快速凝固技术国内外发展及其应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
快速凝固技术国内外发展及其应用
1.快速凝固技术国内外发展
随着对金属凝固技术的重视和深入研究,形成了许多种控制凝固组织的方法,其中快速凝固已成为一种具有挖掘金属材料潜在性能与发展前景的开发新材料的重要手段,同时也成了凝固过程研究的一个特殊领域。
快速凝固的概念和技术源于20世纪60年代初Duwez等人的研究,他们发现某些共晶合金在平衡条件下本应生成双相混合物,但当液态合金以足够快的冷却速度凝固合金液滴被气体喷向冷却板时,则可能生成过饱和固溶体、非平衡晶体,更进一步生成非晶体。上述结果稍后被许多研究结果所证实,而且由此发现一些材料具有超常的性能,如电磁、电热、强度和塑性等方面的性能,出现了用于电工、电子等方面的非晶材料。20世纪70年代出现了用快速凝固技术处理的晶态材料,80年代人们逐渐把注意力转向各种常规金属材料的快速凝固制备上,90年代大块非晶合金材料的开发与应用取得重大进展。快速凝固技术是目前冶金工艺和金属材料专业的重要领域,也是研究开发新材料手段。
快速凝固一般指以大于
5
10
~
6
10
K/s的冷却速率进行液相凝固成固相,是一种非平衡的
凝固过程,通常生成亚稳相(非晶、准晶、微晶和纳米晶),使粉末和材料具有特殊的性能和用途。由于凝固过程的快冷、起始形核过冷度大,生长速率高,使固液界面偏离平衡,因而呈现出一系列与常规合金不同的组织和结构特征。加快冷却速度和凝固速率所起的组织及结构特征可以近似地用图1来表示。从上图我们不难看出,随着冷却速度的加快,材料的组织及结构发生着显著的变化,可以肯定地说,它也将带来性能上的显著变化[1]。
快速凝固技术得到的合金具有超细的晶粒度,无偏析或少偏析的微晶组织,形成新的亚稳相和高的点缺陷密度等与常规合金不同的组织和结构特征。实现快速凝固的三种途径包括:动力学急冷法;热力学深过冷法;快速定向凝固法。由于凝固过程的快冷,起始形核过冷度大,生长速率高,使固液界面偏离平衡,因而呈现出一系列与常规合金不同的组织和结构特征。
1.1快速凝固技术的主要方法
(1)动力学急冷快速凝固技术
动力学急冷快速凝固技术简称熔体急冷技术,其原理可以概括为:设法减小同一时刻凝固的熔体体积与其散热表面积之比,并设法减小熔体与热传导性能很好的冷却介质的界面热
阻以及主要通过传导的方式散热。通过提高铸型的导热能力,增大热流的导出速率可以使凝固界面快速推进,从而实现快速凝固。
在应用熔体急冷凝固技术的各种方法时,熔体的传热过程是:固液界面前沿熔体的温度大于零,而已凝固的固相一侧的温度梯度小于零,因而过热熔体的热能和熔化潜热只能通过固相向环境释放,这时热流方向与固/液界面移动的方向相反,因而这类快速凝固过程的进行以及相应的凝固冷速、凝固速率和过冷度等都是由系统向环境的传热速度和熔体体积等因素控制的。目前,主要的快速凝固技术(包括离心雾化法在内)都是通过薄层液态金属与高导热系数的冷衬底之间的紧密相贴来实现极快的导热传热。影响温度场及冷却速度的主要因素就是金属/衬底界面的状况及金属试样的厚度。
根据熔体分离和冷却方式的不同,可以分为雾化技术、模冷技术和表面熔化及沉淀技术三大类。①模冷技术。主要包括:枪法,双活塞法,熔体旋转法,平面流铸造法,电子束急冷淬火法,熔体提取法和急冷模法。②雾化技术。具体分为:流体雾化法,离心雾化法和机械雾化法。③表面熔化与沉积技术。主要有离子体喷涂沉积法和激光表面重熔法两种。(2)热力学深过冷快速凝固
热力学深过冷是指通过各种有效的净化手段避免或消除金属或合金液中的异质晶核的形核作用,增加临界形核功,抑制均质形核作用,使得液态金属或合金获得在常规凝固条件下难以达到的过冷度。深过冷快速凝固是指在尽可能消除异质晶核的前提下,使液态金属保持在液相线以下数百度,而后突然形核并获得快速凝固组织的一种工艺方法。对于深过冷熔体,其凝固过程不受外部散热条件所控制,生长速度可以达到甚至超过激冷凝固过程中的晶体生长速度。熔体深过冷的获得,理论上不受液态金属体积限制。因此,深过冷是实现三维大体积液态热力学深过冷获得技术实验方法分类。①大体积液态金属的深过冷,主要有熔融玻璃净化法,循环过热法和熔融玻璃净化法+循环过热法。②微小金属液滴的深过冷,包括乳化-热分析法,落管法和无容器电磁悬浮熔炼法。③其它形状金属液态的深过冷--熔体急冷法,可分为:气枪法,雾化沉积法,熔体旋转法,锤砧法,单辊法。
(3)快速定向凝固法
定向凝固法是指在凝固过程中应用技术手段,在液-固界面处建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,最终得到定向组织、甚至单晶。定向凝固是在高温合金的研制中建立和完善起来的。该技术最初用来消除结晶过程中生成的横向晶界,因为晶界处原子排列不规则,杂质较多,扩散较快。晶界在高温受力条件下是较薄弱的地方,消除横向晶界,可以提高其高温合金的力学性能。定向凝固技术的最主要应用是生产具有均匀柱状晶组织的铸件,特别是在航空领域生产高温合金的发动机叶片,与普通铸造方法获得的铸件相比,它使叶片的高温强度、抗蠕变和持久性能、热疲劳性能得到大幅度提高。对于磁性材料,应用定向凝固技术,可使柱状晶排列方向与磁化方向一致,大大改善了材料的磁性能。定向凝固技术也是制备单晶的有效方法。定向凝固技术还广泛用于自生复合材料的生产制造,用定向凝固方法得到的自生复合材料消除了其它复合材料制备过程中增强相与基体间界面的影响,使复合材料的性能大大提高。定向凝固技术作为功能晶体的生长和材料强化的重要手段,具有重要的理论意义和实际应用价值。
纵观定向凝固技术的发展,人们在不断地提高温度梯度、生长速度和冷却速度,以得到优质的定向凝固组织。根据成分过冷理论,温度梯度无疑是其中的关键。提高固液界面前沿的温度梯度在理论上有以下途径:①缩短液体最高温度处到冷却剂位置的距离;②增加冷却强度和降低冷却介质的温度;③提高液态金属的最高温度。目前新兴的凝固技术如冷坩埚定向凝固技术、软接触陶瓷壳定向凝固技术、双频电磁约束成形定向凝固技术等,这些无坩埚熔炼、无铸型、无污染的定向凝固成形技术会成为未来发展的焦点,在未来的发展中会日渐成熟。