高中物理4知识点机械振动与机械波解析

合集下载

高中物理机械振动和机械波知识点

高中物理机械振动和机械波知识点

高中物理机械振动和机械波知识点机械振动和机械波是高中物理中一个重要的内容,下面将以1200字以上的篇幅详细介绍这两个知识点。

一、机械振动1.振动的定义及特点振动是指物体在平衡位置附近做往复运动的现象。

振动具有周期性、往复性和简谐性等特点。

2.物理量与振动的关系振动常涉及到的物理量有位移、速度、加速度、力等。

振动的物体在其中一时刻的位移与速度、加速度之间存在着相位差的关系。

3.简谐振动简谐振动是指振动物体的加速度与恢复力成正比,且方向相反。

简谐振动的周期、频率和角频率与振幅无关,只与振动系统的特性有关。

4.阻尼振动阻尼振动是指振动物体受到阻力的影响而逐渐减弱并停止的振动。

阻尼振动可以分为临界阻尼、过阻尼和欠阻尼三种情况。

5.受迫振动受迫振动是指振动物体受到外界周期力的作用而发生的振动。

当外力的频率与振动系统的固有频率相同时,产生共振现象。

6.驱动力与振幅的关系外力作用下,振动物体的振幅由驱动力的频率决定。

当驱动力的频率与振动物体的固有频率接近时,振幅达到最大值。

二、机械波1.波的定义及特点波是指能量或信息在空间中的传递。

波有传播介质,传播介质可以是固体、液体或气体。

波分为机械波和电磁波两种。

2.机械波的分类及特点机械波分为横波和纵波两种,它们的传播方向与介质振动方向有关。

横波的振动方向与波的传播方向垂直,而纵波的振动方向与波的传播方向平行。

3.波的传播速度波的传播速度与介质的性质和波的频率有关。

在同一介质中,传播速度与波长成正比,与频率成反比。

在不同介质中,波长相等时,传播速度与频率成正比。

4.波的反射、折射和干涉波在传播过程中会遇到障碍物或介质边界,导致发生反射和折射现象。

当波的传播路径中存在两个或多个波源时,会发生波的干涉现象。

5.波的衍射波在通过缝隙或物体边缘时会发生波的弯曲现象,这种现象称为波的衍射。

波的衍射现象是波动性质的重要表现之一6.声波的特点及应用声波是一种机械波,的传播媒质是物质的弹性介质。

机械振动及机械波知识点(全)

机械振动及机械波知识点(全)

机械波的产生和传播知识点一:波的形成和传播〔一〕介质能够传播振动的媒介物叫做介质。

〔如:绳、弹簧、水、空气、地壳等〕〔二〕机械波机械振动在介质中的传播形成机械波。

〔三〕形成机械波的条件〔1〕要有 ;〔2〕要有能传播振动的 。

注意:有机械波 有机械振动,而有机械振动 能产生机械波。

〔四〕机械波的传播特征〔1〕机械波传播的仅仅是 这种运动形式,介质本身并不随波 。

沿波的传播方向上各质点的振动都受它前一个质点的带动而做 振动,因此波动的过程是介质中相邻质点间依次“带动”、由近及远相继振动起来的过程,是将这种运动形式在介质中依次向外传播的过程。

对简谐波而言各质点振动的振幅和周期都 ,各质点仅在各自的 位置附近振动,并 随波动过程的发生而沿波传播方向发生迁移。

〔2〕波是传递能量的一种运动形式。

波动的过程也是由于相邻质点间由近及远地依次做功的过程,所以波动过程也是能量由近及远的传播过程。

因此机械波也是传播 的一种形式。

〔五〕波的分类波按照质点 方向和波的 方向的关系,可分为:〔1〕横波:质点的振动方向与波的传播方向 的波,其波形为 相间的波。

凸起的最高处叫 ,凹下的最底处叫 。

〔2〕纵波:质点的振动方向与波的传播方向 的波,其波形为 相间的波。

质点分布最密的地方叫作 ,质点分布最疏的地方叫作 。

知识点二:描述机械波的物理量知识〔一〕波长〔λ〕两个 的、在振动过程中对 位置的位移总是相等的质点间的距离叫波长。

在横波中,两个 的波峰〔或波谷〕间的距离等于波长。

在纵波中,两个 的密部〔或疏部〕间的距离等于波长。

振动在一个 内在介质中传播的距离等于一个波长。

〔二〕频率〔f 〕波的频率由 决定,一列波,介质中各质点振动频率都相同,而且都等于波源的频率。

在传播过程中,只要波源的振动频率一定,则无论在什么介质中传播,波的频率都不变。

〔三〕波速〔v 〕 振动在介质中传播的速度,指单位时间内振动向外传播的距离,即x v t∆=∆。

高中物理选修3-4全部知识点归纳

高中物理选修3-4全部知识点归纳

高中物理选修3-4全部知识点归纳一、简谐运动、简谐运动的表达式和图象1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。

机械振动产生的条件是:①回复力不为零;②阻力很小。

使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。

2、简谐振动:在机械振动中最简单的一种理想化的振动。

对简谐振动可以从两个方面进行定义或理解:①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。

②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,3、描述振动的物理量研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。

⑴位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。

位移是矢量,其最大值等于振幅。

⑵振幅A :做机械振动的物体离开平衡位置的 最大距离叫做振幅,振幅是标量,表示振动的强弱。

振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。

⑶周期T :振动物体完成一次余振动所经历的时间叫做周期。

所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。

⑷频率f :振动物体单位时间内完成全振动的次数。

⑸角频率ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。

引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。

因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。

周期、频率、角频率的关系是:T f =1,T ωπ2=. ⑹相位ϕ:表示振动步调的物理量。

4、研究简谐振动规律的几个思路:⑴用动力学方法研究,受力特征:回复力F =- kx ;加速度,简谐振动是一种变加速运动。

在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

机械振动和机械波知识点总结(最新整理)

机械振动和机械波知识点总结(最新整理)

机械振动和机械波一、知识结构二、重点知识回顾1机械振动(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。

回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。

产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。

b、阻力足够小。

(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。

简谐振动是最简单,最基本的振动。

研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。

因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。

2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。

3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。

(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A ”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。

2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。

振动的周期T 跟频率f 之间是倒数关系,即T=1/f 。

振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。

(四)单摆:摆角小于5°的单摆是典型的简谐振动。

机械振动机械波

机械振动机械波

机械振动机械波机械振动和机械波是物理学中重要的概念,涉及到了物体的振动和波动特性。

机械振动是指物体或系统在受到外界力的作用下发生的周期性或非周期性的振动运动,而机械波是指机械振动在介质中传播的能量传递过程。

机械振动有两个重要的参数,即振动周期和振幅。

振动周期是指一个完整的振动循环所需要的时间,通常用秒(s)表示。

振幅则是指振动的最大位移或最大速度,通常用米(m)来表示。

机械振动分为简谐振动和非简谐振动两种。

简谐振动是指当物体受到恢复力的作用后,其振动状态可以通过正弦或余弦函数来描述。

而非简谐振动则是指物体受到的恢复力不满足线性关系,振动状态无法通过简单的正弦或余弦函数来描述。

机械振动的运动可以通过振动方程来描述。

对于简谐振动而言,振动方程可以表示为x(t) = A * sin(ωt + φ),其中x(t)是物体的位移,A是振幅,ω是角频率,t是时间,φ是相位差。

振动方程可以描述物体振动的位移、速度和加速度的关系,从而提供了对振动状态的全面了解。

机械波是机械振动在介质中传播的能量传递过程。

波动是由于介质中某一点的振动引起附近点的振动,从而传递能量。

机械波有两种主要类型,即横波和纵波。

横波是指波动的振动方向垂直于能量传播方向的波动,例如水波。

纵波则是指波动的振动方向与能量传播方向一致的波动,例如声波。

机械波的传播速度可以通过介质的性质和条件来确定。

对于弹性介质而言,传播速度可以表示为v = √(E/ρ),其中v是波速,E是介质的杨氏模量,ρ是介质的密度。

不同介质的波速是不同的,比如在空气中,声速大约为343m/s,而在水中,水波的波速则约为1480m/s。

机械波的特性还包括波长和频率。

波长是指相邻两个振动峰或波谷之间的距离,通常用λ表示,单位是米。

频率是指在单位时间内波动中的相邻振动周期的个数,通常用赫兹(Hz)表示。

波长和频率之间有一个简单的关系,即v = λ * f,其中v是波速,λ是波长,f 是频率。

高中物理机械振动机械波知识点总结课件新人教版选修

高中物理机械振动机械波知识点总结课件新人教版选修

物理实验中的机械振动与波
实验中的振动与波
在物理实验中,我们可以设计和进行各种与机械振动和波相关的实验,如单摆实 验、共振实验、干涉和衍射实验等。这些实验可以帮助我们深入理解机械振动和 波的原理。
实验中的注意事项
在进行与机械振动和波相关的实验时,需要注意安全问题,如避免共振引起的破 坏力、防止声波对耳膜的损伤等。
科技应用中的机械振动与波
科技应用中的振动与波
在科技领域,机械振动和波的应用非 常广泛,如地震勘测、无损检测、医 疗成像等。这些应用都基于对机械振 动和波的深入理解和掌握。
科技应用的发展前景
随着科技的不断发展,机械振动和波 的应用前景将更加广阔。例如,利用 振动和波进行物质分拣、环境监测等 领域的研究正在不断深入。
学习方法与技巧
强化基础知识的学习
注重实验与观察
机械振动与机械波的知识点比较抽象,需 要强化基础知识的学习,如振动与波的基 本概念、周期公式等。
实验是学习物理的重要手段,通过实验观 察机械振动与机械波的现象,有助于加深 对知识点的理解。
多做练习题
形成知识网络
练习是巩固知识的重要途径,通过多做练 习题可以加深对知识点的理解和掌握。
波动方程的建立
波动方程的推导
通过建立微分方程,描述波动过 程中各点的振动状态,从而得出
波动方程。
波动方程的形式
常见的波动方程形式有简谐振动方 程和一维波动方程等。
波动方程的求解
通过求解波动方程,可以得到波的 传播速度、波长等物理量。
振动方程的理解与应用
振动方程的意义
振动方程描述了单个质点在平衡位置附近的振动规律。
高中物理机械振动机械波知 识点总结课件新人教版选修
目录

高中物理选修3-4知识点机械振动与机械波解析复习过程

高中物理选修3-4知识点机械振动与机械波解析复习过程

机械振动与机械波简谐振动一、学习目标1.了解什么是机械振动、简谐运动2.正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。

二、知识点说明1.弹簧振子(简谐振子):(1)平衡位置:小球偏离原来静止的位置;(2)弹簧振子:小球在平衡位置附近的往复运动,是一种机械运动,这样的系统叫做弹簧振子。

(3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。

2.弹簧振子的位移—时间图像弹簧振子的s—t图像是一条正弦曲线,如图所示。

3.简谐运动及其图像。

(1)简谐运动:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。

(2)应用:心电图仪、地震仪中绘制地震曲线装置等。

三、典型例题例1:简谐运动属于下列哪种运动()A.匀速运动 B.匀变速运动C.非匀变速运动 D.机械振动解析:以弹簧振子为例,振子是在平衡位置附近做往复运动,并且平衡位置处合力为零,加速度为零,速度最大.从平衡位置向最大位移处运动的过程中,由F=-kx可知,振子的受力是变化的,因此加速度也是变化的。

故A、B错,C正确。

简谐运动是最简单的、最基本的机械振动,D正确。

答案:CD简谐运动的描述一、学习目标1.知道简谐运动的振幅、周期和频率的含义。

2.知道振动物体的固有周期和固有频率,并正确理解与振幅无关。

二、知识点说明1.描述简谐振动的物理量,如图所示:(1)振幅:振动物体离开平衡位置的最大距离,。

(2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,之后又回到O,这样一个完整的振动过程称为一次全振动。

(3)周期:做简谐运动的物体完成一次全振动所需要的时间,符号T表示,单位是秒(s)。

(4)频率:单位时间内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。

(5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。

高三物理机械振动和机械波知识点总结

高三物理机械振动和机械波知识点总结

3. 描述简谐运动的物理量(1)位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。

(2)振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。

(3)周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。

4. 简谐运动的图像(1)意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。

(2)特点:简谐运动的图像是正弦(或余弦)曲线。

(3)应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。

二、弹簧振子定义:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。

如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。

三、单摆1. 定义:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。

单摆是一种理想化模型。

2. 单摆的振动可看作简谐运动的条件是:最大摆角α<5°。

3. 单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。

4. 作简谐运动的单摆的周期公式为:T=2π(1)在振幅很小的条件下,单摆的振动周期跟振幅无关。

(2)单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.(3)摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L 应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。

四、受迫振动1. 受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动。

2. 受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关。

3. 共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振。

高中物理选修34知识点机械振动与机械波解析

高中物理选修34知识点机械振动与机械波解析

机械振动与机械波简谐振动一、学习目标1.了解什么是机械振动、简谐运动2.正确明白得简谐运动图象的物理含义,明白简谐运动的图象是一条正弦或余弦曲线。

二、知识点说明1.弹簧振子(简谐振子):(1)平稳位置:小球偏离原先静止的位置;(2)弹簧振子:小球在平稳位置周围的往复运动,是一种机械运动,如此的系统叫做弹簧振子。

(3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。

2.弹簧振子的位移—时刻图像弹簧振子的s—t图像是一条正弦曲线,如下图。

3.简谐运动及其图像。

(1)简谐运动:若是质点的位移与时刻的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,如此的振动叫做简谐运动。

(2)应用:心电图仪、地震仪中绘制地震曲线装置等。

三、典型例题例1:简谐运动属于以下哪一种运动( )A.匀速运动 B.匀变速运动C.非匀变速运动 D.机械振动解析:以弹簧振子为例,振子是在平稳位置周围做往复运动,而且平稳位置处合力为零,加速度为零,速度最大.从平稳位置向最大位移处运动的进程中,由F=-kx可知,振子的受力是转变的,因此加速度也是转变的。

故A、B错,C正确。

简谐运动是最简单的、最大体的机械振动,D正确。

答案:CD简谐运动的描述一、学习目标1.明白简谐运动的振幅、周期和频率的含义。

2.明白振动物体的固有周期和固有频率,并正确明白得与振幅无关。

二、知识点说明1.描述简谐振动的物理量,如下图:(1)振幅:振动物体离开平稳位置的最大距离,。

(2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,以后又回到O,如此一个完整的振动进程称为一次全振动。

(3)周期:做简谐运动的物体完成一次全振动所需要的时刻,符号T表示,单位是秒(s)。

(4)频率:单位时刻内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。

(5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。

高中物理机械振动和机械波

高中物理机械振动和机械波

3.受迫振动
(1)驱动力:作用于振动系统的周期性外力。
(2)受迫振动:物体在外界驱动力作用下的振动。 思考: 物体做受迫振动时,振动稳定后的频率与什么 有关?
视频
(3)受迫振动的特点
物体做受迫振动时,振动稳定后的频 率等于驱动力的频率,跟物体的固有频率 无关。
4.共振
(1)定义:驱动力的频率f等于物体的固有频 率f0时,受迫振动的振幅最大,这种现象叫 做共振。 (2)共振曲线
摆角 1º 2º 3º 4º 5º 6º 7º 8º 9º 10º 11º 12º 13º 14º 15º 20º 30º 45º 60º 90º
正弦值 0.01754 0.03490 0.05234 0.06976 0.08716 0.10453 0.12187 0.13917 0.15643 0.17365 0.19081 0.20791 0.22495 0.24192 0.25882 0.34202 0.50000 0.70711 0.86603 1.00000
(2)图象法:由单摆周期公式不难推出:l=4gπ2T2,因此,分别测 出一系列摆长 l 对应的周期 T,作 l-T2 的图象,图象应是一条通过 原点的直线,求出图线的斜率 k=ΔΔTl2,即可利用 g=4π2k=4ΔπT2Δ2l求得 重力加速度值,如图所示.
练习
某同学在正确操作和测量的情况下,测得多组摆长 L 和对应的周 期 T,画出 L-T2 图线,如图所示.出现这一结果最可能的原因是: 摆 球 重 心 不 在 球 心 处 , 而 是 在 球 心 的 正 ____ 方 ( 选 填 “ 上 ” 或 “下”).为了使得到的实验结果不受摆球重心位置无法准确确定的 影响,他采用恰当的数据处理方法:在图线上选 取 A、B 两个点,找出两点相应的横纵坐标,如 图所示.用表达式 g=________计算重力加速度, 此结果即与摆球重心就在球心处的情况一样。

(完整版)机械振动和机械波知识点总结

(完整版)机械振动和机械波知识点总结

机械振动 考点一 简谐运动的描述与规律1. 机械振动:物体在平衡位置附近所做的往复运动,简称振动。

回复力是指振动物体所受的总是指向平衡位置的合外力。

回复力是产生振动的条件,它使物体总是在平衡位置附近振动。

它属于效果力,其效果是使物体再次回到平衡位置。

回复力可以是某一个力,也可以是几个力的合力或某个力的分力。

平衡位置是指物体所受回复力为零的位置!2.简谐运动: 物体在跟位移大小成正比并且总是指向平衡位置的回复力作用下的振动。

简谐运动属于最简单、最基本的振动形式,其振动过程关于平衡位置对称,是一种周期性的往复运动。

例如弹簧振子、单摆。

注: (1)描述简谐运动的物理量①位移x :由平衡位置指向振动质点所在位置的有向线段,是矢量.②振幅A :振动物体离开平衡位置的最大距离,是标量,它表示振动的强弱.③周期T 和频率f :物体完成一次全振动所需的时间叫做周期,而频率则等于单位时间 内完成全振动的次数.它们是表示振动快慢的物理量,二者互为倒数关系:T =1/f. (2)简谐运动的表达式①动力学表达式:F =-kx ,其中“-”表示回复力与位移的方向相反.②运动学表达式:x =A sin (ωt +φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢, (ωt +φ)代表简谐运动的相位,φ叫做初相.(可借助于做匀速圆周运动质点在水平方向的投影理解)(3)简谐运动的运动规律①变化规律:位移增大时⎩⎪⎨⎪⎧回复力、加速度增大⎭⎬⎫速度、动能减小势能增大机械能守恒振幅、周期、频率保持不变注意:这里所说的周期、频率为固有周期与固有频率,由振动系统本身构造决定。

振幅是反映振动强弱的物理量,也是反映振动系统所具备能量多少的物理量。

②对称规律:I 、做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系,另外速度的大小、动能具有对称性,速度的方向可能相同或相反.II 、振动物体来回通过相同的两点间的时间相等,如t BC =t CB ;振动物体经过关于平衡位置对称的等长的两线段的时间相等,如t BC =t B ′C ′,③运动的周期性特征:相隔T 或nT 的两个时刻振动物体处于同一位置且振动状态相同.注意:做简谐运动的物体在一个周期内的路程大小一定为4A ,半个周期内路程大小一定为2A ,四分之一个周期内路程大小不一定为A 。

高考物理知识点之机械振动与机械波

高考物理知识点之机械振动与机械波

精品基础教育教学资料,仅供参考,需要可下载使用!高考物理知识点之机械振动与机械波考试要点基本概念一、简谐运动的基本概念1.定义物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。

表达式为:F= -kx(1)简谐运动的位移必须是指偏离平衡位置的位移。

也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。

(2)回复力是一种效果力。

是振动物体在沿振动方向上所受的合力。

(3)“平衡位置”不等于“平衡状态”。

平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。

(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)(4)F=-kx是判断一个振动是不是简谐运动的充分必要条件。

凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。

2.几个重要的物理量间的关系要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系。

(1)由定义知:F∝x,方向相反。

(2)由牛顿第二定律知:F∝a,方向相同。

(3)由以上两条可知:a∝x,方向相反。

(4)v 和x 、F 、a 之间的关系最复杂:当v 、a 同向(即 v 、 F 同向,也就是v 、x 反向)时v 一定增大;当v 、a 反向(即 v 、 F 反向,也就是v 、x 同向)时,v 一定减小。

3.从总体上描述简谐运动的物理量振动的最大特点是往复性或者说是周期性。

因此振动物体在空间的运动有一定的范围,用振幅A 来描述;在时间上则用周期T 来描述完成一次全振动所须的时间。

(1)振幅A 是描述振动强弱的物理量。

(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的)(2)周期T 是描述振动快慢的物理量。

(频率f =1/T 也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。

高中物理机械振动、机械波知识要点

高中物理机械振动、机械波知识要点

高中物理机械振动、机械波知识要点1、简谐运动、振幅、周期和频率的概念(1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。

特征是:,。

(2)简谐运动的规律:①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。

②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。

③振动中的位移x都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。

加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。

(3)振幅A:振动物体离开平衡位置的最大距离称为振幅。

它是描述振动强弱的物理量。

它是标量。

(4)周期T和频率f:振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为振动频率,单位是赫兹(Hz)。

周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f。

2、单摆的概念(1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。

(2)单摆的特点:①单摆是实际摆的理想化,是一个理想模型;②单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关;③单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角时,单摆的振动是简谐运动,其振动周期T=。

(3)单摆的应用:①计时器;②测定重力加速度g,g=。

3、受迫振动和共振(1)受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。

(2)共振:①共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。

②产生共振的条件:驱动力频率等于物体固有频率。

高中物理机械振动和机械波知识点详解

高中物理机械振动和机械波知识点详解

高中物理机械振动和机械波知识点详解5.1简谐振动5.1.1、简谐振动的动力学特点如果一个物体受到的回复力与它偏离平衡位置的位移大小成正比,方向相反。

即满足:的关系,那么这个物体的运动就定义为简谐振动根据牛顿第二是律,物体的加速度,因此作简谐振动的物体,其加速度也和它偏离平衡位置的位移大小成正比,方何相反。

现有一劲度系数为k的轻质弹簧,上端固定在P点,下端固定一个质量为m的物体,物体平衡时的位置记作O点。

现把物体拉离O点后松手,使其上下振动,如图5-1-1所示。

当物体运动到离O点距离为x处时,有式中为物体处于平衡位置时,弹簧伸长的长度,且有,因此说明物体所受回复力的大小与离开平衡位置的位移x成正比。

因回复力指向平衡位置O,而位移x总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。

注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。

5.1.2、简谐振动的方程由于简谐振动是变加速运动,讨论起来极不方便,为此。

可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O为圆心,以振幅A为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度作匀速圆周运动,它在开始时与O的连线跟轴夹角为,那么在时刻t,参考圆上的质点与O 的连线跟的夹角就成为,它在轴上的投影点的坐标(2)这就是简谐振动方程,式中是t=0时的相位,称为初相:是t时刻的相位。

参考圆上的质点的线速度为,其方向与参考圆相切,这个线速度在轴上的投影是)(3)这也就是简谐振动的速度参考圆上的质点的加速度为,其方向指向圆心,它在轴上的投影是)(4)这也就是简谐振动的加速度由公式(2)、(4)可得由牛顿第二定律简谐振动的加速度为因此有(5)简谐振动的周期T也就是参考圆上质点的运动周期,所以5.1.3、简谐振动的判据物体的受力或运动,满足下列三条件之一者,其运动即为简谐运动:①物体运动中所受回复力应满足;②物体的运动加速度满足;③物体的运动方程可以表示为。

机械振动和机械波知识点的归纳

机械振动和机械波知识点的归纳

机械振动和机械波知识点的归纳一、简谐运动1、定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动,又称简谐振动。

2、简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。

简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

3. 描述简谐运动的物理量(1)位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。

(2)振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。

(3)周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。

4. 简谐运动的图像(1)意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。

(2)特点:简谐运动的图像是正弦(或余弦)曲线(3)应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况二、弹簧振子定义:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。

如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。

三、单摆1. 定义:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。

单摆是一种理想化模型。

2. 单摆的振动可看作简谐运动的条件是:最大摆角α<5°。

3. 单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。

4. 作简谐运动的单摆的周期公式为:T=2π(1)在振幅很小的条件下,单摆的振动周期跟振幅无关。

(2)单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g 有关.(3)摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。

机械振动机械波知识点精析

机械振动机械波知识点精析

机械振动机械波知识点精析一、机械振动质点沿着直线或弧线绕平衡位置往复运动叫做机械振动.机械振动是常见的一种运动形式.1.产生振动的必要条件回复力:振动的质点所受诸外力在指向平衡位置方向(振动方向)上的合力.如图7-1中,弹簧振子m离开平衡位置O处,就受到弹簧的弹力提供振动的回复力作用.如图7-2中,在离开最低点平衡位置O处,摆球m所受重力、细绳拉力(张力)在切线方向上的合力提供振动的回复力F向=mgsinθ的作用.注意:回复力是效果力,因此对质点振动受力分析时,不做独立分析.回复力的方向始终指向平衡位置.2.描述振动的物理量(1)振幅(A):振动质点离开平衡位置的最大距离振幅是标量,是表示质点振动强弱的物理量.(2)周期(T):振动质点经过一次全振动所需的时间.全振动:振动质点经过一次全振动后其振动状态又恢复到原来的状态.周期是表示质点振动快慢的物理量.(3)频率(f):一秒钟内振动质点完成全振动的次数.它与周期(4)相位(拍):表示质点振动的步调的物理量.如两振动质点同时由平衡位置向同方向运动,同时到达最大位置,这叫同相;如两振动质点同时离开平衡位置向相反方向运动同时到达最大位置,则叫反相.3.简谐振动简谐振动是振动中最简单,最基本的一种形式.弹簧振子、单摆(小振幅条件下的振动)是简谐振动中最典型最常见的例子.(1)简谐振动的特点:1)回复力的特点:F=-kx振动物体所受回复力的大小跟振动中的位移(x)成正比,方向始终与位移方向相反,指向平衡位置.回复力是周期性变化的.注意:位移必须从平衡位置起向外指向.图7-3(a)振子由平衡位置A向B运动过程中,回复力指向左方,在平衡位置右方;图7-3(b)振子由A向C运动过程中,所受回复力指向右方,在平衡位置左方.如图7-4所示,振子由平衡位置A运动到B时位移是AB,方向是由A到B;振子由B向A运动到D时,其位移是AD,方向仍是AD,不要错误地认为这时的位移是BD.F=-kx可作为判别一个物体是否作简谐振动的依据.如图7-2所示,当单摆摆角θ<5°时,单摆的振动为简谐振动.F回=-mgsinθ振动物体的加速度跟位移大小成正比,方向与位移方向相反.(加速度方向永远指向平衡位置.)振动物体的加速度是周期性变化的.所以,简谐振动是一种变加速运动.3)振动质点速度的特点:v=sin(ωt+ψ)(超纲)振动物体的速度的大小总是随位移的增大而减小,随位移的减小而增大.在平衡位置时,振动物体的速度最大.如表所示.4)振动中位移随时间变化规律:按正弦(或余弦)曲线变化[x=Acos(ωt+ψ)](超纲)如图7-5所示.5)振动物体能量的特点:振动物体的机械能是一个恒量,即物体做简谐振动过程中动能和势能相互转化,遵守机械能转换和守恒定律.E∝A2,振幅越大,能量越大.(2)简谐振动的规律:1)振动图象:振动位移-时间的函数图象.物理意义:a)从图象上可知振动的振幅A;b)从图象上可知振动的周期;c)从图象上可知质点在不同时刻的位移,如图7-5中t1时刻对应位移x1;t2时刻对应位移x2;d)从图象上可比较质点在各个时刻速度大小及符号(表示方向);如t1时刻质点速度较t2时刻质点的速度小,t1时刻速度为负,t2时刻速度也为负.(t1时刻是质点由最大位移处向平衡位置运动过程的某一时刻,而t2时刻是质点由平衡位置向负的最大位移运动过程中的某一时刻.)e)从图象上可比较质点在各个时刻加速度的大小及符号.如图7-5中t1时刻的加速度较质点在t2时刻加速度大,t1时刻质点加速度为负,t2时刻加速度符号为正.f)从图象可看出质点在不同时刻间的相差.2)简谐振动的周期:在①式中,m为简谐振动质点的质量,k为简谐振动质点振动的比例系数(回复系数),不同的简谐振动的k值不同,就弹簧振子而言,k为弹簧的劲度系数.由②式可看出:a)单摆的周期与振幅和摆球质量无关;b)L为摆长,由悬点至摆球重心的距离;c)g是单摆所在系统中的“重力加速度”,如单摆在地面或所在系统相对地静止或匀速运动,/s2.若单摆在竖直方向上作匀变速直线运动的升降机中,则g为该升降机中自由下落物体相对升降机的加速度.4.受迫振动(1)受迫振动产生条件:质点在周期性驱动力作用下的振动.(2)受迫振动特点:受迫振动的频率等于驱动力的频率,与物体的固有频率无关.振动物体的振幅随时间减小的振动——阻尼振动.振动物体的振幅固定不变的振动——无阻尼振动.形成阻尼振动的原因是,振动物体克服摩擦或其他阻力做功而逐渐减小能量.(3)共振——受迫振动特例.产生条件:f策=f固.周期性策动力的作用方向跟物体振动方向必须相同.共振现象:物体作受迫振动中,开始时兼有自由振动(情况复杂)待达到稳定后,自由振动已衰减为零,只有此时,受迫振动的频率才等于驱动力变化的频率.当策动力的频率等于受迫振动物体本身的固有频率时,受迫振动的振幅达到最大值,这种现象叫做共振.如图7-6所示,即f策=f固时,受迫振动振幅最大.二、机械波机械振动在弹性媒质中的传播运动叫机械波.我们应特别注意,在振动的传播过程中,每个参与传播振动的质点不沿振动传播方向定向移动(质点不随之迁移),它们只在各自的平衡位置附近振动.1.产生条件煤质中各质点间存在相互作用,因此一个质点的振动必然带动相邻的质点振动……于是振源的振动在媒质中传播的同时随之将其能量在媒质中传播出去.所以波动是传播能量的一种形式.2.波的分类(1)横波:质点振动方向与波的传播方向垂直;横波波型有波峰和波谷.(2)纵波:质点振动方向与波的传播方向在一条直线上;纵波波型有密部和疏部.3.描述波的物理量(1)频率(f):波的频率与波源的振动频率相同.在传播过程中是不变的.只要振源的振动频率一定,则无论在什么媒质中传播,波的频率都等于振源的振动频率.(2)波速(v):波速是波传播的速度——质点振动状态传播的速度.机械波传播的速度仅取决于媒质的性质.同种媒质传播不同频率的同类机械波时,传播速度是相同的.位移.如图7-7.一列横波当t1=0时波形为Ⅰ,经过Δt波形为Ⅱ.从图可知,Δs为新、旧波形上振动状态相同的两质点间距离(图中所表示的为Δt<T的情况)(3)波长(λ):两个相邻的、在振动过程中对平衡位置的位移总是相同的质点间的距离.或者说,在一个周期内波传播的距离的大小.波长是标量.(4)波长、频率和波速的关系:波速v由媒质决定,频率f只由振源决定.某一列横波由A媒质进入B媒质,其传播速度发生变化,但其频率不变.所以波长发生变化.4.波的图象波传播过程中,在某一时刻媒质各质点的位移末端连线如图7-8所示,图线上各质点均为媒质中振动的质点,横坐标表示质点的平衡位置,纵坐标表示质点的位移.物理意义:a)能表示出质点振动的振幅(A);b)能表示各质点振动的位移(y);c)能表示出波长(λ);d)能表示出各质点的振动方向、加速度大小及符号;e)能表示出各质点间的相位关系.特别注意:波的图象与振动图象的区别.5.波的一般性质(1)波的反射:当波到达两种性质不同媒质的分界面时,改变传播方向,但仍在原来媒质里传播的现象.(2)波的折射:当波到达两种性质不同媒质的分界面时,改变传播方向,但进入另一种媒质的现象.(3)波的干涉:1)产生条件:相干波——两列波频率相同;相差恒定;2)现象:在相干区域内,增强区与减弱区相间.其中Δs为该点至两波源的距离差(波程差).3)对干涉现象应注意:a)增强是指振动质点的能量增大,即振幅增大,并不是指振动速度增大;减弱是指质点合振动的振幅减小.b)增强区或减弱区位置是确定的,即增强点(域)始终增强;减弱区的点始终减弱.c)不论增强区或是减弱区,各质点都作与相干波源周期相同的振动,各质点振动的位移是周期性变化的.d)增强区和减弱区的位置确定,两列波相位相同情况有两列波相位相反情况有(4)波的衍射:波在煤质传播,遇到障碍物或小孔的大小可以和其波长比较时,波可以绕过障碍物或小孔到按直线传播时所要生成的阴影部分.(5)波的共振:波在媒质中传播时,如果遇到的物体的固有周期和波的周期相同时,能够引起物体振幅最大的振动.三、音调、响度和音品这是表征乐音三个特点的物理量.音调决定于声源的频率.响度决定于声源的振幅.音品决定于声源泛音的个数、频率和振幅.。

高中物理选修3-4机械振动_机械波_光学知识点(好全)

高中物理选修3-4机械振动_机械波_光学知识点(好全)

机械振动一、基本概念1.机械振动:物体(或物体一部分)在某一中心位置附近所做的往复运动2.回复力F:使物体返回平衡位置的力,回复力是根据效果(产生振动加速度,改变速度的大小,使物体回到平衡位置)命名的,回复力总指向平衡位置,回复力是某几个性质力沿振动方向的合力或是某一个性质力沿振动方向的分力。

(如①水平弹簧振子的回复力即为弹簧的弹力;②竖直悬挂的弹簧振子的回复力是弹簧弹力和重力的合力;③单摆的回复力是摆球所受重力在圆周切线方向的分力,不能说成是重力和拉力的合力)3.平衡位置:回复力为零的位置(物体原来静止的位置)。

物体振动经过平衡位置时不一定处于平衡状态即合外力不一定为零(例如单摆中平衡位置需要向心力)。

4.位移x:相对平衡位置的位移。

它总是以平衡位置为始点,方向由平衡位置指向物体所在的位置,物体经平衡位置时位移方向改变。

5.简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。

(1)动力学表达式为:F= -kxF=-kx是判断一个振动是不是简谐运动的充分必要条件。

凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。

(2)运动学表达式:x=A sin(ωt+φ)(3)简谐运动是变加速运动.物体经平衡位置时速度最大,物体在最大位移处时速度为零,且物体的速度在最大位移处改变方向。

(4)简谐运动的加速度:根据牛顿第二定律,做简谐运动的物体指向平衡位置的(或沿振动方向的)加速度mkxa -=.由此可知,加速度的大小跟位移大小成正比,其方向与位移方向总是相反。

故平衡位置F 、x 、a 均为零,最大位移处F 、x 、a 均为最大。

(5)简谐运动的振动物体经过同一位置时,其位移大小、方向是一定的,而速度方向不一定。

(6)简谐运动的对称性①瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系.速度的大小、动能也具有对称性,速度的方向可能相同或相反。

教科版 高中物理选修3-4 机械振动+机械波

教科版 高中物理选修3-4 机械振动+机械波

(1)振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。

①振幅是标量。

②振幅是反映振动强弱的物理量。

(2)周期和频率:①振动物体完成一次全振动所用的时间叫做振动的周期。

②单位时间内完成全振动的次数叫做全振动的频率。

它们的关系是T=1/f 。

在一个周期内振动物体通过的路程为振幅的4倍;在半个周期内振动物体通过的路程为振幅2倍;在1/4个周期内物体通过的路程不一定等于振幅 3)简谐运动的表达式:)sin(ϕω+=t A x 4)简谐运动的图像:振动图像表示了振动物体的位移随时间变化的规律。

反映了振动质点在所有时刻的位移。

从图像中可得到的信息: ①某时刻的位置、振幅、周期②速度:方向→顺时而去;大小比较→看位移大小 ③加速度:方向→与位移方向相反;大小→与位移成正比 3、简谐运动的能量转化过程:1)简谐运动的能量:简谐运动的能量就是振动系统的总机械能。

①振动系统的机械能与振幅有关,振幅越大,则系统机械能越大。

②阻尼振动的振幅越来越小。

2)简谐运动过程中能量的转化:系统的动能和势能相互转化,转化过程中机械能的总量保持不变。

在平衡位置处,动能最大势能最小,在最大位移处,势能最大,动能为零。

(二)简谐运动的一个典型例子→单摆: 1、单摆振动的回复力:摆球重力的切向分力。

①简谐振动物体的周期和频率是由振动系统本身的条件决定的。

②单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。

4、利用单摆测重力加速度:(三)受迫振动:1、受迫振动的含义:物体在外界驱动力的作用下的运动叫做受迫振动。

2、受迫振动的规律:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。

1)受迫振动的频率:物体做稳定的受迫振动时振动频率等于驱动力的频率,与物体的固有频率无关。

2)受迫振动的振幅:与振动物体的固有频率和驱动力频率差有关3、共振:当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械振动与机械波简谐振动一、学习目标1.了解什么是机械振动、简谐运动2.正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。

二、知识点说明1.弹簧振子(简谐振子):(1)平衡位置:小球偏离原来静止的位置;(2)弹簧振子:小球在平衡位置附近的往复运动,是一种机械运动,这样的系统叫做弹簧振子。

(3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。

2.弹簧振子的位移—时间图像弹簧振子的s—t图像是一条正弦曲线,如图所示。

3.简谐运动及其图像。

(1)简谐运动:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。

(2)应用:心电图仪、地震仪中绘制地震曲线装置等。

三、典型例题例1:简谐运动属于下列哪种运动()A.匀速运动B.匀变速运动C.非匀变速运动D.机械振动解析:以弹簧振子为例,振子是在平衡位置附近做往复运动,并且平衡位置处合力为零,加速度为零,速度最大.从平衡位置向最大位移处运动的过程中,由F=-kx可知,振子的受力是变化的,因此加速度也是变化的。

故A、B错,C正确。

简谐运动是最简单的、最基本的机械振动,D正确。

答案:CD简谐运动的描述一、学习目标1.知道简谐运动的振幅、周期和频率的含义。

2.知道振动物体的固有周期和固有频率,并正确理解与振幅无关。

二、知识点说明1.描述简谐振动的物理量,如图所示:(1)振幅:振动物体离开平衡位置的最大距离,。

(2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,之后又回到O,这样一个完整的振动过程称为一次全振动。

(3)周期:做简谐运动的物体完成一次全振动所需要的时间,符号T表示,单位是秒(s)。

(4)频率:单位时间内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。

(5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。

(6)相位:用来描述周期性运动在各个时刻所处的不同状态。

2.简谐运动的表达式:。

(1)理解:A代表简谐运动的振幅;叫做简谐运动的圆频率,表示简谐运动的快慢,且;(代表简谐运动的相位,是t=0时的相位,称作初相位或初相;两个具有相同频率的简谐运动存在相位差,我们说2的相位比1超前。

(2)变形:三、典型例题例1:某振子做简谐运动的表达式为x=2sin(2πt+6π)cm则该振子振动的振幅和周期为() A.2cm1s B.2cm2πsC.1cmπ6s D.以上全错解析:由x=Asin(ωt+φ)与x=2sin(2πt+6π)对照可得:A=2cm,ω=2π=2πT,∴T=1s,A选项正确。

答案:A例2:周期为2s的简谐运动,在半分钟内通过的路程是60cm,则在此时间内振子经过平衡位置的次数和振子的振幅分别为()A.15次,2cmB.30次,1cmC.15次,1cmD.60次,2cm解析:振子完成一次全振动经过轨迹上每点的位置两次(除最大位移处),而每次全振动振子通过的路程为4个振幅。

答案:B例3:一简谐振子沿x轴振动,平衡位置在坐标原点。

t=0时刻振子的位移x=-0.1m;t=s 时刻x=0.1m;t=4s时刻x=0.1m。

该振子的振幅和周期可能为( )A.0. 1 m,B.0.1 m,8s C.0.2 m,D.0.2 m,8s解析:t=s和t=4s两时刻振子的位移相同,第一种情况是此时间差是周期的整数倍,当n=1时T=s。

在s的半个周期内振子的位移由负的最大变为正的最大,所以振幅是0.1m。

A正确。

第二种情况是此时间差不是周期的整数倍,则,当n=0时T=8s,且由于是的二倍说明振幅是该位移的二倍为0.2m。

如图答案D。

答案:AD简谐运动的回复力和能量一、学习目标1.掌握简谐运动的定义。

2.了解简谐运动的运动特征。

3.掌握简谐运动的动力学公式。

4.了解简谐运动的能量变化规律。

二、知识点说明1.简谐运动的回复力:(1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动,力的方向总是指向平衡位置,所以称这个力为回复力。

(2)大小:,k是弹簧的劲度系数,x是小球的位移大小。

2.简谐运动的能量:(1)振子速度在变,因而动能在变;弹簧的伸长量在变,弹性势能在变。

△t1△t2(2)变化规律:总结:A总机械能=任意位置的动能+势能=平衡位置的动能=振幅位置的势能;B弹簧振子在平衡位置的动能越大,振动的能量就越大;振幅越大,振幅位置的势能就越大,振动的能量就越大。

三、典型例题例1:关于回复力,下列说法正确的是()A.回复力是指物体离开平衡位置时受到的指向平衡位置的力B.回复力是按力的作用效果命名的,它可能由弹力提供,也可能由摩擦力提供C.回复力可能是某几个力的合力,也可能是某一个力的分力D.振动物体在平衡位置时,其所受合力为零解析:选ABC.由回复力定义可知选项A正确;回复力是物体在振动方向上受到的合力,并不一定是物体所受合力,所以平衡位置是回复力为零的位置,并不一定是合力为零的位置,D选项错误;回复力是效果力,它可以由一个力来提供,也可以由几个力的合力来提供,B、C选项正确例2:弹簧振子做简谐运动时,下列说法中正确的是()A.加速度最大时,速度也最大B.位移相同时速度一定相同C.加速度减小时,速度一定增大D.速度相同时位移也一定相同解析:选C.加速度最大时,速度为零,A错误.位移相同时,速度方向可能不同,B错误,加速度减小时,振子向平衡位置运动,速度增大,C正确.速度相同时,振子的位移也可能方向相反,D错误。

例3:一简谐横波以4m/s的波速沿x轴正方向传播。

已知t=0时的波形如图所示,则A.波的周期为1sB.x=0处的质点在t=0时向y轴负向运动C.x=0处的质点在t= s时速度为0D.x=0处的质点在t= s时速度值最大解析:由波的图像可知,半个波长是2m,波长是4m,周期是,A正确。

波在沿x轴正方向传播,则x=0的支点在沿y轴的负方向运动,B正确。

x=0的质点的位移是振幅的一半,则要运动到平衡位置的时间是,则时刻x=0的质点越过了平衡位置速度不是最大,CD错误。

答案:AB单摆一、学习目标1.知道什么是单摆;2.理解单摆振动的回复力来源及做简谐运动的条件;3.知道单摆的周期和什么有关,掌握单摆振动的周期公式,并能用公式解题。

二、知识点说明1.定义:用一根绝对挠性且长度不变、质量可忽略不计的线悬挂一个质点,在重力作用下在铅垂平面内作周期运动,就成为单摆。

2.回复力:,其中x 为摆球偏离平衡位置的位移。

3.周期:简谐运动的周期T 与摆长l 的二次方根成正比,与重力加速度g 的二次方根成反比,而与振幅、摆球的质量无关,表达式。

4.应用:利用单摆测量重力加速度。

由单摆的周期公式得到,测出单摆的摆长l 、周期T ,就可以求出当地的重力加速度。

5.实验探求单摆周期与摆长的关系注意事项:(1)摆的振幅不要太大,即偏角较小,不超过5°(现在一般认为是小于10°),这时才能看做是简谐振动。

(2)摆线要尽量选择细的、伸缩性小的,并且尽可能长点; (3)摆球要尽量选择质量大的、体积小的; (4)悬挂时尽量使悬挂点和小球都在竖直方向; (5)细线的长度和小球的半径作为摆长的测量值; (6)小球在平衡位置时作为计时的开始与终止更好一些。

三、典型例题例1:如图所示的单摆,摆球a 向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b 发生碰撞,并粘接在一起,且摆动平面不变.已知碰撞前a 球摆动的最高点与最低点的高度差为h ,摆动的周期为T ,a 球质量是b 球质量的5倍,碰撞前a 球在最低点的速度是b 球速度的一半.则碰撞后( )A.摆动的周期为T65B.摆动的周期为TC.摆球的最高点与最低点的高度差为0.3hD.摆球的最高点与最低点的高度差为0.25h解析:碰撞前后摆长不变,由T=2π知,摆动的周期不变.若a 球质量为M ,速度为v ,则B 球质量为M b =,v b =2v ,由碰撞过程动量守恒得:Mv -M b v b =(M+M b )v ′代入数值解得:v ′=v因为h=所以h ′==h.答案:D例2:一单摆做小角度摆动,其振动图象如图所示,以下说法正确的是 ( ) A.t 1时刻摆球速度最大,悬线对它的拉力最小 B.t 2时刻摆球速度为零,悬线对它的拉力最小 C.t 3时刻摆球速度为零,悬线对它的拉力最大 D.t 4时刻摆球速度最大,悬线对它的拉力最大解析:由振动图线可看出,t 1时刻和t0时刻,小球偏离平衡位置的位移最大,此时其速度为零,悬线对它的拉力最小,故A 、C 错;t 2和t 4时刻,小球位于平衡位置,其速度最大,悬线的拉力最大,故B 错,D 对。

56gL 5M21g 22v g 22v 41例3:如图所示,A、B分别为单摆做简谐振动时摆球的不同位置,其中,位置A为摆球摆动的最高位置,虚线为过悬点的竖直线.以摆球最低位置为重力势能零点,则摆球在摆动过程中( )A.位于B处时动能最大B.位于A处时势能最大C.在位置A的势能大于在位置B的动能D.在位置B的机械能大于在位置A的机械能解析:小球在摆动过程中,只有重力做功,机械能守恒,即A点的重力势能等于B点动能和势能的和。

答案:BC外力作用下的振动一、学习目标1.知道阻尼振动和无阻尼振动,并能从能量的观点给予说明。

2.知道受迫振动的概念。

知道受迫振动的频率等于驱动力的频率,而跟振动物体的固有频率无关。

二、知识点说明1.固有频率:如果振动系统不受外力的作用,此时的振动叫做固有振动,其振动频率称为固有频率。

2.阻尼振动:(1)定义:振幅逐渐减小的振动;(2)原因:系统克服阻尼的作用要做功,消耗机械能,因而振幅减小,最后停下来。

(3)特点:阻尼越大,振幅减小得越快,阻尼越小,振幅减小得越慢。

3.受迫振动:(1)自由振动:物体在系统内部回复力作用下产生的振动;(2)驱动力:系统受到的周期性的外力;(3)受迫振动:系统在驱动力作用下的振动叫做受迫振动。

(4)不管系统的固有频率如何,它做受迫振动的频率总等于周期性驱动力的频率,与系统的固有频率无关。

4.共振:驱动力频率f等于系统的固有频率时,受迫振动的振幅最大,这种现象叫做共振。

三、典型例题例1:在接近收费口的道路上安装了若干条突起于路面且与行驶方向垂直的减速带,减速带间距为10m,当车辆经过减速带时会产生振动。

若某汽车的固有频率为1.25Hz,则当该车以_________m/s的速度行驶在此减速区时颠簸得最厉害,我们把这种现象称为_________。

解析:汽车每经过一个减速带时,减速带都给汽车一个向上的力,这个力使汽车上下颠簸,当这个力的频率等于汽车的固有频率时,汽车发生共振,振动最厉害。

相关文档
最新文档