二元一次不等式组与平面区域

合集下载

二元一次不等式(组)与平面区域 课件

二元一次不等式(组)与平面区域   课件

|AB|=|3×1+-32×-1+6|= 122.
∴S△ABC=12×
12 × 2
122=36.
(2)画出2x-3<y≤3表示的区域,并求所有的正整数解.
【思路分析】
原不等式等价于
y>2x-3 y≤3.
而求正整数解,则意味着x,y还有限制条件,即求:
xy> >00 y>2x-3,
y≤3
的整数解.
例3 画出不等式组2x+x+2yy--51≤>00 ,所表示的平面区域. y<x+2
【思路分析】 解决这种问题的关键在于正确地描绘出边 界直线,再根据不等号的方向,确定所表示的平面区域.
【解析】 先画直线x+2y-1=0,由于是大于号,从而将 直线画成虚线,∵0+0-1<0,∴原点在它的相反区域内.
如图中阴影部分中横坐标、纵坐标均为整数的点.
探究5 充分利用已知条件,找出不等关系,画出适合条件 的平面区域,然后在该平面区域内找出符合条件的点的坐 标.实际问题要注意实际意义对变量的限制.必要时可用表格 的形式列出限制条件.
思考题6 一工厂生产甲、乙两种产品,生产每吨产品的资
源需求如下表:
品种 电力/kW·h 煤/t 工人/人
(2)设直线l方程为Ax+By+C=0(A>0),则 ①Ax+By+C>0表示l右侧平面区域. ②Ax+By+C<0表示l左侧平面区域.
思考题1 (1)不等式x-2y≥0所表示的平面区域是下图中的 ()
【解析】
x-2y=0的斜率为
1 2
,排除C、D.又大于0表示直
线右侧,选B.
【答案】 B
(2)不等式x+3y-6<0表示的平面区域在直线x+3y-6=0的
【解析】 如图,在其区域内的整数解为(1,1)、(1,2)、 (1,3)、(2,2)、(2,3),共五组.

二元一次不等式(组)与平面区域

二元一次不等式(组)与平面区域

y
x0,y0
10
5x2y88
6
4
3x4y9 2
o
2
4
6
8 10
x
9
例 3 ( 3 ) 画 出 不 等 式 ( x 3 y 6 ) ( x y 2 ) 0 表 示 的 平 面 区 域
解 :不等 式 x x 3 yy 2 可 6 0 0 或 化 x x 3 yy 为 2 6 0 0
16
17
例5某人准备投资1200万元兴办一所完全中学,对教育 市场进行调查后,他得到了下面的数据表格(以班级为 单位)
学段 班级学生数 配备教师数 硬件建设(万元) 教师年薪(万元)
初中 45
2
26/班
2/人
高中 40
3
54/班
2/人
初、高中的教育周期均为三年,办学规模以20~30个班为宜, 教师实行聘任制。分别用数学关系式和图形表示上述限制条件。
14
解: 设生产甲,乙两种肥料分别为xt和yt 则x, y,应满足以下不等式组
4x y 10
y
18x 15y 66
25Βιβλιοθήκη x 0, y 020 15
18x15y6610
甲,乙两种肥料的产量范
5
围在直角坐标系中为图中
o 1 2 3 45
x
的阴影部分(包括边界)
4x y 10
15
小结: (1)看懂题,列好表格(若有表格,则不必) (2)用不等式(组)列出限制条件(要考虑实 际意义) (3)画图
直线AxByC0的一边
(不包括边,直 界线画成虚) 线 用特殊点来确定是直线的某一 (2)在直角坐边另标,找系一中一般不点用等原式点,A若x 直 B线y 过 C原点0(,则0)表示 :

高中数学必修5课件:第3章3-3-1二元一次不等式(组)与平面区域

高中数学必修5课件:第3章3-3-1二元一次不等式(组)与平面区域

数学 必修5
第三章 不等式
(3)若直线 l:Ax+By+C=0,记 f(x,y)=Ax+By+C,M(x1, y1),N(x2,y2),则
点M,N在l的同侧 ⇔ fx1,y1·fx2,y2>0 点M,N在l的异侧 ⇔ fx1,y1·fx2,y2<0
数学 必修5
第三章 不等式
1.不等式x-2y≥0表示的平面区域是( )
() A.32 4 C.3
B.23 D.34
数学 必修5
第三章 不等式
解析: 如图所示为不等式表示的平 面区域,平面区域为一三角形,三个顶点 坐标分别为(4,0),43,0,(1,1),所以三角 形的面积为 S=12×4-43×1=43.
答案: C
数学 必修5
第三章 不等式
用二元一次不等式(组)表示实际问题
数学 必修5
第三章 不等式
答案:
4x+3y≤480, 2x+5y≤500, x≥0, y≥0, x,y∈N*
数学 必修5
第三章 不等式
4.画出不等式组x0-≤yx≤+1y0≤,20, 0≤y≤15,
表示的平面区域.
解析: 根据题意画出不等式组表示的平面区域,如图所
示.
数学 必修5
第三章 不等式
数学 必修5
第三章 不等式
3.一工厂生产甲、乙两种产品,生产每种1 t产品的资源 需求如下表:
品种 电力/kW·h 煤/t 工人/人

2
3
5
乙ቤተ መጻሕፍቲ ባይዱ
8
5
2
该厂有工人200人,每天只能保证160 kW·h的用电额度, 每天用煤不得超过150 t,请在直角坐标系中画出每天甲、乙两 种产品允许的产量的范围.

二元一次不等式(组)与平面区域

二元一次不等式(组)与平面区域

二元一次不等式表示哪个平面区域的判断方法:
方法一 : 直线Ax+By+C=0同一侧的所有点(x,y) 直线Ax+By+C=0同一侧的所有点(x,y) 代入Ax+By+C所得实数的符号都相同, 代入Ax+By+C所得实数的符号都相同, 只需在直线的某一侧任取一点, 只需在直线的某一侧任取一点,根据 Ax+By+C的正负即可判断 Ax+By+C的正负即可判断 Ax+By+C>0表示直线的哪一侧区域, Ax+By+C>0表示直线的哪一侧区域, C≠0时,常把原点作为特殊点。 C≠0时,常把原点作为特殊点。
表示的平面区域是( B )
小结: 小结:
⑴ 二元一次不等式表示平面区域: 直线某一侧所有点组成的平面区域。 ⑵ 判定方法: 直线定界,特殊点定域。 ⑶ 二元一次不等式组表示平面区域: 各个不等式所表示平面区域的公共部分。
二元一次不等式(组) 二元一次不等式( 与平面区域
(1)二元一次不等式:
含有两个未知数,并且未知数的最高次数是1 含有两个未知数,并且未知数的最高次数是1 的不等式; 例如
x+y≤1 ,2x-3y+6>0 +6>0
(2)二元一次不等式组:
由几个二元一次不等式组成的不等式组; 例如 x + y ≤ 25000000
x 3x+y-12=0
练习: 练习:
(1)画出不等式 (1)画出不等式 4x―3y≤12 ―3y 表示的平面区域
y 4x―3y-12=0 ―3y―3y x x x=1
(2)画出不等式 x≥1 (2)画出不等式 表示的y +6 ≥ 0 不等式组 x − y +2 < 0

二元一次不等式(组)与平面区域

二元一次不等式(组)与平面区域
示的平面区域的面积等于 3 2 A. B. C.4 2 3 3 ( C D.3 4 )
解:
x 3 y 4 得交点A的坐标为(1,1). 由 , 3 x y 4
又B、C两点的坐标为(0,4), (0, 4 ).
故S ABC
1 4 4 (4 ) 1 . 2 3 3
则a的取值范围是 ( A.a<-7或a>24 C.a=-7或a=24
B)
B.-7<a<24 D.以上都不对
解析:点(3,1)和(-4,6)在直线3x-2y+a=0的两 侧,说明将这两点坐标代入3x-2y+a后,符号相反,
所以(9-2+a)(-12-12 0, 8. 不等式组 x 3 y 4, 所表 3 x y 4
练习1:
画出下列不等式表示的平面区域:
(1)2x+3y-6>0 (2)4x-3y≤12
Y Y
2
O
3
X
O
3 -4
X
(1)
(2)
二元一次不等式组表示平面区域
二元一次不等式组
表示平面区域
例2:画出不等式组
表示的平面区域
x y 5 0 x y 0 x 3
Y
x+y=0
3
x y 0 x 2 y 4 0 y 2 0
Y
x-y=0
x+2y-4=0 o
2
4
x -2 y+2=0
变式3、由直线
y20
, x 2 y-4 0 和
围成的三角形区域(包括边界)用不 等式可表示为 。
x-y 0
x y 0 x 2 y 4 0 y 2 0
方法总结:

高二数学 二元一次不等式(组)与平面区域 知识讲解

高二数学 二元一次不等式(组)与平面区域 知识讲解

二元一次不等式(组)与平面区域【要点梳理】要点一:二元一次不等式(组)的定义1.二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式.2.二元一次不等式组:由几个二元一次不等式组成的不等式组称为二元一次不等式组.3.二元一次不等式(组)的解集:满足二元一次不等式(组)的x 和y 的取值构成有序实数对(,)x y ,所有这样的有序实数对(,)x y 构成的集合称为二元一次不等式(组)的解集.要点诠释:注意不等式(组)未知数的最高次数. 要点二:二元一次不等式(组)表示平面区域二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,因此,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合.二元一次不等式所表示的平面区域:在平面直角坐标系中,直线:0l Ax By C ++=将平面分成两部分,平面内的点分为三类: ①直线l 上的点(x ,y )的坐标满足:0=++C By Ax ;②直线l 一侧的平面区域内的点(x ,y )的坐标满足:0>++C By Ax ; ③直线l 另一侧的平面区域内的点(x ,y )的坐标满足:0Ax By C ++<.即二元一次不等式0Ax By C ++>或0Ax By C ++<在平面直角坐标系中表示直线0Ax By C ++=的某一侧所有点组成的平面区域,直线0Ax By C ++=叫做这两个区域的边界,(虚线表示区域不包括边界直线,实线表示区域包括边界直线).要点三:二元一次不等式表示哪个平面区域的确定 二元一次不等式表示的平面区域由于对在直线0Ax By C ++=同一侧的所有点(,)x y ,把它的坐标(,)x y 代入Ax By C ++,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直线哪一侧的平面区域.(特殊地,当0C ≠时,常把原点作为此特殊点)以上判定方法简称为“直线定界、特殊点定域”法. 不等式组所表示的平面区域由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分. 1. 判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法:因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.2. 画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线);②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域.要点诠释: “直线定界,特殊点定域”二元一次不等式(组)表示平面区域的重要方法. 【典型例题】类型一:二元一次不等式表示的平面区域 例1. 画出不等式240x y +->表示的平面区域. 【解析】先画直线240x y +-=(画成虚线). 取原点(0,0)代入24x y +-得200440⨯+-=-<, ∴原点不在240x y +->表示的平面区域内, 不等式240x y +->表示的区域如图:【总结升华】1. 画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当0≠C 时,常把原点作为此特殊点.2. 虚线表示区域不包括边界直线,实线表示区域包括边界直线 举一反三:【变式1】画出下列不等式所表示的平面区域 (1)4312x y +≤; (2)1≥x 【答案】(1)(2)【变式2】图中阴影(包括直线)表示的区域满足的不等式是()A.x-y-1≥0 B.x-y+1≥0 C.x-y-1≤0 D.x-y+1≤0【答案】直线对应的方程为x-y-1=0,对应的区域,在直线的下方,当x=0,y=0时,0-0-1<0,即原点在不等式x-y-1<0对应的区域内,则阴影(包括直线)表示的区域满足的不等式是x-y-1≥0,故选:A.【变式3】不等式3x+2y-6≤0表示的区域是()【答案】可判原点适合不等式3x+2y-6≤0,故不等式3x+2y-6≤0所表示的平面区域为直线3x+2y-6=0的左下方,故选D。

人教a版必修五课件:二元一次不等式(组)与平面区域(62页)

人教a版必修五课件:二元一次不等式(组)与平面区域(62页)

2.点(x0,y0)在直线Ax+By+C=0的右上方,则一定 有Ax0+By0+C>0吗?
提示:不一定.与系数B的符号有关.
3.若A(x1,y1),B(x2,y2)两点在直线Ax+By+C=0的 同侧或两侧应满足什么条件?
提示:同侧(Ax1+By1+C)(Ax2+By2+C)>0.异侧(Ax1+ By1+C)(Ax2+By2+C)<0.
新知初探
1.二元一次不等式及其解集的意义 (1)二元一次不等式 含有两 个未知数,并且含未知数的项的最高次数是 1 的不等式称为二元一次不等式. 二元一次不等式的一般形式是Ax+By+C>0,Ax+By +C<0,Ax+By+C≥0,Ax+By+C≤0,其中A,B不同 时为零.
(2)二元一次不等式组 由几个 二元一次不等式 组成的不等式组称为二元一次 不等式组. (3)二元一次不等式(组)的解集 满足二元一次不等式(组)的x和y的取值构成有序数对 (x,y),所以这样的有序数对(x,y)构成的集合称为二元一 次不等式(组)的解集.一个二元一次不等式,它的解是一些 数对(x,y),因此,它的解集不能用数轴上一个区间表示, 而应是平面上的一个区域.
By+C=0划分平面成两个半平面的区域,分别由不等式Ax +By+C>0与Ax+By+C<0决定.因此,如同前面所学平面 内的直线可以视为二元一次方程的几何表示一样,半平面 就是二元一次不等式的几何表示.
思考感悟
1.每一个二元一次不等式(组)都能表示平面上的一个 区域吗? 提示:不一定.当不等式组的解集为空集时,不等式 组不表示任何图形.
7 答案:4
类型三 [例3]
点与平面区域的关系 已知点P(1,-2)及其关于原点的对称点中有

3.3.1二元一次不等式(组)与平面区域

3.3.1二元一次不等式(组)与平面区域

§3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域学习目标 1.了解二元一次不等式(组)表示的平面区域;2.会画出二元一次不等式(组)表示的平面区域(重、难点).预习教材P82-85完成下列问题:知识点一二元一次不等式(组)表示平面区域1.二元一次不等式(组)的概念含有两个未知数,并且未知数的次数是1的不等式叫做二元一次不等式.由几个二元一次不等式组成的不等式组称为二元一次不等式组.2.二元一次不等式与平面区域在平面直角坐标系中,二元一次不等式Ax+By+C>0(<0)表示直线Ax+By+C =0某一侧所有点组成的平面区域,把直线画成虚线以表示区域不包括边界.不等式Ax+By+C≥0(≤0)表示的平面区域包括边界,把边界画成实线.【预习评价】1.二元一次不等式的一般形式是什么?提示二元一次不等式的一般形式是Ax+By+C>0,Ax+By+C<0,Ax+By +C≥0,Ax+By+C≤0,其中A,B不同时为0.2.每一个二元一次不等式(组)都能表示平面上的一个区域吗?提示不一定.当不等式组的解集为空集时,不等式组不表示任何图形.知识点二二元一次不等式表示的平面区域的确定平面区域的确定依据直线Ax+By+C=0同一侧的所有点,把它们的坐标(x,y)代入Ax+By+C所得符号都相同方法在直线Ax+By+C=0的一侧取某个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号可以断定Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域【预习评价】1.原点与点(-1,10)在直线x+y-1=0的________(填“同侧”或“两侧”).解析将点(0,0)和(-1,10)代入到x+y-1中符号相反.答案两侧2.已知点A(2,1),B(1,0),C(-1,0),则不等式x-2y<0表示的平面区域内的点是________.解析由于-1-2×0=-1<0,故符合.而2-2×1=0,1-2×0>0.所以符合的为点C.答案C题型一二元一次不等式与平面区域【例1】(1)如图所示的平面区域(阴影部分)用不等式表示为________.(2)画出不等式2x+y-4>0表示的平面区域.解(1)由截距式得直线方程为x2+y1=1,即x+2y-2=0.因为0+2×0-2<0,且原点在阴影部分中,故阴影部分可用不等式x+2y-2<0表示.(2)先画直线2x+y-4=0(画成虚线).取原点(0,0)代入,得2x+y-4=2×0+0-4=-4<0,所以不等式2x+y-4>0表示的区域是直线2x+y-4=0右上方的平面区域,如图中的阴影部分所示.规律方法 1.已知平面区域求不等式的步骤(1)利用已知平面区域边界上点的坐标求出直线方程.(2)将平面区域内的特殊点代入直线方程两侧,判断不等号的方向.(3)结合平面区域的边界虚实写出相应的不等式.2.二元一次不等式表示平面区域的判断方法(1)对于Ax+By+C>0(或<0)表示的平面区域,直线Ax+By+C=0,其中A>0可以这样来确定:所表示区域位置不等式B>0B<0Ax+By+C>0在直线右上方在直线右下方Ax+By+C<0在直线左下方在直线左上方①当A<0时,可通过不等式两边乘以-1的方法转化成上述情况.②当A或B为0时,可通过不等式直接确定.(2)对于区域的确定要灵活,如果给定点P(x0,y0)和直线Ax+By+C=0(B≠0),判断点P在直线哪一侧时,设d=B·(Ax0+By0+C),则①d>0⇔P在直线上方;②d=0⇔P在直线上;③d<0⇔P在直线下方.【训练1】 不等式组⎩⎨⎧x -y ≤0,x +y ≤0表示的平面区域是( )解析 取特殊点坐标(如:(0,-1),(-1,0)等)代入不等式组⎩⎪⎨⎪⎧x -y ≤0,x +y ≤0,检验可得C 符合. 答案 C题型二 不等式组表示平面区域的应用【例2】(1)画出不等式组⎩⎨⎧x +2y -1≥0,2x +y -5≤0,y ≤x +2所表示的平面区域,并求其面积;(2)求不等式组⎩⎨⎧y ≤2,|x |≤y ≤|x |+1所表示的平面区域的面积大小.解 如图所示,其中的阴影部分便是不等式组所表示的平面区域.由⎩⎪⎨⎪⎧x -y +2=0,2x +y -5=0,得A (1,3). 同理得B (-1,1),C (3,-1). ∴|AC |=22+(-4)2=25,而点B 到直线2x +y -5=0的距离为 d =|-2+1-5|5=65,∴S △ABC =12|AC |·d =12×25×65=6.(2)可将原不等式组分解成如下两个不等式组: ①⎩⎪⎨⎪⎧x ≥0,y ≥x ,y ≤x +1,y ≤2,或②⎩⎪⎨⎪⎧x ≤0,y ≥-x ,y ≤-x +1,y ≤2.上述两个不等式组所表示的平面区域如图所示,所围成的面积S =12×4×2-12×2×1=3.规律方法 求平面区域面积的方法求平面区域的面积,先画出不等式组表示的平面区域,然后根据区域的形状求面积.(1)若画出的平面区域是规则的,则直接利用面积公式求解.(2)若平面区域是不规则的,可采用分割的方法,将平面区域分成几个规则图形求解.【训练2】 在平面直角坐标系中,不等式组⎩⎨⎧y ≥0,x +3y ≤4,3x +y ≥4表示的平面区域的面积是( ) A.32 B.23 C.43D.34解析 不等式组表示的平面区域如图阴影部分所示.平面区域为一个三角形及其内部,三个顶点的坐标分别为(4,0),⎝ ⎛⎭⎪⎫43,0,(1,1),所以平面区域的面积为S =12×⎝ ⎛⎭⎪⎫4-43×1=43.答案 C题型三 用二元一次不等式组表示实际问题【例3】 投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,用数学关系式和图形表示上述要求.解 设生产A 产品x 百吨,生产B 产品y 百吨,则⎩⎪⎨⎪⎧2x +3y ≤14,2x +y ≤9,x ≥0,y ≥0.用图形表示以上限制条件,得其表示的平面区域如图所示(阴影部分). 规律方法 用平面区域来表示实际问题的基本方法(1)根据问题的需要选取两个起关键作用的关联较多的量,用字母表示. (2)把问题中有关的量用这两个字母表示.(3)把实际问题中有关的限制条件用不等式表示出来. (4)把这些不等式所组成的不等式组用平面区域表示出来.【训练3】 某人准备投资1 200万元兴办一所中学,他对教育市场进行调查后,得到了下面的数据表格(以班级为单位): 学段 班级学生人数配备教师数硬件建设/万元教师年薪/万元初中 45 2 26/班 2/人 高中40354/班2/人因生源和环境等条件限制,办学规模以20至30个班为宜.分别用数学关系式和图形表示上述的限制条件.解 设开设初中班x 个,开设高中班y 个,根据题意,总共招生班数限制在20~30之间,所以有20≤x +y ≤30,考虑到所投资金的限制,得到26x +54y +2×2x +2×3y ≤1 200,即x +2y ≤40, 另外,开设的班数不能为负且为整数,则x ≥0,y ≥0,x ,y ∈Z . 把上面的四个不等式合在一起,得到⎩⎪⎨⎪⎧20≤x +y ≤30,x +2y ≤40,x ≥0,y ≥0,x ,y ∈Z .用图形表示这个限制条件,得到如图的平面区域(阴影部分中x ,y 为整数点).课堂达标1.不在不等式3x +2y <6表示的平面区域内的一个点是( ) A.(0,0) B.(1,1) C.(0,2)D.(2,0)解析 将四个点的坐标分别代入不等式中,其中点(2,0)代入后不等式不成立,故此点不在不等式3x +2y <6表示的平面区域内,故选D. 答案 D2.如图所示,表示阴影部分的二元一次不等式组是()A.⎩⎨⎧y ≥-2,3x -2y +6>0,x <0B.⎩⎨⎧y ≥-2,3x -2y +6≥0,x ≤0C.⎩⎨⎧y >-2,3x -2y +6>0,x ≤0D.⎩⎨⎧y >-2,3x -2y +6<0,x <0解析 观察图象可知,阴影部分在直线y =-2上方,且不包含直线y =-2,故可得不等式y >-2.又阴影部分在直线x =0左边,且包含直线x =0,故可得不等式x ≤0.由图象可知,第三条边界线过点(-2,0)、(0,3), 故可得直线3x -2y +6=0,因为此直线为虚线且原点O (0,0)在阴影部分, 故可得不等式3x -2y +6>0.观察选项可知选C. 答案 C3.完成一项装修工程需要木工和瓦工共同完成.请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2 000元,设木工x 人,瓦工y 人,满足工人工资预算条件的数学关系式为________.答案⎩⎨⎧50x +40y ≤2 000,x ∈N *,y ∈N *4.画出二元一次不等式组⎩⎨⎧x +y ≤1,x ≥0,y ≥0表示的平面区域,则这个平面区域的面积为________.解析 平面区域如图阴影部分(含边界)所示. S 阴=12×1×1=12. 答案 12课堂小结1.对于任意的二元一次不等式Ax +By +C >0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时, (1)Ax +By +C >0表示直线Ax +By +C =0上方的区域; (2)Ax +By +C <0表示直线Ax +By +C =0下方的区域.2.画平面区域时,注意边界线的虚实问题.基础过关1.已知点P 1(0,1),P 2(2,1),P 3(-1,2),P 4(3,3),则在4x -5y +1≤0表示的平面区域内的点的个数是( ) A.1 B.2 C.3D.4解析 经验证,P 1,P 3,P 4均在区域内. 答案 C2.若点(m ,1)和(-3,m )不在直线x +2y -1=0的同侧,则实数m 的取值范围是( ) A.(-1,2) B.(-2,1)C.[-1,2]D.(-∞,-1]∪[2,+∞)解析 记f (x ,y )=x +2y -1,则f (m ,1)·f (-3,m )≤0,即(m +1)(2m -4)≤0,解得-1≤m ≤2. 答案 C3.已知Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0},A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0},若向区域Ω内随机投一点P ,则点P 落入区域A 的概率为( ) A.13 B.23 C.19D.29解析 Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0}表示的平面区域面积为12×62=18, A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0}表示的平面区域面积为12×4×2=4,由几何概型计算公式,P =418=29.选D. 答案 D4.在坐标平面上,不等式组⎩⎨⎧y ≥2|x |-1,y ≤x +1所表示的平面区域的面积为________.解析 画出约束条件表示的可行域,如图中阴影部分,由题意M (2,3),N ⎝ ⎛⎭⎪⎫-23,13,P (0,-1),Q (0,1),不等式组⎩⎪⎨⎪⎧y ≥2|x |-1,y ≤x +1所表示的平面区域的面积为:12×2×2+12×2×23=83.答案835.若点A (1,1),B (2,-1)位于直线x +y -a =0的两侧,则a 的取值范围为________. 解析 ∵点A (1,1),B (2,-1)位于直线x +y -a =0的两侧,∴(1+1-a )(2-1-a )<0,即(2-a )(1-a )<0,则(a -1)(a -2)<0,即1<a <2. 答案 (1,2)6.某夏令营有48人,出发前要从A ,B 两种型号的帐篷中选择一种,A 型号的帐篷比B 型号少5顶,若只选A 型号的,每顶帐篷住4人,则帐篷不够,每顶帐篷住5人,则有一顶帐篷没有住满,若只选B 型号的,每顶帐篷住3人,则帐篷不够,每顶帐篷住4人,则有帐篷多余,设A 型号的帐篷有x 顶,用不等式将题目中的不等关系表示出来.解 由题意得⎩⎪⎪⎨⎪⎪⎧x >0,x +5>0,4x <48,0<5x -48<5,3(x +5)<48,4(x +5)>48,x ∈N *.7.画出下列不等式(组)表示的平面区域: (1)3x +2y +6>0;(2)⎩⎨⎧x ≤1,y ≥-2,x -y +1≥0.解 (1)画出满足条件的平面区域,如图所示:(2)画出满足条件的平面区域,如图所示:能力提升8.若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形及其内部,则a 的取值范围是( ) A.[43,+∞) B.(0,1]C.[1,43]D.(0,1]∪[43,+∞)解析 先画出不含参数的不等式表示的平面区域,如图所示,要使不等式组表示的平面区域是一个三角形及其内部,需使直线x +y =a 在点A (1,0)的下方或在点B (23,23)的上方.当直线x +y =a 过点A 时,a =1.当直线x +y =a 过点B 时,a =43.又因为直线x +y =a 必在原点O 的上方,所以0<a ≤1或a ≥43. 答案 D9.在平面直角坐标系中,若不等式组⎩⎨⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为( ) A.-5 B.1 C.2D.3解析 由题意知,不等式组所表示的平面区域为一个三角形区域,设为△ABC ,则A (1,0),B (0,1),C (1,1+a ),且a >-1.∵S △ABC =2,∴12(1+a )×1=2,∴a =3. 答案 D10.在平面直角坐标系内,不等式组⎩⎨⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为________.解析 不等式组⎩⎪⎨⎪⎧y ≥x -1,y ≤-3|x |+1表示的平面区域如图,y =x -1与y =-3|x |+1的交点为(12,-12),(-1,-2). ∴S =12×2×12+12×2×1=34×2=32. 答案 3211.若不等式组⎩⎨⎧x -y +5≥0,y ≥a ,0≤x ≤2所表示的平面区域是一个三角形,则a 的取值范围是________.解析 不等式组⎩⎪⎨⎪⎧x -y +5≥0,0≤x ≤2表示的平面区域如图中的阴影部分所示,用平行于x 轴的直线截该平面区域,若得到一个三角形,则a 的取值范围是[5,7).答案 [5,7)12.画出下列不等式表示的平面区域. (1)(x -y )(x -y -1)≤0;(2)|3x +4y -1|<5; (3)x ≤|y |≤2x .解 (1)由(x -y )(x -y -1)≤0,得⎩⎪⎨⎪⎧x -y ≥0,x -y -1≤0,解得0≤x -y ≤1;或⎩⎪⎨⎪⎧x -y ≤0,x -y -1≥0,无解.故不等式表示的平面区域如图(1)所示. (2)由|3x +4y -1|<5,得-5<3x +4y -1<5, 得不等式组⎩⎪⎨⎪⎧3x +4y -6<0,3x +4y +4>0,故不等式表示的平面区域如图(2)所示.(3)当y ≥0时,原不等式可化为⎩⎪⎨⎪⎧x ≤y ,y ≤2x ,x ≥0,点(x ,y )在第一象限内两条过原点的射线y =x (x ≥0)与y =2x (x ≥0)所表示的区域内. 当y ≤0时,由对称性作出另一半区域, 故不等式表示的平面区域如图(3)所示.13.(选做题)若直线y =kx +1与圆x 2+y 2+kx +my -4=0相交于P ,Q 两点,且P ,Q 关于直线x +y =0对称,则不等式组⎩⎨⎧kx -y +1≥0,kx -my ≤0,y ≥0表示的平面区域的面积是多少?解 P ,Q 关于直线x +y =0对称,故PQ 与直线x +y =0垂直,直线PQ 即为直线y =kx +1,故k =1;又线段PQ 为圆x 2+y 2+kx +my -4=0的一条弦, 故该圆的圆心在线段PQ 的垂直平分线上, 即为直线x +y =0,又圆心为⎝ ⎛⎭⎪⎫-k2,-m 2,∴m =-k =-1,∴不等式组为⎩⎪⎨⎪⎧x -y +1≥0,x +y ≤0,y ≥0.它表示的平面区域如图所示,是一个三角形,直线x -y +1=0与x +y =0的交点为⎝ ⎛⎭⎪⎫-12,12,∴S △=12×1×12=14. 故平面区域的面积为14.。

二元一次不等式(组)与平面区域

二元一次不等式(组)与平面区域
二元一次不等式(组)与平面 区域(1)
石泉中学 詹礼荣
2014高考导航
考纲展示
1.会从实际情境中抽象出二元一次不等式组. 2.了解二元一次不等式的几何意义,能用平面区域 表示二元一次不等式组.
教材回顾夯实双基
基础梳理
1.二元一次不等式表示的平面区域 (1)一般地,二元一次不等式 Ax+By+C>0 在平面直角 坐标系中表示直线 Ax+By+C=0 某一侧的所有的点组 不含 边界直线,不等式 Ax+By 成的平面区域(半平面)______ +C≥0 所表示的平面区域(半平面)含有边界直线. (2)对于直线 Ax+By+C=0 同一侧的所有的点(x,y), 使得 Ax+By+C 值的符号相同,也就是位于同一半平 面的点,其坐标适合 Ax+By+C>0;而位于另一半平 Ax+By+C<0 面的点,其坐标适合_________________. (3)可在直线 Ax+By+C=0 的某一侧任取一点, 一般取 符号 来判断 Ax 特殊点(x0,y0),从 Ax0+By0+C 的_______ +By+C>0(或 Ax+By+C<0)所表示的区域.
2.已知点(-3,-1)和 (4,- 6)在直线 3x-2y-a= 0 的两 侧,则 a 的取值范围是( ) A. (- 24,7) B.(-7,24) C. (-∞,- 7)∪(24,+∞ ) D. (-∞,- 24)∪ (7,+∞ )
解析:选 B.∵点(-3,- 1)和(4,-6)在直线 3x- 2y-a=0 的两侧,则(-9+2-a)(12+12- a)<0, 即(a+7)(a-24)<0. ∴-7<a<24.
课堂小结(学生总结)
作业
• 1.阅读课本必修5 96-100页内容 • 2.课时达标检测(A) 219页第8题 • 3.补充题:直线 2 x y 10 0

027二元一次不等式(组)与平面区域

027二元一次不等式(组)与平面区域

§3.3.1二元一次不等式(组)与平面区域学习目标1.了解二元一次不等式几何意义和边界,会用二元一次不等式组表示平面区域;2经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力.课前准备:1、一元二次不等式的一般形式:2、二元一次不等式的一般形式:3、一家银行的信贷部计划年初投入25000000元用于企业和个人贷款,希望这笔资金至少可带来30000元的收益,其中从企业贷款中获益12%,从个人贷款中获益10%,那么信贷部应该如何分配资金呢?学习过程:探究1:一元一次不等式(组)的解集可以表示为数轴上的区间,例如,3040xx+>⎧⎨-<⎩的解集为 .你能在数轴上表示出来吗?问题:二元一次不等式6x y-<的解集所表示的图形是怎样的呢?新知1:在平面直角坐标系中,二元一次不等式0Ax By c++>在平面直角坐标系中表示直线Ax By c++=某一侧所有点组成的平面区域.,把直线画成以表示区域不包含边界;二元一次不等式0Ax By c++≥表示平面区域包含边界,把边界画成1、二元一次不等式表示平面区域:例1:画出下列不等式所表示的平面区域○1022>-+yx○204≤+-yx○34≥x步骤:○1在平面直角坐标系中画出代数式对应的直线,若能取等号,则画实线;不能取等号,就画虚线。

○2在平面内取定一个特殊点(不能在直线上,通常取(0,0)点)代入不等式,若成立,那么这个点所在的区域即为不等式所表示的区域;若不成立,那么剩下的那个区域就是不等式所表示的区域。

(直线定界,特殊点定域)2:二元一次不等式组表示的平面区域例2:画出二元一次不等式组⎩⎨⎧<+-≥+-263yxyx所表示的平面区域小结:1)不等式组的解集是各个不等式解集的交集,所以不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分2)在画二元一次不等式组表示的平面区域时,应先画出每个不等式表示的区域,再取他们的公共部分即可,其步骤为:①画线;②定侧;③求“交”;④表示变式:画出不等式组503x yx yx-+⎧⎪+⎨⎪⎩≥≥≤表示的平面区域。

§4 4.1 二元一次不等式(组)与平面区域

§4  4.1 二元一次不等式(组)与平面区域

一工厂生产甲、乙两种产品,生产每吨产品的资源需求如下表: 例 4 一工厂生产甲、乙两种产品,生产每吨产品的资源需求如下表:
品种 甲 乙 电力/kW·h 电力/kW·h 2 8 煤/t 3 5 工人/ 工人/人 5 2
的用电额度, 该厂有工人 200 人,每天只能保证 160kW ⋅ h 的用电额度,每天用煤 150t,请在直角坐标系中画出每天甲、 不得超过 150t,请在直角坐标系中画出每天甲、乙两种产品允许的 产量范围。 产量范围。
每月用餐费最低标准240元 每月用餐费最低标准240元; 240 其他费用最少支出180元 其他费用最少支出180元. 180 可用来支配的资金为500元 可用来支配的资金为500元, 500 如何使用这些钱呢? 如何使用这些钱呢?
设用餐费为 x 元,其他费用为 y 元, 由题意 x 不小于 240, y 不小于 180, x 与 y 之和不超过 500, , ,
因为对在直线 Ax+By+ 同一侧的所有点( 因为对在直线 Ax+By+C=0 同一侧的所有点( x, y ),把它的坐标 Ax+By+ 所得到实数的符号都相同。 ( x, y ) 代入 Ax+By+C,所得到实数的符号都相同。
所以只需在此直线的某一侧取一特殊点(x0,y0),从 Ax0+By0+C 所以只需在此直线的某一侧取一特殊点( Ax+By+ (<0)表示直线哪一侧的平面区域 表示直线哪一侧的平面区域. 的正负即可判断 Ax+By+C>0(<0)表示直线哪一侧的平面区域.
l : x + 2y −3 = 0
, 在 l 上方的平面区域内的任一点的坐标( x y )满足不等式

第三章3.3 3.3.1二元一次不等式(组)与平面区域

第三章3.3  3.3.1二元一次不等式(组)与平面区域
3.3 二元一次不等式(组)与简单的线性规划问题 3.3.1 二元一次不等式(组)与平面区域 1.了解二元一次不等式表示的平面区域. 2.会画出二元一次不等式(组)表示 的平面区域.
1.二元一次不等式(组) (1)定义 ①二元一次不等式:含有两个未知数,并且未知数的次数是 1 的不等式. ②二元一次不等式组:由几个二元一次不等式组成的不等式组. (2)解集 ①定义:满足二元一次不等式(组)的 x 和 y 的取值构成有序数对(x,y),所有这样的有 序数对(x,y)构成的集合称为二元一次不等式(组)的解集. ②几何意义:可以看成直角坐标系内满足二元一次不等式(组)的 x 和 y 组成的点构成的 集合. 2.二元一次不等式表示的平面区域 二元一次不等式 Ax+By+C>0 二元一次不等式 Ax+By+C≥0 表示直线 Ax+By+C=0 某一侧所有点组成的平面区域, 我们把直线画成 虚线,以表示区域不包括边界 表示直线 Ax+By+C=0 某一侧所有点组成的平面区域, 我们把直线画成 实线,以表示区域包括边界 直线 Ax+By+C=0 同一侧的所有点,把它们的坐标(x,y)代入 依据 Ax+By+C 所得符号都相同 平面区域的确定 方法 在直线 Ax+By+C=0 的同一侧取某个特殊点(x0,y0)作为测试 点,由 Ax0+By0+C 的符号可以断定 Ax+By+C>0 表示的是直 线 Ax+By+C=0 哪一侧的平面区域
)
用平面区域来表示实际问题的基本方法 (1)根据问题的需要选取两个起关键作用的关联较多的量,用字母表示. (2)把问题中有关的量用这些字母表示. (3)把实际问题中有关的限制条件用不等式表示出来. (4)把这些不等式所组成的不等式组用平面区域表示出来. 3.配制 A、B 两种药品,需要甲、乙两种原料,已知配一剂 A 种药品需 甲料 3 mg,乙料 5 mg;配一剂 B 种药品需甲料 5 mg,乙料 4 mg.今有甲料 20 mg,乙料 25 mg,若 A、B 两种药品至少各配一剂,问共有多少种不同的配制方法? 解:设 A、B 两种药品分别配 x 剂、y 剂(x,y∈N*).由题意得, 甲料 A 药品/剂 B 药品/剂 共计 3 mg 5 mg 20 mg 乙料 5 mg 4 mg 25 mg

二元一次不等式(组)与平面区域 课件

二元一次不等式(组)与平面区域  课件
[提示] 一一对应.
4.二元一次不等式表示的平面区域及确定 (1)直线 l:ax+by+c=0 把直角坐标平面分成了三个部分: ①直线 l 上的点(x,y)的坐标满足 ax+by+c=0 . ②直线 l 一侧的平面区域内的点(x,y)的坐标满足 ax+by+c>0,另一侧 平面区域内的点(x,y)的坐标满足 ax+by+c<0 .
3.二元一次不等式(组)的解集概念 满足二元一次不等式(组)的 x 和 y 的取值构成一个有序数对(x,y),称为 二元一次不等式(组)的一个 解,所有这样的有序数对(x,y)构成的集合称为二 元一次不等式(组)的 解集 . 思考:把二元一次不等式的解看作有序数对,它与平面内的点之间有什 么关系?
同理得 B(-1,1),C(3,-1).
∴|AC|= 22+-42=2 5,
而点
B
到直线
2x+y-5=0
的距离为
d=|-2+51-5|=
6, 5
∴S△ABC=12|AC|·d=12×2 5× 65=6.
x>0 2.若将例题中的条件“y>0
4x+3y≤12
”变为“y|x≤|≤2y≤|x|+1 ”求所
标. (1)求区域面积时,要先确定好平面区域的形状,注意与坐标轴垂直的直 线及区域端点的坐标,这样易求底与高.必要时分割区域为特殊图形. (2)整点是横纵坐标都是整数的点,求整点坐标时要注意虚线上的点和靠 近直线的点,以免出现错误.
x+y>2, 2.不等式组x-y>0, 表示的区域是什么图形,你能求出它的面积吗?
x<4
该图形若是不规则图形,如何求其面积?
提示:不等式组表示的平面区域如图阴影部分 △ABC,该三角形的面积为 S△ABC=12×6×3=9.若 该图形不是规则的图形.我们可以采取“割补”的 方法,将平面区域分为几个规则图形求解.

4.1二元一次不等式(组)与平面区域

4.1二元一次不等式(组)与平面区域
§4 简单线性规划
-1-
4.1 二元一次不等式(组)与平面区域
-2-
目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
1.能从实际情境中抽象出二元一次不等式组,了解二元一次不等 式的几何意义.
2.能用平面区域表示二元一次不等式组,并能利用二元一次不等 式(组)所表示的平面区域解决简单的实际问题.
(2)将y≤-2x+3变形为2x+y-3≤0, 画出直线2x+y-3=0(画成实线),
取点(0,0),代入2x+y-3,得2×0+0-3=-3<0,
故y≤-2x+3表示的区域是直线2x+y-3=0及其左下方的平面区域,
如图②阴影部分所示.
-22-
目标导航
Z D 知识梳理 HISHISHULI
典例透析
S随堂演练 UITANGYANLIAN
题型一 画二元一次不等式表示的平面区域 【例1】 (1)画出不等式3x-4y-12≥0表示的平面区域; (2)画出不等式3x+2y<0表示的平面区域. 分析:(1)先画直线,再取原点分析;(2)先画直线,再取点(1,0)分析. 解:(1)先画直线3x-4y-12=0,取原点(0,0),代入3x-4y-12,得-12<0, 所以原点不在3x-4y-12≥0表示的平面区域内,
另外,还有x 0, y 0. 综上所述,x, y应满足以下不等式组
3x 5y 150 5x 2y 200
2x 8y 160,
3x 5y 150, 5x 2 y 200,
2x 8y 160

《二元一次不等式组与平面区域》

《二元一次不等式组与平面区域》

(4)二元一次不等式(组)的解集与平面直角 坐标系内的点之间的关系:
二元一次不等式(组)的解集是有序实数对, 而点的坐标也是有序实数对,因此,有序 实数对就可以看成是平面内点的坐标, 进而,二元一次不等式(组)的解集就 可以看成是直角坐标系内的点构成的集合。
(5)探究二元一次不等式(组)的解集表示的 图形 (1)回忆、思考 回忆:初中一元一次不等式(组)的解 集 所表示的图形 思考:在直角坐标系内,二元一次不 等式(组)的解集表示什么图形?
3.3.1《二元一次不等式 (组)与平面区域》
二元一次不等式和二元一次不等式组的定义
(1)二元一次不等式:
含有两个未知数,并且未知数的最高次数是1的 不等式叫做二元一次不等式 ;
(2)二元一次不等式组:
由几个二元一次不等式组成的不等式组 称为二元一次不等式组。
(3)二元一次不等式(组)的解集:
满足二元一次不等式(组)的x和y的取 值构成有序实数对(x,y),所有这样的 有序实数(x,y)构成的集合称为二元一 次不等式(组)的解集。
归纳:不等式组表示的平面区域是各 个不等式所表示的平面点集的交集, 因而是各个不等式所表示的平面区域 的公共部分。
2.画出下列不等式组所表示的平面区域: (1)2 x y 1 0 解:(1)在同一个直角坐标系中,
x y 1≥ 0
作出直线2x-y+1=0(虚线),
x+y-1=0(实线)。 用例1的选点方法,分别作出不等式2x- y+1>0,x+y-1≥0所表示的平面区域,
则它们的交集就是已知不等式组所 表示的区域。
y 3 2 1 -1 O 2y+1=0 -1 -2 1 2 3 x-3=0 2x-3y+2=0

3.3.1二元一次不等式(组)与平面区域

3.3.1二元一次不等式(组)与平面区域
表示直线Ax + By + C = 0某一侧所有点 组成的平面区域. 二元一次不等式组 表示的平面区域是各 个不等式表示的平面区域的公共部分
3.二元一次不等式表示哪侧平面区域的判断方法:
直线Ax+By+C=0同一侧的所有点(x,y)代入 Ax+By+C所得实数的符号都相同,只需在直线的
同一侧取某个特殊点(x0,y0)作为测试点,根据
Ax0+By0+C的正负即可判断Ax+By+C>0表示直线
的哪一侧区域. 若直线不过原点(即C≠0 ),常取原点(0,0)为 测试点. 若直线经过原点(即C=0 ),常取(1,0)或(0, 1)点为测试点.
直线定界,特殊点定域;
例1:画出不等式 x + 4y < 4表示的平面区域 .
解:(1)直线定界:先画直线x + 4y – 4 = 0(画成虚线) (2)特殊点定域:取原点(0,0),代入x + 4y - 4, 因为 0 + 4×0 – 4 = -4 < 0 所以,原点所在的这一侧区域 就是不等式x + 4y – 4 < 0表示 的区域。如图所示.
表示的平面区域的面积.
y
x-y+5=0
(3,8)
x+y=0
5
(-2.5,2.5)
-5
o
3
(3,-3)
x=3
x
x+2y≤20 2x+y-16≤0 求不等式组 x≥0 y≥0
表示的平面区域的面积.
10+ 8 1 ∴ S= × 4+ × 8×(8- 4)= 52. 2 2
例4:画出不等式(x-y)(x+2y-2)>0所表 示的平面区域.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y x
O 二元一次不等式(组)与平面区域学案(第一课时)
教学过程
1、 情境导入
引例: 一家银行的信贷部计划年初投入2500 万元用于企业和个人贷款,希望这笔资金至少可带来3万元的收益,其中从企业贷款中获益12%,从个人贷款中获益10%.那么,信贷部应 该如何分配资金呢?单位(万元)
问题:如果设用于企业、个人贷款的资金分别为x 万元、y 万元,你能用不等式刻画其中的不等关系吗?
(1)二元一次不等式(组)的解集:是由满足二元一次不等式(组)的 构成的有序实数对(x ,y )构成的集合。

(2)二元一次不等式(组)的解集与平面直角坐标系内的点构成的集合之间的关系?
(3)一元一次不等式(组)⎩
⎨⎧<->+0403x x 的解集所表示的图形为 :
探究:①二元一次方程6=-y x 表示什么图形?
②二元一次不等式6<-y x 的解集所表示的图形?
③二元一次不等式6>-y x 的解集所表示的图形?
y x
O y y x O y x O 类比推广:
一般地, 在直角坐标系中,二元一次不等式0>++C By Ax 表示0=++C By Ax 某侧所有点组成的平面区域.直线画成虚线,表示区域不包括边界.
而不等式0≥++C By Ax 表示区域时则包括边界,应把边界画成实线
.
例1、画出不等式44<+y x 表示的平面区域
例2、用平面区域表示不等式组⎪⎩
⎪⎨⎧≤<+-<82123y y x x y 的解集
(1)画出不等式4x ―3y ≤12表示的平面区域。

(2)画出不等式2x+3y-6>0表示的平面区域。

课堂小结:
二元一次不等式组表示的平面区域:
练习:教材P86页。

相关文档
最新文档