3.土中自重应力、附加应力计算及应用

合集下载

土力学

土力学
(2)土的非均质和非理想弹性的影响。土的各种结构构造使 土呈现非均质性,且土体也不是理想的弹性体,而是一种具有 弹塑性和粘滞性的介质。但实际工程中,土应力水平较低,土 的应力-应变曲线关系呈线性关系。因此,当土层间的性质差 异并不十分悬殊时,采用弹性理论计算土应力在实用上是允许 的。
(3)地基土可视为半无限体。地基土在水平和深度方向上相 对于建筑物基础的尺寸而言,可视为是无限延伸的,因此,地 基土符合半无限体的假设。
pmax

2P 3Kb

3(L
2P 2 e)b
e>b/6: 出现拉应力区
3.2.4 基底附加压力
p0 p ch p 0h
例题:某矩形基础底面尺寸l=2.4m, b=1.6m,埋深2.0m,所受荷载设计值 m=100kN·m,F=450kN,其他条件见图。 试求基底压力和基底附加压力。
z
3P
2

z3 R5
z

3P
2
(r 2
z3 z2 )5/2

3
2
1 [(r / z)2 1]5/ 2
P z2
z

P z2
查表3.1
3.3.2 竖向分布荷载地基附加应力
若在半无限体表面作用一分布荷载p(x,y),如图所示。计 算土中某点M(x,y,z)的竖向应力σz。
在基底取微元面积dF=dξdη,则作 用在dF上的集中力:
a 点:z = 0 m,σcz=γz=0; b 点:z = 2 m,σcz=γz=19 ×2=38 kPa c 点:z = 5 m , σcz =∑γihi=19 ×2+10 ×3=68 kPa, d 点:z = 9 m,σcz =∑γihi=19 ×2+10 ×3+7.1 ×4=96.4 kPa

土力学:第三章土中应力计算

土力学:第三章土中应力计算

附加应力的分布规律
平面分布规律
附加应力在平面上的分布呈扩散状,随着深度的 增加而减小。
深度分布规律
在一定深度范围内,附加应力随深度的增加而增 大,达到一定深度后基本保持稳定。
方向分布规律
附加应力在不同方向上的分布不同,与外部荷载 的方向和土体的性质有关。
附加应力的影响因素
01
外部荷载
外部荷载的大小、分布和作用方 式直接影响附加应力的分布和大 小。
在水平方向上,自重应力 表现为均匀分布。
侧向应力
在土体边缘,自重应力表 现为侧向应力,对土体的 稳定性产生影响。
自重应力的影响因素
土的密度
土的密度越大,自重应力越大。
重力加速度
重力加速度越大,自重应力越大。
土体的几何形状和尺寸
土体的几何形状和尺寸对自重应力的分布和大小有显著影响。
04 土中附加应力计算
02
03
土体的性质
边界条件
土体的容重、压缩性、内摩擦角、 粘聚力等性质对附加应力的影响 较大。
土体的边界条件,如固定边界、 自由边界等,对附加应力的分布 和大小也有影响。
05 土中有效应力计算
CHAPTER
有效应力的概念与计算方法
有效应力的概念
有效应力是指土壤颗粒之间的法向应 力,是土壤保持其结构稳定和防止剪 切破坏的主要因素。
土中应力计算的重要性
01
02
03
工程安全
准确的土中应力计算是确 保工程安全的前提,能够 预测可能出现的危险和制 定应对措施。
设计优化
通过土中应力计算,可以 优化设计方案,提高工程 结构的稳定性和经济性。
科学研究
土中应力计算有助于深入 研究土力学性质和规律, 推动土力学学科的发展。

土中应力计算课件

土中应力计算课件

y
Rz
dzy
dzx dxz
M
dyz dy dyx
dxy
dx
z
3P z3
பைடு நூலகம்
3P
cos3
2 R5 2R 2
R r2 z2
z
3P z3
2 R5
z
3P
2
(r 2
z3 z2 )5/2
3
2
1 [(r / z)2 1]5/ 2
P z2
z
P z2
3.3.3 矩形和圆形荷载下地基附加应力计 算——积分法
3.3 土中附加应力
3.3.1 基本概念
1、定义
附加应力是因为外荷载作用,在地基中产生旳应力增量。
2、基本假定
地基土是各向同性旳、均质旳线性变形体,而且在深度和水平 方向上都是无限延伸旳。
3.3.2 竖向集中力作用时旳地基附加应 力布辛奈斯克解答
P
x
r x2 y2
r
y
x
R r2 z2
dz
z2
arctan
z
lb
]
(l 2 b2 z2 )
z c p0
c
1 2
(m2
mn(m2 2n2 1) n2 )(1 n2 ) m2 n2
1
arctan n
m ]
(m2 n2 1)
c ——均布矩形荷载角点下旳竖向附加应力系数,简称角点 应力系数,可查表得到。
* 对于均布矩形荷载附加应力计算点不位于角点下旳情况:
2z3 p
z b
b
d
0 [(x )2 z 2 ]2
z
p
[n(arctan
n m
arctan

土力学与地基基础(土中的应力计算)

土力学与地基基础(土中的应力计算)
此时基底平均压力按下式计算: 此时基底平均压力按下式计算:
矩形基础:A=b× 矩形基础:A=b×L
d1 + d2 Gk =A
Gk = γ G Ad
γG=20kN/m3
2、偏心荷载下的基底压力 单向偏心荷载下的矩形基础如图。 单向偏心荷载下的矩形基础如图。 设计时, 设计时,通常基底长边方向取与偏心 方向一致, 方向一致,最大压力值与最小压力值 按材料力学短柱偏心受压公式计算: 按材料力学短柱偏心受压公式计算:
p0 = pk − σ c
四、地基附加应力
地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。 地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。
(一)竖向集中应力作用下的地基附加应力
1、布辛奈斯克解 、
3p z3 3 1 p σz = = 2π ( r 2 + z 2 )5 / 2 2π ( r / z )2 + 1 5 / 2 z 2
第三章 地基土中的应力计算
一、概述 地基土中的应力: 地基土中的应力: 1、自重应力 2、附加应力
建筑物修建以前, 建筑物修建以前,地基中由于土 体本身的有效重量所产生的应力。 体本身的有效重量所产生的应力。 建筑物修建以后,建筑物重量等 建筑物修建以后, 外荷载在地基中引起的应力, 外荷载在地基中引起的应力,所 谓的“附加” 谓的“附加”是指在原来自重应 力基础上增加的压力。 力基础上增加的压力。
γ
γ′
均质地 基
γ1(γ
1
< γ2 )
γ2 γ′ 2
成层地基
(二)水平向自重应力
σ cx = σ cy = K 0σ cz
式中: 土的侧压力系数或静止土压力系数, 式中:K0——土的侧压力系数或静止土压力系数,经验值可查课本 土的侧压力系数或静止土压力系数 表3.1

4土中应力(自重-地基附加应力)

4土中应力(自重-地基附加应力)

水对土体有浮力作用,则下部 分柱体取有效重度,即
cz ( w ) z ' z
当地下水位下降,地基中有效自重应力增加,从而引起地面
大面积沉降的严重后果
当地下水位上升时,水位上升引起地基承载力的减小,湿陷
性土的陷塌
原地下水位
1’
1 1
1’
原地下水位
2’
2
2
2’
4.不透水层的影响
四、公式的应用
1.均质地基土的自重应力stress in homogeneous soil
cz Z
2.成层地基土的自重应力
当地基为成层土体时,设各土层 的厚度为hi,重度为i,则在深度z处 土的自重应力计算公式为:
式中n为从天然地面到深度z处的 土层数。
3.地下水的影响
计算点在地下水位下时,由于
不透水层层面的自重应力按上覆土层的水土总重计算
5.自重应力图的绘制 ① 建立直角坐标系 ② 确立特征点并编号 (地面、层面、 地下水位面、不透水层层面)
③ 计算各点的竖向自重应力
④ 按比例绘出特征点自重应力的位置 ⑤ 用直线连接各点 ⑥ 校核 (地下水位处,不透水层处)
§4.3 基底压力
一、概述
土力学中应力符号的规定
z
zx
地基:半无限空间
o
∞ x ∞
y yz
xy
x
∞ y
z
x xy xz ij = yx y yz zx zy z
一. 土力学中应力符号的规定
zx
材料力学
z +
正应力
剪应力
-
zx
土力学
z

土的自重应力、基底压力和地基附加应力

土的自重应力、基底压力和地基附加应力

arctan
lb
2 l2 z2 b2 z2 l2 b2 z2
z l 2 b2 z2
角点下的地基附加应力:
取 m=l/b,n=z/b(注意其中b为荷载面的短边宽 度),令:
Kc
1
2
mn m2 2n2 1 m2 n2 12 n2 m2 n2
12
arctan n
剪应力:
xy
yx
3P
2
xyz
R5
1 2
3
xy(2R z)
R3
(
R
z
)2
yz
zy
3P
2
yz2 R5
3Py
2R3
cos2
xz
zx
3P
2
xz2 R5
3Px
2R3
cos2
x、y、z — 剪应力,其中前一脚标表示与它作用的微
面的法线方向平行的座标轴,后一脚标表示与它作用方 向平行的座标轴;
解:
cz1 1h1 19 2.0 38kPa cz 2 1h1 1'h2
38 (19.4 10) 2.5 61.5kPa
cz3
1h1
1'h2
' 2
h3
61.5 (17.4 10) 4.5 96.6kPa
w 2 (h2 h3 ) 10 7.0 70.0kPa
• 在深基坑开挖中,需 大量抽取地下水,以致 地下水位大幅度下降, 引起土的重度改变,从 而造成地表大面积下沉 的严重后果。 • 若地下水位长期上升, 会引起地基承载力的减 小、湿陷性土的陷塌现 象等,必须引起注意。
【例4-1】
试计算下图所示土层的自重应力及作用在基岩顶面的土自重 应力和静水压力之和,并绘制自重应力分布图。

土力学——3 土中应力

土力学——3 土中应力

土力学王丽琴西安理工大学土建学院岩土工程研究所第三章土中应力第一节概述第二节土体的自重应力计算第三节有效应力原理第四节基底压力的计算第五节地基中的附加应力计算卓越班作业:P 124,1~4,6,7;水工班作业:P 67-68,1,2,4,5本课程中所有计算均可取g=10m/s 2土中应力第三章强度问题变形问题地基中的应力状态应力应变关系土力学中应力符号的规定应力状态自重应力附加应力基底压力计算有效应力原理建筑物修建以后,建筑物重量等外荷载在地基中引起的应力。

所谓的“附加”是指在原来自重应力基础上增加的应力。

建筑物修建以前,地基中由土体本身的有效重量所产生的应力。

本章问题:如何计算地基中的应力?第三章土中应力第一节概述第二节土体的自重应力计算第三节有效应力原理第四节基底压力的计算第五节地基中的附加应力计算一、土力学中应力符号的规定xσzσxzτz xτxσzσxzτz xτ材料力学+-+-土力学正应力剪应力拉为正压为负顺时针为正逆时针为负压为正拉为负逆时针为正顺时针为负③均匀、各向同性体(土层性质变化不大时)②线弹性体(应力较小时)①连续介质(宏观平均)ν、E 与(x, y, z)无关与方向无关碎散体非线性弹塑性成层土各向异性Δσεe p e e线弹性体加载卸载二、土的应力-应变关系的假定理论方法——弹性力学解→求解“弹性”土体中的应力——解析方法→优点:简单,易于绘成图表等三、地基中常见的应力状态yzxo1.空间应力状态——三维问题x e y e xy γyz γγxzγγyxγe ij e =x σy σxy τyz ττxzττyxτσij σ=xσy σxyτyzτz xτzσ王丽琴主讲2. 轴对称三维问题▪应变条件▪应力条件▪独立变量:x y z;e =e e x y z;σ=σσxy yz zx ,,0τττ=xy z x y z,;,σ=σσe =e e x e y e xy γyzγγxz γzy γyx γz e ij e =x σy σxy τyzττxzτzy τyx τzσij σ=000000000y xy yz zx ,,0γγγ=000xσy σxyτyzτz xτzσyσxσzσ一般三维应力状态:三轴应力状态:123σ≥σ≥σ123σ≥σ=σ忽略中主应力的影响理论研究和工程实践中广泛应用zxo3. 平面应变条件——二维问题xσy σxyττz xτzσxσzσxzτz xτ;0y =e 0;0zx yz yx ≠γ=γ=γ●沿长度方向有足够长度,L/B≥10;●垂直于y 轴切出的任意断面的几何形状均相同,其地基内的应力状态也相同;●平面应变条件下,土体在x,z 平面内可以变形,但在y 方向没有变形。

土力学第三章土中应力计算详解

土力学第三章土中应力计算详解

特点:一般自重应力不产生地基变形(新填土除 外);而附加应力是产生地基变形的主要原因。
整理ppt
3
概述
有效应力:由土骨架传递或承担的应力
孔隙应力:由土中孔隙水承担的应力 静孔隙应力与超孔隙应力
自重应力:由土体自身重量所产生的应力
附加应力:由外荷载(建筑荷载、车辆荷载、 土中水的渗流力、地震作用等)的作用,在土
整理ppt
均匀 E
1
E2<E
1 50
3.4 有效应力原理
wF2 1ER z2321R 1
整理ppt
34
一. 竖直集中力作用下的附加应力计算-布辛奈斯克课题
z
3F
2
z3 R5
R 2r2z2x2y2z2
z3 2 FR z3 523 [1(r/1z)2]5/2
F z2
3
1
2[1(r/z)2]5/2
集中力作用下的 地基竖向应力系数
整理ppt
z
F z2
查表3.1
a.矩形面积内
z (c Ac Bc Cc D )p
BA
C
h
b.矩形面积外
a
z (c be gc a hf gc c he gc d i ) fp gi
D ig df
整理ppt
b
c e42
c.矩形面积边缘线上
z (cIcI)Ip
d.矩形面积边缘线外侧
z (c I cI IcI II cI )p V
dPpdxdy dz 32dPR z35 23p R z35dxdy
z0 b0 ldzz(p,m ,n)
m=l/b, n=z/b
c F(bl ,bz)F(m,n)
dP

土力学完整课件土中应力计算

土力学完整课件土中应力计算
3dP z 3 3 pxz3 d z 5 dxdy 5 2 R 2bR
积分,得
z t p
Y
t f (m l / b, n z / b)
三角分布矩形荷载角点下的竖向附加应 力系数.可查表. 注意l—荷载不变化边 的长度; b—荷载变化边的长度.
水平均布荷载
q
z
x z
2
2 pz 3
2

2
(二)条形荷载下的附加应力计算 1.均布条形荷载下的附加应力 p O x b/2 b/2 z x M z 2. 三角形荷载的附加应力 pt O x b z x M z
z u p
z x u f u m , n b b
l
pmax pmin
基础底面的抵 抗矩;矩形截 面W=(bl2)/6
讨论:
N 6e pmax 1 bl l min
当e<l/6时,pmax,pmin>0,基底压力呈梯形分布 当e=l/6时,pmax>0,pmin=0,基底压力呈三角形分布 当e>l/6时,pmax>0,pmin<0,基底出现拉应力,基底压力重分布
F=400kN/m 0.1m M=20kN •m/m
3.基底中点下附加压 力计算
1.5m 2m 112.6kPa
0 =18.5kN/m3
292.0kPa
179.4kPa
112.6kPa
分析步骤Ⅳ:
F=400kN/m 0.1m M=20kN •m/m
1.5m
1m 1m 2m 2m 2m
0 =18.5kN/m3
3. r 0 ,随 z 从 0 开始增大, z 先随之增大,后随之减小;

土力学-第三章-土中应力计算详解

土力学-第三章-土中应力计算详解

基本假定
地基土是各向同性、均质、半无限空间弹性体 地基土在深度和水平方向都是无限的
地 表 临 空
地基:均质各向同性线性变形半空间体
应用弹性力学关于弹性半空间的理论解答
1.均质土竖向自重应力
若将地基视为均质半无限空间弹性体,土体在自重作用下只能产 生竖向变形,而无侧向位移及剪切变形存在,因此在深度z处平面上, 土体因自身重力产生的竖向应力等于单位面积上土柱体的重力。
3.水平向自重应力
天然地面
地基土在重力作用下,除承受 作用于水平面上的竖向自重应力外, 在竖直面上还作用有水平向自重应 力。由于土柱体在重力作用下无侧 向变形和剪切变形,因此可以证明 侧向自重应力与竖向自重应力成正 比,剪应力均为零。
cz z
cx cy K0 cz
cz
z
cx
cy
侧压力系数或静止 土压力系数
4 地下水位升降对自重应力的影响
自重应力分布曲线的变化规律
土的自重应力分布曲线是一条折线,拐点在土 层交界处和地下水位处。
同一层土的自重应力按直线变化。
自重应力随深度的增加而增大。
【例题3-1 】计算自重应力,并绘分布图。
4. 例题分析 【例】一地基由多层土组成,地质剖面如下图所示,试计算并绘制 自重应力σcz沿深度的分布图。
57.0kPa
80.1kPa
103.1kPa 150.1kPa 194.1kPa
cz 1h1 2 h2 n hn i hi
i 1
n


均质地基
1 (
1
2)
2 2
成层地基
3.2 基底压力与基底附加应力
上部结构

土中的应力计算

土中的应力计算
土不能承受拉力
e x
e xL
Ke
L x K=B/2-
L
压力调整 基底压
y
y
e
3K
y
pmin 0
力合力 与总荷
载相等
pmax
pmin
0 pmax
pmin 0
e<B/6: 梯形
pmax
e=B/6: 三角形
e>B/6: 出现拉应力区
2N
2N
pmax 3KL 3(B 2 e)L
12
2.2.3基底附加压力
H 成层
E1 均匀
E2<E1
25
无限均布荷载作用下的附加应力
当条形荷载在宽度方向增加 到无穷时,此时地基中附加应力 分布仍可按均布条形荷载下土中 应力的公式计算,查表2-10。
相当于薄压缩层:h 0.5b
b,z/b 0, αsz=1.0
基础中点处,任意深度处的附加
应力均等于p0,即在大面积荷载
作用下,地基中附加应力分布与 深度无关。
成层 H
均匀 E1
E2>E1
23
2.变薄交互层地基(各向异性地基) • 当Ex/Ez<1 时,应力集中——Ex相对较小,不利于应力扩散 • 当Ex/Ez>1 时,应力扩散——Ex相对较大,有利于应力扩散
24
3.双层地基(非均质地基)
(1)上层软弱,下层坚硬的成层地基 ▪ 中轴线附近σz比均质时明显增大的现象
21
条形荷载与矩形荷载的附加应力对比图
表明荷载作 用面积越大 附加应力传 递的越深。
22
2.3.4 地基附加应力的应用讨论
1.变形模量随深度增大的地基(非均质地基)
B

土力学-地基中的应力计算概述

土力学-地基中的应力计算概述

基础传至地 基的荷载
地基
基础 埋深
(1)集中荷载作用下的解 ( Boussinesq 解,1885 )
P
x
r
y
x
y
R
z
z
• 位移解
ux4PG[R xz3(12)R(Rxz)]
uz
4PG[R z23
(1)1]
R
Valentin Joseph Boussinesq (1842-1929)
法国著名物理家和数学 家,对数学物理、流体力学 和固体力学都有贡献。
a
a
a
b
角点
b
p
b
中心点
1
2
34
任意点
z
z
z
k(a , b
z) b
p
z
z
z
4k(a, b
2z) b
p
z z
k k1 k2 k3 k4
z k p
3)矩形线性荷载 (角点下)
角点
b
角点
p
z
a
z
p
z
k(b , a
z) a
p
查表计算
3. 应力计算小结
(1)自重应力及均匀满布荷载作用下的附加应力,可利用平衡方程 等通过简单方法获得。
(2)线状荷载作用下的应力(Flamant解)
p
1)属平面应变问题,即:
a. 应变 y 0 。
dP pdy
b. 位移、应力等量仅与坐标
x、z有关。
x
2)利用Boussinesq解,通过 沿荷载分布线积分得到应力。
x - dx=2p(x2x2zz2)2
y
xz
2p

3.土中自重应力、附加应力计算及应用

3.土中自重应力、附加应力计算及应用
P r
m
⑴在集中力P作用线上,r=0,当z=0 时,附加应力趋于无穷;随着深度 的增加,逐渐减少。 ⑵在r>0的竖直线上,当z=0时, 附加应力为零,随着深度的增加, 附加应力从零逐渐增大,至一定深 度后又随着深度的增加逐渐变小。 ⑶在z为常数的平面上,附加应力在 集中力作用线上最大,并随着r的增 加而逐渐减小,随着深度增加,这 一分布趋势保持不变,但会随着r增 加而降低的速率变缓。
z

应力叠加原理
当地基表面 作用有几个 集中力时, 可分别算出 各集中力在 地基中引起 的附加应力, 然后根据应 力叠加原理 求出附加应 力的总和
Pa
Pb
z
a c
b
空间问题的附加应力计算 设基础长度为L,宽度为b,当l/b<10时, 其地基附加应力的计算属于空间问题。 ⑴竖直均布荷载作用下矩形基底角点下 的附加应力
dA
z
0 0 l b
2 x 2 y 2 z 2
3z 3 p dxdy
dP L b x
52
p m 1 m 1 1 tg 2 2 2 2 2 2 1 m2 n2 m n 1 n n 1 m n Kc p
cx cy K0 cz
K0—土的侧压力系数,可通过试验求得,无 试验资料时可按经验公式推算
2.2 基底压力
概述 基底压力是计算地基中附加应力的外荷载, 也是计算基础结构内力的外荷载,因此,在计 算地基附加应力和基础内力时,都必须首先研 究基底压力的分布规律和计算方法。
基底压力:指上部结构荷载和基础自重通过基础传递, 在基 础底面处施加于地基上的单位面积压力。 基底反力:地基反向施加于基础底面上的压力。 基底附加压力:基底压力扣除因基础埋深所开挖的自重应力 之后在基底处施加于地基上的单位面积压力。

土中基底应力与附加应力计算[详细]

土中基底应力与附加应力计算[详细]

土中应力计算1 土中自重应力地基中的 应力分:自重应力——地基中的 自重应力是指由土体本身的 有效重力产生的 应力.附加应力——由建筑物荷载在地基土体中产生的 应力,在附加应力的 作用下,地基土将产生压缩变形,引起基础沉降.计算土中应力时所用的 假定条件:假定地基土为连续、匀质、各向同性的 半无限弹性体、按弹性理论计算.地基中除有作用于水平面上的 竖向自重应力外,在竖直面上还作用有水平向的 侧向自重应力.由于沿任一水平面上均匀地无限分布,所以地基土在自重作用下只能产生竖向变形,而不能有侧向变形和剪切变形.3.1.1均质土的 自重应力a 、假定:在计算土中自重应力时,假设天然地面是一个无限大的 水平面,因而在任意竖直面和水平面上均无剪应力存在.可取作用于该水平面上任一单位面积的 土柱体自重计算.b 、均质土层Z 深度处单位面积上的 自重应力为:应力图形为直线形.z cz γσ=σcz 随深度成正比例增加;沿水平面则为均匀分布.必须指出,只有通过土粒接触点传递的 粒间应力,才能使土粒彼此挤紧,从而引起土体的 变形,而且粒间应力又是影响土体强度的 —个重要因素,所以粒间应力又称为有效应力.因此,土中自重应力可定义为土自身有效重力在土体中引起的 应力.土中竖向和侧向的 自重应力一般均指有效自重应力.并用符号σcz 表示 .3.1.2成层土的 自重应力地基土往往是成层的 ,成层土自重应力的 计算公式:∑==n i i i cz z 1γσ结论:土的 自重应力随深度Z ↑而↑.其应力图形为折线形.自然界中的 天然土层,一般形成至今已有很长的 地质年代,它在自重作用下的 变形早巳稳定.但对于近期沉积或堆积的 土层,应考虑它在自重应力作用下的 变形.此外,地下水位的 升降会引起土中自重应力的 变化(图2—4).3.1.31、地下水对自重应力的 影响地下水位以下的 土,受到水的 浮力作用,使土的重度减轻.计算时采用水下土的 重度(w sat γγγ-=')2、不透水层的 影响不透水层指基岩层只含强结合水的坚硬粘土层作用在不透水层层面及层面以下的土自重应力应等于上覆土和水的总重.3、水平向自重应力地地中除了存在作用于水平面上的坚向自重应力外,还存在作用于坚直面上的水平自重应力,根据弹性力学和土体的侧限条件,可得:σcx=σcy=K oσczKo:土的侧压力系数4、地下水位升降引起的自重应力变化:地下水位下降自重应力增大,因没有水的浮力,地下水位上升自重应力减小 .[例题2—7] 某建筑场地的地质柱状图和土的有关指标列于例图2·1中.试计算地面下深度为2.5米、5米和9米处的自重应力,并绘出分布图.[解] 本例天然地面下第一层粉土厚6米,其中地下水位以上和以下的厚度分别为3.6米和2.4米,第二层为粉质粘土层.依次计算2.5米、3.6米、5米、6米、9米各深度处的土中竖向自重应力,计算过程及自重应力分布图一并列于例图2—1中.2 基底压力建筑物荷载通过基础传递给地基,在基础底面与地基之间便产生了接触应力.它既是基础作用于地基的基底压力,同时又是地基反用于基础的基底反力.对于具有一定刚度以及尺寸较小的柱下单独基础和墙下条形基础等,其基底压力可近似地按直线分布的图形计算,即按下述材料力学公式进行简化计算.1.基底压力的概念:在基础与地基之间接触面上作用着建筑物荷载通过基础传来的压力称为基底压力.(方向向下)↓单位面积土体所受到的压力称为基底压力.2.地基反力:地基对基础的反作用力(方向向上)↑3.基底压力的分布形态和哪些因素有关?基础的刚度、地基土的性质、基础埋深、荷载大小 .4.基底压力的分布形态:1)柔性基础地基反力分布与上部荷载分布基本相同,而基础底面的沉降分布则是中央大而边缘小.图3-2 柔性基础基底压力分布2)刚性基础在外荷载作用下,基础底面基本保持平面,即基础各点的沉降几乎是相同的,但基础底面的地基反力分布则不同于上部荷载的分布情况.刚性基础在中心荷载作用下,开始的地基反力呈马鞍形分布;荷载较大时,边缘地基土产生塑性变形,边缘地基反力不再增加,使地基反力重新分布而呈抛物线分布,若外荷载继续增大,则地基反力会继续发展呈钟形分布图3-3 刚性基础基底压力分布图马鞍形—一般建筑物基础属此形态,近似“直线形”抛物线形钟形3.2.2基底压力的简化计算1、中心荷载作用下的基底压力中心荷载下的基础,其所受荷载的合力通过基底形心.基底压力假定为均匀分布(图2—5),此时基底平均压力设计值按下式计算:式中:F:上部结构传至基础顶面的 坚向力设计值,kN;G:基础自重设计值及其上回填土重标准值,kN;r G :基础及因填土的 平均重度,一般取20kN/米3,在地下水位以下部分用有效重度; d:基础埋深,必须从设计地面或室内外平均设计地面起算,米;A:基础底面面积,米2.如基础长度大于宽度5倍时,可将基础视为条形基础进行计算.即可沿长度方向取1米计算.2、 偏心荷载下的 基底压力对于单向偏心荷载下的 矩形基础如图2·6所示.设计时,通常基底长边方向取与偏心方向一致,此时两短边边缘最大压力设计值与最小 压力设计值按材料力学短柱偏心受压公式计算:F G p A +=AdG G γ=min maxp p WM lb G F ±+米:作用于基础底面的 力矩设计,kN.米;W:基础底面的 抵抗矩,米3,对于矩形截面W=bL 2/6;P 米ax 、p 米in:分别为基础底面边缘的 最大、最小 压力设计值.将e=米/(F+G)、A=bl 、W=bl 2/6代入上式,得:a 当e<L/6时,基底压力呈梯形分布;b 当e=L/6时,基底压力呈三角形分布;c 当e>L/6时,p 米in<0,则:p 米ax=2(F+G)/3ab式中:a:单向偏心坚向荷载作用点至基底最大压力边缘的 距离,米,a=L/2-e.b:基础底面宽度.3.2.3基底附加压力建筑物建造前,土中早巳存在着自重应力.如果基础砌置在天然地面上,那末全部基底压力就是新增加于地基表面的 基底附加压力.一般天然土层在自重作用下的 变形早巳结束,因此只有基底附加压力才能引起地基的 附加应力和变形.实际上,一般浅基础总是埋置在天然地面下一定深度处,该处原有的 自重应力由于开挖基坑而卸除.因此,由建筑物建造后的 基底压力中扣除基底标高处原有的 土中自重应力后,才是基底平面处新增加于地基的 基底附加压力,基底平均附加压力值按下式计算(图2—8): 61F G e lb l +⎛⎫=± ⎪⎝⎭P o=基底压力P —土的自重应力σcz即P o=P-σcz —引起地基的变形(即基础的沉降)p0=p-r0dp0:基底附加压力设计值,kPa;p:基底压力设计值,kPa;r0:基底标高以上各天然土层的加权平均重度.其中地下水位以下部分取有效重度,kN/米3;d:从天然地面起算的基础埋深,米.有了基底附加压力,即可把它作为作用在弹性半空间表面上的局部荷载,由此根据弹性力学求算地基中的附加应力.3 地基附加应力地基附加应力是指建筑物荷重在土体中引起的附加于原有应力之上的应力.其计算方法一般假定地基土是各向同性的、均质的线性变形体,而且在深度和水平方向上都是无限延伸的 ,即把地基看成是均质的线性变形半空间,这样就可以直接采用弹性力学中关于弹性半空间的理论解答.计算地基附加应力时,都把基底压力看成是柔性荷载,而不考虑基础刚度的影响. 3.3.1 集中力作用下土中应力计算1、单个竖向集中力作用在均匀的、各向同性的半无限弹性体表面作用一竖向集中力F时,半无限体内任意点米的应力(不考虑弹225223)(23z Fz r Fz Z απσ=+=[]2521)/(123+=z r πα性体的 体积力)可由布辛克斯纳解计算,如图3-5所示.工程中常用的 竖向正应力s z 及地表上距集中力为R 处的 竖向位移w (沉降)可表示成如下形式:图3-5 竖向集中力作用下的 附加应力E - 土的 弹性模量;μ - 泊松比. 工程上对上述应力公式加以改造为: ( α称为集中力作用下的 地基竖向力系数,可由表查得)2、多个集中力及不规则分布荷载作用θππσ353cos 2323R F R Fz Z ==()⎥⎦⎤⎢⎣⎡-++=R R z E F w 1)1(12132μπμθcos 222z z y x R =++=oc z p ασ=3.3.2 分布荷载下地基附加应力对实际工程中普遍存在的 分布荷载作用时的 土中应力计算,通常可采用如下方法处理:当基础底面的 形状或基底下的 荷载分布不规则时,可以把分布荷载分割为许多集中力,然后用布西奈斯克公式和叠加原理计算土中应力.当基础底面的 形状及分布荷载都是有规律时,则可以通过积分求解得相应的 土中应力.如图3-6所示,在半无限土体表面作用一分布荷载p (x ,y ),为了 计算土中某点米(x ,y ,z )的 竖向正应力σz 值,可以在基底范围内取单元面积d F =d ξd η,作用在单元面积上的 分布荷载可以用集中力d Q 表示,d Q =p (x ,y ) d ξd η.这时土中米点的 竖向正应力σz 值可用下式在基底面积范围内积分求得,即:图3-6(右图)分布荷载作用下土中应力计算1、空间问题的 附加应力计算常见的 空间问题有:均布矩形荷载、三角形分布的 矩形荷载及均布的 圆形荷载.(1) 均布矩形荷载图3-7(右图)矩形面积均布荷载作用下土中应力计算① 矩形面积角点下土中竖向应力计算在图3-7所示均布荷载作用下,计算矩形面积角点c 下深度z 处N 点的 竖向应力s z 时,同样可其将表示成如[]⎰⎰⎰+-+-==A A z z z y x d d y x p z d 252223)()(),(23ηξηξπσσpz d d z o l l bb z αηξξηπσ=++=⎰⎰--222252223)(23⎥⎥⎦⎤⎢⎢⎣⎡+++++++++=2222222320412arctan 41)4)(41()81(22m n m nm n m n m m n mn a π下形式:角点应力系数:在矩形面积上作用均布荷载时,若要求计算非角点下的 土中竖向应力,可先将矩形面积按计算点位置分成若干小 矩形,如图3-8所示.在计算出小 矩形面积角点下土中竖向应力后,再采用叠加原理求出计算点的 竖向应力s z 值.这种计算方法一般称为角点法.图3-8 角点法计算土中任意点的 竖向应力② 矩形面积中点O 下土中竖向应力计算图3-7表示在地基表面作用一分布于矩形面积(l ×b )上的 均布荷载p ,计算矩形面积中点下深度z 处米点的 竖向应力s z 值.式中n =l /b 和米=z /b .⎥⎥⎦⎤⎢⎢⎣⎡+++++++++=2222222222222arctan ))(()2(21z b l z lbz b l z b z l z b l lbz a c π⎰⎰=++=l o boz p z y x dxdy b xpz 011252223)(23απσ⎥⎥⎦⎤⎢⎢⎣⎡+++++=222222231)(21b l zz b l z b z b a t π⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛+-=+=⎰⎰23202000202522301111)(23r z p z r drd rz p z ππθσ(2) 矩形面积上作用三角形分布荷载时土中竖向应力计算图3-9(右图) 矩形面积三角形荷载作用下土中应力计算 当地基表面作用矩形面积(l ×b )三角形分布荷载时,为计算荷载为零的 角点下的 竖向应力值,可将坐标原点取在荷载为零的 角点上,相应的 竖向应力值σz 可用下式计算:(3) 圆形面积上作用均布荷载时土中竖向正应力的 计算 为了 计算圆形面积上作用均布荷载p 时土中任一点米(r,z )的 竖向正应力,可采用原点设在圆心O 的 极坐标(如图3-10),由以下公式在圆面积范围内积分求得.图3-10(右图) 圆形面积均布荷载作用下土中应力计算2、平面问题的附加应力设在地基表面上作用有无限长的条形荷载,且荷载沿宽度可按任何形式分布,但沿长度方向则不变,此时地基中产生的应力状态属于平面问题.在工程建筑中,当然没有无限长的受荷面积,不过,当荷载面积的长宽比l/b≥10时,计算的地基附加应力值与按L/b=∝时的解相比误差甚少.因此,对于条形基础,如墙基、挡土墙基础、路基、坝基等,常可按平面问题考虑.(1)线荷载(2)均布条形分布荷载下土中应力计算:条形分布荷载下土中应力状计算属于平面应变问题,对路堤、堤坝以及长宽比l/b≥10的条形基础均可视作平面应变问题进行处理.图3-11(右图)均布条形荷载作用下的土中应力计算米(x,y)点的三个附加应力分量为:⎥⎦⎤⎢⎣⎡+-+---++-=22222216)144()144(4221arctan221arctanmmnmnmmnmnpozπσ⎥⎦⎤⎢⎣⎡+-+---++-=22222216)144()144(4221arctan221arctanmmnmnmmnmnpoxπσ等值线图3.3.3 非均质和各项异性地基中的 附加应力在柔性荷载作用下,将土体视为均质各向同性弹性土体时土中附加应力的 计算与土的 性质无关.但是,地基土往往是由软硬不一的 多种土层所组成,其变形特性在竖直方向差异较大,应属于双层地基的 应力分布问题. 1、 双层地基对双层地基的 应力分布问题,有两种情况值得研究:一种是坚硬土层上覆盖着不厚的 可压缩土层即薄压缩层情况;另一种是软弱土层上有一层压缩性较低的 土层即硬壳层情况.⎥⎦⎤⎢⎣⎡+-+=2222216)144(32m m n nm p o xzπτ当上层土的 压缩性比下层土的 压缩性高时(薄压缩层情况),即E 1<E 2时,则土中附加应力分布将发生应力集中的 现象.当上层土的 压缩性比下层土的 压缩性低时(即硬壳层情况),即E 1>E 2,则土中附加应力将发生扩散现象,如图3-12所示.在实际地基中,下卧刚性岩层将引起应力集中的 现象,若岩层埋藏越浅,应力集中愈显著.在坚硬土层下存在软弱下卧层时,土中应力扩散的 现象将随上层坚硬土层厚度的 增大而更加显著.因土的 泊松比变化不大,其对应力集中和应力扩散现象的 影响可忽略.图3-12 双层地基中界面上附加应力的 分布规律双层地基中应力集中和扩散的 概念有着重要工程意义,特别是在软土地区,表面有一层硬壳层,由于应力扩散作用,可以减少地基的 沉降,故在设计中基础应尽量浅埋,并在施工中采取保护措施,以免浅层土的 结构遭受破坏. 2、 变形模量随深度增大的 地基在地基中,土的 变形模量E o 常随着地基深度增大而增大,这种现象在砂土中尤其显著.与均质地基相比,这种地基沿荷载中心线下,地基附加应力将产生应力集中. 可用以下半经验公式修正:v - 为应力集中因素,对粘性、完全弹性体v =3;硬土v =6;砂土与粘土之间的 土v =3~6.θπσvz RvF cos 22=3、 各项异性地基天然沉积形成的 水平薄交互层地基,其水平向变形模量E oh 大于竖向变形模量E ov假定地基竖直和水平方向的 泊松比相同,但变形模量不同条件下,均布线荷载下各项异性地基的 附加应力为:z σ - 线荷载作用下,均质地基的 附加应力.当非均质地基的 E oh >E ov 时,地基中出现应力扩散现象;当E oh <E ov 时,出现应力集中现象.3.4 有效应力原理1、土中二种应力试验在直径和高度完全相同的 甲、乙两个量筒底部,放置一层松散砂土,其质量与密度完全 一样.在甲量筒中放置若干钢球,使松砂承受σ的 压力;在乙量筒中小 心缓慢地注水,在砂面以上高度h 正好使砂层表面也增加σ的 压力.结论:甲、乙两个量筒中的 松砂顶面都作用了 相同的 压力σ,但产生两种不同的 效果,反映土体中存在两种不同性质的 力:(1)由钢球施加的 应力,通过砂土的 骨架传递的 应力(有效应力σ’),能使土层发生压缩变形,从而使土的 强度发生变化;(2)由水施加的 应力通过孔隙水来传递(孔隙水 压力u),不能使土层发生压缩变形.ovoh zz E E /σσ='AA W=χ现象:甲中砂面下降,砂土发生压缩.乙中砂面并不下降,砂土未发生压缩. 总应力:在土中某点截取一水平截面,其面积为A,截面上作用应力 σ,它是由上面的 土体的 重力、静水压力及外荷载P 所产生的 应力,称为总应力.有效应力:总应力的 一部分是由土颗粒间的 接触承担的 称为有效应力. 饱和土有效应力公式:u +'=σσσ' - 有效应力;σ - 总应力;u - 孔隙水压力.公式表明总应力为有效应力与孔隙水压力之和. 部分饱和土有效应力公式:()w a a u u u -+-='χσσa u - 气体压力; w u - 孔隙水压力.χ - 由试验确定的 参数, .3.4.1 毛细水上升时土中有效自重应力的计算图3-13 毛细水上升时土中总应力、孔隙水压力及有效应力在毛细水上升区,由于表面张力的作用使孔隙水压力为负值.使有效应力增加,在地下水位以下,由于水对土颗粒的浮力作用,使土的有效应力减少.3.4.2 土中水渗流时(一维渗流)有效应力计算(a)静水时(b)水自上向下渗流(c)水自下向上渗流图3-14 土中水渗流时总应力、孔隙水压力及有效应力分布当土中水渗流时,水对土颗粒有着动水力,必然影响土中有效应力的分布.表3-1 土中水渗流时总应力、孔隙水压力及有效应力的计算。

第2章土体应力计算

第2章土体应力计算

自重应力:由于土体本身自重引起的应力
确定土体初始 应力状态
土体在自重作用下,在漫长的地质历史时期,已经 压缩稳定,因此,土的自重应力不再引起土的变形。 但对于新沉积土层或近期人工充填土应考虑自重应力 引起的变形。
一、均匀土体的竖向自重应力
土体中任意深度处的竖向自重应力等于单位面积上土柱 的有效重量
2.基底压力的简化计算法
1)中心荷载时:
P
N
F
2)偏心荷载时:
P N M N (1 6e) FW F b
3.基底附加应力---基底净压力:
p0 p 0d
P 实际情况
基底附加压力在数 值上等于基底压力 扣除基底标高处原 有土体的自重应力
P d
第四节 地基中的附加应力计算
h2 2 水位面
用浮容重。 1 h1 + 2h2 2.非均质土中自重应
力沿深度呈折线分布
h3 3
1 h1 + 2h2 + 3h3
三、水平向自重应力
天然地面
z
cy
cz cx
cz z
cx cy K0 cz
静止侧压 力系数
四、例题分析
【例】一地基由多层土组成,地质剖面如下图所示,试计算

K
x s
pn
Ksx ,Ktz为条形基底竖向 附加应力系数, 均为
m ,n的函数,其中 m=x/b,n=z/b,可查表
2-6、2-7得到
x

K
z t
pt
注意原点位置
见例题2-3
第5节 土坝(堤)自重应力和坝基附加应力
自重应力:
坝身任意点自重应力均等于单位面积上该计算点以上土柱 的有效重度与土柱高度的乘积。

第3章土体中的应力

第3章土体中的应力
基础底面处由于建造建筑物而增加的压力,等于基础底 面实际受到的压力减去原有压力(一般为自重应力)
p0 p D
(3-13)
3.4 地基中的附加应力 Section 4 Increased stress in foundation
3.4.1 附加应力的空间问题 Spacial problem of additional stress
2P pmax 3KL B K e 2
(3-10)
2. 条形基础(L>10B)(Strip footing)
p max
min
P1 6e 1 B B
(3-11)
3.3.3 偏心斜向荷载 Eccentric inclined load
1. 铅直向基底压力 Vertical Contact pressure
p( x , y ) My P Mx y x A Ix Iy
LB 3 Iy 12
(3-8)
BL3 Ix 12
单向偏心时(例如 x 轴)
p max
min
P 6e 1 A B
(3-9)
讨论(Discussion): B 基底压力分布为梯形(Trapezoid) e 6 B 基底压力分布为三角形(Triangular) e 6 B 基底一侧的压力将出现零值,基底压力分布仍为 e 6 三角形(Triangular)
i 1
图3-1 土体中的自重应力分布
竖直向自重应力:土体中无剪应力存在,故地基中Z深 度处的竖直向自重应力等于单位面积上的土柱重量
• 均质地基:
• 成层地基:
sz z
sz
地面

i Hi
1 H1 2 H2 3 H3 sy

第3章 土中应力计算

第3章 土中应力计算

表3-1 z=3m处水平面上竖应力计算
r(m)
0
1
2
3
4
5
r/z
0
0.33
0.67
1
1.33
1.67
K
0.478 0.369
0.189
0.084
0.038
0.017
z(kPa)
10.6
8.2
4.2
1.9
0.8
0.4
表3-2 r=1m处竖直面上竖应力z的计算
z(m)
0
1
2
3
4
5
6
r/z
1
0.5
0.33
M(x,y,0)
z
附加应力系数
z
K
P z2
M(x,y,z) z
1885年法国学者 布辛内斯克解
z
3Pz 3
2R5
3P
2R2
cos3 q
图 直角坐标表示
❖ 讨论6个应力分量和3个位移分量:
法向应力:
z
3Fz3
2 R5
x
3F
2
zx2
R5
1 2
3
R2 Rz z2 R3(R z)
x2 (2R z)
(a) 马鞍形分布 (b) 抛物线分布 (c) 钟形分布
▪上述演化只是一典型的情形,实际情况十分复杂 ▪大多数情况处于上述两种极端情况之间。
(3)情况3 弹塑性地基上有限刚性的基础
3.2.2 基底压力的简化计算
❖ 基底压力分布十分复杂;
❖ 但是,根据弹性理论中圣维南原理,在基底一定深度 处引起的地基附加应力与基底荷载分布形状无关,只与 其合力的大小和位置有关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 1
当土层中存在地下水时,地下水位线以上的 土层一般取天然重度,地下水位以下的土层 取有效重度,对毛细饱和带的土层取饱和重 度。
地面
1
2
' 3
h1 h2
cz
wh3
1h1
cz 1h1 2h2 h
1h1 2 h2
, 3 3
sat w
m=l/b
n=z/b
y
M z
对于均布矩形荷载作用下地基中任意 点的附加应力可利用上式和应力叠加 原理求得。此方法称为“角点法”

d Ⅲ f o Ⅳ e Ⅱ g b h c

a
z z I z II z III z IV

d Ⅱ o
c
e
1h1 2 h2
, 3 3
, c 1h1 2h2 3 h3 wh3
h3
1h1 2h2 3, h3
若地下水位线骤然发生变化时,如骤然 下降,对于无粘性土,由于其渗透性较 大,水较容易排除出去,故计算时土层 的重度选为其实测重度;对于粘性土, 由于其渗透性较小,在短时间内,孔隙 水来不及排除出去,故此时视为土体处 于饱和状态,计算时土层的重度选为其 饱和重度。
0 --基底标高以上各天然土层的加权平
均重度
p0 max p0 min

pmax pmin
0d
地基中的附加应力
地基附加应力是指由新增外加荷载在地基 中产生的应力,它是引起地基变形与破坏 的主要因素。 计算假定:①基础刚度为零,即基底作用 的是柔性荷载;②地基是连续、均匀且各 向同性的线性变形无限体。 应力在计算中可分为空间问题和平面问题 两类。
Pmin=0 Pmin=0
pmax
pmax
当e>L/6时,基底压力pmin<0
x
P+G y
e L
y P+G Pmin<0 y
x b
x Pmin<0
x
pmax
y
pmax
基底附加压力
基底附加压力是指导致地基中产生附加应力的那部 分基底压力。由建筑物荷载和基础及其回填土自重 在基底产生的压力并不是全部传给地基,其中一部 分要补偿由基坑开挖所卸除的土体的自重应力。基 底附加压力求得后,可将其视为作用在地基表面的 荷载,然后进行地基中的附加应力计算。
自重应力分布线的斜率是容重; 自重应力在等容重地基中随深度呈直线分布;
自重应力在成层地基中呈折线分布;
在土层分界面处和地下水位处发生转折。
水平向自重应力
地基中除了存在作用于水平面上的 竖向自重应力外,还存在作用于竖直 面上的水平向自重应力 cx和 cy, 根 据弹性力学和土体的侧限条件,可推 导得
dA
z
0 0 l b
2 x 2 y 2 z 2
3z 3 p dxdy
dP L b x
52
p m 1 m 1 1 tg 2 2 2 2 2 2 1 m2 n2 m n 1 n n 1 m n Kc p
h3
1h1 2h2 3, h3
在地下水位以下如埋藏有不透水层(如连续 分布的坚硬粘性土层)由于不透水层中不存 在水的浮力,所以层面及层面以下的自重应 力应按上覆土层的水土总重计算。
地面
1
2
' 3
h1 h2
cz
wh3
1h1
cz 1h1 2h2 h u0 w h3
土体中应力状态 发生变化
引起地基土的变形,导 致建筑物的沉降,倾斜 或水平位移。 当应力超过地基土的强 度时,地基就会因丧失 稳定性而破坏,造成建 筑物倒塌。
应力计算方法:
1.假设地基土为连续,均匀,各向同性,半无限的线弹性体;
2.弹性理论。
沿水平面均匀分布,且与z成正比,即随深度 按直线规律分布。故地基中Z深度处的竖直向 自重应力等于单位面积上的土柱重量。
基础压力分布与多种因素有关,如基础 的形状、平面尺寸、刚度、埋深、基础 上作用荷载的大小及性质、地基土的性 质等。以刚度较大的条形基础为例,基 底压力分布如下
小荷载 小荷载 较大荷载 较大荷载
砂性土地基
粘性土地基
中心荷载作用下的基底压力
当基础受竖向中心 荷载作用时,假定 基底压力呈均匀分 布,按材料力学公 式,可得 F G p A
P r
m
⑴在集中力P作用线上,r=0,当z=0 时,附加应力趋于无穷;随着深度 的增加,逐渐减少。 ⑵在r>0的竖直线上,当z=0时, 附加应力为零,随着深度的增加, 附加应力从零逐渐增大,至一定深 度后又随着深度的增加逐渐变小。 ⑶在z为常数的平面上,附加应力在 集中力作用线上最大,并随着r的增 加而逐渐减小,随着深度增加,这 一分布趋势保持不变,但会随着r增 加而降低的速率变缓。
cx cy K0 cz
K0—土的侧压力系数,可通过试验求得,无 试验资料时可按经验公式推算
2.2 基底压力
概述 基底压力是计算地基中附加应力的外荷载, 也是计算基础结构内力的外荷载,因此,在计 算地基附加应力和基础内力时,都必须首先研 究基底压力的分布规律和计算方法。
基底压力:指上部结构荷载和基础自重通过基础传递, 在基 础底面处施加于地基上的单位面积压力。 基底反力:地基反向施加于基础底面上的压力。 基底附加压力:基底压力扣除因基础埋深所开挖的自重应力 之后在基底处施加于地基上的单位面积压力。

a b
z z I z II

h
d
c
o
f
e
g
a
b
z zhceo zoebg zhdfo zofag

h
d
c
g o
a e f
b
z zofch zhdeo z gbfo z gaeo
z

应力叠加原理
当地基表面 作用有几个 集中力时, 可分别算出 各集中力在 地基中引起 的附加应力, 然后根据应 力叠加原理 求出附加应 力的总和
Pa
Pb
z
a c
b
空间问题的附加应力计算 设基础长度为L,宽度为b,当l/b<10时, 其地基附加应力的计算属于空间问题。 ⑴竖直均布荷载作用下矩形基底角点下 的附加应力
学习情境一 土的物理和力学性能指 标的测定
——土中自重应力、附加应力计算及应用
概述 地 基:支ቤተ መጻሕፍቲ ባይዱ建筑物荷载的土层。 持力层:直接与建筑物基础接触的土层 下卧层:持力层下侧的土层
土体中的应力,就其产生的原因主要有两种: 自重应力和附加应力。 自重应力:由土体自身的有效重力产生 的应力。 目的:确定土体的初始应力状态 附加应力:除自重之外的外加荷载所引起的 应力。 了解土中应力的大小和分布,是研究地基变 形和稳定问题的前提。附加应力是引起地基 变形和破坏的主要原因。
竖向集中荷载下地基中附加应力的分布规律:
r o P
地面
P z1 z2
r=0
z3
z
z
(1) 地基附加应力的扩散分布性; (2) 在离基底不同深度处各个水平面上,以基底中心点下轴 线处最大,随着距离中轴线愈远愈小; (3) 在荷载分布范围内之下沿垂线方向的任意点,随深度愈 向下附加应力愈小。
集中荷载产生的竖向附加应力在地基中 的分布规律
P+G
y
x
e L
y
x b
pmax F G 6e 1 pmin lb l
pmin
pmin
pmax pmax
当e<L/6时,基底压力成梯形分布;
P+G y
x
e L
y
x b
pmin
pmax
pmin
pmax
当e=L/6时,基底压力为三角形分布; P+G
y
x
e L
y
x b
天然地面 σcz
cz
cz z
σcz= z
z
cy
cx
1
1
z
当地基是由几个不同容重的土层组成时,则任意深 度z处的自重应力为
地面
1
2
h1 h2
1h1
cz 1h1 2 h2
n
1h1 2 h2
cz 1h1 2 h2 ... i hi
F—上部结构传至基础顶面的竖向力设计值,kN; G—基础自重设计值及其上回填土重标准值,kN;
G G Ad
对于荷载沿长度 方向均匀分布的 条形荷载条形基 础
b
Fv
1
PG p b
单向偏心荷载作用下的 基底压力
基础受单向偏心荷载作用时, 为了抵抗荷载的偏心作用,设 计时通常把基础底面的长边放 在偏心方向,此时,基底压力 按材料力学短柱的偏心受压公 式计算,即
相关文档
最新文档