人工智能课程论文解读
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能课程论文
题目:人工智能:用科学解密生命与智慧
姓名:
学号:
指导老师:
摘要
本文是对人工智能及其应用的一个综述。首先介绍了人工智能的理论基础以其与人类智能的区别和联系。然后简要介绍了人工智能的发展现状以及未来趋势,并列举了一些人工智能在生活中的应用。对人工智能的一个热门分支——神经计算进行了着重介绍,人工神经网络通过模拟人脑的学习机制,将人工智能的重点从符号表示可靠的推理策略问题转化到学习和适应的问题,描述了其在字符识别问题上的实际应用。
目录
一,人工智能与人类智能 (4)
1,什么是智能? (4)
2,机器智能不等同于人类智能 (5)
二,人工智能当前进展 (6)
三,人工智能在生活中的应用 (7)
四,人工智能的前沿分支:神经计算 (9)
1,人工神经网络:从大脑得到灵感 (9)
2,神经网络应用实例:基于Deep autoencoder的字符图像识别 (10)
五,人工智能未来发展趋势 (12)
小结 (13)
参考文献 (14)
一,人工智能与人类智能
人工智能(Artificial Intelligence,AI)是计算机科学的一个分支,它关心智能行为的自动化。AI是计算机科学的一部分,因而必须建立在坚实的理论知识之上并应用于计算机科学领域。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
1,什么是智能?
虽然大多数人确信看到智能行为是能判断它是智能的,但是似乎没有人能够使“智能”的定义既足够又具体以评估计算机程序的智能性,同时又反映了人类意识的生动性和复杂性。
这样实现一般智能就是塑造特定智能的人工制品。这些制品通常以诊断、预测或可视化工具实现,能够使得人类使用者完成复杂的任务。例如:用语言理解的马尔可夫模型,提供新数学理论的自动推理系统,通过大脑皮层网跟踪信号的动态贝叶斯网络,以及基因表达的数据模式的可视化,等等。
因此,定义人工智能完全领域的问题就变成了定义智能本身的问题:智能是一种独立的才能,还是一系列独一无二且不相关的能力的总称?在多大程度上可以说智能是学到的不是预先存在的?准确的说,学习时发生什么?什么是创造力?什么是直觉?智能是从可观察行为推断出的,还是需要特定内部机制的证据?在一个生物体的神经组织中,知识是以何种方式表示的?什么是自觉,它在智能中起着怎样的作用?另外,有必要按照已知的人类智能模式来设计智能计算机程序吗?智能实体是不是需要只有在生物中存在的丰富感受和经历?
这一系列的问题很难回答,但这些问题帮助我们勾勒出现代人工智能研究的核心问题以及求解方法。实际上,人工智能提供了一种独特而强大的工具来精确探索这些问题。AI为智能理论提供了一种媒介和实验台:首先用计算机程序语言表达出这些理论,然后在实际计算机上执行来进行测试和验证。
2,机器智能不等同于人类智能
玛丽·雪莱在她的《弗兰肯斯坦》一书的序言中这样写道:
大多是拜伦勋爵和雪莱之间的对话,而我只是一个虔诚、安静的听众。其中有一次,他们讨论了各种哲学学说,以及有关生命原理的问题,并且谈到这些原理有否可能曾被发现和讨论过。他们谈及了达尔文博士的实验(我不能确认达尔文博士是否真正做过这个实验,我只是说当时有人讲他做过这样的实验),他把一段蠕虫(vermicelli)储藏在玻璃罐中,在采取了一些特殊方法之后,它开始自发运动。难道生命不是这样形成的吗?或许死尸还可能复活;流电电流实验已经让我们看到了这样的迹象:生命体的组成部分可以被制造、组合并注入活力(Butler 1998)。
玛丽·雪莱告诉我们,诸如达尔文的进化论和发现电流这样的科学进步已经使普通民众相信:自然法则并非奥妙无穷,而是可以被系统分析和理解的。弗兰肯斯坦的魔鬼并不是“萨满教”咒语或与地狱可怕交易的产物;而是由一个个单独“制造”的部件组装起来的,并且被注入了强大的电能。尽管19世纪的科学还不足以使人认识到理解和创造一个完全智能主体的意义,但它至少加深了这样的认识:生命和智慧的奥秘可以被纳入到科学分析中。也就是说,人可以让机器拥有所谓的“智能”。[1]
1936年,哲学家阿尔弗雷德·艾耶尔思考心灵哲学问题:我们怎么知道其他人曾有同样的体验。在《语言,真理与逻辑》中,艾尔建议有意识的人类及无意识的机器之间的区别。
1950年,图灵发表了一篇划时代的论文,文中预言了创造出具有真正智能的机器的可能性[1]。由于注意到“智能”这一概念难以确切定义,他提出了著名的图灵测试:如果一台机器能够与人类展开对话(通过电传设备)而不能被辨别出其机器身份,那么称这台机器具有智能。这一简化使得图灵能够令人信服地说明“思考的机器”是可能的。论文中还回答了对这一假说的各种常见质疑。[2] 图灵测试是人工智能哲学方面第一个严肃的提案。
1952年,在一场BBC广播中,图灵谈到了一个新的具体想法:让计算机来冒充人。如果不足70%的人判对,也就是超过30%的裁判误以为在和自己说话的是人
而非计算机,那就算作成功了。
2014年6月8日,一台计算机成功让人类相信它是一个13岁的男孩,成为有史以来首台通过图灵测试的计算机。这被认为是人工智能发展的一个里程碑事件,但专家警告称,这项技术可用于网络犯罪。[3-5] 。
尽管图灵测试具有直观上的吸引力,图灵测试还是受到了很多无可非议的批评。其中一个重要的质疑时它偏向于纯粹的符号求解任务。它并不测试感知技能或要实现手工灵活性所需的能力,而这些都是人类智能的重要组成部分。另一方面,有人提出图灵测试没有必要把机器智能强行套入人类智能的模具之中。人工智能或许本就不同于人类智能,我们并不希望一台机器做数学题像人类一样又慢又不准,我们希望的是它自身有点的最大化,比如快速准确的处理数据,长久的存储数据,没有必要模仿人类的认知特征。
但是,人工智能中一部分主要的研究着偏重于研究对人类智能的理解。人们为智能活动提供了一种原型实例,一些应用(比如诊断理解)通常有意地将模型建立在该领域的权威专家的解决过程上。更为重要的是,理解人类智能本身就是一个吸引人的、有待研究的科学挑战。
二,人工智能当前进展
1 问题的求解
人工智能中的问题解求,就是如何让机器去解决人类会遇到的问题,如何根据某一具体问题找到思考问题并解决这个问题的方法。目前,人工智能技术已经可以通过计算机程序解决了如何考虑要解决的问题,并能寻求较为准确的解决方案。2逻辑的推理与定理的证明
人工智能研究中最持久的探究领域之一就是逻辑推理。有关定理的证明就是让机器证明非数值性的真假。其中比较重要的是,通过找到合理、准确的方法,集中注意力在大型数据库中的有效事实,关注可信度证明,并在出现新信息时适时修改这些证明。[2]
3 人工智能应用之自然语言的处理
智能的另一表现就是进行自然语言的交流,自然语言处理就是让机器与人类进行