水热合成法教程文件

合集下载

课件:第五章 水热合成

课件:第五章  水热合成

构。其它9种经粉末X射线衍射分析以及吸附性能的研
究,确定为新的分子筛晶相。
• 研究组又在中温中压下开发出了一系列钛酸盐,硼 酸盐和砷酸盐微孔晶体。进一步丰富了中温中压水热 下的无机造孔合成领域。
2. 介孔材料
介孔材料是指孔径位于2~50nm,且具有一 定长程有序性的多孔材料。介孔材料因表面积大、 孔径分布均一及结构有序的特性而被广泛应用于 催化载体、吸附材料及分离介质等领域。1992年 Mobil公司的研究人员首次使用烷基季铵盐型阳 离子表面活性剂作为模板剂成功合成出M41S介 孔材料(MCM-41、MCM-48、MCM-50等),从 而将多孔材料从微孔扩展到介孔。
[BeAl2(SiO2)6]以及彩色的水晶等(掺过渡金属等)。
水热反应通常是以水为溶剂。目前也有用NH3,醇, 为溶剂进行新型无机物的合成。
二.作为反应介质的水的有关性质
1. 在高温高压水热体系中,水的性质将产生下列变化:
(1)蒸气压
变高
(2)密 度
变低
(3)表面张力 变低
(4)粘 度
变低
(5)离子积
5.介电常数
以水为溶剂时,介电常数是一个十分重要的性质。它 随温度升高而下降,随压力增加而升高。
有时温度又是主要的,在通常情况下电解质在水中全 部溶解,然而随着温度的提高,电解质可能趋向于重新 结合。对于大多数物质来说,这种变化在200~500℃之 间发生。
NaBr解离常数k与 T的关系曲线。可以看出:恒温下,k随压强 的增加而上升;恒压下,k随温度升高而下降。
矿石, 铬以可溶性盐铬酸钠形式提取。
4. 水热分解法 例如:自ZrSiO4中,在 NaOH水溶液使其分解而制
取ZrO2。 ZrSiO4→ZrO2↓+Na2SiO3 (条件为NaOH(aq)

水热合成法 ppt课件

水热合成法 ppt课件
• 制备具体过程:以抛光的钛金属片衬底或沉积钛的玻璃衬底作为阳极,Pt 金属 片作为阴极,以Ba(OH)2 水溶液为前驱物,通过两电极,经100~200 ℃的水热处 理,得到了表面无宏观缺陷,呈金属光泽的BaTiO3 薄膜。
• 在衬底上形成稳定结晶相薄膜
5.3 其他应用
煤的液体化、气体化:在水热条件下,煤可以液化、气体化,产生油性状,所以 如果煤在水热条件下处理实现工业化,煤的运输,煤的有效利用,因烧煤而造成的 环境污染,将会得到较大的改变。
• 反应过程的驱动力是最后可溶的前驱体或中间产物与最终产物之间的溶解度差, 即反应向吉布斯焓减小的方向进行。
二、水热生长体系中的晶粒形成可分为三种类型:
➢ “均匀溶液饱和析出”机制:由于水热反应温度和体系压力的升高,溶质在溶 液中溶解度降低并达到饱和,以某种化合物结晶态形式从溶液中析出。
➢ “溶解-结晶”机制:“溶解”是指水热反应初期,前驱物微粒之间的团聚和 联接遭到破坏,从而使微粒自身在水热介质中溶解,以离子或离子团的形式进 入溶液,进而成核、结晶而形成晶粒。
• 水热合成是指:温度为100~1000℃、压力为1MPa~1GPa条件下利用水溶液 中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反应处于 分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。
• 利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,并且重结 晶而进行无机合成与材料处理的一种有效方法; 苗鸿雁; 罗宏杰; 姚熹; ) • TiO2和BaTiO3纳米晶的水热合成及其光电性能的研究( 中南大学, 王丽丽) • 水热合成法及其应用(惠春)
水热合成法
水热合成法 Hydrothermalsynthesis
无机
1

水热合成工艺流程

水热合成工艺流程

水热合成工艺流程水热合成是一种超级有趣又很神奇的化学合成方法呢!那我就来给你唠唠它的工艺流程吧。

一、原料准备。

做水热合成呀,原料那可是基础。

就像盖房子得有砖和水泥一样。

我们得先把要用的各种化学原料都准备好。

比如说,如果要合成某种晶体,那可能需要特定的金属盐、配体之类的东西。

这些原料可得保证纯度哦,要是杂质太多,就像在一锅好汤里放了沙子,最后的结果肯定不理想。

而且量也要称得准准的,多一点少一点都可能让最后的产物发生变化。

这时候就感觉自己像个大厨,精确地称量着各种调料呢。

二、溶剂选择。

溶剂在水热合成里也是个关键角色。

水是最常用的溶剂啦,毕竟名字里都带水字嘛。

但有时候也会用到其他有机溶剂,或者是水和有机溶剂的混合溶剂。

这就好比不同的菜适合不同的油来炒。

选溶剂的时候要考虑它对原料的溶解性,还有在高温高压下的稳定性。

如果溶剂不合适,原料都不能好好地混合在一起,就像两个人合不来,怎么能好好合作做出好东西呢?三、反应釜装填。

原料和溶剂都准备好了,就该把它们装到反应釜里啦。

反应釜就像是一个小魔法盒。

我们把配好的溶液小心地倒入反应釜中,不能洒出来哦,就像给心爱的小盒子装宝贝一样。

而且要注意装填的量,不能太满,得给里面的溶液留出足够的空间来反应,不然就像人在拥挤的小房间里,伸展不开手脚,反应也不能好好进行。

四、设置反应条件。

这一步就像是给这个小魔法盒设定魔法咒语一样。

水热合成需要高温高压的条件。

温度和压力的设置可是很有讲究的。

不同的原料和想要合成的产物对温度和压力的要求都不一样。

温度太高可能会让原料分解,就像烤面包烤焦了一样。

压力太大也可能让反应釜承受不住,那就危险啦。

所以要根据具体的情况,小心翼翼地调整温度和压力,就像调收音机的频道一样,要调到最适合的那个点。

五、反应进行。

一切都设置好之后,就开始反应啦。

在反应釜里,那些原料就在高温高压下开始它们的奇妙之旅。

就像一群小精灵在一个特殊的世界里跳舞、结合。

这个过程我们看不到,但是能想象到里面是一片热闹的景象。

水热法合成宝石 ppt课件

水热法合成宝石 ppt课件

5. 影响宝石晶体生长的因素
溶液的过饱和度 矿化剂的性质与浓度 对流 挡板 生长区温度与温差 压力和充填度 杂质 种晶的取向 营养料
6. 水热法合成宝石晶体
6.1 水热法合成水晶晶体 6.2 水热法合成刚玉类晶体 6.3 水热法合成祖母绿晶体 6.4 水热法合成海蓝宝石晶体
(2) 高压釜(43CrNi2MoV) (3) 矿化剂(NaCO3,NaOH,NaCO3 + NaOH)
填加剂(LiF、LiNO3、Li2CO3); 充填度(80%86%)
工作条件和工艺参数
(4) 种晶(⊥Z轴,//Y轴,X+50,VO.A=700,YZ) (5) 培养料 (熔炼石英,粒度2cm左右,质地均匀) (6) 生长速度(//Z轴 ≈ 0.6-1.2mm/day,受种晶取向、
等温法高压釜
3.2 摆动法
摆动法的装置由A、B两个圆筒组成,其中 A筒放置培养液,B筒放置籽晶,两筒间保持一定的 温度差。定时地摆动A、B两个圆筒以加速它们之间 的对流,利用两筒之间的温差在高压环境下生长出 晶体,此法也曾用于水晶的生长。
3.3 温差法
温差法是在立式高压釜内生产晶体,高压釜内部的 对流挡板将釜腔分成上、下两部分,籽晶挂在生长 区的培育架上,晶体在籽晶上逐步生长;对流挡板 的下部为培养料区(也称溶解区),溶解区内放人适 量的高纯度原料和矿化剂。加热,使高压釜的上、 下部分形成一定的温差。当高压釜温度超过100℃后, 由于热膨胀和大量蒸汽的形成,釜内形成气压。
109Pa的压力,具有可靠的密封系统和防爆装置。 高压釜的直径与高度比有一定的要求,对内径为 100-120mm的高压釜来说,内径与高度比以1:16 为宜。 高度太小或太大都不便控制温度的分布。

水热与溶剂热合成方法的概念水热法ppt课件

水热与溶剂热合成方法的概念水热法ppt课件
15
“溶解-结晶”机制
所谓“溶解”是指水热反应初期,前驱物微粒之 间的团聚和联接遭到破坏,从而使微粒自身在水 热介质中溶解,以离子或离子团的形式进入溶 液,进而成核、结晶而形成晶粒;
16
“结晶”是指当水热介质中溶质的浓度高于晶粒 的成核所需要的过饱和度时,体系内发生晶粒的 成核和生长,随着结晶过程的进行,介质中用于 结晶的物料浓度又变得低于前驱物的溶解度,这 使得前驱物的溶解继续进行。如此反复,只要反 应时间足够长,前驱物将完全溶解,生成相应的 晶粒。
13
水热生长体系中的晶粒形成可分为三种类型:
“均匀溶液饱和析出”机制 “溶解-结晶”机制
“原位结晶”机制
14
“均匀溶液饱和析出”机制
由于水热反应温度和体系压力的升高,溶质在 溶液中溶解度降低并达到饱和,以某种化合物结 晶态形式从溶液中析出。当采用金属盐溶液为前 驱物,随着水热反应温度和体系压力的增大,溶 质(金属阳离子的水合物)通过水解和缩聚反应 ,生成相应的配位聚集体(可以是单聚体,也可 以是多聚体)当其浓度达到过饱和时就开始析出 晶核,最终长大成晶粒。
• 用这种方法可以合成水晶、刚玉(红宝石、蓝宝石)、绿柱
石(祖母绿、海蓝宝石)、及其它多种硅酸盐和钨酸盐等上 百种晶体。
绿柱石(铍铝硅酸盐矿物) 石榴子石(A3B2[SiO4]3 7
水热法(hydrothermal)(高压溶液法)
8
溶剂热合成方法的发展
1985年,Bindy首次在“Nature”杂志上发表文章报道了高
31
热处理反应
利用水热条件处理一般晶体
而得到具有特定性晶体的反 应。
利用水热条件下物质热
力学和动力学稳定性差 异进行的反应。
转晶反应

水热与溶剂热合成法

水热与溶剂热合成法

强烈对流,在生长区(低温
区)形成过饱和溶液
成核
形核
9
5.2 纳米晶粒的形成过程 (p7) (1)生长基元与晶核的形成
满足线度和几何构型要求时,生成晶核 (2)生长基元在固-液生长界面上的吸附与运动
生长基元运动到固-液生长界面并被吸附, 在界面上迁移运动 (3)生长基元在界面上的结晶或脱附
10
5.3 水热反应的成核特征 1、成核速率随着过冷程度即亚稳性的增加而增加 2、存在一个诱导期,在此期间不能检测出成核 3、组成的微小变化可引起诱导期的显著变化 4、成核反应的发生与体系的早期状态有关
单晶培育: 从籽晶培养大单晶。
7
【例】水热法制备Ag纳米粒子
5ml 0.02M AgNO3 ag和5mL 0.02M NaCl ag,加入到30mL 蒸馏水中,搅拌生成AgCl胶体,然后将0.2mmol的葡萄糖 溶在上述胶体溶液中,移入内衬Teflon的50mL合成弹中, 在加热炉中180°C下保持一段时间,空气中冷却至室温, 蒸馏水和酒精冲洗银灰色沉淀,真空60 °C干燥2小时。
第三章 水热与溶剂热合成法
1
第一节 水热合成法合成原理
p19
一、水热合成的概念 (Hydrothermal Synthesis)
1.1 原理
在特制的密闭反应容器里,采用水溶液作为反应
介质,对反应容器加热,创造一个高温、高压的
反应环境,使通常难溶或不溶的物质溶解并重结
晶。
2
1.2 水热合成的温度范围 常温~1100°C;压强范围: 1~500MPa
(1)低温水热合成:100°C以下; 沸石的合成
(2)中温水热合成:100—300°C; 经济有效的合成区域
(3)高温高压水热合成:300°C以上; 单晶生长、特种结构的化合物

第三章-水热法PPT课件

第三章-水热法PPT课件

页面 8
-
2021/2/3
➢ 另外,物相的形成,粒径的大小、过溶剂热合成出的纳米粉末,能 够有效的避免表面羟基的存在,使得产物能稳 定存在。
➢ 作为反应物的盐的结晶水和反应生成的水,相 对于大大过量的有机溶剂,水的量小得可以忽 略。
页面 9
第二章 水热与溶剂热合成
主要内容
• 2.1 水热与溶剂热合成方法的发展 • 2.2 水热与溶剂热合成方法原理 • 2.3 水热与溶剂热合成工艺 • 2.4 水热与溶剂热合成方法应用实例
页面 2
-
2021/2/3
水热合成方法的发展
➢ 最 早 采 用 水 热 法 制 备 材 料 的 是 1845 年 K.F. Eschafhautl以硅酸为原料在水热条件下制备石 英晶体
页面 6
-
2021/2/3
溶剂热合成方法的发展
➢ 1985年,Bindy首次在“Nature”杂志上发表文 章报道了高压釜中利用非水溶剂合成沸石的方 法,拉开了溶剂热合成的序幕。
➢ 到目前为止,溶剂热合成法已得到很快的发 展,并在纳米材料制备中具有越来越重要的作 用。在溶剂热条件下,溶剂的物理化学性质如 密度、介电常数、粘度、分散作用等相互影 响,与通常条件下相差很大。
➢ 一些地质学家采用水热法制备得到了许多矿 物,到1900年已制备出约80种矿物,其中经鉴 定确定有石英,长石,硅灰石等
➢ 1900年以后,G.W. Morey和他的同事在华盛顿 地球物理实验室开始进行相平衡研究,建立了 水热合成理论,并研究了众多矿物系统。
页面 3
-
2021/2/3
水热法一直主要用于地球科学研究,二战以后 才逐渐用于单晶生长等材料的制备领域,此后,随 着材料科学技术的发展,水热法在制备超细颗粒, 无机薄膜,微孔材料等方面都得到了广泛应用。

水热法合成mofs的具体流程

水热法合成mofs的具体流程

水热法合成mofs的具体流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!水热法合成MOFs的具体流程水热法合成金属有机框架材料(MOFs)是一种常见且有效的合成方法,下面将详细介绍水热法合成MOFs的具体流程。

水热合成_精品文档

水热合成_精品文档
42
主要原料
钛酸丁脂[Ti(OC4H9)4]、 氯氧化锆(ZrOCl2·8H2O)、 硝酸铅(Pb(NO3)2)或醋酸铅(PbAc2)、 氢氧化钠(NaOH)等.
由于扩散与溶液的粘度成正比,因此在水热溶液 中存在十分有效的扩散;
水热晶体生长较水溶液晶体生长具有更高的生长 速率,生长界面附近有更窄的扩散区,以及减少 出现组份过冷和枝晶生长的可能性等优点。
22
高温高压水的作用
① 压力传递介质; ② 无毒溶剂,提高物质的溶解度; ③ 反应和重排的促进剂; ④ 有时作为反应物,有时与容器反应; ⑤ 起低熔点物质的作用;
33
晶体生长步骤
① 溶解阶段:营养料在反应介质里溶解,以离子、分子 团的形式进入溶液;
② 输运阶段:体系存在有效热对流以及溶解区和生长区 之间的浓度差,离子/分子/离子团被输运到生长区;
③ 吸附、分解与脱附 : 离子/分子/离子团在生长界面上的吸附、分解与脱附;
④ 吸附物质在界面上的扩散;
⑤ 结晶生长。
然而,成核和晶体生长彼此竞争需求反应物,因 此伴随晶体生长可预料到新核形成所需的反应物 比例越来越少。成核反应速率通过极大值后开始 下降。
37
非自发成核体系晶化动力学
(1)在籽晶或稳定核上的沉积速率随过饱和程度 而增加,搅拌常会加速沉积,不易形成大的单晶, 除非在非常小的过饱和或过冷条件下进行。
40
自发成核体系晶化动力学
缺少籽晶条件下,晶体生长必定经历成核。 晶体产生与时间的关系曲线是典型的S形。
41
例:水热制备PZT陶瓷粉末
前驱物配比、反应温度、反应时间和矿化 剂浓度对合成粉体的影响。
在Pb/(Zr+Ti)=1 7,Zr/Ti=0.52/0.48,NaOH 的浓度为3mol/L,反应温度为200℃,反应时 间为2小时的条件下,得到了较好晶形的单一 相的PZT粉体。

《水热法制备正极材》课件

《水热法制备正极材》课件

电化学性能
水热法能够制备具有优异电化学 性能的正极材料,满足电池对功 率和容量的要求。
应用广泛
锂离子电池在储能、移动电源和 电动交通工具等领域有广泛应用。
水热法与其他方法的比较
1 溶胶-凝胶法
2 高温固相法
3 溶液法
水热法相比溶胶-凝胶法具 有简单、高效的优势。
水热法相比高温固相法更 适合制备形貌复杂的材料。
3 反应控制
通过调节反应条件,可以控制产物的形貌、组成和结构。
水热法合成装置的设计
压力容器
用于保持高压高温环境,通常采 用不锈钢材质。
温度控制系统
用于精确控制反应温度,以确保 合成产物的质量。
搅拌机构
用于保持反应溶液的均匀混合, 以提高反应效率。
水热法合成的正极材料
1
LiMn2O4
2
水热法也适用于制备LiMn2O4正极材料,
《水热法制备正极材》 PPT课件
水热法合成是一种重要的材料合成方法,本课件将介绍水热法的基本原理、 装置设计和正极材料的合成方法。
水热法合成的简介
水热法合成是一种基于高温高压的合成方法,可用于制备各种功能材料,其 重要性在于其高效、低成本以及可控性。
水热法合成的发展历程
起源
水热法最早起源于19世纪,用于合成石英晶体。
2 缺点
反应条件要求严格、产物形貌难以控制。
水热法合成的质量影响因素
温度
温度的变化会影响晶体生长速率和形貌。
反应时间
反应时间的延长有助于晶体的长大和形貌的改变。
溶液成分
溶液中不同物质的浓度、比例和pH值等会影响产物的形貌和性能。
水热法合成的表征技术
X射线衍射
用于分析产物的晶体结构和晶 体学参数。

第八章 水热合成

第八章 水热合成
17
水的温度—密度图 水的温度 密度图
18
在工作条件下, 在工作条件下,压强大小依赖于反应容器中原始溶 剂的填充度。填充度通常在50% %为宜, 剂的填充度。填充度通常在 %-80%为宜,此时 压强在0.02~0.3GPa之间。 之间。 压强在 之间
不同填充度下水的压强—温度图 不同填充度下水的压强 温度图(FC-p-T图) 温度图 图
• 无机晶体材料的溶剂热合成研究是近三十 年发展起来的, 年发展起来的,主要指在有机溶剂热条件 下的合成,以区别于水热合成。 下的合成,以区别于水热合成。
3
水热、 §8.1 水热、溶剂Байду номын сангаас合成基础
一、水热、溶剂热合成的特点 水热、 ►水热、溶剂热合成化学是研究物质在高温和密闭或 剂热合成化学是研究物 在高温和密闭 合成化学是研究物质 高压条件下溶液中的化学行为与规律的化学分支 合成是指在一定温度(100 ►水热、溶剂热合成是指在一定温度(100-1000℃) 剂热合成是指在一定温度(100和压强(1-l00 MPa)条件下利用溶液中物质化学 和压强 条件下利用溶液中物质化学 反应所进行的合成。 反应所进行的合成。 水热合成化学侧重于研究水热条件下物质的反应 合成规律及产物的结构与性质。 性、合成规律及产物的结构与性质。反应需耐高温 高压与化学腐蚀的设备。体系处于非平衡状态, 高压与化学腐蚀的设备。体系处于非平衡状态,需 用非平衡热力学理论研究合成化学问题。 用非平衡热力学理论研究合成化学问题。
21
水热、 §8.2 水热、溶剂热体系的成核与晶体生长
水热、 水热、溶剂热体系的化学研究多 针对无机晶体 形成无机晶体的步骤
一、成核
在液相或液固界面上少量的反应试剂 产生微小的不稳定的核, 产生微小的不稳定的核,更多的物质 自发地沉积在这些核上而生成微晶。 自发地沉积在这些核上而生成微晶。

水热法

水热法

1.1试剂与zno纳米棒制备所用试剂醋酸锌(Zn( CH3C00)2 " 2H20),硝酸钵(Ce(N03)3.6玩。

),氢氧化钠(NaOH ),无水乙醇(C珑CH20H)均为分析纯.首先将醋酸锌和硝酸饰按一定的配比溶子无水乙醇中,再将溶解氢氧化钠的无水乙醇溶液倒人其中,混合搅拌10 min后倒人高压反应釜中,将密封好的高压反应釜放人反应炉中150℃条件下反应24 h后取出.晾至室温后,将生成的沉淀用去离子水和无水乙醇反复离心清洗,置于反应炉中印℃干燥即可.实验中所用到的试剂均为分析纯,未经进一步提纯.实验用水为一次去离子水.样品制备是结合文献D }l的水热过程,将0.005 mol"L-‘的NaOH 乙醇溶液缓慢滴加到含有0.005 mol " L-‘的Zn (N03)= " 6H=O乙醇溶液中.将混合溶液转移至高压反应釜中,在130 0C卜反应12h,将反应产物经一次去离子水、乙醇等洗涤后,在130 0C卜干燥,即可获得纯Zn0纳米棒.为了得到ZnO:Co纳米棒,将一定量的Co (N03)=6H,0加入到Zn(N03)=" 6H=O乙醇溶液中分散均匀,其余制备过程与纯Zn0纳米棒制备过程相同.所用试剂均为分析纯且在使用时未作进一步提纯,实验用水为自制去离子水。

固定每次所配混合溶液的Zn2+浓度为0. 5 mol/L。

称取计算量的ZnCI:和SnC14 " SH20与去离子水配成n( Sn4+):n ( Zn2 +)=1: 100,2: 100的混合溶液,在溶解过程中,滴人几滴盐酸。

取10 mL配制的上述溶液于烧杯中,加人35 mL去离子水,在50 ℃恒温水浴和磁力搅拌条件下缓慢滴加2 mol/L 氢氧化钠至溶液pH值约为9.0(前驱液),继续搅拌陈化0.5 h,然后超声分散10 min后立即移人聚四氟乙烯衬里的反应釜,填充度为80%。

水热合成法演示课件

水热合成法演示课件
水热合成法 Hydrothermalsynthesis
无机 1
1
原理
2
分类
目录
3
过程
5
具体应用
4
与核壳结构 的关系
2
沉淀法
水解法
制备微粉
喷雾法 氧化还原法
冻结干燥法
要得到化合物微粉,加热处理必 不可少。 而高温易造成缺陷,不能保持组 分的均匀性。
水热合成法 提纯与合成双重 作用!
3
一、原理:水热合成是什么?
• 水热合成是指:温度为100~1000℃、压力为1MPa~1GPa条件下利用水溶液 中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反应处于 分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。
• 利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,并且重结 晶而进行无机合成与材料处理的一种有效方法。
TEM image and ED pattern of CdS / ZnO nanoparticles
8Hale Waihona Puke 五、水热合成法的具体应用• 1.制备超细(纳米)粉末 • 2.制备薄膜 • 3.其他应用
9
5.1 制备超细(纳米)粉末
• 制备金属氧化物超微粉因金属铁在潮湿空气中氧化非常慢,但是把这个氧化反 应置于水热条件下,氧化速度非常快,要得到几十到100nm左右的Fe304;,只要把 金属铁在98MPa,40℃的水热条件下反应1小时即可。
制作硬化体:用水热合成法能制作各种各样无机化合物硬化体,应用于建筑材 料、耐火材料。
处理环境污染物质:一些有害物质(PCB,ABC噬粉)在常温常压下不易分解, 而在高温高压下就很容易分解。
12附:资料来源• 百科 • 水热法合成 CdS /ZnO核壳结构纳米微粒 (孙聆东 付雪峰 钱 程 廖春生 严纯

第九章 水热合成方法

第九章 水热合成方法

低温、等压、溶液条件,有利于生长极少缺 陷、取向好、完美的晶体,且合成产物结晶 度高以及易于控制产物晶体的粒度。 易于调节水热与溶剂热条件下的环境气氛, 有利于低价态、中间价态与特殊价态化合物 的生成,并能均匀地进行掺杂。
反应的基本类型基本类型
1.合成反应 通过数种组分在水热或溶剂热条
件下直接化合或经中间态发生化合反应。利用 此类反应可合成各种多晶或单晶材料。 Nd2O3 + H3PO4 → NdP5O14
国内外学者的研究工作很多。通过水热反应 制备无机/有机固体杂化材料显示出诸多优越性。 吉林大学冯守华教授及其研究小组从简单的无机 原料及有机胺出发,于160℃水热条件下合成出 三维网络结构化合物Cd(C3N2H11)2V8O20。该化合 物是由无机层 {V8O20}4 - 与过渡金属络离子 [Cd(C3N2H11)2]4+构成。{V8O20}4 -无机层由相同数 目的VO4四面体、VO5四角锥以共顶点和共边方式 相互连接形成二维层状结构。[Cd(C3N2H11)2]4+ 络离子以共价键形式支撑于无机层间,形成敞开 的三维网络结构。
CaO· Al2O3 + H3PO4 → Ca5(PO4)3OH + AlPO4
La2O3 + Fe2O3 + SrCl2 → (La, Sr) FeO3 FeTiO3 + KOH → K2O· nTiO2 n=4, 6。
2. 水热处理反应 利用水热与溶剂热条件 处理一般晶体而得到具有特定性能晶体的反 应。例如: 人工氟石棉→人工氟云母 3. 转晶反应 利用水热与溶剂热条件下物 质热力学和动力学稳定性差异进行的反应。 例如: 长石→高岭石; 橄榄石→蛇纹石; NaA沸石→NaS沸石。

第三章水热与溶剂热合成法.

第三章水热与溶剂热合成法.
2.4 SCW的粘度η
➢1T
➢与普通条件下空气的粘度系数接近
19
第十九页,编辑于星期一:二点 二十五分。
2.5 SCW的扩散系数D:
D 1
高密度水:T D , p D 低密度水:T D , p D
SCW的扩散系数比普通水高10~100倍 流动性、渗透性和传递性能好,利于传质和热交换
第三章 水热与溶剂热合成法
1
第一页,编辑于星期一:二点 二十五分。
第一节 水热合成法合成原理
p19
一、水热合成的概念 (Hydrothermal Synthesis)
1.1 原理
在特制的密闭反应容器里,采用水溶液作为反应介
质,对反应容器加热,创造一个高温、高压的反应
环境,使通常难溶或不溶的物质溶解并重结晶。
➢反应物质溶解后以离子、分 子团的形式进入溶液
➢强烈对流,在生长区(低温
区)形成过饱和溶液
➢成核
➢形核
9
第九页,编辑于星期一:二点 二十五分。
5.2 纳米晶粒的形成过程 (p7) (1)生长基元与晶核的形成
满足线度和几何构型要求时,生成晶核
(2)生长基元在固-液生长界面上的吸附与运动 生长基元运动到固-液生长界面并被吸附, 在界面上迁移运动
SEM image of samples obtained at 180°C after a reaction time of A)6h, B)9h, C)12h 8
第八页,编辑于星期一:二点 二十五分。
五、水热法合成原理
5.1 反应过程的驱动力
可溶的前驱体(中间产物)与最终稳定产物之间
的溶解度差
(3)生长基元在界面上的结晶或脱附
10

水热合成法 PPT

水热合成法 PPT

水热合成法分类
1)水热氧化:高温高压水、水溶液等 溶剂与金属或合金可直接反应生长性 的化合物。 例如:M+[0]——MxOy
2)水热沉淀:某些化合物在通常条件 下无法或很难生成沉淀,而在水热条 件下却生成新的化合物沉淀。 例如: KF+MnCI2——KMnF2
3)水热合成:可允许在很宽的范围内 改变参数,使两种或两种以上的化合 物起反应,合成新的化合物。例如: FeTiO3+K0H——K20•nTiO2
水热法制备纳米二氧化锡微粉:纳米SnO2具有很大的比表面积,是一种很好 的气皿和湿皿材料。水热法制备纳米氧化物微粉有很多优点,如产物直接为晶 体,无需经过焙烧净化过程,因而可以减少其它方法难以避免的颗粒团聚,同 时粒度比较均匀,形态比较规则。
5.2 水热法制备BaTiO3薄膜
利用Sol-gel法等其他湿化学方法来制备多晶薄膜,灼烧工艺过程则是必不可少 的,在这一过程中易造成薄膜开裂、脱落等缺陷。水热法目前主要用于制备多 晶薄膜,其原因在于它不需要高温灼烧处理来实现由无定形向结晶态的转变。
➢ “溶解-结晶”机制:“溶解”是指水热反应初期,前驱物微粒之间的团聚和 联接遭到破坏,从而使微粒自身在水热介质中溶解,以离子或离子团的形式进 入溶液,进而成核、结晶而形成晶粒。
➢ “原位结晶”机制:当选用常温常压下不可溶的固体粉末,凝胶或沉淀为前驱 物时,如果前驱物和晶相的溶解度相差不是很大时,或者“溶解-结晶”的动 力学速度过慢,则前驱物可以经过脱去羟基(或脱水),原子原位重排而转变 为结晶态。
制备具体过程:以抛光的钛金属片衬底或沉积钛的玻璃衬底作为阳极,Pt 金属 片作为阴极,以Ba(OH)2 水溶液为前驱物,通过两电极,经100~200 ℃的水热处 理,得到了表面无宏观缺陷,呈金属光泽的BaTiO3 薄膜。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,并且重结晶 而进行无机合成与材料处理的一种有效方法。
反应过程的驱动力是最后可溶的前驱体或中间产物与最终产物之间的溶解度差, 即反应向吉布斯焓减小的方向进行。
二、水热生长体系中的晶粒形成可分为三种类型:
➢ “均匀溶液饱和析出”机制:由于水热反应温度和体系压力的升高,溶质在溶 液中溶解度降低并达到饱和,以某种化合物结晶态形式从溶液中析出。
四、水热合成法与核壳结构
水热法合成 CdS /ZnO核壳结构纳米微粒 具体合成过程:以半胱氨酸镉配合物为前驱体 , 采用水热法合成 CdS纳米微粒 ,
再以 ZnO 对其进行表面修饰 , 形成具有核/壳结构的 CdS /ZnO 半导体纳米微 粒。CdS纳米微粒表面经 ZnO 修饰后 , 其带边发射大大增强。透射电镜显示 , 110℃下反应 4 h所得的 CdS / ZnO 颗粒尺寸约为 20 nm, 电子衍射表明其结构 为六方相。
➢ “溶解-结晶”机制:“溶解”是指水热反应初期,前驱物微粒之间的团聚和 联接遭到破坏,从而使微粒自身在水热介质中溶解,以离子或离子团的形式进 入溶液,进而成核、结晶而形成晶粒。
➢ “原位结晶”机制:当选用常温常压下不可溶的固体粉末,凝胶或沉淀为前驱 物时,如果前驱物和晶相的溶解度相差不是很大时,或者“溶解-结晶”的动 力学速度过慢,则前驱物可以经过脱去羟基(或脱水),原子原位重排而转变 为结晶态。
谢谢!
欢迎大家提问
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
水热合成法
沉淀法
水解法
制备微粉
喷雾法 氧化还原法
冻结干燥法
要得到化合物微粉,加热处理必 不可少。 而高温易造成缺陷,不理:水热合成是什么?
水热合成是指:温度为100~1000℃、压力为1MPa~1GPa条件下利用水溶液中 物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反应处于分 子水平,反应性提高,因而水热反应可以替代某些高温固相反应。
TEM image and ED pattern of CdS / ZnO nanoparticles
五、水热合成法的具体应用
1.制备超细(纳米)粉末 2.制备薄膜 3.其他应用
5.1 制备超细(纳米)粉末
制备金属氧化物超微粉因金属铁在潮湿空气中氧化非常慢,但是把这个氧化反应置 于水热条件下,氧化速度非常快,要得到几十到100nm左右的Fe304;,只要把金属 铁在98MPa,40℃的水热条件下反应1小时即可。
• 6)水热结晶:可使一些非晶化合
三、具体过程
• 基本设备:水热合成反应釜 • 具体流程: (1)选择反应前驱物,确定反应前
驱物的计量比。 (2)摸索前驱物加入顺序,混料搅
拌。 (3)装釜、封釜、置入烘箱。 (4)确定反应温度、时间、状态进
行反应。 (5)取釜、冷却(空气冷或水冷)、
取样。
制作硬化体:用水热合成法能制作各种各样无机化合物硬化体,应用于建筑材 料、耐火材料。
处理环境污染物质:一些有害物质(PCB,ABC噬粉)在常温常压下不易分解, 而在高温高压下就构纳米微粒 (孙聆东 付雪峰 钱 程 苗鸿雁; 罗宏杰; 姚熹; ) TiO2和BaTiO3纳米晶的水热合成及其光电性能的研究( 中南大学, 王丽丽) 水热合成法及其应用(惠春)
水热合成法分类
• 1)水热氧化:高温高压水、水溶 液等溶剂与金属或合金可直接反 应生长性的化合物。 例如: M+[0]——MxOy
• 2)水热沉淀:某些化合物在通常 条件下无法或很难生成沉淀,而 在水热条件下却生成新的化合物 沉淀。 例如:KF+MnCI2—— KMnF2
• 3)水热合成:可允许在很宽的范 围内改变参数,使两种或两种以 上的化合物起反应,合成新的化 合物。例如:FeTiO3+K0H——
• 4)水热还原:一些金属类氧化物、 氢氧化物、碳酸盐或复盐用水调 浆,无需或只需极少量试剂,控 制适当温度合氧分压等条件,即 可制得超细金属粉体。例如: MexOy+Hz——xMe+yHzO其中 Me为银、铜等
• 5)水热分解:某些化合物在水热 条件下分解成新的化合物,进行 分离而得单一化合物超细粉体。 例如:ZrSiO4+NaOH—— ZrO2+NaSiO3
水热法制备纳米二氧化锡微粉:纳米SnO2具有很大的比表面积,是一种很好的 气皿和湿皿材料。水热法制备纳米氧化物微粉有很多优点,如产物直接为晶体, 无需经过焙烧净化过程,因而可以减少其它方法难以避免的颗粒团聚,同时粒 度比较均匀,形态比较规则。
5.2 水热法制备BaTiO3薄膜
利用Sol-gel法等其他湿化学方法来制备多晶薄膜,灼烧工艺过程则是必不可少的, 在这一过程中易造成薄膜开裂、脱落等缺陷。水热法目前主要用于制备多晶薄 膜,其原因在于它不需要高温灼烧处理来实现由无定形向结晶态的转变。
制备具体过程:以抛光的钛金属片衬底或沉积钛的玻璃衬底作为阳极,Pt 金属片 作为阴极,以Ba(OH)2 水溶液为前驱物,通过两电极,经100~200 ℃的水热处理, 得到了表面无宏观缺陷,呈金属光泽的BaTiO3 薄膜。
在衬底上形成稳定结晶相薄膜
5.3 其他应用
煤的液体化、气体化:在水热条件下,煤可以液化、气体化,产生油性状,所以 如果煤在水热条件下处理实现工业化,煤的运输,煤的有效利用,因烧煤而造成的 环境污染,将会得到较大的改变。
相关文档
最新文档