调节阀设计计算选型导则
调节阀选型计算书
![调节阀选型计算书](https://img.taocdn.com/s3/m/baec427f326c1eb91a37f111f18583d049640f8c.png)
调节阀选型计算书(最新版)目录1.调节阀的概述2.调节阀的选型参数3.调节阀的计算方法4.调节阀的选型软件5.调节阀的应用领域6.结论正文一、调节阀的概述调节阀,又称控制阀,是工业自动化过程控制仪表的执行单元,是工业自动化控制的手和足。
它根据控制信号的要求而改变阀门开度的大小来调节流量,是一个局部阻力可以变化的节流元件。
调节阀是自动控制系统中常用的执行器,用来完成被控对象流量的调节。
二、调节阀的选型参数在选择调节阀时,需要考虑以下参数:1.阀前、阀后压力:这是调节阀选型的基本参数,关系到阀门的流量特性和调节精度。
2.介质:不同介质的物理性质和化学性质不同,需要选用不同材质的阀门。
3.温度:温度对阀门材料的选择和使用寿命有很大影响。
4.管道的口径:阀门的口径需要与管道的口径相匹配。
5.动力粘度:动力粘度是流体的一种性质,会影响阀门的流量特性。
6.密度:流体的密度会影响阀门的压力损失和流量特性。
三、调节阀的计算方法调节阀的计算方法主要包括以下两个方面:1.流量计算:根据流体的物理性质和阀门的开度,计算流经阀门的流量。
2.压力损失计算:根据阀门的流量特性和流体的物理性质,计算阀门的压力损失。
四、调节阀的选型软件许多调节阀生产企业都有自己的选型软件,将上述参数输入软件中,就可以进行调节阀的选型。
五、调节阀的应用领域调节阀广泛应用于冶金、电力、化工、石油、轻纺、造纸、建材等工业部门中。
六、结论正确地选择调节阀,是保证整个系统正常运行的关键。
在选型过程中,需要综合考虑各种因素,选择最适合的阀门。
调节阀的选型
![调节阀的选型](https://img.taocdn.com/s3/m/fd0c8472f242336c1eb95e23.png)
调节阀的选型0 引言调节阀是调节系统中非常重要的一个环节,在生产实践中控制系统的正常与否,常常涉及到调节阀的问题。
调节阀所反应出来的问题又多集中在调节阀的工作特性和结构参数上,如流通能力、公称通径、阀芯引程及流量特性等。
在这些参数中,流通能力更重要,它的大小直接反映调节阀的容量,它是设计选型中的主要参数。
因此,调节阀的选择主要从以下几个因素进行考虑。
1 选择原则(1)满足自控系统的要求;(2)满足经济性的要求。
2 调节阀流量系数Cv及口径的计算(1) 流量系数C v(流通能力)的定义为:调节阀前后的压差为1Kg/cm2,重度为1g/cm2流体,每小时通过阀门的体积流量(m3/h)。
调节阀流量系数C v的计算方法很多,也比较繁琐,以下列出几种主要流通介质的C v值的计算方法。
表1 液体阻塞流:当阀前压力P1保持一定而阀后压力P2逐渐降低时,流经调节阀的流体流量会增加到一个极限值,这时即使P2再继续降低,流量也不会再增加,此极限流量即为阻塞流。
显然,形成阻塞流之后,相当于流量已达到饱和状态(临界状态),这时流经调节阀的流量不再随调节阀前后的压差△P的增加而增加。
因此,流体在阀内是否形成阻塞流,调节阀C值的计算公式将不一样。
判断是否是属于阻塞流的情况,就可以决定取用相应的C值计算公式。
(表2)情况相同。
表2 气体和蒸汽上表2中:C v—调节阀流量系数C f—临界流量系数G f—流体流动温度下的比重(水G f=1,15℃;空气G f=288G/T)G—气体比重(空气G=1.0)P1—调节阀进口压力,0.1MPa(绝对)P2—调节阀出口压力,0.1MPa(绝对)P v—液体流动温度下的饱和蒸汽压力,0.1MPa(绝对)P c—热力学临界压力,0.1MPa(绝对)Δp—压降,100kPa(ΔP=P1- P2)Δp s—口径计算用最大压降,0.1MPaΔp s=P1-(0.96- 0.28P v/P c)P v若P v<0.5P1,ΔP s=P1- P vq—液体流量,m3/hQ—气体流量,标准m3/h(15℃,绝对压力为101.3kPa时)T—绝对温度,K(K=273+℃)T sh—蒸汽过热温度,℃(饱和蒸汽T sh=0)W—流量,t/h(2) 阀口径的计算,根据生产能力、设备负荷、以被控介质的工况决定流通能力计算所需的数据,求得最大、最小流量时的C v max和C v min。
减温减压装置中调节阀的计算与选型
![减温减压装置中调节阀的计算与选型](https://img.taocdn.com/s3/m/b8f011662bf90242a8956bec0975f46526d3a71b.png)
减温减压装置中调节阀的计算与选型减温减压装置是工业生产过程中必不可少的设备之一,在保证工作安全和正常运行的前提下,需要对装置的压力和温度进行控制和调节。
而调节阀在减温减压装置中扮演着重要的角色,通过调节介质的流量和压力来实现参数的控制。
调节阀的计算与选型是保证减温减压装置正常运行的关键一环,以下将从计算调节阀的阀门开度和选型两个方面进行论述。
一、计算调节阀的阀门开度调节阀的阀门开度是调节介质流量的重要参数,涉及到工艺参数的控制和设备的平稳运行。
一般来说,调节阀的阀门开度可以通过以下几种方式计算:1.理论计算法:根据工艺参数和阀门特性曲线进行计算,得出准确的阀门开度。
该方法需要具备一定的技术经验和相关数据的支持,适用于熟悉工艺流程的工程师。
2.实验测定法:通过实际装置中的试验和调节,在不同工况下,测定出阀门开度与实际流量的关系,并进行适当的修正和校正。
该方法适用于调节阀已经安装在装置中,并且实际工艺参数已经明确的情况下。
3.经验法:根据经验公式进行阀门开度的估算和计算。
这种方法的优点是简单易行,适用于不需要高精度的调节工艺。
但是,由于工艺参数的复杂性,经验法得出的结果可能存在一定的误差。
以上三种方法可以结合使用,根据具体情况选取合适的计算方式,以得出准确可靠的调节阀阀门开度。
二、调节阀的选型调节阀的选型不仅需要考虑工艺参数和设备要求,还需要综合考虑阀门的材质、压力等级、尺寸和功能等因素。
以下是选择调节阀时需要考虑的几个关键因素:1.压力等级:根据设备的工作压力和介质的特性,选择相应的压力等级。
阀门的压力等级应该大于系统的工作压力,以确保阀门的安全可靠运行。
2.尺寸和流量特性:根据介质的流量和工作条件,选择适当的阀门尺寸和流量特性。
流量特性通常包括等百分比、线性和快开等,选择合适的流量特性可以实现更好的调节效果。
3.温度和介质:根据介质的温度和性质选择合适的阀门材质。
介质的温度和性质对阀门的材质选择有重要影响,需考虑介质的腐蚀性、磨损性和耐高温性等因素。
气动调节阀选型及计算
![气动调节阀选型及计算](https://img.taocdn.com/s3/m/527e5eaf18e8b8f67c1cfad6195f312b3069eb6c.png)
气动调节阀选型及计算一、气动调节阀选型要考虑的因素1.工作条件:包括工作压力、温度、流量范围等。
根据工作条件选择耐压和耐温能力的阀门。
2.流体性质:包括流体介质、粘度、颗粒物含量等。
选择合适的材质和结构,以满足流体的要求。
3.阀门类型:包括截止阀、调节阀、蝶阀、球阀等。
根据需要选择适合的阀门类型。
4.尺寸:包括阀门的通径、连接方式等。
根据管道系统的尺寸,选择合适的阀门尺寸。
5.控制方式:包括手控、气动控制、电动控制等。
根据控制方式选择合适的气动调节阀。
二、气动调节阀计算方法1.流量计算:根据管道系统的需求,计算流体的流量。
流量的单位一般为标准立方米/小时(Nm3/h)或标准立方米/秒(Nm3/s)。
2.压力损失计算:根据流量和流体性质,计算气动调节阀的压力损失。
根据流量和压力损失曲线,选择合适的阀门型号。
3.动态特性计算:根据管道系统的要求,计算气动调节阀的开启时间、关闭时间、超调量等动态特性。
通过调节阀的参数和控制系统的调节,使阀门的动态特性满足要求。
4.使用寿命计算:根据气动调节阀的材料、结构和工作条件,计算阀门的使用寿命。
一般根据阀门的设计寿命和工作条件的要求,选择合适的气动调节阀。
总结:气动调节阀选型及计算是一个复杂的过程,需要考虑多个因素。
通过对工作条件、流体性质、阀门类型和尺寸等因素的综合分析,可以选择合适的气动调节阀。
在计算过程中,需要考虑流量、压力损失、动态特性和使用寿命等因素。
根据计算结果,选择合适的阀门型号和参数,以满足管道系统的要求。
调节阀的计算与选型
![调节阀的计算与选型](https://img.taocdn.com/s3/m/9b07274d53ea551810a6f524ccbff121dd36c50d.png)
调节阀的计算与选型调节阀是一种用于控制流体流量、压力和温度的装置,广泛应用于工业生产过程中。
在选择和计算调节阀时,需要考虑以下几个方面:适用工艺要求、流量参数、压力参数、密封要求、材料要求以及其他特殊要求。
本文将从这几个方面详细介绍调节阀的计算和选型。
适用工艺要求:首先要明确调节阀将用于哪个具体的工艺场合,例如调节液体、气体或蒸汽等。
不同的工艺要求对调节阀的性能参数有不同的要求,例如流量调节范围、调节精度等。
流量参数:流量参数是选择调节阀的关键参数,包括设计流量、最大流量和最小流量等。
设计流量是指工艺设计要求的流量,最大流量是指允许的最大流量,最小流量是指流动介质的最小流量。
根据流量参数,可以选择合适的调节阀型号和口径。
压力参数:压力参数也是选择调节阀的重要参数,包括设计压力、最大压力和最小压力等。
设计压力是指工艺设计要求的压力,最大压力是指允许的最大压力,最小压力是指压力控制的最低限制。
根据压力参数,可以选择合适的调节阀结构、材料和密封形式。
密封要求:根据介质特性和工艺要求,选择合适的密封结构和材料。
常见的调节阀密封结构有气密密封、液密密封和气液两用密封等。
根据介质腐蚀性和温度要求,可以选择合适的密封材料,如橡胶、聚四氟乙烯、金属等。
材料要求:调节阀的材料要求主要取决于介质特性和工艺要求。
如果介质腐蚀性较强,需要选择耐腐蚀的材料;如果工艺要求高温或者低温,需要选择耐高温或低温的材料;如果介质含杂质较多,需要选择可清洗的材料。
其他特殊要求:根据实际情况,还需要考虑一些其他特殊要求,例如是否需要手动调节或电动调节、是否需要远程控制或自动控制等。
在实际的计算和选型过程中,可以根据上述要求,参考调节阀的技术参数和性能曲线,进行计算和比较。
可以使用调节阀的压降-流量特性曲线和流量系数来进行计算和比较。
根据流量参数、压力参数和其他要求,选取几种满足要求的调节阀进行比较,最终确定最适合的调节阀型号和规格。
综上所述,调节阀的计算和选型需要根据适用工艺要求、流量参数、压力参数、密封要求、材料要求和其他特殊要求来进行。
气动调节阀选型及计算
![气动调节阀选型及计算](https://img.taocdn.com/s3/m/9ede081bc850ad02de8041d5.png)
气动调节阀选型及计算执行器就是控制系统的终端控制元件,就是重要的环节,气动调节阀在常用的执行器中约占85﹪以上。
控制系统中因气动调节阀造成不能投运或运行不良者有占50﹪-60﹪以上。
其中除提供的工艺参数出入较大,阀制造质量欠佳与使用不当外,选型与计算的方法不妥则就是一个相当突出的因素。
因此,如何合理正确地选择与计算气动调节阀就就是自控设计中至关重要的问题了。
调节阀按调节仪表的控制信号,直接调节流体的流量,在控制系统中起着十分重要的作用。
要根据使用条件与用途来选择调节阀。
选择调节阀项目有:结构型式、公称通经、压力-温度等级、管道连接、上阀盖型式、流量特性、材料及执行机构等。
深入研究各个项目与它们之间的相互关系,就是极其重要的。
选择调节阀必须知道控制系统的各种工艺参数,以及调节仪表、管道连接等基本条件,才能正确地选择调节阀。
下面为一般选用调节阀的基本准则:(图一、图二)调节阀的选择工艺流体条件流体名称、流量、进/出口确认选择条件压力、全开/全关时压差、温度、比重、粘度、泥浆等。
选择品种规格调节仪表条件流量特性、作用型式、调节仪表输出信号等。
写出规格书管道连接条件公称压力、法兰连接型式、材料等。
(图二)选型与计算(定尺寸)就是选择一个调节阀的两个重要部分。
它们就是不同的,然而又就是互相关联的。
以往,各工业部门的自控设计的选阀工作有些基本上没有考虑到它们之间的内在联系。
对国内一般产品来说,用一组工艺参数计算两个不同阀型的流通能力,临界条件下的计算结果最大可相差40%以上。
不同结构的调节阀有其各自的压力恢复特性。
此特性用压力恢复系数F L或最大有效压差比X T表示。
一般的单、双座阀等属于低压力恢复阀,F L与X T较大;蝶阀与球阀等属于高压力恢复阀,F L与X T较小;偏心旋转阀则介于两者之间。
参数F L与X T的引入有助于在计算中根据已知的工艺参数来确定真正有效压差,以计算出精确的流通能力。
F L与X T的数值必须在阀型选定之后才能获得,而阀型的选定不仅与流体的性状、压力、温度、腐蚀性等因素有关,并且与流通能力、可调范围、允许压差等参数有关;但就是这些参数必须经计算后才能得到,而往往由于这些参数的限制又必须改选阀型;因此问题的关键就在于要设计出一套合理的方法与步骤,把选型与计算作为一个有机的整体综合起来考虑。
调节阀的计算与选型参考资料
![调节阀的计算与选型参考资料](https://img.taocdn.com/s3/m/ea925ada312b3169a451a4cc.png)
≤±2.5 ≤1.5 ≤3.0 ≤2.0
≤±2 ≤2.0 ≤0.8 ≤2.5
四、调节阀的术语
10、泄漏量:在规定试验条件下,试验流体通过
调节阀处于关闭位置时的流量。
美国ANSI B16.104调节阀的阀座泄漏量标准 调节阀招标书一般要求:
阀门具有密封好,泄漏小及阀杆不平衡力小等特点。 常闭调节阀泄漏等级不小于ANSI B16.104—Ⅴ级标准, 常开调节阀泄漏等级不小于ANSI B16.104—Ⅳ级标准。 并保证电厂运行初期(两年内)零泄漏。
三、调节阀的类型
名称
特点及运用场合
多级降压阀
大多采用阀芯、阀座采用套筒结构和迷 宫式多级降压结构,泄露量小(IV级) 防空化,耐冲刷;适用于高温高压差水 的场合,如给水最小再循环阀。
偏心旋转阀 (凸轮绕曲阀)
流路简单,泄漏量小(额定流量系数的 0.01%),与单座阀比较,允许压差较 大,稳定性好,可调范围广。
Kv与Cv的关系:Cv=1.16Kv
6、额度流量系数Kvmax或Cvmax:在全开状态时的流 量系数。
四、调节阀的术语
6、基本误差:调节阀是实际上升、下降特性曲
线与规定的特性曲线之间的最大偏差。用额度 行程的百分比表示。
7、回差:同一输入信号上升和下降的两相应行
程值间的最大差值。用额度行程的百分比表示。
Kv,我国的流量系数。定义:在调节阀某给定行程, 阀两端压差为100kPa,介质密度1t/m3时,流过调 节阀的每小时立方米数。
Cv,英制单位的流量系数。定义:在调节阀某给定行 程,阀两端压差为1lb/in2,温度为60华氏度(F) (15.6℃)的水,介质密度8.334lb/USgal时,流过 调节阀的每分钟美加仑数。
调节阀选型计算书
![调节阀选型计算书](https://img.taocdn.com/s3/m/c7b3fc69ec630b1c59eef8c75fbfc77da26997cc.png)
调节阀选型计算书摘要:I.调节阀选型的重要性- 调节阀的作用- 选型的影响II.调节阀选型的计算方法- 计算流程- 需考虑的因素- 参数的意义III.调节阀选型计算的实例- 实例介绍- 计算过程- 结果分析IV.调节阀选型的注意事项- 选型原则- 常见问题及解决方法V.总结- 调节阀选型计算的重要性- 计算方法的实际应用正文:I.调节阀选型的重要性调节阀是工业自动化过程中控制流量的关键设备,选型的合适与否直接影响到整个自动化系统的运行效果。
因此,选择合适的调节阀是工业自动化过程中必不可少的一环。
II.调节阀选型的计算方法调节阀选型计算主要包括以下步骤:1.确定计算公式:根据调节阀的类型和控制系统的要求,选择合适的计算公式。
2.收集数据:收集调节阀所处的工作环境、介质、流量、压力等参数。
3.计算:根据公式和收集的数据进行计算,得出调节阀的选型参数。
4.结果分析:分析计算结果,检查是否符合实际情况,如果不符合,需要重新进行计算或调整参数。
III.调节阀选型计算的实例以某化工厂为例,该厂需要选用一种调节阀来控制流量,已知工作环境温度为-20℃,介质为蒸汽,流量为30t/h,压力为1.0MPa。
1.确定计算公式:根据调节阀的类型和工厂要求,选择合适的计算公式,这里选择DN=2×(流量)/(流速),KV=3.5×(流量)/(开度)。
2.收集数据:根据已知条件和公式,收集调节阀的选型参数,包括流量、压力、温度等。
3.计算:根据公式和收集的数据进行计算,得出调节阀的选型参数,DN=600mm,KV=350。
4.结果分析:分析计算结果,检查是否符合实际情况,如果符合,则可以选用该调节阀。
IV.调节阀选型的注意事项在调节阀选型过程中,需要注意以下几点:1.选择合适的计算方法:根据调节阀的类型和控制系统的要求,选择合适的计算方法。
2.考虑实际情况:在计算过程中,需要考虑实际情况,避免出现计算结果与实际需求不符的情况。
调节阀计算导则
![调节阀计算导则](https://img.taocdn.com/s3/m/0c6353446c85ec3a87c2c599.png)
设计导则SGIN 0053 -2000调节阀计算导则实施日期 2006年1月1日第 1 页共 38 页目录序言 (3)1说明1.1名词和术语 (4)1.2单位说明 (5)1.3计算公式中的符号说明 (5)2调节阀尺寸计算2.1不可压缩流体的调节阀计算 (6)2.2可压缩流体的调节阀计算 (13)2.3两相流流体的调节阀计算 (17)3调节阀噪声计算3.1液体噪声估算 (17)3.2气体噪声估算 (17)3.3蒸汽噪声估算 (17)4调节阀计算程序说明4.1InstruCalc (17)4.2Intools (18)5附录A InstruCALC 调节阀计算公式5.1不可压缩流体的调节阀计算 (19)5.2气体调节阀计算公式 (20)5.3两相流阀门计算 (22)6附录B INtools 调节阀计算公式6.1不可压缩流体的调节阀计算 (24)6.2可压缩流体(气体、蒸汽)的阀门计算 (27)7附件C INtools 调节阀噪声计算公式7.1按Masoneilan标准计算水力学噪声 (30)7.2按IEC标准计算水力学噪声 (30)7.3空气动力学噪音 ( ISA 标准) (32)7.4空气动力学噪音 ( IEC 标准) (36)序言本导则规定了调节阀的计算方法和选型的原则,正确的计算与合理地选用调节阀才能很好地实现控制功能、节省投资、并避免出现控制精度低、阀门在小流量时不稳定、阀门使用寿命短、以及由于闪蒸或空化作用所导致的阀门损坏等问题。
调节阀的计算主要依据ISA 或IEC的相关标准,亦可采用Fisher-Rosemount、 Masoneilan 计算公式,这些标准提供的调节阀计算公式是依据大量的实验测试得出的,它们成立是有条件的。
例如根据ANSI/ISA S75.01标准计算不可压缩流体的调节阀流通能力,提出下面几点限制条件:(1)流体是不可压缩的;(2)流动是稳定的;(3)流动是一维的;(4)按非粘性流体来分析;(5)流体不发生相变。
调节阀设计计算选型导则
![调节阀设计计算选型导则](https://img.taocdn.com/s3/m/9e645989e53a580216fcfe87.png)
调节阀设计计算选型导则(一)发布时间:2007-11-29 编辑:service 来源:尤克强直接进论坛1 前言调节阀是生产过程自动化系统中最常见的一种执行器,一般的自动控制系统是由对象、检测仪表、控制器、执型器等所组成。
调节阀直接与流体接触,控制流体的压力或流量。
人们常把测量仪表称之为生产过程自动化的“眼睛”;把控制器称之为“大脑”;把执行器称之为“手脚”。
自动控制系统一切先进的控制理论,巧秒的控制思想,复杂的控制策略都是通过执行器对被控对象进行作用的。
正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程;对于自动控制系统的稳定性、经济合理性起着十分重要的作用。
如果计算错误,选择不当,将直接影响控制系统的性能,甚至无法实现自动控制。
控制系统中因为调节阀选取不当,使得自动控制系统产生震荡不能正常运行的事例很多很多。
因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑、将设计的重要环节。
正确选取符合某一具体的控制系统要求的调节阀,必须掌握流体力学的基本理论。
充分了解各种类型阀的结构型式及其特性,深入了解控制对象和控制系统组成的特征。
选取调节阀的重点是阀径选择,而阀径选择在于流通能力的计算。
流通能力计算公式已经比较成熟,而且可借助于计算机,然而各种参数的选取很有学问,最后的拍板定案更需要深思熟虑。
2 调节阀的结构型式及其选择常用的调节阀有座式阀和蝶阀两类。
随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。
按照调节阀结构型式的不同,逐步发展产生了单座阀、双座阀、角型阀、套筒阀(笼型阀)、三通分流阀、三通合流阀、隔膜阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。
如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。
调节阀的计算选型
![调节阀的计算选型](https://img.taocdn.com/s3/m/28748223192e45361066f550.png)
调型调节阀的计算选型是指在选用调节阀时,通过对流经阀门介质的参数进行计算,确定阀门的流通能力,选择正确的阀门型式、规格等参数,包括公称通径,阀座直径,公称压力等,正确的计算选型是确保调节阀使用效果的重要环节。
1.调节阀流量系数计算公式 1.1 流量系数符号:Cv —英制单位的流量系数,其定义为:温度60°F (15.6℃)的水,在16/in 2(7KPa)压降下,每分钟流过调节阀的美加仑数。
Kv —国际单位制(SI 制)的流量系数,其定义为:温度5~40℃的水,在105Pa 压降下,每小时流过调节阀的立方米数。
注:Cv ≈1.16 Kv1.2 不可压缩流体(液体)Kv 值计算公式式中:P 1—阀入口绝对压力KPa P 2—阀出口绝对压力KPaQ L —液体流量 m 3/h ρ—液体密度g/cm 3 F L —压力恢复系数,与调节阀阀型有关,附后 F F —流体临界压力比系数,C V F P P F /28.096.0-=P V —阀入口温度下,介质的饱和蒸汽压(绝对压力KPa ) P C —物质热力学临界压力(绝对压力KPa )注:如果需要,本公司可提供部分介质的P V 值和P C 值 1.2.2 高粘度液体Kv 值计算当液体粘度过高时,按一般液体公式计算出的Kv 值误差过大,必须进行修正,修正后的流量系数为RV F K VK='式中:K ′V—修正后的流量系数 K V —不考虑粘度修正时计算的流量系数 F R —粘度修正系数 (FR 值从F R ~Rev 关系曲线图中确定)计算雷诺数Rev 公式如下:对于只有一个流路的调节阀,如单座阀、套筒阀、球阀等:VL L K F Q v 70700Re =对于有二个平行流路的调节阀,如双座阀,蝶阀,偏心旋转阀等:VL L K F VQ v 49490Re =值计算式中:P 1—阀入口绝对压力KPa P 2—阀出口绝对压力KPaQg —气体流量 Nm 3/h G —气体比重(空气=1)t —气体温度℃ Z —高压气体(PN >10MPa )的压缩系数 注:当介质工作压力≤10MPa 时,Z=1;当介质工作压力>10MPa 时,Z >1,具体值查有关资料。
调节阀的计算选型
![调节阀的计算选型](https://img.taocdn.com/s3/m/c7c92484d0d233d4b14e696f.png)
调节阀的计算选型调节阀的计算选型是指在选用调节阀时,通过对流经阀门介质的参数进行计算,确定阀门的流通能力,选择正确的阀门型式、规格等参数,包括公称通径,阀座直径,公称压力等,正确的计算选型是确保调节阀使用效果的重要环节。
1. 调节阀流量系数计算公式1.1流量系数C V – 英制单位的流量系数,其定义为:温度60°F(15.6°C)的水,在1 lb/in 2 (14kPa)压降下,每分钟流过调节阀的美加仑数。
K V – 国际单位制(SI 制)的流量系数,其定义为:温度5~40°C 的水,在105 Pa 压降下,每小时流过调节阀的立方米数。
注:C V ≈ 1.16 K V1.2 不可压缩流体(液体)K V 值计算公式1.2.1 一般液体的K V 值计算式中: P 1 : 阀入口绝对压力 [kPa] P 2 : 阀出口绝对压力 [kPa] Q L : 液体流量 [m 3/h] ρ : 液体密度 [g/cm 3]F L : 压力恢复系数,与调节阀阀型有关,附后F F : 流体临界压力比系数,CV F P PF 28.096.0-=P V : 阀入口温度下,介质的饱和蒸汽压 [kPa, 绝对压力] P C : 物质热力学临界压力 [kPa, 绝对压力kPa]1.2.2 高粘度液体K V 值计算当液体粘度过高时,按一般液体公式计算出的K V 值误差过大,必须进行修正,修正后的流量系数为:RVV F K K =' 式中:K V ' : 修正后的流量系数 K V : 不考虑粘度修正时计算的流量系数 F R粘度修正系数 (F R 值从F R ~Re[雷诺数]关系曲线图中确定)计算雷诺数Re 的公式如下:对于只有一个流路的调节阀,如单座阀、套筒阀、球阀等:VL L K F Q 70700Re =对于有二个平行流路的调节阀,如双座阀,蝶阀,偏心旋转阀等:VL L K F V Q 49490Re =1.3可压缩流体 - 气体的K V 值计算式中: P 1 : 阀入口绝对压力 [kPa] P 2 : 阀出口绝对压力 [kPa] Q G : 气体流量 [Nm 3/h]G : 气体比重 (空气=1)T : 气体温度 [°C]Z: 高压气体(PN > 10MPa)的压缩系数(当介质工作压力≤10MPa 时,Z=1;当介质工作压力>10MPa 时,Z>1,具体值查有关资料。
调节阀的计算选型
![调节阀的计算选型](https://img.taocdn.com/s3/m/20d99c8fdb38376baf1ffc4ffe4733687e21fcad.png)
调节阀的计算选型调节阀是工业自动化中需要使用的一种控制元件,用于调节流体介质的流量、压力和液位等参数。
在正确选型调节阀的过程中,需要考虑多个因素,包括流体介质的性质、工艺参数要求、使用条件、压力、温度范围、流量范围和控制要求等。
1.流体介质的性质:首先,需要了解流体介质的性质,包括流体的类型(液体、气体或气液两相流等)、物理性质(密度、粘度、比热、蒸发潜热等)、化学性质(酸碱性、腐蚀性等)、颗粒物质的含量等。
这些性质将影响阀门材质的选择、密封材料的选型以及其它相关参数。
2.工艺参数要求:根据工艺参数要求,选择合适的调节阀类型。
常见的调节阀类型有节流阀、电动调节阀、气动调节阀等。
不同类型的调节阀有不同的控制方式和性能特点,根据具体要求进行选择。
3.使用条件:考虑到使用条件的限制和要求,包括压力范围、温度范围、流量范围等。
阀门的选型需要满足工况条件下的安全性、可靠性和稳定性,同时还要考虑其在实际工作环境中的适用性。
4.控制要求:根据实际工艺流程的要求,确定调节阀的控制方式和控制性能。
控制方式可以是开关式(如自动调节)、比例式(根据输入信号进行调节)、自动调节式(通过传感器反馈信号进行自动调节)等。
根据控制要求,选择合适的阀门执行器和信号变送器等配套设备。
5.压力特性和流量特性:调节阀的压力特性指的是阀门开度与流体通过的压力损失之间的关系。
常见的压力特性有线性特性、等百分比特性、快速反应特性等。
根据具体的调节要求,选择适合的压力特性。
调节阀的流量特性指的是阀门开度与流量之间的关系。
常见的流量特性有线性、快开、平滑开孔等。
根据调节要求和流体介质的特性,选择合适的流量特性。
6.材料选择:根据流体介质的性质和使用条件,选择合适的阀门材料。
常见的阀门材料有铸铁、碳钢、不锈钢、塑料等。
材料的选择需要考虑耐腐蚀性、耐磨性、耐高温性等因素。
7.阀门尺寸和连接方式:根据流量要求和管路尺寸确定阀门的尺寸和连接方式。
通常需要确定阀门的额定通径、法兰标准、连接方式等。
调节阀计算选型使用调节阀选型指引要点
![调节阀计算选型使用调节阀选型指引要点](https://img.taocdn.com/s3/m/ff3de862bceb19e8b9f6bad5.png)
6.5
1
表
系统及被调参数
干扰
流量特性
说明
P1―@E'-
给定值
直线
变送器带开方 器
Pl、P2
等百分比
流量控制系统
给定值
快开
变送器不带开 方器
P1、P2
等百分比
T1
P1
—
-T3. QI
给定值T1
直线
温度
T2
匚控制系统
-T4*01
P1、P2、T3、T4、Q1
等百分比
Q max
(L)——相对开度,调节阀阀芯某一位移I与全开位移L之比。
1)
直线特性是指调节阀的相对流量与相对开度成直线关系,即单位行程变化引起的流量变
表
、、相对开度
相对\(-)%
流量
QQ%x
/3max
0
10
203040Fra bibliotek5060
70
80
90
100
直线流量特性
3.3
13.0
22.7
32.3
42.0
51.7
61.3
71.0
80.6
90.3
100
等百分比流量特性
3.3
4.67
6.58
9.26
13.0
18.3
25.6
36.2
50.8
71.2
100
快开流量特性
3.3
21.7
38.1
52.6
65.2
75.8
84.5
91.3
96.13
99.03
100
抛物线流量特性
常用调节阀的计算与选型【共50张PPT】
![常用调节阀的计算与选型【共50张PPT】](https://img.taocdn.com/s3/m/b15c682424c52cc58bd63186bceb19e8b8f6ec3e.png)
四、调节阀的术语
17、固有可调比R:在调节阀前后压差为定值的条件下的可调比。
它是反映调节阀特性的一个重要参数,也是调节阀选择是否合理的
FF……指临界标压力之比系一数 。R实质上反映调节阀调节能力的大小。从控制的角
e8、、调综节合度阀工管艺看路 等系条,统件中确R防定越护执闪行大蒸机与构越汽的蚀型好的式方,法 但受阀芯结构好加工工艺的限制,最小流量系 数不能太小,一般调节阀的R为30。 根据计算得出的Kv和选定的调节阀型式在该阀型的流量系数标准系列中,选择适当的Kvmax,条件是: 40%≤Kv/Kvmax≤85%
℃
四、调节阀的术语
11、正作用式:当信号压力增大时,推杆向下动作。 12、反作用式:当信号压力增大时,推杆向上动作。
四、调节阀的术语
13、流开流向:也称为流开式,流体流动促使阀芯打开。
14、流闭流向:也称为流关式,流体流动促使阀芯关闭。 15、压降分配比S:调节阀全开时阀前后压差之比。
S=△P全开/ △P总
8、死区:输入信号正、反方向的变化不致引起阀杆
行程有任何可觉察变化的有限区间。用输入信号量 程的百分比表示。
四、调节阀的术语
9、额度行程偏差:实际到达全开位置上的行程与 规定全开位置行程之间的偏差。用额度行程的 百分比表示。
项目 基本误差 % 回差 % 死区 % 额度行程偏差 %
电动调节阀 ≤±2.5 ≤1.5 ≤3.0 ≤2.0
小 △控开制度压时力降,来消斜改除率汽小蚀变,从而调时防节止平破,稳坏。缓和调; 节阀的可调比会发生变化,此时的可调比为实际可
调比。 8、死区:输入信号正、反方向的变化不致引起阀杆行程有任何可觉察变化的有限区间。
下面就四种固有流量特性分别加以说明:
sgin0053调节阀计算导则
![sgin0053调节阀计算导则](https://img.taocdn.com/s3/m/4a5ad1243968011ca3009187.png)
(2.1.2-3)
在流束截面积最小处,流速最大,流体压力最小。 对于从缩流处到阀门下游的流体状态是属于非理想状态的,伯努利方程不再适用。根据流体连 续性方程,由于在下游流通截面积被恢复,流速也被恢复。但由于是非理想状况,总的机械能并未 被恢复,有一部分机械能被流体本身吸收或以热能的形式被环境吸收。 由热力学第一定律可得到:
2.1 不可压缩流体的调节阀计算………………………………………….6 2.2 可压缩流体的调节阀计算…………………………………………….13 2.3 两相流流体的调节阀计算…………………………………………….17 3 调节阀噪声计算
3.1 液体噪声估算………………………………………………………….17 3.2 气体噪声估算 ………………………………………………………….17 3.3 蒸汽噪声估算 ………………………………………………………….17 4 调节阀计算程序说明
第 6 页 共 40 页
m
2 2.1 不可压缩流体的调节阀计算 2.1.1 调节阀计算公式的推导:
调节阀尺寸计算
调节阀计算主要遵循能量守恒和物质守恒(流体连续性) 热力学第一定律:
v2 P gZ 2g w q U 常数 c
(2.1.1-1)
设计导则
调节阀计算导则
中国石化工程建设公司
SGIN 0053 -2000
实施日期 第 1 页 2000 年 11 月 20 日 共………………………………………………………………... 3 1 说明
1.1 名词和术语…………………………………………………………….4 1.2 单位说明……………………………………………………………….5 1.3 计算公式中的符号说明……………………………………………….5 2 调节阀尺寸计算
比例调节阀的计算选型
![比例调节阀的计算选型](https://img.taocdn.com/s3/m/41f461af6aec0975f46527d3240c844769eaa0a0.png)
比例调节阀的计算选型比例调节阀的计算选型调节阀的流通能力C值,是调节阀的重要参数,它反映流体通过调节阀的能力,也就是调节阀的容量。
(1)调节阀流通能力C值定义为:调节阀全开时,阀前后压力差为0.1MPa,流体密度为1g/cm3时,每小时流经调节阀的体积流量(m3/h)。
为了正确选择调节阀的尺寸,必须准确计算调节阀的流通能力C 值。
在设计选用时,根据工艺提供的最大流量、阀前绝对压力、阀后绝对压力、流体密度及温度等,计算出流通能力C值,然后按C值选择合适的阀的口径。
(2)调节阀C值计算公式。
介质为液体时 C=10Q介质为饱和蒸汽时当P2>0.5P1时 C=6.19Gs当P2≤0.5P1时 C=7.22介质为过热蒸汽时当P2>0.5P1时 C=6.23Gs当P2≤0.5P1时 C=7.25Gs介质为气体时当P2>0.5P1时 C=当P2≤0.5P1时 C=式中Q——液体体积流量(m3/h)QN——标准状态下气体体积流量(m3/h标况)Gs——蒸汽流量(kg/h)P1——阀前绝对压力(kPa)P2——阀后绝对压力(kPa)ΔP——(P1-P2)阀前后压差(kPa)t——流体温度(℃)Δt——过热度(℃)ρ——流体密度(t/m3,g/cm3)选对比例调节阀对整个空调系统运行极为重要,阀门的开启度控制情况直接影响着空调的温湿度。
同时比例调节阀的安装应注意以下几点:(1)调节阀应装在水平的工艺管道上,即调节阀保持垂直。
(2)为便于检修,应靠近地面、楼板、平台等,如在架空管道距地面较高时,应设专用检修平台。
(3)在调节系统失灵或调节阀本身发生故障时,为避免造成停运和发生事故,影响正常生产,一般都应安装旁路管。
(4)当调节阀公称直径小于管道直径时,应加变径接头,而且变径接头不能太短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调节阀设计计算选型导则(一)发布时间:2007-11-29 编辑:service 来源:尤克强直接进论坛1 前言调节阀是生产过程自动化系统中最常见的一种执行器,一般的自动控制系统是由对象、检测仪表、控制器、执型器等所组成。
调节阀直接与流体接触,控制流体的压力或流量。
人们常把测量仪表称之为生产过程自动化的“眼睛”;把控制器称之为“大脑”;把执行器称之为“手脚”。
自动控制系统一切先进的控制理论,巧秒的控制思想,复杂的控制策略都是通过执行器对被控对象进行作用的。
正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程;对于自动控制系统的稳定性、经济合理性起着十分重要的作用。
如果计算错误,选择不当,将直接影响控制系统的性能,甚至无法实现自动控制。
控制系统中因为调节阀选取不当,使得自动控制系统产生震荡不能正常运行的事例很多很多。
因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑、将设计的重要环节。
正确选取符合某一具体的控制系统要求的调节阀,必须掌握流体力学的基本理论。
充分了解各种类型阀的结构型式及其特性,深入了解控制对象和控制系统组成的特征。
选取调节阀的重点是阀径选择,而阀径选择在于流通能力的计算。
流通能力计算公式已经比较成熟,而且可借助于计算机,然而各种参数的选取很有学问,最后的拍板定案更需要深思熟虑。
2 调节阀的结构型式及其选择常用的调节阀有座式阀和蝶阀两类。
随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。
按照调节阀结构型式的不同,逐步发展产生了单座阀、双座阀、角型阀、套筒阀(笼型阀)、三通分流阀、三通合流阀、隔膜阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。
如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。
一般情况下,应首选普通单、双座调节阀和套筒阀,因为此类阀结构简单,阀芯形状易于加工,比较经济。
如果此类阀不能满足工艺的综合要求,可根据具体的特殊要求选择相应结构型式的调节阀。
现将各种型式常用调节阀的特点及适用场合介绍如:(1)单座阀(VP,JP):泄漏量小(额定K v值的0.01%)允许压差小,JP型阀并且有体积小、重量轻等特点,适用于一般流体,压差小、要求泄漏量小的场合。
(2)双座阀(VN):不平衡力小,允许压差大,流量系数大,泄漏量大(额定K 值的0.1%),适用于要求流通能力大、压差大,对泄漏量要求不严格的场合。
(3)套简阀(VM.JM):稳定性好、允许压差大,容易更换、维修阀内部件,通用性强,更换套筒阀即可改变流通能力和流量特性,适用于压差大要求工作平稳、噪音低的场合。
(4)角型阀(VS):流路简单,便于自洁和清洗,受高速流体冲蚀较小,适用于高粘度,含颗粒等物质及闪蒸、汽蚀的介质;特别适用于直角连接的场合。
(5)偏心旋转阀(VZ):体积小,密封性好,泄漏量小,流通能力大,可调比宽R=100,允许压差大,适用于要求调节范围宽,流通能力大,稳定性好的场合。
(6)V型球阀(VV):流通能力大、可调比宽R=200~300,流量特性近似等百分比,v型口与阀座有剪切作用,适应用于纸浆、污水和含纤维、颗粒物的介质的控制。
(7)O型球阀(VO):结构紧凑,重量轻,流通能力大,密封性好,泄漏量近似零,调节范围宽R=100~200,流量特性为快开,适用于纸浆、污水和高粘度、含纤维、颗粒物的介质,要求严密切断的场合。
(8)隔膜阀(VT):流路简单,阻力小,采用耐腐蚀衬里和隔膜有很好的防腐性能,流量特性近似为快开,适用于常温、低压、高粘度、带悬浮颗粒的介质。
(9)蝶阀(VW):结构简单,体积小、重量轻,易于制成大口径,流路畅通,有自洁作用,流量特性近似等百分比,适用于大口径、大流量含悬浮颗粒的流体控制。
3 调节阀的流量特性及其选择调节阀流量特性分固有特性和工作特性两种。
固有特性又称调节阀的结构特性,是由生产厂制造时决定的。
调节阀在管路中工作,管路系统阻力分配情况随流量变化,调节阀的前后差压也发生变化,这样就产生了调节阀的工作特性。
3.1 结构特性调节阀是通过行程的变化,改变阀芯与阀座间的节流面积,来达到控制流量的目的。
因此阀芯与阀座的节流面积跟着行程怎样变化,对调节阀的工作特性能有很大影响。
通常把阀门的相对节流面积与阀门的相对开度之间的关系称为调节阀的结构特性。
所谓阀门的相对开度是指调节阀某一开度行程与全开行程之比(角行程与直行程道理相同),用l=L/L max来表示。
所谓阀门的相对节流面积是指调节阀某一开度下的节流面积与全开时的节流面积之比,用f=F/F max来表示。
调节阀结构特性的数学表达式为:f=Φ(l)(3-1)上式的函数关系取决于阀芯及相关阀门组件的形状和结构。
不同的结构就形成了几种典型的结构特性。
3.1.1 直线结构特性阀门的相对节流面积与相对开度成直线关系。
即:df/dl=c (3-2)式中:c为常数设边界条件为:当L=0时,F=F max;L=L max时,F=F max:解上述微分方程,并带入边界条件得出数学表达式为:(3-3)式中:R=F max/F min为调节阀节流面积的变化范围。
3.1.2 等百分比结构特性阀门的相对节面积随行程的变化率与此点的节流成正比关系。
即:df/dl=cf (3-4)解上述微分方程,并代入前述相同边界条件,得出数学式为:f=R(l-1)(3-5)式中:R=F max/F min3.1.3 快开结构特性阀门的节流面积随行程变化,很快达到最大(饱和),此阀适用于迅速开闭。
3.1.4 抛物线结构特性阀门的相对节流面积与相对开度成抛物线关系。
即:(3-6)解上述微分方程,并代入前述相同的边界条件,得出数学式为:(3-7)式中:R=F max/F min3.2 工作流量特性调节阀的流量特性是指介质流过阀门的相对流量与阀门的相对开度之间的关系相对流量用q=Q/Q max来表示。
调节阀的流量特性的数学表示式为:q=Φ(l)(3-8)一般说来,改变调节阀的节流面积,便可控制流量;但实际上由于各种因素的影响,如节流面积变化的同时,还发生阀前后压差的变化,而压差ΔPv的变化引起流量的变化。
为了分析问题方便,先假定阀前后压差是固定的。
本新闻共5页,当前在第1页 1 2345调节阀设计计算选型导则(一)发布时间:2007-11-29 编辑:service 来源:尤克强直接进论坛3.2.1 理想流量特性在调节阀前后压差一定的情况下(ΔP v=常数)得到的流量特性,称为理想流量特性。
假设调节阀各开度下的流通能力与节流面积成线性关系,即:C i=Cf (3-9)式中:C:阀全开时的流通能力C i:阀在某一开度下的流通能力f:相对节流面积由流体力学得知,伯努利方程可以推导出调节阀流量方程为:(3-10)式中:F:调节阀节流面积ε:调节阀阻力系数,随开度变化g:重力加速度r:流体重度P1,P2:调节阀前、阀后压力调节阀的流量方程也可以简化写为:(3-11)当f=1时,Q=Q max则可得到:(3-12)考虑到△P为常数,将式(3-11)和(3-12)相比即得:q=f (3-13)综上可知,当阀门各开度下的流通能力C与节流面积F成线性关系时,即假定阀前后压差固定,ΔP为常数时,调节阀的理想流量特性与调节阀的结构特性完全相同,这样一来,调节阀的理想流量特性,也就有直线、等百分比、快开、抛物线等4种形式3.2.2 实际工作流量特性在调节阀前后压差变化的情况下,得到的流量特性,称为工作流量特性。
在实际的工艺装置中,调节阀安装在工艺管道系统中,由于除调节阀以外的管道、装置、设备等存在阻力,并且该阻力损失随通过管道的流量成平方关系变化。
因此,当系统两端压差ΔP一定时,调节阀上的压差ΔP v就会随着流量的增加而减小,如图1所示。
这个压差的变化也会引起通过调节阀的流量发生变化,因此这时调节阀的理想流量生就会产生畸变而成为工作特性。
本新闻共5页,当前在第2页1 2 345调节阀设计计算选型导则(一)发布时间:2007-11-29 编辑:service 来源:尤克强直接进论坛管道系统的总压差△P s是管道系统(除调节阀外的阀门、设备和管道)的压差与调节阀前后压差之和,即:ΔP s=△P2+∑ΔP1 (3-14)图1(b)中△P vm是最大流量时调节阀前后的压差,∑△P im是最大流量时管路系统的压差,令:(3-15)这就是工艺管道系统的阻损比S,也就是调节阀全开时,阀上的压降△Pv 与管路系统各局部阻力件之和∑P im加阀上的压降△P v,两者之间的比根据式(3-11),则调节阀通过的流量即:(3-16)当调节阀开度达到100%时,即f=1时则有:(3-17)如果工艺管道系统的阻力损失全部由调节阀决定,即管道设备阻力等于零时(ΔP v=ΔP s),此时的系统阻损比S=1,则调节阀前后压差就是管道系统的总压降△P s。
此时调节阀工作特性就成为理想特性,此时的最大流量为:(3-18)如果将式(3-16)和(3-18)相比就可以得到Q作参此量的相对流量特性:(3-19)如果将式(3-16)和(3-17)相比就可以得到以Q100作参比量的相对流量特性:(3-20)进一步推导,考虑管道系统的节流面积恒定不变其相对面积总是1,则其管道流量表达式如下:(3- 21)式中:Q:管道流量C g:管道流通能力∑ΔP i:管道阻力γ:流体密度式(3-16)和(3-21)流量相等,并根据式(3-14)则推导出(3-22)本新闻共5页,当前在第3页12 3 45调节阀设计计算选型导则(一)发布时间:2007-11-29 编辑:service 来源:尤克强直接进论坛当调节阀全开时f=1,于是调节阀最大开度时的前后差压(实际是调节阀前后压差的最小值)为:则:(3-23)将式(3-23)和(3-22)联豆解方程组则有(3-24)将式(3-24)代入式(3.19)则得到(3- 25)将上式中代入相应的结构特性,就可以得出Q max作为参比值的工作特性如图2。
由于实际上S<1,因此工作特性中Q和Q100都将相对减小。
随着调节阀开度的增加,管道系统的流量也随之增加,则管道系统的压降∑ΔP i从最小(近似等于零)逐步增大到∑P im。
这样一来,随着调节阀开度的增加,调节阀前后压差ΔP v将由于∑ΔP i的增加而减少,参看图1。
因此实际上管道系统的最大流量Q100必然小于理想情况(S=1)时的最大流量Q max也就使得直线和等百分此两种调节阀的特性曲线都随S的减小而下垂,如图2。