探索轴对称的性质
7.3 探索轴对称的性质
7.3 探索轴对称的性质1. 什么是轴对称?轴对称是指图形存在一个轴线,使得图形关于这条轴线对称。
轴对称具有以下特点: - 被轴对称的图形的左半部分与右半部分完全重合; - 轴对称的图形具有相同的形状、大小和图案; - 轴对称的图形可以通过在轴线上旋转180度得到;2. 轴对称的图形种类轴对称的图形可以是二维图形,也可以是三维图形。
2.1 二维图形常见的二维图形中,有许多具有轴对称性质的图形,例如: - 正方形 - 矩形 - 圆形 - 镜像字母(例如字母X、字母H) - 雪花形状(例如六边形雪花)2.2 三维图形在三维空间中,轴对称的图形种类更加丰富。
除了二维图形的轴对称性质外,三维图形还有额外的轴对称性质,例如: - 立方体 - 圆柱体 - 球体 - 圆锥体等3. 轴对称在日常生活中的应用轴对称的性质在日常生活中有许多实际应用。
3.1 拼图游戏拼图游戏中,常常使用轴对称的形状作为拼图的元素,通过将轴对称的形状拼接在一起,来完成整个拼图。
例如,一些儿童拼图书中会出现许多轴对称的动物形状,通过拼接这些形状,可以锻炼孩子们的观察能力和操作能力。
3.2 电子产品设计在电子产品的设计中,轴对称的性质也经常被应用。
例如,许多手机的外观设计和按键布局都是以轴对称的方式设计的,这样可以使得手机外观更加美观、布局更加整齐。
3.3 建筑设计在建筑设计中,轴对称的性质也经常被应用。
许多建筑物的立面设计和对称结构都是以轴对称的方式进行设计的,这样可以使得建筑物更加美观、稳定。
4. 如何判断一个图形是否轴对称?判断一个图形是否轴对称可以通过以下步骤进行:1.找到图形的中心点,并确定可能的轴线;2.对图形进行折叠,使得两侧完全重合;3.判断折叠后两侧是否完全重合,如果重合则图形是轴对称的。
5. 轴对称的性质与数学关系轴对称的性质在数学中也有一些相关的概念和性质。
5.1 点关于轴线的对称性一个点关于轴线的对称点是指,将点沿着轴线折叠后得到的点。
数学北师大版一年级下册5.2探索轴对称的性质
A.4cm2 B.8cm2 C.12cm2 D.16cm2
解析: 根据正方形的轴对称性,可得阴影部分的面积等于正方形ABCD面积的一半. ∵正方形ABCD的边长为4cm,
例3 如图,将矩形ABCD沿DE折叠,使A点落在BC 上的F处,若∠EFB=60°,则∠CFD=( B ) A.20° B.30° C.40° D.50°
45°,45°,90° .
3.如图所示的是轴对称图形,根据轴对称图形的性质,你
可以得到相等的线段是 AB=CD,BE=C E 是 ∠ABE=∠DCE . ,相等的角
4.如图所示,两个三角形关于直线l成轴对称,根据图中的数据,你
认为∠α的度数应是
20° .
5.如图所示,矩形纸片ABCD中,将其折叠,使点D与点B重合,折痕
如图:将一张长方形形的纸对折,然后 用笔尖扎出“14”这个数字,将纸打开 后铺平:
A C
1
C'
2
A'
3
4
D B E
F
F' E'
D' B'
打开
A
C
1
C'
2
A'
3
4
D B E
F
F' E'
D' B'
(1)两个“14”有什么关系? (2)设折痕所在直线为l,连结点E和E′ 的线段和l有什么关系?点F和F′呢? (3)线段AB与A′B′,CD与C′D′有什么 关系? (4)∠1与∠2有什么关系?∠3与∠4呢?
随堂小结
• 通过这堂课的学习,你掌握了轴对 称的哪些性质? • 1.对应点所连的线段被对称轴垂直 平分;
• 2.对应线段相等,对应角相等.
《探索轴对称的性质》教学设计
《探索轴对称的性质》教学设计教材版本:义务教育教科书《数学》/北师大版课时:1学习目标学习活动评价标准教师活动目标达成情况反思与评价目标1:通过观察、折叠、测量等活动,能归纳出轴对称的性质,积累数学活动经验。
欣赏视频片段,让学生欣赏对称美.引出本节课的课题《探索轴对称的性质》.出示本节课的学习目标,学生阅读。
一、回顾旧知出示图片,回顾旧知:什么是轴对称图形?什么是两个图形成轴对称?二、探索发现探究活动一、拿出提前准备好的“14”图案关注学生能否认真观看视频,能否获得积极的情感体验关注学生是否认真进行阅读.关注学生是否认真思考教师:数学中有种美被称之为“对称之美”。
无论是艺术、自然,还是建筑、生活中,当对称用到极致,那便是“东方之美”、“中国之美”。
本节课,我将继续带领大家感受轴对称的魅力,探索轴对称的性质。
出示学习目标学生举手进行提问90%的学生能够快速完成题目,总结两个成轴对称图形的性质。
应该充分给予学生独立思考和小组讨论的时间,尝试用不同方法探索轴对称的性质。
探究活动二、观察图5-6所示的轴对称图形.先独立操作,然后分组讨论.图5-6(1)找出它的对称轴.(2)连接点A与点A′的线段与对称轴有什么关系?连接点B与点B′的线段呢?(3)线段AD与线段A′D′有什么关系?线段BC与线段B′C′呢?为什么?(4)∠1与∠2有什么关系?∠3与∠4呢?说说你的理由.三、总结归纳总结归纳轴对称图形的性质:1.对应点所连的线段被对称轴垂直平分; 关注学生能否根据折叠过程中的某些元素的重合说明理由,进一步验证上一个活动得到的结论留给学生充分的时间与空间去思考、动手、讨论,培养学生对某个问题作出正确判断、合理决策的能力,使学生在合作学习的过程中不仅学会如何应用所学知识,更增加了学生们的合作意识。
90%的学生能够快速完成题目,总结成轴对称图形的性质。
留给学生时间,借助手中模型进行操作验证。
2.对应线段相等,对应角相等.由此得到轴对称的性质关注学生能否说出轴对称的性质明确轴对称的性质90%的学生能够说出轴对称的性质。
北师大版七下《5.2 探索轴对称的性质》课件2
m A C C1 A1
B D
E
ቤተ መጻሕፍቲ ባይዱ
E1
D1
B1
(2)连结C、C′的线段与直线m有什么关系? (3)线段AB与线段AB有什么位置关系和大小关系? (4)∠D与∠ D1有什么关系?说说你的理由.
轴对称的性质: 1.对应点连线段被对称轴垂直平分. 2.对应线段相等,对应角相等.
练一练:
1、在下列图形中,找出轴对称图形,并找 出它的两组对应点.
2.在下面的每个图形中找到轴对称图形,并
找出它的两组对应线段.
实验一: 想一想:(1)点A与点B关于直线m有什 么样的位置关系? (2)连结AB,请同学们用量角器、刻度尺度量并 判断线段AB与直线m有什么关系?
m A B
实验二:
试一试:
如图,EFGH是矩形的台球桌面,有 两球分别位于A、B两点的位置,试问 怎样撞击A球,才能使A球先碰撞台 边EF反弹后再击中B球?
解:1.作点A关于EF 的对称点A′
H
A B
G
2.连结A′B交EF于 点C则沿AC撞击黑球A ,必沿CB反弹击中白 E 球B.
C
A′
F
思考题
如图,在俯南河L边的空地上,房屋开发商准备 建一个三角形住宅小区,A、B两幢建筑物恰好 建在三角形住宅小区的两个顶点处,现要求小 区大门C建在俯河边且小区周边最短.如果你是 这个项目的总设计师,请确定出小区大门C的最 佳位置.并在图中标出. A 提示 1.小区的周边,哪 B 一条边的长度是固 C 定不变的? 2.要使小区周边最短,只需哪两边的和最短?
议一议
7 6
5
1
2 3 4
如图: 你能求出 这七个角 的和吗?
5.2探索轴对称的性质课件(共13张PPT)
情境引入
做一做: (1)在练习纸上画一个△ABC,在三角形外画直线MN,
沿MN折纸,用钉子钉出点A、B、C的对应点A’、B’、C’,
展开后画出△A’B’C’,并连结AA’,BB’,CC’。
(2)度量BQ、B’Q、CS、C’S、∠BQP、
∠CSN。你有什么发现,与同学进行交流。
(3)△ABC与△A’B’C’关于MN对称 ,则 △ABC≌△A’B’C’因此对应边、对应,连结AA交MN于P,那么△ABC 与△A’B’C’沿MN折叠后 ,点A与A’重合,于是 有AP=AP’,∠MPA=∠MPA’=90°。 也就是MN垂直平分AA’。 现在你能描述轴对称 的性质吗?
做一做
观察图7-6的轴对称图形: (1)找出它的对称轴。 (2)连接点A与点A’的线段与对称轴有什么关系? 连接点B与点B’的线段呢?
(3)线段AD与线段A’D’有什么关系?线段BC与 线段B’C’呢?为什么? (4)∠1与∠2有什么关系?∠3与∠4呢?说说你 的理由。
在图中,沿对称轴对折后,点A与点A’重合, 称点A关于对称轴的对应点是点A’.类似地, 线段AD关于对称轴的对应线段是线段 A’D’,∠3关于对称轴的对应角是∠4。
对应点所连的线段被对称轴垂直平分。
对应线段相等,对应角相等。
课堂小结
轴对称的性质:
1、对应点所连的线段被对称轴垂直平分。
2、对应线段相等,对应角相等。
巩固训练 1、在下列图形中,找出轴对称图形,并找出 它的两组对应点。
2、下图是在方格纸上画出的一棵树的一半, 以树干为对称轴画出树的另一半。
3、用笔尖扎重叠的纸可以得到下面 的两个图案 。
成轴对称
(1)找出它的两对对应点、两条对应线段和两 个对应角。 (2)用测量的方法验证你找到的对应点所连线 段分别被对称轴垂直平分。
北师大版七年级数学下册 5.2 《探索轴对称的性质》教学课件(共31张ppt)
2.画轴对称图形的步骤: (1)确定对称轴; (2)根据对称轴确定关键点的对称位置; (3)将找到的对称点顺次连接起来.
再见
D'
B
E
E'
B'
活动2.右图是一个轴对称图形:
D
(1)你能找出它的对称轴吗?
3
(2)连接点A与点A1的线段探与对究称轴新有知A B
C
什么关系?连接点B与点B1的线段呢?
D1
4
A1
C1 B1
(3)线段AD与线段A1D1有什么关系?线 段BC与B1C1呢?为什么?
12
(4)∠1与∠2有什么关系? ∠ 3与∠4呢?说说你的理由?
纸打开后铺平.如图
A
D B
C
1
3
F
E
C'
2
4
F'
E'
A'
D' B'
A
C
1
C'
A'
2
问(题 轴对1:称两)个“14”有什探么关究系新? 知B D
3
F
E
4
F'
E'
D' B'
问题2:在上面扎字的过程中,点E与点E′重合,点F与点F′重 合.设折痕所在直线为l,连接点E与点 E′的线段与l有什么关系?点F与 点F′呢?
6cm2
,
∴h=4 .
随堂练习
5.如图,已知牧马营地在M处,每天牧马人要 赶着马群先到河边饮水,再到草地吃草,然后
回到营地,试设计出最短的放牧路线.
随堂练习
解:以河为对称轴作M的对称点 ,过 作草地的 垂线,垂线和河的交点H就是所求的点.
初中数学_探索轴对称的性质教学设计学情分析教材分析课后反思
探索轴对称的性质学习目标(1)知识与技能:探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。
(2)过程与方法:经历探索轴对称的性质的过程,在操作活动过程中,发展学生主动探究和合作交流的习惯。
培养学生观察、探索、分类、归纳等能力。
(3)情感态度与价值观:兴趣是最好的老师,本课的主要目的就是提高学生的学习兴趣,并让学生认识到数学来源于生活,又能指导生活这一辩证思想。
教学重难点重点:轴对称的性质难点:轴对称性质的探索复习引入轴对称图形:如果沿某条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做,这条直线叫这个图形的。
轴对称:如果沿着一条直线对折后,能够,那么称这,这条直线叫做这两个图形的。
动手动脑探究新知:动动手:(1)将一张长方形的白纸对折后,任意画一条线段AB ,用笔尖在点A、点B处扎空,然后将纸展开铺平。
(2)在折痕另一侧的两个扎空中,点A扎出的扎空用点A′表示,点B扎出的扎空用点B′表示,并连接A′,B′两点,得到线段A′B′ ,然后分别连接点A、点A′和点B、点B′,得到线段AA′ 和线段B B′(3)(2)在折痕另一侧的两个扎空中,点A扎出的扎空用点A′表示,点B扎出的扎空用点B′表示,并连接A′,B′两点,得到线段A′ B′ ,然后分别连接点A、点A′和点B、点B′,得到线段AA′ 和线段B B′动动脑:下图中,△ABC与△A′B′C′关于直线m成轴对称C′A′Am1、将△ABC沿对称轴m对折,与∠A互相重合的角是谁?它们关于直线m成什么关系?在轴对称图形中,沿对称轴对折后,把能够互相重合的两个角称之为对应角。
2、你知道对应角之间有什么大小关系?做一做如图:将一张长方形的纸对折,然后用笔尖扎出“14”这个数字,将纸打开后铺平:(1)两个“14”有什么关系?(2l有什么关系?点F和F′呢?(3)线段AB与A′B′,CD与C′D′有什么关系?(4)∠1与∠2有什么关系?∠3与∠4呢?练一练(1)你能找出它的对称轴吗?(2)连接点A与点A1的线段与对称轴有什么关系?连接点B与点B1的线段呢?3 1A BCD FE打开(3)线段AD 与线段A 1D 1有什么关系?线段BC 与B 1C 1呢?为什么?(4)∠1与∠2有什么关系? ∠ 3与∠4呢?说说你的理由?你会根据轴对称的性质,画出图案的另一半吗?对称点的画法:1.过点A 画对称轴l 的 垂线,设垂足为B ;2.延长AB 至A ′,使得BA ′=AB ,则点A ′就是A 关于直线l 的对称点课堂达标1. 如果两个图形关于某条直线对称,那么对应点所连的线段被 垂直平分。
1.3探索轴对称的性质——1.1认识三角形
知新篇一.轴对称的性质及其应用(1)轴对称的性质:①对应点所连的线段被对称轴 。
②对应 相等,对应 相等。
(2)如图是一个轴对称图形,直线AO 是对称轴, 则相等的线段有: = , = 。
线段CD 被直线AO 。
量得30B∠,则∠E= 。
(3)设A 、B 两点关于直线MN 对称,则_____垂直平分______。
(4)等腰三角形是轴对称图形,它的底边被对称轴_________。
提醒:(1)对称轴上的点即是对应点所连线段的垂直平分线. (2)找准对应线段和对应角。
二.轴对称在实际中的应用 1.按边分类:图(1)是 三角形,图(2)是 三角形,图(3)是 三角形. 2.按角分类:图(1)是 三角形,图(2)是 三角形,图(3)是 三角形. 三.三角形的三边关系1.AB+AC BC, AB-AC BC.2.结论:三角形两边的和______第三边.三角形两边的差____第三边.【典例】【思路分析】判断三条线段能否组成三角形可根据三角形三边关系:“两边之和大于第三边,两边之差小于第三边”进行判断.最简单方法是:看较短两边的和是否大于最长边. 【解析】【点睛】在判断已知三条线段是否能够组成三角形,必须满足下列两个条件之一:(1)如果选最长边作第三边,则需判断其余两边之和大于第三边,(2)如果选最短边作第三边,则需判断其余两边之差小于第三边.三角形三边关系靓题拾贝三角形的三边关系:(1)三角形任意两边之和大于第三边.(2)三角形任意两边之差小于第三边.注意:这里的“两边”指的是任意的两边,对于“两边之差”它可能是正数,也可能是负数,一般地取“差”的绝对值. 一、 判断三条已知线段能否组成三角形【例1】已知四组线段的长分别如下,以各组线段为边,能组成三角形的是 ( ) A.1,2,3 B.2,5,8 C.3,4,5 D.4,5,10解:选C .对于A ,1+2=3,所以A 不能,对于B ,2+5<8,所以B 不能,对于D ,4+5<10,所以D 不能. 二、已知三角形的周长,判断三边能否组成等腰三角形【例2】将长度为12m 的一根铁丝,截成三段,能围成等腰三角形的是 ( ) A.8m ,2m ,2m B.7m ,2.5m ,2.5m C.6m ,3m ,3m D.1m ,5.5m ,5.5m 解:选D .根据三边关系,三个选项A 、B 、C 均有两边之和小于或等于第三边. 三、已知三角形的两边长,求第三边取值的个数【例3】已知三角形的三边长分别是3、8、x ,若x 的值为偶数,则x 的值有 ( ) A.6个 B.5个 C.4个 D.3个解:选D .根据三角形三边关系有:8-3<x <8+3即5<x <11,若x 为偶数,则x=6,8,10.1.探新知 预习乐园提素能 自测自评A B ECD O214版北师七上学案教用P12左上T22.如图,ABC △与A B C '''△关于直线l 对称,则B ∠的度数为( ) A .30B .50C .90D 100.3.下列图形中,哪一幅成轴对称( )4.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( )A.6个B.5个C.4个D.3个5.为估计池塘两岸A 、B 间的距离,杨阳在池塘一侧选取 了一点P ,测得PA=16m ,PB=12m ,那么AB 间的距离不可能是( )A.5mB.15mC.20mD.28m6.一辆汽车的牌号在水中的倒影如图所示,则这辆汽车的牌号应为______.7.如图,三角形纸片ABC ,10cm 7cm 6cm AB BC AC ===,,,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则AED △的周长为 cm .8.两根木棒的长分别是8cm ,10cm ,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长x 的取值范围是________.9.如图所示,在△ABC 中,D ,E 是BC ,AC 上的两点,连结BE ,AD 交于F ,(1)图中有几个三角形?并表示出来;(2)△BDF 的三个顶点是什么?三条边是什么? (3)AB 边是哪些三角形的边? (4)F 点是哪些三角形的顶点?10.一个等腰三角形的周长是36 cm .(1)已知腰长是底边长的2倍,求各边的长; (2)已知其中一边长8cm ,求另外两边的长.11.已知三角形的两边长分别是4cm 和9cm .(1)求第三边的取值范围; (2)已知第三边长是偶数,求第三边长;(3)求周长的取值范围.12.(全家总动员)一次晚会上,主持人出了一道题目:“如何把变成一个真正的等式",很长时间没有人答出,小兰仅仅拿出了一面镜子,就很快解决了这道题目,你知道她是怎样做的吗?答案探新知,预习乐园:一、1.互相重合 对称轴2.(1)(2)(4)(5)是轴对称图形,都有2条对称轴,(3)是轴对称图形,有无数条对称轴。
探索轴对称的性质
探索轴对称的性质燕山中学庄晓燕教学目标:知识与技能:探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。
过程与方法:经历探索轴对称的性质的过程,在操作活动和观察分析过程中发展学生主动探究和合作交流的习惯,培养学生观察、探索、归纳、说理等能力。
情感、态度与价值观:通过学生欣赏生活中的轴对称图形和操作活动,培养其空间观念和审美意识,体会轴对称在生活中的广泛应用,提高他们的学习兴趣和数学素养。
重点:探索轴对称性质。
运用轴对称的性质解决简单的实际问题。
难点:“对应点所连的线段被对称轴垂直平分”的探索及灵活运用轴对称的性质。
教具学具:多媒体、课件,长方形白纸一张,圆规、刻度尺,平面镜、写有的纸片。
教学过程:一.创设情境,引入新课。
欣赏两副图片,说出他们的区别和联系,让学生明白轴对称与轴对称图形是相对而言的,它们之间有很多共同的性质,从而引入新课。
二.动手操作,探索性质第一环节:探究1:活动(一):1. 将长方形纸对折,用圆规尖或笔尖扎出一个点, 然后把纸打开铺平,得到的点分别记为A 和A′,折痕所在的直线为l 。
(如下图:)点A和点A′有什么关系?2.将长方形纸对折,再扎出一个点, 然后把纸打开铺平,得到的点分别记为 B 和 B′.点B 和点B′有什么关系?在轴对称图形中,沿对称轴对折后,能够互相重合的点叫对应点(对称点)。
3. 连接点A和点A′,点B和点B′,与对称轴分别交与点D,E。
4.(1)观察、交流:图中有哪些相等的线段?线段AA′与直线l有什么关系?线段BB′与直线l有什么关系?说说你的理由 .活动(二):1. 将长方形纸对折,再扎出一个与点A、B不在同一直线上的点, 然后把纸打开铺平,得到的点分别记为C 和C′.连接AB, A′B′,AC, A′C′,BC,B′C′。
2. △ABC 与 △A ′B ′C ′有什么关系?3.(1)观察、 交流:线段AB 与A ′B ′有什么关系?线段AC 与A ′C ′有什么关系?线段BC 与B ′C ′呢?说说你的理由 .在轴对称图形中,沿对称轴对折后,能够互相重合的线段叫对应线段。
探索轴对称的性质教学设计(五四制)数学七年级上册
2、对应线段AB与A'B'有什么关系?为什么?
3、∠1与∠2有什么关系?说明理由
轴对称的性质:
在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等。
三、针对训练
《探索轴对称的性质》教学设计
复备人: 复备时间:
学科
数学
设计者
焦明炜
单位
泰安市岱岳区
开元中学
年级
七年级
来源
鲁教版数学七年级上册
课时
1
【课程标准】2022版
通过具体实例了解轴对称的概念,探索它的基本性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分,对应线段相等,对应角相等。
【学习目标】
1、通过探索,能发现并说出轴对称的性质
2、能利用轴对称的性质画出简单图形
3、经历探索轴对称性质的过程,发展学生的空间观念和推理能力
【德育融合点】
从探究轴对称性质中感悟数学中的对称之美,培养学生善于观察,发现,总结的能力。
【评价任务设计】
1.利用活动,探索两图形轴对称的性质。(检测目标1)
2.理解“对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等”的性质。(检测目标2)
1、右图的对称轴是;
2、连接线段AA1,AA1被MN;
3、若AD=3,那么A1D1=;
4、若∠1=80°,那么∠2=;
四、学以致用
五、例题精讲
1、如图,将一张长方形纸片ABCD沿EF折叠,点D,C分别落在D',C'的位置处,若∠1=50°,则∠DEF的度数是。
六、课堂小结
鲁教版数学七年级上册2.2《探索轴对称的性质》教学设计
鲁教版数学七年级上册2.2《探索轴对称的性质》教学设计一. 教材分析《探索轴对称的性质》这一节内容是鲁教版数学七年级上册第二章第二节的一部分。
本节课的主要内容是让学生通过观察、操作、思考、交流等活动,探索并掌握轴对称的性质,能够运用轴对称的性质解决一些简单的实际问题。
教材中安排了丰富的素材,引导学生从具体的事物中抽象出轴对称的图形,从而引出轴对称的概念,接着通过大量的实例让学生体会并理解轴对称的性质,最后通过一些练习题让学生巩固所学的内容。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们对平面图形的认识已经比较深入,但是对于轴对称的概念和性质可能还比较陌生。
因此,在教学过程中,教师需要从学生的实际出发,通过具体的实例和操作活动,让学生逐步理解和掌握轴对称的性质。
三. 教学目标1.知识与技能目标:让学生理解轴对称的概念,掌握轴对称的性质,能够运用轴对称的性质解决一些简单的实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:让学生在探究过程中体验数学的乐趣,培养学生的团队合作意识和问题解决能力。
四. 教学重难点1.重点:轴对称的概念和性质。
2.难点:如何运用轴对称的性质解决实际问题。
五. 教学方法1.情境教学法:通过具体的实例和操作活动,让学生在实际情境中理解和掌握轴对称的性质。
2.小组合作学习:让学生在小组内进行讨论和交流,培养学生的团队合作意识和问题解决能力。
3.引导发现法:教师引导学生从具体的事物中抽象出轴对称的图形,从而引出轴对称的概念。
六. 教学准备1.教具:多媒体课件、尺子、剪刀、纸张等。
2.学具:学生用书、练习本、剪刀、纸张等。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称图形,如剪纸、对称门等,引导学生观察和思考,引出轴对称的概念。
2.呈现(10分钟)教师通过多媒体课件展示一些轴对称的图形,让学生直观地感受轴对称的性质,并引导学生用语言描述轴对称的性质。
《7.3探索轴对称的性质》教学设计
《7.3探索轴对称的性质》教学设计高新一中徐航胜教学目标:1、知识与技能:探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。
2、过程与方法:经历探索轴对称的性质的过程,在操作活动和观察、分析过程中发展学生主动探究和合作交流的习惯,培养学生观察、探索、分类、归纳等能力。
3、情感态度与价值观:通过视频引入新课,加强励志教育,培养学生奋发向上、认真学习的态度;通过学生的操作活动和欣赏生活中的轴对称图形,培养其空间观念和审美意识,体会轴对称在生活中的广泛应用,提高他们的学习兴趣。
教学重点:轴对称的性质教学难点:探索轴对称的性质教学方法:探究式教学为主,直观演示法,设疑诱导法为辅。
教学手段:多媒体等辅助手段教学过程:1、创造情境,引入新课纪念“5.12”灾难视频中“生死不离”片断,引入烛光组成的图案,通过设问,导入新课,并板书课题。
2探究活动(一)如图将一张矩形纸对折,然后用笔尖扎出“14”这个数字,将纸打开后铺平.用多媒体演示,学生动手操作,然后让学生通过操作和观察,能发现哪些结论,然后再设问回答。
1、上图中两个“14”有什么关系?2、在上面扎字的过程中,点E与点E′重合,点F与点F′重合.设折痕所在直线为l,连接点E与点E′的线段与l有什么关系?点F与点F′呢?3、线段AB与线段A′B′有什么关系?CD与C′D′呢?4、∠1与∠2有什么关系?∠3与∠4呢?说说你的理由.探究活动(二)观察图所示的轴对称图形。
(1)找出它的对称轴.(2)连接点A与点A′的线段与对称轴有什么关系?连接点B与点B′的线段呢?(3)线段AD与线段A′D′有什么关系?线段BC与线段B′C′呢?为什么?(4)∠1与∠2有什么关系?∠3与∠4呢?说说你的理由. 让学生在准备好的图案上动手操作,通过观察测量,对折等解决以上问题。
解决问题的方法和结论学生会说出好多种,对这些结论进行整理,就是轴对称的性质。
【公开课】探索轴对称的性质教学设计
课题:5.2 探索轴对称的性质【北师大版七年级下学期】一、内容分析:《探索轴对称的性质》是义务教育教科书北师大版七年级数学下册第五章第二节的内容。
课程标准:在丰富的现实情境中,经历观察、折叠、图片欣赏、操作、交流合作等数学活动过程,进一步积累数学活动经验和发展空间观念。
通过丰富的生活实例了解轴对称的概念,探索轴对称的基本性质:对应点的连线被对称轴垂直平分、对应线段相等、对应角相等。
给定对称轴,能画出简单平面图形(点、线段、三角形等)关于给定对称轴的对称图形。
二、教材分析知识层面:《探索轴对称的性质》是学生了解了生活中的轴对称及简单的轴对称图形,有了探索全等三角形的性质的经验基础上,进行探究性学习的拓展和延续,是对小学学习轴对称图形有关知识的延伸和拓展,也为今后探索旋转、平移、中心对称、相似等有关知识积累数学活动经验,发展空间观念奠定基础。
轴对称的性质是进行图案设计、美化生活和学习后继课的重要工具,在学生的知识体系中起着承上启下的作用。
能力层面:在几何知识的学习活动中,学生已经掌握了简单的平面几何图形的特征、初步形成了空间观念,解决了一些简单的现实问题,因此获得了一些数学活动的经验,具备一定的实际操作能力;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的自主探索、合作交流的能力。
这些能力为本节课的教学奠定了技能基础。
思想层面:本节课在欣赏轴对称图形中感受大自然的美好;在实践中感受数学美;在合作中享受快乐;在创作中体验成功的喜悦,在交流中丰富了数学语言,产生了对生活的美好向往。
同时让学生感受数学与生活的密切联系,认识到数学知识来源于生活实践产生,反过来又能指导生活实践这一辩证思想,对数学产生浓厚兴趣,增强学好数学的自信。
三、学情分析七年级学生好奇心强,勤于思考,爱动手,但生活经验不太丰富,所以对生活中的数学缺乏有效的探究手段,在小学虽然已接触轴对称的有关知识,但课堂活动经验不广泛,本阶段从认识生活中的轴对称,到探索轴对称的性质特征,实现从感性认识到理性认识的过渡较难转化还可能有一定的困难。
七年级数学下册《探索轴对称的性质》教案、教学设计
2.教学步骤:
(1)导入:通过展示生活中的轴对称实例,激发学生的学习兴趣,为新课的学习做好铺垫。
(2)新课导入:引导学生观察轴对称图形,总结轴对称的性质,并学会运用性质解决实际问题。
(3)巩固练习:设计有针对性的练习题,让学生在练习中巩固所学知识,提高应用能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:轴对称的概念、性质和应用。
2.难点:运用轴对称性质解决实际问题,以及进行几何证明。
(二)教学设想
1.教学方法:
-采用情境教学法,通过现实生活中的实例,如剪纸、建筑等,让学生感受轴对称的美,自然引入轴对称的概念。
-运用探究式教学法,引导学生通过观察、实践、讨论等途径,发现并理解轴对称的性质。
(二)过程与方法
1.采用启发式教学,引导学生观察、分析、总结轴对称图形的特点,培养学生的观察能力和归纳能力。
2.设计丰富的教学活动,如小组讨论、动手操作等,让学生在实践中掌握轴对称的性质,提高学生的动手操作能力和合作意识。
3.通过对典型例题的讲解与练习,使学生掌握利用轴对称性质解决实际问题的方法,培养学生的应用能力和解决问题的能力。
为了巩固本节课所学内容,培养学生的独立思考能力和实践操作技能,特布置以下作业:
1.基础作业:
-请学生完成课本上相关的练习题,旨在巩固轴对称的基本概念和性质。
-学生通过绘制图形,观察并分析生活中的轴对称现象,提高对轴对称图形的认识。
2.提高作业:
-设计一些综合性的题目,要求学生运用轴对称性质解决实际问题,如计算轴对称图形的面积、周长等。
在教学过程中,教师应关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高,从而实现以上教学目标。同时,注重激发学生的学习兴趣,营造轻松愉快的学习氛围,使学生在探索轴对称性质的过程中,感受到数学学习的乐趣。
5.2-探索轴对称的性质
A. 1个 C. 3个
B. 2个 D. 4个
能力拓展
1. 如图,已知点A、B直线MN同侧两点,
点A1、A关于直线MN对称。连接A1B交直线
MANP于+B点P的P,长连为接AP5。cm(1)若A。1B=5cm,则
A
B
M
PN
A1
(2)若P1为直线MN上任意一点(不与P重 合),连结AP1、BP1,试说明 AP1+BP1›AP+BP。
这条直线就是对称轴
说明:(1)“轴对称”是两个图形。 (2)对折 (3)重合
L
A
40
C
B
D
65
F E
1、如图:△ABC
与△DEF关于直线L
成轴对称,则 △ABC与△DEF具 有怎样的关系?
2、若两三角形全 等,则是否一定关 于某条直线对称?
全等与轴对称的关系: 轴对称的两个图形一定全等,但全等
打开
A
C m C'
1
2
A'
3
4
D
F F'
D'
B
E
E'
B'
1、上图中,两个“14”有什么关系?
关于直线m成轴对称
打开
A
Cm
C'
1
2
A'
3
4
D
F F'
D'
B
E
E'
B'
2、线段 AB与A′B′,CD与C′D′ 有什么关系?
对应线段:相等
A
C m C'
A'
鲁教版七年级数学上【课件】2 探索轴对称的性质
答:分别相等
合作交流探究新知
做一做:
右图是一个轴对称图形:
对称轴
(1)你能找出它的对
A
称轴吗?
(2)连接点A与点A1的 线段与对称轴有什么关 系?连接点B与点B1的 线段呢?
连接的线段被对称轴垂直平分
合作交流探究新知
(3)线段AD与线段A1D1有 什么关系?线段BC与B1C1呢? 为什么?
答:相等
(4)∠1与∠2有什么关 系? ∠ 3与∠4呢?说说 你的理由?
答:相等
合作交流探究新知
综合以上问题,你能得到什么结论?
1.对应点所连的线段被对称轴垂直平分
A'
2.对应线段相等
C'
A C
3.对应角相等
B' B
课堂小结布置作业 小结:
通过这堂课的学习,你掌握了轴对称的哪些性质?
1.对应点所连的线段被对称轴垂直平分 2.对应线段相等,对应角相等
这条直线就是对称轴
合作交流探究新知
如图:将一张长方形形的纸对折,然后用笔 尖扎出“14”这个数字,将纸打开后铺平:
合作交流探究新知
(1)两个“14”有什么关系? 答:关于直线l对称 (2)设折痕所在直线为l,连结点E和E′的
线段和l有什么关系?点F和F′呢?都被直线l
垂直平分
(3)线段AB与A′B′,CD与C′D′有什么关系?
第二章 轴对称
2 探索轴对称的性质
课堂导入
思考:
温故 知新
轴对称图形:如果一个图形沿某条直线对折后,直线两
旁的部分能够完全重合,那么这个图形叫做轴对称图形。
这条直线叫这个图形的对称轴。
轴对称:对于两个图形,把一个图形沿着某一条直线对 折,如果它能够与另一个图形完全重合,那么就说这
第13讲 轴对称现象与探索轴对称的性质七年级数学下册同步精品讲义
第13讲轴对称现象与探索轴对称的性质目标导航知识精讲知识点01生活中的轴对称现象(1)轴对称的概念:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也称轴对称;这条直线叫做对称轴.(2)轴对称包含两层含义:①有两个图形,且这两个图形能够完全重合,即形状大小完全相同;②对重合的方式有限制,只能是把它们沿一条直线对折后能够重合.【知识拓展】(2020秋•十堰期末)如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋【即学即练1】(2021•商河县校级模拟)如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是()A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形【即学即练2】(2020•薛城区模拟)如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.【即学即练3】(2020秋•鼓楼区校级月考)已知:如图,CDEF是一个长方形的台球面,有A、B两球分别位于图中所在位置,试问怎样撞击球A,才能使A先碰到台边FC反弹后再击中球B?在图中画出A球的运动线路.知识点02 轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.【知识拓展1】(2021秋•思明区校级期末)如图,已知AB∥CD,AD∥BC,∠ABC=60°,BC=2AB=8,点C关于AD的对称点为E,连接BE交AD于点F,点G为CD的中点,连接EG、BG,则S△BEG=()A.B.C.16D.32【即学即练1】(2021秋•高邮市期末)如图,直线AB、CD相交于点O,P为这两条直线外一点,连接OP.点P关于直线AB、CD的对称点分别是点P1、P2.若OP=4,则点P1、P2之间的距离可能是()A.0B.7C.9D.10【即学即练2】(2021秋•普兰店区期末)如图,长方形ABCD中,点F在边BC上,△AED与△FED关于直线DE对称,若∠BFE=50°,则∠AED=度.【即学即练3】(2021秋•望城区期末)如图,△ABC和△ABE关于直线AB对称,△ABC和△ADC关于直线AC对称,CD与AE交于点F,若∠ABC=32°,∠ACB=18°,则∠CFE的度数为.【知识拓展2】(2021秋•镇海区期末)【定义】如图1,OM平分∠AOB,则称射线OB,OA关于OM对称.【理解题意】(1)如图1,射线OB,OA关于OM对称且∠AOB=45°,则∠AOM=度;【应用实际】(2)如图2,若∠AOB=45°,OP在∠AOB内部,OP,OP1关于OB对称,OP,OP2关于OA对称,求∠P1OP2的度数;(3)如图3,若∠AOB=45°,OP在∠AOB外部,且0°<∠AOP<45°,OP,OP1关于OB对称,OP,OP2关于OA对称,求∠P1OP2的度数;【拓展提升】(4)如图4,若∠AOB=45°,OP,OP1关于∠AOB的OB边对称,∠AOP1=4∠BOP1,求∠AOP(直接写出答案).知识点03 轴对称图形(1)轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.(2)轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.(3)常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等等.【知识拓展1】(2021秋•巴彦县期末)下列图标是节水、绿色食品、回收、节能的标志,其中是轴对称图形的是()A.B.C.D.【即学即练1】(2021秋•微山县期末)下列图形是轴对称图形的是()A.等腰三角形B.直角三角形C.三角形D.四边形【即学即练2】(2021秋•湖州期末)如图,在3×3的正方形网格中,从空白的小正方形中再选择一个涂黑,使得3个涂黑的正方形成轴对称图形,则选择的方法有()A.3种B.4种C.5种D.6种【即学即练3】(2021秋•嘉鱼县期末)在如图所示的正方形网格中,已有两个正方形涂黑,请再将其中的一个空白正方形涂黑,使整个图形是一个轴对称图形(最少三种不同方法).知识点04轴对称-最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.【知识拓展1】(2021秋•澄城县期末)如图,∠AOB=30°,∠AOB内有一定点P,且OP=15,若在OA、OB上分别有动点M、N,则△PMN周长的最小值是()A.5B.15C.20D.30【即学即练1】(2021秋•钢城区期末)如图,高速公路的同一侧有A,B两城镇,它们到高速公路所在直线MN的距离分别为AC=2km,BD=4km,CD=8km.要在高速公路上C,D之间建一个出口P,使A,B两城镇到P的距离之和最小,则这个最短距离为()A.8km B.10 km C.12 km D.10km【即学即练2】(2021秋•澄海区期末)如图,若∠AOB=44°,P为∠AOB内一定点,点M在OA上,点N在OB上,当△PMN的周长取最小值时,∠MPN的度数为()A.82°B.84°C.88°D.92°【即学即练3】(2021秋•思明区校级期末)小茗同学在公园的花圃里发现一只小蚂蚁在搬食物,因为食物比它大,所以它搬得很辛苦.但是它不放弃,一直慢慢往回爬.一会它咬住食物使劲往后拖,一会又咬住食物来回转圈,小茗同学急的想帮它.于是他连续几天都在观察,发现这个花圃的形状,如图,是一个锐角三角形,且∠ACB=50°,边AB上一定点P是小蚂蚁的家,小蚂蚁从家出发,它沿直线寻找食物,线路是从P出发走到AC,再从AC走到BC,最后回到家.假设M、N分别是AC和BC边上的动点,小茗同学想帮小蚂蚁寻找最短的行走路线,所以他求出当小蚂蚁行走路线所构成的△PMN周长最小时,∠MPN的度数为.【即学即练4】(2021秋•海沧区期末)如图,海上救援船要从A处到海岸l上的M处携带救援设备,再回到海上C处对故障船实施救援,使得行驶的总路程AM+CM为最小.已知救援船和故障船到海岸l的最短路径分别为AB和CD,BD=20海里,∠AMB=60°,救援船的平均速度是25节(1节=1海里/小时),则这艘救援船从A处最快到达故障船所在C处的时间为小时.【知识拓展2】(2021秋•南昌县期末)某班级在探究“将军饮马问题”时抽象出数学模型:直线l同旁有两个定点A、B,在直线l上存在点P,使得P A+PB的值最小.解法:如图1,作点A关于直线l的对称点A',连接A′B,则A′B与直线l的交点即为P,且P A+PB的最小值为A′B.请利用上述模型解决下列问题;(1)如图2,△ABC中,∠C=90°,E是AB的中点,P是BC边上的一动点,作出点P,使得P A+PE 的值最小;(2)如图3,∠AOB=30°,M、N分别为OA、OB上一动点,若OP=5,求△PMN的周长的最小值.知识点05翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.【知识拓展1】(2022•渝中区校级开学)如图,有一块直角三角形纸片,∠C=90°,AC=8,BC=6,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD为()A.2B.C.D.4【即学即练1】(2021秋•宿城区期末)将一张长方形纸片按如图所示的方式折叠,EF、FG为折痕.若∠EF A'=30°,则∠GFB=.【知识拓展2】(2021秋•河源期末)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将△ACB沿CD折叠,使点A恰好落在BC边上的点E处.(1)求△BDE的周长;(2)若∠B=37°,求∠CDE的度数.【即学即练1】.(2021秋•斗门区期末)如图1,将长方形ABEF的一角向长方形内部折叠,使角的顶点A 落在点A′处,OC为折痕,则OC平分∠AOA′.(1)若∠AOC=25°,求∠A'OB的度数;(2)若点D在线段BE上,角顶点B沿着折痕OD折叠落在点B′处,且点B′在长方形内.①如果点B′刚好在线段A′O上,如图2所示,求∠COD的度数;②如果点B′不在线段A′O上,且∠A'OB'=40°,求∠AOC+∠BOD的度数.【即学即练2】(2021秋•德城区期末)同学们,我们已经学习了角的平分线的定义,请你用它解决下列问题:(1)如图1,已知∠AOC,若将∠AOC沿着射线OC翻折,射线OA落在OB处,则射线OC一定平分∠AOB.理由如下:因为∠BOC是由∠AOC翻折而成,而翻折不改变图形的形状和大小,所以∠BOC=,所以射线是∠AOB的平分线;(2)如图2,将长方形纸片的一角折叠,使顶点A 落在A′处,EF为折痕.①若EA′恰好平分∠FEB,求出∠FEB的度数;②过点E再将长方形的另一角∠B做折叠,使点B落在∠FEB的内部B′处(B′不在射线EA′上),EH为折痕,H为EH与射线BC的交点.请猜想∠A′EF,∠B′EH与∠A′EB′三者的数量关系,并说明理由.能力拓展一.解答题(共9小题)1.(2017春•汉阳区期中)对于特殊四边形,通常从定义、性质、判定、应用等方面进行研究,我们借助于这种研究的过程与方法来研究一种新的四边形﹣﹣﹣﹣﹣筝形.定义:在四边形ABCD中,若AB=AD,BC=CD,我们把这样四边形ABCD称为筝形性质:按下列分类用文字语言填写相应的性质:从对称性看:筝形是一个轴对称图形,它的对称轴是;从边看:筝形有两组邻边分别相等;从角看:;从对角线看:.判定:按要求用文字语言填写相应的判定方法,补全图形,并完成方法2的证明.方法1:从边看:运用筝形的定义;方法2:从对角线看:;如图,四边形ABCD中,.求证:四边形ABCD是筝形应用:如图,探索筝形ABCD的面积公式(直接写出结论).2.(2021秋•渭滨区期末)如图,在四边形ABCD中,∠BAD=∠B=∠C=90°,AD=BC=20,AB=DC =16.将四边形ABCD沿直线AE折叠,使点D落在BC边上的点F处.(1)求BF的长.(2)求EC的长.3.(2021秋•济南期末)在数学实验课上,李静同学剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC纸片沿某条直线折叠,使斜边两个端点A与B重合,折痕为DE.(1)如果AC=5cm,BC=7cm,可得△ACD的周长为;(2)如果∠CAD:∠BAD=1:2,可得∠B的度数为;操作二:如图2,李静拿出另一张Rt△ABC纸片,将直角边AC沿直线CD折叠,使点A与点E重合,若AB=10cm,BC=8cm,请求出BE的长.4.(2020秋•饶平县校级期末)如图,点P是∠AOB外的一点,点Q是点P关于OA的对称点,点R是点P关于OB的对称点,直线QR分别交∠AOB两边OA,OB于点M,N,连接PM,PN,如果∠PMO=33°,∠PNO=70°,求∠QPN的度数.5.(2020秋•含山县期末)如图①,将笔记本活页一角折过去,使角的顶点A落在A′处,BC为折痕(1)图①中,若∠1=30°,求∠A′BD的度数;(2)如果又将活页的另一角斜折过去,使BD边与BA′重合,折痕为BE,如图②所示,∠1=30°,求∠2以及∠CBE的度数;(3)如果在图②中改变∠1的大小,则BA′的位置也随之改变,那么问题(2)中∠CBE的大小是否改变?请说明理由.6.(2021春•章贡区期末)如图,C为线段BD上的一个动点,分别过点B,D作AB⊥BD,ED⊥BD,连接AC,EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问:点C满足什么条件时,AC+CE的值最小?求出这个最小值.(3)根据(2)中的规律和结论,请构图求出代数式的最小值.7.(2021秋•义乌市期中)如图,A、B两个小镇在河流的同侧,它们到河流的距离AC=10千米,BD=30千米,且CD=30千米,现要在河流边修建一自来水厂分别向两镇供水,铺设水管的费用为每千米3万元.(1)请在河流上选择水厂的位置M,使铺设水管的费用最少.(不写作法,保留作图痕迹)(2)最低费用为多少?8.(2020•济宁模拟)准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD 上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,BE=2,求菱形BFDE的面积.9.(2019春•江阴市期中)直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=;如图3,将△ABC 沿直线AB折叠,若点C落在直线MN上,则∠ABO=;(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数.分层提分题组A 基础过关练一.选择题(共14小题)1.(2021秋•公安县期末)下列标志中,可以看作是轴对称图形的是()A .B .C .D .2.(2021秋•海曙区期末)下列四个数学符号中,是轴对称图形的是()A.≌B.≠C.⊥D.≥3.(2020春•漳州期末)如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是()A.点A B.点B C.点C D.点D4.(2019秋•桐梓县期末)在汉字“生活中的日常用品”中,成轴对称的有()A.2个B.3个C.4个D.5个5.(2021秋•五常市期末)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=()A.60°B.70°C.80°D.90°6.(2021秋•迁安市期末)如图,将长方形纸片沿MP和NP折叠,使线段PB'和PC'重合,则下列结论正确()①∠BPB′=∠C′PC②∠BPM+∠B'PM=90°③∠BPM+∠NPC=90°④∠NPM=90°⑤∠B'PM+∠NPC=90°A.①②③B.③④⑤C.②③④D.①⑤7.(2021秋•鲤城区校级期末)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,则∠EBD的度数()A.80°B.90°C.100°D.110°8.(2021秋•宜兴市期末)将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠EFG=α,则∠B'FC'的度数是()A.α﹣45°B.2α﹣90°C.90°﹣αD.180°﹣2α9.(2021秋•滦州市期末)某市计划在公路l旁修建一个飞机场M,现有如下四种方案,则机场M到A,B两个城市之间的距离之和最短的是()A.B.C.D.10.(2021秋•余杭区期中)下列图形不一定是轴对称图形的是()A.直角三角形B.等腰三角形C.线段D.圆11.(2021春•东坡区校级期末)如图1,▱ABCD的对角线交于点O,▱ABCD的面积为120,AD=20.将△AOD、△COB合并(A与C、D与B重合)形成如图2所示的轴对称图形,则MN+PQ=()A.29B.26C.24D.2512.(2021秋•应城市期末)如图,∠MON=50°,P为∠MON内一点,OM上有点A,ON上有点B,当△P AB的周长取最小值时,∠APB的度数为()A.60°B.70°C.80°D.100°13.(2021秋•博白县期末)如图,将长方形纸片的一角作折叠,使顶点A落在A′处,EF为折痕,若EA′恰好平分∠FEB,则∠FEB的度数为()A.60°B.120°C.130°D.100°14.(2021秋•平舆县期末)如图,牧童在A处放牛,其家在B处,A、B到河岸CD的距离分别为AC、BD,且AC=BD,若A到河岸CD的中点的距离为500m.牧童从A处把牛牵到河边饮水后再回家,牧童回家所走的最短路程为()A.500m B.1000m C.1500m D.2000m二.填空题(共2小题)15.(2021秋•浦东新区期末)如图,长方形ABCD中,长BC=a,宽AB=b,(b<a<2b),四边形ABEH 和四边形ECGF都是正方形.当a、b满足的等量关系是时,图形是一个轴对称图形.16.(2021秋•思明区校级期末)如图,园区入口A到河的距离AE为100米,园区出口B到河的距离BF 为200米,河流经过园区的长度EF为400米,现策划要在河上建一条直径CD为100米的半圆形观赏步道(如图:C在D左侧),游览路线定为A﹣C﹣D﹣B,问步道入口C应建在距离E米处,才能使游览路线最短.三.解答题(共10小题)17.(2019秋•石景山区期末)如图,在4×4的正方形网格中,有5个黑色小正方形.(1)请你移动一个黑色小正方形,使移动后所形成的4×4的正方形网格图形是轴对称图形.如:将8号小正方形移至14号;你的另一种做法是将号小正方形移至号(填写标号即可);(2)请你移动2个小正方形,使移动后所形成的图形是轴对称图形,你的一种做法是将号小正方形移至号、将号小正方形移至号(填写标号即可).18.(2019春•滕州市期末)在下列各图中分别补一个小正方形,使其成为不同的轴对称图形.19.(2015秋•相城区期中)画图:试画出下列正多边形的所有对称轴,并完成表格,正多边形的34567…边数…对称轴的条数根据上表,猜想正n边形有条对称轴.20.(2014秋•兴化市校级月考)请找出下列符号所蕴含的内在规律,然后设计一个恰当的图形..21.(2021秋•温岭市期末)如图,D是Rt△ABC斜边BC上的一点,连接AD,将△ACD沿AD翻折得△AFD.恰有AF⊥BC.(1)若∠C=35°,∠BAF=;(2)试判断△ABD的形状,并说明理由.22.(2021春•龙口市月考)如图,直线a∥b,点A,D在直线b上,射线AB交直线a于点B,CD⊥a于点C,交射线AB于点E,AB=15cm,BE:AE=1:2,P为射线AB上一动点,P从A点出发沿射线AB 方向运动,速度为1cm/s,设点P运动时间为t,M为直线a上一定点,连接PC,PD.(1)当t=m时,PC+PD有最小值,求m的值;(2)当t<m(m为(1)中的取值)时,探究∠PCM、∠PDA与∠CPD的关系,并说明理由;(3)当t>m(m为(1)中的取值)时,直接写出∠PCM、∠PDA与∠CPD的关系.23.(2022•碑林区校级开学)如图,有一直角三角形纸片,两直角边AB=6cm,AC=8cm,现将直角边AB 沿直线BD进行对折,使点A刚好落在斜边BC上,且与A′B重合,求BD的长.24.(2021秋•江源区期末)如图,把直角三角形放置在4×4方格纸上,三角形的顶点都在格点上.在方格纸上用三种不同的方法画出与已知三角形成轴对称的三角形.(要求:画出的三角形的顶点都在格点上,不涂黑)25.(2020秋•德惠市期末)教材呈现:如图是华师版八年级上册数学教材111页的部分内容.如图①,Rt△ABC的斜边AC比直角边AB长2cm,另一直角边BC长为6cm,求AC的长.(1)请根据教材内容,结合图①,写出完整的解题过程.(2)拓展:如图②,在图①的△ABC的边AB上取一点D,连接CD,将△ABC沿CD翻折,使点B的对称点E落在边AC上.①求AE的长.②DE的长为.26.(2021秋•亭湖区校级月考)如图的三角形纸板中,沿过点B的直线折叠这个三角形,使点C落在AB 边的点E处,折痕为BD.(1)若AB=10cm,BC=8cm,AC=6cm,求△AED的周长;(2)若∠C=100°,∠A=70°,求∠BDE的度数.题组B 能力提升练一.选择题(共5小题)1.(2020秋•仪征市期末)如果一个三角形是轴对称图形,那么这个三角形一定是()A.直角三角形B.等腰三角形C.锐角三角形D.等边三角形2.(2021秋•讷河市期末)如图,∠AOB=30°,点P在∠AOB的内部,点C,D分别是点P关于OA、OB 的对称点,连接CD交OA、OB分别于点E,F;若△PEF的周长的为10,则线段OP=()A.8B.9C.10D.113.(2021秋•上杭县期末)如图,将一张长方形纸片ABCD沿对角线BD折叠后,点C落在点E处,连接BE交AD于点F,再将三角形DEF沿DF折叠后,点E落在点G处,若DG刚好平分∠ADB,那么∠BDC的度数为()A.60°B.54°C.40°D.36°4.(2021秋•高邮市期末)如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm,点D、E分别在AC、BC 边上.现将△DCE沿DE翻折,使点C落在点H处.连接AH,则AH长度的最小值为()A.0B.2C.4D.65.(2021秋•西城区校级期中)如图,在5×6的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中△ABC是一个格点三角形,在格纸范围内,与△ABC成轴对称的格点三角形的个数为()个.A.8B.9C.10D.11二.填空题(共7小题)6.(2021秋•广陵区期中)等边三角形是一个轴对称图形,它有条对称轴.7.(2020春•兰考县期末)如果一个三角形是轴对称图形,且有一个角为60°,那么这个三角形是,它有条对称轴.8.(2017秋•邹城市期末)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为.9.(2016秋•玄武区期末)如图,一束光线从点O射出,照在经过A(1,0)、B(0,1)的镜面上的点D,经AB反射后,反射光线又照到竖立在y轴位置的镜面,经y轴再反射的光线恰好通过点A,则点D的坐标为.10.(2021秋•西青区期末)如图,在一个三角形纸片ABC中,∠B=90°,AB=3,点D在边BC上,将△ABD沿直线AD折叠,点B恰好落在AC边上的点E处.若AD=CD,则AC的长是.11.(2022•大渡口区模拟)如图,在△ABC中,点D在BC边上,BD=2CD,且∠ADC=45°,将△ABC 沿AD折叠,点C落在点C'处,连接BC',若BC'=10,则BC的长为.12.(2021秋•双流区期末)如图,在长方形纸片ABCD的边AD上有一个动点E,连接BE,将△ABE沿BE边对折,使点A落在点F处,连接AF,DF.若AB=3,ED=2,∠AFD=90°,则线段BE的长为.三.解答题(共6小题)13.(2016春•桐柏县校级月考)如图,直线a⊥b,请你设计两个不同的轴对称图形,使a、b都是它的对称轴.14.(2021秋•东阳市期末)综合实践课上,小聪用一张长方形纸片ABCD对不同折法下的夹角大小进行了探究,先将纸片的一角对折,使角的顶点A落在A′处,EF为折痕,如图①所示.(1)若∠AEF=30°,①求∠A′EB的度数;②又将它的另一个角也折过去,并使点B落在EA′上的B′处,折痕为EG,如图②所示,求∠FEG的度数;(2)若改变∠AEF的大小,则EA′的位置也随之改变,则∠FEG的大小是否改变?请说明理由.15.(2021秋•朝阳区期末)在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的<l1,l2>伴随图形.例如:点P(2,1)的<x轴,y轴>伴随图形是点P′(﹣2,﹣1).(1)点Q(﹣3,﹣2)的<x轴,y轴>伴随图形点Q′的坐标为;(2)已知A(t,1),B(t﹣3,1),C(t,3),直线m经过点(1,1).①当t=﹣1,且直线m与y轴平行时,点A的<x轴,m>伴随图形点A′的坐标为;②当直线m经过原点时,若△ABC的<x轴,m>伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围.16.(2021•河南模拟)贾芳芳同学在研究矩形面积与矩形的边长x,y之间的关系时,得如表数据:x…123456…y…9 4.53m 1.8 1.5…请依据表格解答下列问题:(1)表格中的数据m=,y与x之间的函数关系式为;(2)依据表格中的数据描绘出函数图象,并写出一条函数图象的性质;(3)若函数图象上有一点P,过点P分别向x,y轴作垂线段,垂足分别为M、N,若点P的横坐标为a,请问当a为何值时四边形PMON周长有最小值?(提示:a2+b2≥2ab)17.(2021秋•富县期中)如图,已知四边形ABCD与四边形EFGH关于直线MN对称,∠D=130°,∠A+∠B=155°,AD=4cm,EF=5cm.(1)求出AB,EH的长度以及∠G的度数;(2)连接AE,DH,AE与DH平行吗?为什么?18.(2021秋•汉阳区期中)如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A,C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB边下方的点E处,记△ADE的周长为L,直接写出L的取值范围.题组C 培优拔尖练一.选择题(共6小题)1.(2021秋•梁溪区校级期末)如图,点A,B在直线MN的同侧,A到MN的距离AC=8,B到MN的距离BD=5,已知CD=4,P是直线MN上的一个动点,记P A+PB的最小值为a,|P A﹣PB|的最大值为b,则a2﹣b2的值为()A.160B.150C.140D.1302.(2021秋•柯桥区期末)如图,三角形纸片ABC,点D是BC边上一点,连结AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点F.若点F是DE的中点,AD=9,EF=2.5,△AEF的面积为9,则点F到BC的距离为()A.1.4B.2.4C.3.6D.4.83.(2021秋•连云港期末)将一张长方形纸片ABCD按如图所示方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′AD′=8°,则∠EAF的度数为()A.40°B.40.5°C.41°D.42°4.(2020秋•九龙坡区校级月考)如图在四边形ABEC中,∠BEC和∠BAC都是直角,且AB=AC.现将△BEC沿BC翻折,点E的对应点为E',BE′与AC边相交于D点,恰好BE′是∠ABC的角平分线,若CE=1,则BD的长为()A.1.5B.C.2D.5.(2018春•江岸区校级月考)△ABC中,∠ABC=97.5°,P、Q两点在AC边上,PB=2,BQ=3,PQ=,若点M、N分别在边AB、BC上,当四边形PQNM的周长最小时,(MP+MN+NQ)2的值为()A.18+8B.24+8C.22+6D.31+6.(2018•乐清市模拟)如图,一张三角形纸片ABC,其中∠BAC=60°,BC=6,点D是BC边上一动点,将BD,CD翻折使得B′,C′分别落在AB,AC边上,(B与B′,C与C′分别对应),点D从点B 运动运动至点C,△B′C′D面积的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小二.填空题(共3小题)7.(2021秋•弋江区期末)利用折纸可以作出角平分线,如图1则OC为∠AOB的平分线.如图2、图3,折叠长方形纸片,OC,OD均是折痕,折叠后,点A落在点A′,点B落在点B′,连接OA′.①如图2,若点B′恰好落在OA′上,且∠AOC=32°,则∠BOD=;②如图3,当点B′在∠COA′的内部时,连接OB′,若∠AOC=44°,∠BOD=61°,求∠A′OB′的度数为.8.(2021秋•硚口区期末)在△ABC中,∠A=α(α<60°),点E、F分别为AC和AB上的动点,BE与CF相交于G点,且BE+EF+CF的值最小.①如图1,若AB=AC,α=40°,则∠ABE=°;②如图2,∠BGC=.(用含α的式子表示)9.(2017•肥城市二模)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1,还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2017次操作后得到的折痕D2016E2016,到BC的距离记为h2017;若h1=1,则h2017的值为.三.解答题(共8小题)10.指出图中各有多少条对称轴.11.(2009秋•五华区校级期中)(1)请找出下图中每个正多边形对称轴的条数,并填入下表.34568…正多边形的边数345…对称轴的条数(2)请写出正多边形的对称轴的条数y随正多边形的边数n(n≥3)变化的关系式.12.(2021•百色模拟)在△ABC中,∠BAC=45°,AD⊥BC于D,将△ABD沿AB所在的直线折叠,使点D落在点E处;将△ACD沿AC所在的直线折叠,使点D落在点F处,分别延长EB、FC使其交于点M.(1)判断四边形AEMF的形状,并给予证明;(2)若BD=2,CD=3,试求四边形AEMF的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探索轴对称的性质
【学习目标】
1、探索轴对称的基本性质,记清对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。
【学习重点】弄清楚对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等”的性质
【学习难点】运用对称轴的性质来解决问题。
【学习方法】自主探索
【学习过程】
一、自主学习
1 •以下结论正确的是()•
A •两个全等的图形一定成轴对称
B •两个全等的图形一定
是轴对称图形
C.两个成轴对称的图形一定全等 D •两个成轴对称的图形
一定不全等
2.下列说法中正确的有().
①角的两边关于角平分线对称;
②两点关于连接它的线段的中垂线为对称;
③成轴对称的两个三角形的对应点,或对应线段,或对应角也分别成轴对称.
④到直线L距离相等的点关于L对称
A . 1个
B . 2个C. 3个D . 4个
3.下列说法错误的是().
A .等边三角形是轴对称图形;
B .轴对称图形的对应边相等,对应角相等;
C .成轴对称的两条线段必在对称轴一侧;
D .成轴对称的两个图形对应点的连线被对称轴垂直平分.
二、合作探究
(1)_________________________________________________ 在轴对称图形中对应点所连的线段被对称轴______________________________________ 。
(2)_________________ 对应线段 _______ ,对应角。
(3)_____________________________________________ 轴对称图形变换的特征是不改变图形的____________________________________________ 和 ________ ,只
改变图形的_________ 。
(4)成轴对称的两个图形,它们的对应线段或其延长线相交,交点在。
例1已知Rt△ ABC中,斜边AB=2BC,以直线AC为对称轴,点
例2.如图,牧童在A处放牛,其家在B处。
A、B到河岸的距离分
别为AC BD且AC=BD已知A到河岸CD的中点的距离为500m>
(1)牧童从A处把牛牵到河边饮水后再回家,试问在何处饮水,所走的路程最短?
在图中作出该处并说出理由。
(2)最短路程是多少m?
C D 河
、拓展延伸
例3•如图,矩形ABCD沿AE折叠,使点
如果/ BAF=60,那么/ DAE= ________________
变式练习如图,把一张长方形纸片ABCD& BD对折,使C点落在E 处,BE与AD交于点0,写出一组相等的线段 ____________________________ (不含AB=CDAD=BC。
四、课堂小结:
本节课我学习了_________________________
最得意的是 ______________________
美中不足的是______________________________
五、课堂检测
1、两个图形关于某直线对称,对称点一定在()
A、这条直线的两旁
B、这条直线的同旁
C、这条直线上 D 、这条直线两旁或这条直线上
2、国旗上的一个五角星的对称轴的条数是()
A、1 条
B、2 条
C、5 条D 、10 条
3、为了美化环境,在一块正方形空地上分别种植四种不同的花草, 现将这块空地按下列
要求分成四块:A 、分割分的整个图形必须是轴对称
图形;B 、四块图形形状相同;C 、四块图形面积相等。
现已有两种不同 的分法:(1分别作两条对角线;(2)过一条边的四等分点作这边的 垂线段(图2中两个图形的分割看作同一方法),请你按照上述三个要 求,分别在下面两个正方形中给出另外两种不同的分割方法。
六、反思 学生反思: 教师反思:。