要有以下3类:
1.形如)(x f y =的函数,由于0
)(0)()()()(<≥⎩⎨⎧-==x f x f x f x f x f y ,因此研究此类函数往往结合函数图像,可以看成由)(x f y =的图像在x 轴上方部分不变,下方部分关于x 轴对称得到;
2.形如)(x f y =的函数,此类函数是偶函数,因此可以先研究0≥x 的情况,0<x 的情况可以根据对称性得到;
3.函数解析式中部分含有绝对值,如a x x y a x y -+=+-=2,1等,这种函数是普通的分段函数,一般先去绝对值,再做出图像进行研究.
【自我检测】
1.函数13-=x y 的单调增区间为 _.
2.函数x y lg =的单调减区间为_______.
3.方程a x =-1有两个不同的实数根,则实数a 的取值范围是___________.
4. 函数x
a y =在)0,(-∞上是增函数,则a 的取值范围是___________.
5.函数11++-=x x y 的值域为___________.
6.函数q px x x x f ++=)(是奇函数的充要条件是___________.
二、课堂活动:
【例1】填空题:
(1)已知函数f (x )=log a | x |在(0,+∞)上单调递增,则f (-2) f (a +1).(填写“<”,
“=”,“>”之一).
(2)函数2ln -=x y 的图像与函数1=y 的图像的所有交点的横坐标之和为________.
(3)函数x y 21log =的定义域为],[b a ,值域为[0,2],则b -a 的最小值为_______.
(4)关于函数)0(1lg )(2≠+=x x
x x f ,有下列命题:①其图像关于y 轴对称;②)(x f 的最小值为lg2;③)(x f 的递增区间为(-1,0);④)(x f 没有最大值.其中正确的是_____________(把正确的命题序号都填上).
【例2】设a 为实数,函数R x a x x x f ∈+-+=,1)(2
(1)若函数)(x f 是偶函数,试求a 的值;
(2)在(1)的条件下,求)(x f 的最小值.
【例3】 设函数a R x a x x x f ,(2)(2∈-+=为常数)
(1) a =2时,讨论函数)(x f 的单调性;
(2) 若a >-2,函数)(x f 的最小值为2,求a 的值.
三、课后作业
1.函数12+=x y 关于直线___________对称.
2.函数b a x x x f ++=||)(是奇函数,则=a ________;=b __ _.
3.关于x 的方程a x x =+-232有4个不同实数解,则a 的取值范围是__________.
4.函数2x x y -=的递减区间是_ ______.
5.函数)4(log )(2+-=x x f 的值域为__________.
6.函数x
x x x y cos cos sin sin +=的值域是___________. 7.已知01a <<,则方程|||log |x a a x =的实数解的个数是___________.
8.关于x 的方程0121=++-m x 有唯一实数解,则m 的值为___________.
9.已知()f x 是定义在R 上的偶函数,且当0x ≥时,()21x f x x -=+,若对任意实数1,22t ⎡⎤∈⎢⎥⎣⎦
,都有()()10f t a f t +-->恒成立,则实数a 的取值范围是 .
10.已知函数)1,0(1log )(≠>-=a a x x f a ,若1234x x x x <<<,
且12()()f x f x =34()()f x f x ==,则1234
1111x x x x +++= . 11.已知函数12)(,)(2++=-=ax x x g a x x f (a 为正常数),且函数)(x f 与)(x g 的图像在y 轴上的截距相等.
(1) 求a 的值;
(2) 求函数)(x f +)(x g 的单调递增区间.
12.已知函数2
|43|y x x =-+.
(1)研究函数的单调性;(2)求函数在[0,]t 上的值域(t>0).
13.(已知函数b ax ax x g ++-=12)(2
(0>a )在区间[2,3]上有最大值4和最小值1.设()()g x f x x
=. (1)求a 、b 的值;
(2)若不等式02)2(≥⋅-x x k f 在]1,1[-∈x 上恒成立,求实数k 的取值范围;
(3)若()03|
12|2|12|=--⋅+-k k f x x 有三个不同的实数解,求实数k 的取值范围.
参考答案:
【自我检测】 1.⎪⎭
⎫⎢⎣⎡+∞,31 2.)0,(-∞ 3.),0(+∞ 4.(0,1) 5.),2[+∞ 6.0=q .
课堂活动 例1.(1)< ;(2)4 ;(3)
4
3;(4)①②④ . 例2.(1)由R x x f x f ∈∀=-对)()(成立得0=a ;(2)0≥x 时,1)(2++=x x x f 是增函
数,最小值为1)0(=f ,由)(x f 是偶函数,关于y 轴对称可知,函数)(x f 在R 上的最小值为1)0(=f . 例3.(1)2=a 时,1
1222222)(222
<≥⎩⎨⎧+--+=-+=x x x x x x x x x f ,结合图像知,函数)(x f y =的单调增区间为),1[+∞,减区间为]1,(-∞;
(2)2
222)(22a
x a x a x x a x x x f <≥⎩⎨⎧+--+=,12,2->∴->a a ,结合图像可得 当2≥a 时函数)(x f y =的最小值为1)1(-=a f =2,解得a =3符合题意; 当22<<-a 时函数)(x f y =的最小值为24
)2(2
==a a f ,无解; 综上,a =3.
课后作业 1.21-=x ; 2. 0,0; 3.)41,0(;4.),2
1[]0,21[+∞-和; 5.]2,(-∞;6.{2,0,-2};7.2 ;8.-2; 9.()
(),30,-∞-+∞ 10.2 11.(1)1=a ;(2)减区间]21
,(--∞,增区间),2
1[+∞- 12.(1)增区间)
,和∞+3[]2,1[,减区间]3,2[]1,(和-∞; (2)10≤<t 时,值域为]3,34[2+-t t ;41≤<t ,时,值域为]3,0[;
4≥t 时,值域为]34,0[2
+-t t .
13.解:(1)a b x a x g -++-=1)1()(2,
因为0>a ,所以)(x g 在区间]3,2[上是增函数, 故⎩
⎨⎧==4)3(1)2(g g ,解得⎩⎨⎧==01b a . (2)由已知可得21)(-+
=x x x f , 所以02)2(≥⋅-x x k f 可化为x x x k 22212⋅≥-+
, 化为k x x ≥⋅-⎪⎭
⎫ ⎝⎛+2122112,令x t 21=,则122+-≤t t k , 因]1,1[-∈x ,故⎥⎦
⎤⎢⎣⎡∈2,21t , 记=)(t h 122+-t t ,因为⎥⎦⎤⎢
⎣⎡∈1,21t ,故()min 0h t =, 所以k 的取值范围是(],0-∞.
(3)原方程可化为0)12(|12|)23(|12|2=++-⋅+--k k x
x ,
令t x =-|12|,则),0(∞+∈t , 0)12()23(2=+++-k t k t 有两个不同的实数解1t ,2t ,
其中101<<t ,12>t ,或101<<t ,12=t .
记)12()23()(2+++-=k t k t t h ,则⎩⎨⎧<-=>+0)1(012k h k ① 或⎪⎪⎩
⎪⎪⎨⎧<+<=-=>+122300)1(012k k h k ②
解不等组①,得0>k ,而不等式组②无实数解.所以实数k 的取值范围是),0(∞+.。