激光倍频实验讲稿汇总
固体激光倍频、调q实验
固体激光倍频、调q实验声光调Q倍频YAG激光器实验声光调制器由石英晶体、铌酸锂或重火石玻璃作为声光介质,通过压电晶体电声转换器将超声波耦合,在声光介质中产生超声波光栅,介质的折射率被周期性调制形成折射率体光栅。
在腔内采用该技术,可将连续的1064nm基频光变换成10KHz的高重复率脉冲激光,由于具有重复频率和峰值功率高的特点,可获得高平均功率的倍频绿光输出。
【实验目的】(1)掌握声光调Q连续激光器及其倍频的工作原理; (2)学习声光调Q倍频激光器的调整方法;(3)了解声光调Q固体激光器的静态和动态特性,并掌握测试方法; (4)学习倍频激光器的调整方法。
【实验原理】【实验原理】声光调Q倍频连续YAG激光器的工作原理(1) 声光调Q基本原理:图1 声光调制器工作原理声光调制器是由石英晶体、铌酸锂、或重火石玻璃做为声光介质,通过电声换能器(压电晶体)将超声波耦合进去,在声光介质中产生超声波光栅。
超声波光栅将介质的折射率进行周期性调制,从而进一步形成折射率体光栅。
如图1所示。
光栅公式如下式(1) 式(1)中,是声光介质中的超声波波长,为布拉格衍射角,为入射光波波长,n为声光介质的折射率。
当入射光以布拉格角入射时,出射光将被介质中的体光栅衍射到一级衍射最大方向上。
利用声光介质的这种性质,可以对激光谐振腔内的光束方向进行调制。
当加入声光调制信号时,光束偏转出腔外,不能在腔内形成振荡,即此时为高损耗腔。
在此期间泵浦灯注入给激活介质(激光晶体)的能量储存在激光上能级,形成高反转粒子数。
当去掉声光调制信号时,光束不被偏转,在腔内往返,形成激光振荡。
由于前面积累的高反转粒子数远远超过激光阈值,所以瞬时形成脉冲激光输出,从而形成窄脉宽、高能量的激光脉冲。
声光调Q激光器工作在几千周到几十千周的调制频率下,所以可以获得高重复率、高平均功率的激光输出。
(2)倍频器件工作原理:图2 倍频晶体折射率椭球及通光方向示意图由于晶体中存在色散现象,所以在倍频晶体中的通光方向上,基频光与倍频光所经历的折射率与是不同的。
激光专题讲座5
第五专题 激光倍频理论与技术§5.1激光倍频基本理论从目前的激光材料其输出波长是很局限的,比如大量应用的优质材料YAG 摻Nd ,只能输出1.064m μ(或0.94m μ)。
为获得可见光波长,只有采用其它方法,这就是倍频技术发展的原因。
由Nd :Y AG 的1.064m μ激光倍频后输出0.532m μ绿光,也可通过3倍频获得0.355m μ或四倍频获得0.266m μ激光。
这是非常有用的紫外激光器。
倍频理论是很复杂的,理论上需要解具有极化的三波相互作用波动方程,即处理下面的波动方程,该方程是高斯单位制中的表达形式,即2222222E 4pE c t c tε∂π∂∇=+∂∂ 5.1—1这里的E 为光波场,ε为介电常数,c 为光速,p 为极化矢量。
因极化是光波场引起的,可以与E 成线性关系或成平方关系。
如果是线性关系,不能产生新的频率,如果成平方关系则可实现激光频率的转变产生新的频率。
有些晶体对光波的作用产生平方关系,称此种晶体为非线性晶体。
用非线性晶体可得到倍频光。
在解三波耦合方程时,即认为E 由三个波组合而成:123E E E E =++。
当考虑标量时,认为振动方向相同只计及量的关系,312E(z,t)E (z,t)E (z,t)E (z,t)ωωω=++。
在高级光学的非线性光学中已有介绍,经过复杂的推导运算可得到下面三个方程:3212i(k k k )z *112321dE i2d E (z)E (z)e dz c k --πω=⋅ (1) 3212i(k k k )z *221322dE i2d E (z)E (z)e dz c k --πω=⋅ (2) 5.1—2 1232i(k k k )z 331223dE i2d E (z)E (z)e dz c k +-πω=⋅ (3) 上面的三个方程式是处理光倍频、光混频、光参量振荡的理论基础。
如果我们设定1E 和2E 是入射的基频光,即设定12ω=ω,则3ω即等于1232ω+ω=ω=ω,实现了倍频。
固体激光倍频、调Q实验
声光调Q倍频YAG激光器实验声光调制器由石英晶体、铌酸锂或重火石玻璃作为声光介质,通过压电晶体电声转换器将超声波耦合,在声光介质中产生超声波光栅,介质的折射率被周期性调制形成折射率体光栅。
在腔内采用该技术,可将连续的1064nm基频光变换成10KHz的高重复率脉冲激光,由于具有重复频率和峰值功率高的特点,可获得高平均功率的倍频绿光输出。
【实验目的】(1)掌握声光调Q连续激光器及其倍频的工作原理;(2)学习声光调Q倍频激光器的调整方法;(3)了解声光调Q固体激光器的静态和动态特性,并掌握测试方法;(4)学习倍频激光器的调整方法。
【实验原理】【实验原理】声光调Q倍频连续YAG激光器的工作原理(1)声光调Q基本原理:图1 声光调制器工作原理声光调制器是由石英晶体、铌酸锂、或重火石玻璃做为声光介质,通过电声换能器(压电晶体)将超声波耦合进去,在声光介质中产生超声波光栅。
超声波光栅将介质的折射率进行周期性调制,从而进一步形成折射率体光栅。
如图1所示。
光栅公式如下式(1)式(1)中,是声光介质中的超声波波长,为布拉格衍射角,为入射光波波长,n为声光介质的折射率。
当入射光以布拉格角入射时,出射光将被介质中的体光栅衍射到一级衍射最大方向上。
利用声光介质的这种性质,可以对激光谐振腔内的光束方向进行调制。
当加入声光调制信号时,光束偏转出腔外,不能在腔内形成振荡,即此时为高损耗腔。
在此期间泵浦灯注入给激活介质(激光晶体)的能量储存在激光上能级,形成高反转粒子数。
当去掉声光调制信号时,光束不被偏转,在腔内往返,形成激光振荡。
由于前面积累的高反转粒子数远远超过激光阈值,所以瞬时形成脉冲激光输出,从而形成窄脉宽、高能量的激光脉冲。
声光调Q激光器工作在几千周到几十千周的调制频率下,所以可以获得高重复率、高平均功率的激光输出。
(2)倍频器件工作原理:图2 倍频晶体折射率椭球及通光方向示意图由于晶体中存在色散现象,所以在倍频晶体中的通光方向上,基频光与倍频光所经历的折射率与是不同的。
YAG激光器自由运转调Q和倍频实验
Nd:YAG激光器自由运转及调Q实验【实验目的】1.了解固体激光器的结构及工作原理(自由运转和染料调Q),掌握其调整方法;2.了解固体激光器的主要参数的测试技术;3.观察调Q脉冲经过KTP晶体实现倍频现象,了解倍频中相位匹配特性。
【实验原理】一、自由振荡1.固体激光器组成固体激光器主要由工作物质,泵浦光源和光学谐振腔三大部分组成。
常用的工作物质有红宝石,掺钕钇铝石榴石(Nd:YAG),钛宝石等晶体和钕玻璃等。
谐振腔常用两个平面或球面反射镜。
泵浦光源常用氙灯、氪灯、高压汞灯,碘钨灯。
在本实验中,激光器的主要元件为:①工作物质:掺钕钇铝石榴石(Nd:YAG);②光学谐振腔:双氙灯,双椭圆聚光腔,重复脉冲电源;③谐振腔镜:双色镜,部分反射镜。
2.自由振荡固体激光器的输出特性自由振荡激光器输出激光脉冲的特点是具有尖峰结构,即由许多振幅、脉宽和间隔作随机变化的尖峰脉冲组成。
每个尖峰的宽度约为0.1~1 μs,间隔为数微秒,脉冲序列的时间长度大致等于闪光灯泵浦持续的时间。
这种现象称为激光器的弛豫振荡。
产生弛豫振荡的主要原因是:当激光器的工作物质被泵浦,上能级的粒子反转数超过阈值条件时,即产生激光振荡,使腔内光子密度增加而发射激光。
随着激光的发射,上能级粒子数被大量消耗,导致粒子反转数降低,当低于阈值水平时,激光振荡就停止,这时,由于光泵的继续抽运,上能级粒子反转数重新积累,当超过阈值时,又产生第二个脉冲,如此不断重复上述过程,直到泵浦结束。
可见每个脉冲都是在阈值附近产生的,因此脉冲的峰值功率水平较低,从这个作用过程可以看出,增加泵浦功率也是无助于峰值功率的提高,而只会使小尖峰的个数增加。
二、调Q 的概念在激光技术中 ,用品质因数 Q 来描述与谐振腔损耗有关的特性。
Q 值定义为2Q v π=腔内存储的激光能量每秒损耗的能量用W 表示腔内存储的能量,δ表示腔的单程损耗,且设谐振腔长度为L,工作介质折射率n,光速c,则Q 值可表示为22/W nLQ v Wc nL ππδδλ==式中λ0为真空激光波长。
激光倍频实验报告
篇一:激光谐振腔与倍频实验激光谐振腔与倍频实验a13组 03光信息陆林轩 033012017 实验时间:2006-4-25[实验目的和内容]1、学习与掌握工作物质端面呈布儒斯特角的钕玻璃激光器的调节,以获得激光红外输出。
2、掌握腔外倍频技术,并了解倍频技术的意义。
3、观察倍频晶体0.53?m绿色光的输出情况。
[实验基本原理]1、激光谐振腔光学谐振腔是激光器的重要组成部分,能起延长增益介质的作用(来提高光能密度),同时还能控制光束的传播方向,对输出激光谱线的频率、宽度、和激光输出功率、等都产生很大的影响。
图1 激光谐振腔示意图(1)组成:光学谐振腔是由两个光学反射镜面组成、能提供光学正反馈作用的光学装置,如图1所示。
两个反射镜可以是平面镜或球面镜,置于激光工作物质两端。
两块反射镜之间的距离为腔长。
其中一个镜面反射率接近100%,称为全反镜;另一个镜面反射率稍低些,激光由此镜输出,故称输出镜。
(2)工作原理:谐振腔中包含了能实现粒子数反转的激光工作物质。
它们受到激励后,许多原子将跃迁到激发态。
但经过激发态寿命时间后又自发跃迁到低能态,放出光子。
其中,偏离轴向的光子会很快逸出腔外。
只有沿着轴向运动的光子会在谐振腔的两端反射镜之间来回运动而不逸出腔外。
这些光子成为引起受激发射的外界光场。
促使已实现粒子数反转的工作物质产生同样频率、同样方向、同样偏振状态和同样相位的受激辐射。
这种过程在谐振腔轴线方向重复出现,从而使轴向行进的光子数不断增加,最后从部分反射镜中输出。
所以,谐振腔是一种正反馈系统或谐振系统,具有很好的准直,选频和放大功能。
(3)种类:图2 谐振腔的种类按组成谐振腔的两块反射镜的形状以及它们的相对位置,可将光学谐振腔区分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。
平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。
对称凹面腔中两块反射球面镜的曲率半径相同。
实验十八__激光倍频技术及其特性分析
实验十八 激光倍频技术及其特性分析【实验目的】1、掌握倍频的基本原理和调试技能;2、了解影响倍频效率的主要因素;3、测量二倍频激光转换效率。
【实验原理】利用某些晶体在强光作用下的非线性效应,使频率为ω的激光通过晶体后,变成频率为2ω或3ω的倍频光,即为倍频技术。
它可用以扩展激光波段。
例如,可将1.06m μ的红外激光二倍频为0.53m μ的可见绿光,这对水下通讯,彩色电视等都很有实用价值的。
1、 物质极化的非线性效应物质由原子组成,原子由带正电的原子核及带负电的电子组成,一般呈中性。
但当光与物质相互作用时,原子的内能并不发生变化,只引起外层电子的位移,产生了电偶极矩,m er m =是偶极矩。
e 是负电中心的电荷量,r 是负电中心相对于正电中心的距离。
单位体积内偶极矩的总和为极化强度p Nm =,N 是单位体积内的原子数。
极化强度的大小和方向随外电场的变化而变化,形成了极化波,这种极化场的变化会产生电磁辐射。
一般情况下(就是入射光的场强与原子内的场强相比十分微弱时),极化强度P 与入射光的电场E 成线性关系P xE =。
因此极化场产生的辐射与入射光场有相同的频率。
在强光照射下,物质的极化则表现为非线性的特性,极化强度与入射光场的关系的标量形式为23123P ......x E x E x E =+++ (18-1)式中的1x 、2x 、3x ……分别是线性、二次非线性,三次非线性等的极化系数,并且1x >>2x >>3x ,故在弱电场作用下,只能呈现出线性效应,只有对强电场才能显示出非线性效应。
在激光出现前,这种非线性现象不可能观察到,只有高强度的激光出现后,才观察到了非线性现象。
我们忽略三次以上的非线性效应,现在分两种情况来分析光波场通过非线性晶体时的二次非线性效应。
第一种情况:一列行波通过非线性晶体时的二次非线性效应距波源o 为z 处的任一点s 在t 时刻光波场的振辐可表示为0(,)cos()E z t E t kz ω=- (18-2)式中0E 为光源光波场的振辐,2/,k n πλλ=为波长,n 为晶体折射率。
第30讲 激光倍频技术
2E r , t
0
2P r , t
同样在外界光波电场E的作用下将引起介质内部的极化,产生 极化强度P,考虑到非线性相互作用,极化强度P可以写成:
P PL PNL PL 为线性极化项,PNL为非线性极化项。
上述两个过程互为因果,将两式联立可以解出介质中光场分布
当光电场强度很低时,可以忽略PNL,只保留线性极化PL, 即通常的线性光学
L 0 L 1 L 1 E1 E1 L 0 L 2 L 2 E2 E2
可以看出,由于非线性响应,在非线性介质中感应的极化强度, 不仅有频率1 和 2的分量,还有频率为21 、 2 2、1 2、1 2 的分量以及直流分量。 这些极化强度分量将辐射出相应频率的电磁
k 1 k 1
代入上式,可以得到联立方程组: 设光电场由频率为1 和 2 e 2 r1 r1 0 r1 E t 单色光组成: m i1 t i 2 t r r 2 r Ar 2 E t E e E e c .c . 1 2 2 0 2 1 2
波,这就是非线性光学中的倍频、和频、差频和光整流等光学效应。
10
30.1 非线性极化
三、极化率张量的性质
由极化强度的定义P Ner和P 0 E,可以得到各阶的极化 率为:
2
1
Ne 2 L 0m
线性极化率
Ne 3 A 2 L 2 L 2 倍频极化率 2 0m
对上述方程组求解,可以得到:
9
30.1 非线性极化
r1 t e E1 L 1 e i1 t E2 L 2 e i2 t c .c . m
实验七 Nd:YVO4激光器的搭建及倍频实验
实验七Nd:YVO4激光器的搭建及倍频实验一.实验目的1. 学习固体激光器的搭建,熟悉不同腔型、不同温度下激光输出功率的差异。
2.了解光在非线性材料中的非线性极化及倍频过程中的有效非线性系数计算。
3.熟悉倍频过程中的角度相位匹配、温度相位匹配方法。
4.熟悉激光倍频晶体的调节及倍频效率的测量。
二.实验原理7.1Nd:YVO4激光器的搭建本实验提供半导体激光器温控驱动电源和激光系统两部分。
驱动电源主要用于半导体激光器的电流驱动和温度控制。
电源使用细节及步骤如下:1. 用“Current Set”电流时,因为用的是2W的LD, 所以调节电流时显示的电流值最大不要超过2A。
在不制冷情况下, 电流的调节最大值会相应的减小, 因为要是室内温度比较高的话电流还没有达到最大值时系统也有可能过热报错。
2. 电源电流和TEC热敏电阻值的切换按钮为后面板的“5,电源表头显示选择开关”,拨到“Cur”,前面板显示的是电流值,如拨到“Rt1”前面板显示的是TEC1的热敏电阻值,拨到“Rt2”前面板显示的是TEC2的热敏电阻值,此值可以通过热敏电阻与温度的换算表换算为具体的温度;“TTL”调制方式开关一般不用。
3. 先开电源开关(ON),缓慢调节“Current Set”电流按钮直至所需的电流值,工作中如果“Error,过热保护指示灯”显示红灯时,请立即把“Current Set”电流按钮逆时针调到最小并关闭电源按钮(OFF),休息半小时后再工作。
每次关闭电源开关前都要把电流调节到最小。
4. 控温电流调节电位器(边上的延伸调节钮),是用来调节制冷电流值,并通过热敏电阻显示的阻值,转化为具体的控制温度,可以通过调节此旋钮实现对TEC温度的控制。
每次关闭电源开关前, 控温电流调节电位器也要逆时针调节至最小。
(其初始都是在最小的位置)5. 使用时要注意不要碰掉电源与激光器之间的插头, 系统一旦突然断电对LD及制冷片都会造成很大的损伤。
激光倍频演示实验报告
一、实验目的1. 了解激光倍频的基本原理;2. 掌握激光倍频实验的操作步骤;3. 观察激光倍频现象,分析影响倍频效率的因素。
二、实验原理激光倍频是指激光经过非线性光学晶体或材料后,其频率翻倍的现象。
在激光倍频过程中,原始激光光束通过非线性光学晶体,与晶体中的电子相互作用,使电子发生能级跃迁,从而产生频率翻倍的倍频光。
三、实验仪器与材料1. 实验仪器:- 激光器(如 Nd:YAG 激光器)- 非线性光学晶体(如 LBO、BBO)- 光学平台- 光电探测器- 信号处理器- 数据采集系统2. 实验材料:- 激光倍频晶体(如 LBO、BBO)- 激光倍频实验样品(如光路板、光纤等)四、实验步骤1. 将激光器输出的激光束耦合到光纤中,通过光纤传输至非线性光学晶体;2. 将非线性光学晶体放置在光学平台上,调整晶体的位置和角度,以获得最佳的倍频效果;3. 使用光电探测器检测倍频光输出,记录数据;4. 通过信号处理器处理数据,分析倍频效率;5. 改变实验条件,如激光功率、晶体温度等,观察倍频效率的变化。
五、实验结果与分析1. 实验结果显示,当激光功率为 1 kW,晶体温度为25℃ 时,倍频效率最高,约为 10%;2. 当激光功率增加时,倍频效率也随之增加,但增幅逐渐减小;3. 晶体温度对倍频效率有一定影响,当温度过高或过低时,倍频效率均有所下降;4. 实验中观察到的倍频光波长为 532 nm,符合理论预测。
六、实验总结1. 通过本次实验,我们了解了激光倍频的基本原理和操作步骤;2. 实验结果表明,激光倍频技术在光通信、激光医疗等领域具有广泛的应用前景;3. 在实验过程中,我们发现激光功率、晶体温度等因素对倍频效率有较大影响,需要进一步优化实验条件;4. 激光倍频技术的研究与发展,对于拓展激光应用领域具有重要意义。
注:本实验报告仅供参考,实际实验过程中可能存在误差和差异。
激光倍频实验报告
激光谐振腔与倍频实验a13组 03光信息陆林轩 033012017 实验时间:2006-4-25 [实验目的和内容]1、学习与掌握工作物质端面呈布儒斯特角的钕玻璃激光器的调节,以获得激光红外输出。
2、掌握腔外倍频技术,并了解倍频技术的意义。
3、观察倍频晶体0.53?m绿色光的输出情况。
[实验基本原理] 1、激光谐振腔光学谐振腔是激光器的重要组成部分,能起延长增益介质的作用(来提高光能密度),同时还能控制光束的传播方向,对输出激光谱线的频率、宽度、和激光输出功率、等都产生很大的影响。
图1 激光谐振腔示意图(1)组成:光学谐振腔是由两个光学反射镜面组成、能提供光学正反馈作用的光学装置,如图1所示。
两个反射镜可以是平面镜或球面镜,置于激光工作物质两端。
两块反射镜之间的距离为腔长。
其中一个镜面反射率接近100%,称为全反镜;另一个镜面反射率稍低些,激光由此镜输出,故称输出镜。
(2)工作原理:谐振腔中包含了能实现粒子数反转的激光工作物质。
它们受到激励后,许多原子将跃迁到激发态。
但经过激发态寿命时间后又自发跃迁到低能态,放出光子。
其中,偏离轴向的光子会很快逸出腔外。
只有沿着轴向运动的光子会在谐振腔的两端反射镜之间来回运动而不逸出腔外。
这些光子成为引起受激发射的外界光场。
促使已实现粒子数反转的工作物质产生同样频率、同样方向、同样偏振状态和同样相位的受激辐射。
这种过程在谐振腔轴线方向重复出现,从而使轴向行进的光子数不断增加,最后从部分反射镜中输出。
所以,谐振腔是一种正反馈系统或谐振系统,具有很好的准直,选频和放大功能。
(3)种类:图2 谐振腔的种类按组成谐振腔的两块反射镜的形状以及它们的相对位置,可将光学谐振腔区分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。
平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。
对称凹面腔中两块反射球面镜的曲率半径相同。
如果反射镜焦点都位于腔的中点,便称为对称共焦腔。
激光倍频技术与原理
不要超过孔径长度La。
若采用聚焦来提高I0,为了避免光束发散导致k 0的相位
匹配,晶体长度Lf
2z0
2
02n
,z0为高斯光束的准直长度。
Q
I0
Pw 02
I 2
(2
z0
)2
Pw 02
2
4n2 2
激光原理与技术
激光倍频技术
1
非线性极化
§8.1概论
光是一种电磁波,在介质中传播时,先将介质内部的电偶 极子极化,然后这些电偶极子产生受迫振动,辐射出相应 的电磁波。光在介质中的相速度为c/n<c,正是反映了辐射 ~极化~再辐射的过程。
在介质内部,电磁场E与极化P互为因果,有下面函数关系:
uur uur
光孔效应 对于e光,其波矢ke与能流方向e不一致,即ke P e,设其夹角为,对于光束直径为A
的光束,经过La A / tg的距离后,e光与o光分离,为走离角,La称为孔径长度。
只有在La内才能有效倍频。对于负单轴I类相位匹配有:tg sin(2mI负)
非临界相位匹配NCPM
10
§8.3角度匹配方法
负单轴晶体的角度匹配
<1>负单轴晶体I类 no ne
基频光取o光偏振态,倍频光选e光偏振态 o o e2
要求no ne2
1
no
ne2
(
I m负
)
1 no 2
1 ne2 (mI负 )2
cos2
I m负
no2 2
激光倍频实验讲解
,(1)
其中,e是负电中心的电量。我们定义单位体积内原子偶极矩的总和为极化强度矢量P,
,(2)
N是单位体积内的原子数。极化强度矢量和入射场的关系式为
,(3)
其中χ(1),χ(2),χ(3),…分别称为线性极化率,二级非线性极化率、三级非线性极化率…,并且χ(1)>>χ(2)>>χ(3)…。在一般情况下,每增加一次极化,χ值减少七八个数量级。由于入射光是变化的,其振幅为E=E0sinωt,所以极化强度也是变化的。根据电磁理论,变化的极化场可作为辐射源产生电磁波——新的光波。在入射光的电场比较小时(比原子内的场强还小),χ(2),χ(3)等极小,P与E成线性关系为P=χ(1)E。新的光波与入射光具有相同的频率,这就是通常的线性光学现象。但当入射光的电场较强时,不仅有线性现象,而且非线性现象也不同程度地表现出来,新的光波中不仅有入射地基波频率,还有二次谐波、三次谐波等频率产生,形成能量转移,频率变换。这就是只有在高强度的激光出现以后,非线性光学才得到迅速发展的原因。
,(17)
就是使
,(18)
nω和n2ω分别为晶体对基频光和倍频光的折射率。也就是只有当基频光和倍频光的折射率相等时,才能产生好的倍频效果,式(18)是提高倍频效率的必要条件,称作相位匹配条件。
由于vω=c/nω,v2ω=c/n2ω,vω和v2ω分别是基频光和倍频光在晶体中的传播速度。满足(18)式,就是要求基频光和倍频光在晶体中的传播速度相等。从这里我们可以清楚地看出,所谓相位匹配条件的物理实质就是使基频光在晶体中沿途各点激发的倍频光传播到出射面时,都具有相同的相位,这样可相互干涉增强,从而达到好的倍频效果。否则将会相互削弱,甚至抵消。
激光倍频技术
E = E0 cos ωt
x x+dx
x
在x=d面上,整个出射的倍频光
E ' ( 2ω ) ∝ dk 2 2k + k π sin cos(2ωt 1 2 d + ) k 2 2 2
式中 k = 2k1 + k2 出射倍频光的光强为
d dk 2 d k 2 2 )2 I ' (2ω ) ∝ ( sin ) = d2( l k k 2 2 sin
激光倍频技术
当入射到介质的光波 E = E0 cos ωt 很强时, 如非线性晶体的极化系数很大, 则晶体中产生的 电极化强度
基频成份 直流成份 倍频成份
2 2
P = αE + β E 2 = αE0 cos ωt + βE0 cos ωt 1 1 2 = βE0 + αE0 cos ωt + βE02 cos 2ωt 2 2
当 k = 0 时, I ' (2ω ) 为极大。
激光倍频技术与非线性晶体材料有关。
非线性晶体
滤色片
π 倍频次波辐射 与倍频极化波相位差 2
d
入 射 激 光 x=0 x~x+dx x=d
E0 cos ωt E ' (ω )
基频 次波 辐射 倍频 次波 辐射
E ' ' (2ω )
O
π dE ' (2ω ) ∝ cos[2ωt 2k1 x + ]dx 2 π dE ' (2ω ) ∝ cos[2ωt 2k1 x + k 2 (d x)]dx 2
由于电化极强度 包括三种成分, 产生了基 频极化波 P (ω ) 和倍频极化波 P (2ω ) ,又产生相 应的基频次波辐射 E ' (ω ) 和倍频次波辐射 E ' (2ω ) 这就是倍频光产生的机理,
实验六 激光倍频实验
实验三激光倍频实验一.实验目的和内容1、半导体泵浦0.53μm绿光激光器由于其具有波长短,光子能量高,在水中传输距离远和人眼敏感等优点。
效率高、寿命长、体积小、可靠性好。
近几年在光谱技术、激光医学、信息存储、彩色打印、水下通讯、激光技术等科学研究及国民经济的许多领域中展示出极为重要的应用, 成为各国研究的重点。
2、半导体泵浦0.53μm绿光激光器适用于大学近代物理教学中非线性光学实验。
本实验以808nm半导体泵浦Nd:YVO激光器为研究对象,让学生自己动手,调整4激光器光路,在腔中插入KTP晶体产生532nm倍频激光,观察倍频现象,测量阈值、相位匹配等基本参数。
从而对激光技术有一定了解。
二、实验仪器1.808nm半导体激光器≤500mW2.半导体激光器可调电源电流0~500mA3.Nd:YVO晶体 3×3×1mm44.KTP倍频晶体 2×2×5mm5.输出镜(前腔片)φ6 R=50mm6.光功率指示仪 2μW~200mW 6挡三、实验基本原理光的倍频是一种最常用的扩展波段的非线性光学方法。
激光倍频是将频率为ω的光,通过晶体中的非线性作用,产生频率为2ω的光。
当光与物质相互作用时,物质中的原子会因感应而产生电偶极矩。
单位体积内的感应电偶极矩叠加起来,形成电极化强度矢量。
电极化强度产生的极化场发射出次级电磁辐射。
当外加光场的电场强度比物质原子的内场强小的多时,物质感生的电极化强度与外界电场强度成正比。
P=εχE在激光没有出现之前,当有几种不同频率的光波同时与该物质作用时,各种频率的光都线性独立地反射、折射和散射,满足波的叠加原理,不会产生新的频率。
当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系:P=αE+βE2+γE3+…式中α,β,γ,…均为与物质有关的系数,且逐次减小,它们数量级之比为其中E为原子中的电场,其量级为108V/cm,当时上式中的非线性项 E2 、E3 等原子均是小量,可忽略,如果E很大,非线性项就不能忽略。
脉冲激光器的调Q和倍频
脉冲激光器的调Q 和倍频实验目的1. 熟悉Nd:YAG 激光器的结构。
2. 了解和掌握利用晶体的线性电光效应实现激光调Q 的原理。
3. 了解和掌握激光倍频技术的基本原理和倍频晶体相位匹配的方法。
实验原理激光调Q 技术就是使激光谢振腔的Q 值发生变化,使激光工作物质的受激辐射压缩在极短的时间内发射的一种技术。
具体的讲就是在光泵开始激励的初期,使腔内的损耗很大,Q 值很低,这使激光振荡的阈值很高,使激光振荡不能形成,因而上能级的反转粒子数大量积累。
当积累达到最大值时,突然时谐振腔的损耗变小,Q 值突增,这时反转粒子数密度比阈值大得多,使激光振荡迅速建立,腔内像雪崩一样以极快的速度建立起极强的振荡,于是在极短的时间内输出一个极强的激光脉冲。
调Q 激光脉冲峰值功率一般都高于兆瓦级,而脉冲宽度只有10-8~10-9秒,因而通常将这种脉冲称为激光巨脉冲。
激光谐振腔内的损有多种,用不同的方法来控制腔内不同的损耗,就形成了不同的调Q 技术,例如控制反射损耗的有转镜调Q 技术、电光调Q 技术,控制吸收损耗的有染料调Q 技术,控制衍射损耗的有声光调Q 技术等。
倍频技术就是将频率为ω的强激光束入射到某些非线性晶体,通过强光与物质的相互作用,产生2ω的二次谐波的技术。
倍频技术是目前由较低频率的激光转换为较高频率激光的最成熟和最常用的频率转换技术,也是最早被利用的非线性光学效应。
当光与物质相互作用时,就会带起原子外层电子的位移,产生电偶极矩r e m =,其中e 为负电中心的电荷量,r 是负电中心相对于正电中心的距离。
单位体积内偶极矩的总和为极化强度P ,m N P =,N 是单位体积内的原子数。
极化强度的大小和方向随外电场的变化而变化,这种极化场就会产生电磁波的辐射。
如果入射到介质上光束的频率为ω,电场矢量为t E t E E πνω2cos cos 00 ==由于光的作用,产生的极化强度P 与外电场强度矢量E 之间的关系为+⋅+⋅=E E E P )2()1(χχ式中)1(χ, )2(χ为与时间、位置无关的常数,成为介质的极化系数,且有 )3()2()1(χχχ>>>>当入射光很弱时,极化系数的高阶项都可忽略不计,则(2)可简化 t E E P L ωχχcos 0)1()1( ⋅=⋅=这就表明弱光照射下,介质的极化强度矢量与电场强度成线性关系,其频率与入射光频率相同。
ndyag 固体激光器电光调q倍频实验讲义
Nd:YAG 固体激光器电光调Q、倍频实验一、 实验目的1. 掌握电光调Q 的原理及调试方法;2. 学会电光调Q 装置的调试;3. 掌握相关参数的测量。
二、 实验原理1. 调Q 技术原理调Q 技术中,品质因数Q 定义为腔内贮存的能量与每秒钟损耗的能量之比,可表示为: 每秒钟损耗的激光能量腔内贮存的激光能量02πν=Q (1) 式中0ν为激光的中心频率。
如用E 表示腔内贮存的激光能量,γ为光在腔内走一个单程能量的损耗率。
那么光在这一单程中对应的损耗能量为E γ。
用L 表示腔长;n 为折射率;c 为光速。
则光在腔内走一个单程所需要时间为。
c nL /由此,光在腔内每秒钟损耗的能量为c nL E /γ这样,Q 值可表示为γλπγπν002/2nL nL Ec E Q == (2)式中00/νλc =为真空中激光波长。
可见Q 值与损耗率总是成反比变化的,即损耗大Q 值就低;损耗小Q 值就高。
固体激光器由于存在弛豫振荡现象,产生了功率在阈值附近起伏的尖峰脉冲序列,从而阻碍了激光脉冲峰值功率的提高。
如果我们设法在泵浦开始时使谐振腔内的损耗增大,即提高振荡阈值,振荡不能形成,使激光工作物质上能级的粒子数大量积累。
当积累到最大值(饱和值时),突然使腔内损耗变小,Q 值突增。
这时,腔内会象雪崩一样以极快的速度建立起极强的振荡,在短时间内反转粒子数大量被消耗,转变为腔内的光能量,并在透反镜端耦合输出一个极强的激光脉冲。
在这个过程中,弛豫振荡一般是不会发生的,但是,如果调Q 器件设计及调整得不好也会导致多脉冲出现。
所以,输出光脉冲脉宽窄,峰值功率高。
通常把这种光脉冲称为巨脉冲。
调节腔内的损耗实际上是调节Q 值,调Q 技术即由此而得名。
也成为Q 突变技术或Q 开关技术。
谐振腔的损耗γ一般包括有:54321αααααγ++++= (3)其中1α为反射损耗;α2为吸收损耗;α3为衍射损耗:α4为散射损耗;α5为输出损耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全固体(腔内/腔外)激光倍频实验一、实验目的和内容1. 了解全固体激光器的特点, 学习工作物质的入射端面与输出镜构成的谐振腔的激光器的调节;2. 掌握“倍频”的概念,了解倍频技术的意义;3. 基本掌握非线性晶体的长度,有效非线性系数,相位匹配因子对非线性转换效率的影响规律;4. 要求学生每人至少调节一次激光器,观察基频光1064nm 的输出情况,理解激光模式的含义;5. 调节非线性晶体,观察倍频光532nm 绿光的输出情况。
二、实验原理非线性光学基础光与物质相互作用的全过程,可分为光作用于物质,引起物质极化形成极化场以及极化场作为新的辐射源向外辐射光波的两个分过程。
原子是由原子核和核外电子构成。
当频率为ω的光入射介质后,引起其中原子的极化,即负电中心相对正电中心发生位移r ,形成电偶极矩r m e =, (1)其中,e 是负电中心的电量。
我们定义单位体积内原子偶极矩的总和为极化强度矢量P ,m P N =, (2)N 是单位体积内的原子数。
极化强度矢量和入射场的关系式为+++=3)3(2)2()1(E E E P χχχ (3)其中χ(1),χ(2),χ(3),…分别称为线性极化率,二级非线性极化率、三级非线性极化率…,并且χ(1)>>χ(2)>>χ(3)…。
在一般情况下,每增加一次极化,χ值减少七八个数量级。
由于入射光是变化的,其振幅为E =E 0sin ωt ,所以极化强度也是变化的。
根据电磁理论,变化的极化场可作为辐射源产生电磁波——新的光波。
在入射光的电场比较小时(比原子内的场强还小),χ(2),χ(3)等极小,P 与E 成线性关系为P =χ(1)E 。
新的光波与入射光具有相同的频率,这就是通常的线性光学现象。
但当入射光的电场较强时,不仅有线性现象,而且非线性现象也不同程度地表现出来,新的光波中不仅有入射光波频率,还有二次谐波、三次谐波等频率产生,形成能量转移,这就是所谓的频率变换。
这也是为什么在高强度的激光出现以后,非线性光学才得到迅速发展的原因。
二阶非线性光学效应虽然许多介质都可产生非线性效应,但具有中心结构的某些晶体和各向同性介质(如气体),由于(3)式中的偶级项为零,只含有奇级项(最低为三级),因此要观测二阶非线性效应只能在具有非中心对称的一些晶体中进行,如KDP (或KD*P )、LiNO 3晶体等等。
现从波的耦合,分析二级非线性效应的产生原理,设有下列两波同时作用于介质:)z k t ωcos(1111+=A E , (4) )z k t ωcos(2222+=A E , (5)介质产生的极化强度应为二列光波的叠加,有2222111)2()]z k t ωcos()z k t ωcos([+++=A A P χ )z k t ω(cos )z k t ω(cos [2222211221)2(+++=A A χ)]z k t ωcos()z k t ωcos(2221121+++A A 。
(6)经推导得出,二级非线性极化波应包含下面几种不同频率成分:)]z k t ω(2cos[21121)2(ω21+=A P χ, (7) ()[])(2cos 22222222z k t A P +=ωχω, (8)])z k k ()t ωωcos[(212121)2(ωω21+++=+A A P χ,(9)])z k k ()t ωωcos[(212121)2(ωω21-+-=-A A P χ, (10))(直流22212A A 2+=χP (11)从以上看出,二级效应中含有基频波的倍频分量(2ω1)、(2ω2)、和频分量(ω1+ω2)、差频分量(ω1–ω2)和直流分量。
故二级效应可用于实现倍频、和频、差频及参量振荡等过程。
当只有一种频率为ω的光入射介质时(相当于上式中ω1=ω2=ω),那么二级非线性效应就只有除基频外的一种频率(2ω)的光波产生,称为二倍频或二次谐波。
在二级非线性效应中,二倍频又是最基本、应用最广泛的一种技术。
第一个非线性效应实验,就是在第一台红宝石激光器问世后不久,利用红宝石0.6943μm 激光在石英晶体中观察到紫外倍频激光。
后来又有人利用此技术将晶体的1.06μm 红外激光转换成0.53μm 的绿光,从而满足了水下通信和探测等工作对波段的要求。
当ω1≠ω2时,产生ω3=ω1+ω2的光波叫和频。
如入射的光波分别为ω和2ω,和频后得到3ω,3ω=ω+2ω(注意,它数值上等于三倍频,但不是三倍频非线性效应过程)。
非线性极化系数非线性极化系数是决定极化强度大小的一个重要物理量。
在线性关系P =χ(1)E 中对各向同性介质,χ(1)是只与外电场大小有关而与方向无关的常量;对各向异性介质,χ(1)不仅与电场大小有关,而且与方向有关。
在三维空间里,是个二阶张量,有9个矩阵元d ij ,(i,j=x,y,z )每个矩阵元称为线性极化系数。
在非线性关系P =χ(2)E 2中,χ(2)是三阶张量,在三维直角坐标系中有27(x ,y ,z ) 个分量,鉴于非线性极化系数的对称性,矩阵元减为18 个分量,在倍频情况下⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛y x y z z y z yx z y x E E E E E E E E E P P P 222d d d d d d 222363126211611 , (12)P 和E 的下角标x ,y ,z 表示它们在三个不同方向上的分量。
鉴于各种非线性晶体都有特殊的对称性,就像晶体的电光系数矩阵一样,有些d ij 为零,有些相等,有些相反。
因此无对称中心晶体的d ij ,独立的分量数目仅是有限的几个。
例KDP (或KD *P )晶体,有⎪⎪⎪⎭⎫⎝⎛=362514000000000000000d d d d ij , (13)其中d 14=d 25,在一定条件下,还可以有d 14=d 36。
又如铌酸锂晶体,有⎪⎪⎪⎭⎫⎝⎛--=0000000003331311522222215d d d d d d d d d ij , (14)其中d 31=d 15。
查阅有关资料,可得它们的具体数值。
实际工作中,我们总是希望选取d ij 值大,性能稳定又经济实惠的晶体材料。
相位匹配及实现方法从前面的讨论知道,极化强度与入射光强和非线性极化系数有关,但是否只要入射光足够强,使用非线性极化系数尽量大的晶体,就一定能获得好的倍频效果呢?不是的。
这里还有一个重要因素——相位匹配,它起着举足轻重的作用。
实验证明,只有具有特定偏振方向的线偏振光,以某一特定角度入射晶体时,才能获得良好的倍频效果,而以其他角度入射时,则倍频效果很差,甚至完全不出倍频光。
根据倍频转换效率的定义ωω2ηP P =, (15)经理论推导可得2ω222)2/()2/(sin ηE L d k L k L ∙∙∙∆∙∆∙∝ (16)η与L∙∆k/2关系曲线见图1。
图中可看出,要获得最大的转换效率,就要使L∙∆k/2=0,L 是倍频晶体的通光长度,不等于0,故应∆k =0,(动量守恒定律)即2133113322113210200n n n cn cn cn cn cin c k k k k k =⇒=-⇒=-+⇒==-+=∆ωωωωωω, (17)即: ωω2n n = (18)n ω和n 2ω分别为晶体对基频光和倍频光的折射率。
也就是只有当基频光和倍频光的折射率相等时,才能产生好的倍频效果,式(18)是提高倍频效率的必要条件,称作相位匹配条件。
由于v ω=c/n ω,v 2ω=c/n 2ω,v ω和v 2ω分别是基频光和倍频光在晶体中的传播速度。
满足(18)式,就是要求基频光和倍频光在晶体中的传播速度相等。
从这里我们可以清楚地看出,所谓相位匹配条件的物理实质就是使基频光在晶体中沿途各点激发的倍频光传播到出射面时,都具有相同的相位,这样可相互干涉增强,从而达到好的倍频效果。
否则将会相互削弱,甚至抵消。
实现相位匹配条件的方法。
由于一般介质存在正常色散效果,即高频光的折射率大于低频光的折射率,如n 2ω―n ω大约为102数量级,∆k ≠0。
但对于各向异性晶体,由于存在双折射,我们则可利用不同偏振光间的折射率关系,寻找到相位匹配条件,实现∆k =0。
此方法常用于负单轴晶体,下面以负单轴晶体为例说明。
图2中画出了晶体中基频光和倍频光的两种不同偏振态折射率面间的关系。
图中实线球面为基频光折射率面,虚线球面为基频光折射率面,球面为o 光折射率面,椭球面为e 光折射率面,z 轴为光轴。
图1 倍频效率与L ∙∆k/2的关系相对光强-2π 2π π -π L ∙∆k/2折射率面的定义:从球心引出的每一条矢径到达面上某点的长度,表示晶体以此矢径为波法线方向的光波的折射率大小。
实现相位匹配条件的方法之一是寻找实面和虚面交点位置,从而得到通过此交点的矢径与光轴的夹角。
图中看到,基频光中o 光的折射率可以和倍频光中e 光的折射率相等,所以当光波沿着与光轴成θm 角方向传播时,即可实现相位匹配,θm 叫做相位匹配角。
注意,相位匹配角是指在晶体中基频光相对于晶体光轴z 方向的夹角,而不是与入射面法线的夹角。
为了减少反射损失和便于调节,实验中一般总希望让基频光正入射晶体表面。
所以加工倍频晶体时,须按一定方向切割晶体,以使晶体法线方向和光轴方向成θm ,见图3。
以上所述,是入射光以一定角度入射晶体,通过晶体的双折射,由折射率的变化来补偿正常色散而实现相位匹配的,这称为角度相位匹配。
角度相位匹配又可分为两类。
第一类是入射同一种线偏振光,负单轴晶体将两个o 光光子转变为一个倍频的e 光光子。
第二类是入射光中同时含有o 光和e 光两种线偏振光,负单轴晶体将两个不同的光子变为倍频的e 光光子,正单轴晶体变为一个倍频的o 光光子。
见表2表2 单轴晶体的相位匹配条件有效非线性系数从上面的分析可以看出,对于单轴晶体,一种三波互作用可能有无数个匹配角度(因为只要θm 满足就行),但是考虑非线性转化效率还有另外一个重要影响因子,即有效非线性系数。
设入射方向为(θ,Ø)的一束光注入单轴晶体,因为三波互作用是指两个图2 负单轴晶体折射率球面图3 非线性晶体的切割晶体图5 基频光与倍频光的脉宽及相对线宽的比较I ω I 2ωt 1 t 2 t 1 t t 1′′ t 2′ t 2 tν1 ν1′ ν2′ ν2 ν ν 波诱导产生的二阶极化张量2102E E d P eff ε=,,k j ijk i eff a a d a d =上面讲过,d ijk 含有18个参数的三行六列矩阵,a i ,a j ,a k 分别是P ,E1 和E2的单位矢量。