多元线性回归方法介绍

合集下载

计量经济学-多元线性回归模型

计量经济学-多元线性回归模型
多元线性回归模型的表达式
Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y为因变 量,X1, X2,..., Xk为自变量,β0, β1,..., βk为回归 系数,ε为随机误差项。
多元线性回归模型的假设条件
包括线性关系假设、误差项独立同分布假设、无 多重共线性假设等。
研究目的与意义
研究目的
政策与其他因素的交互作用
多元线性回归模型可以引入交互项,分析政策与其他因素(如技 术进步、国际贸易等)的交互作用,更全面地评估政策效应。
实例分析:基于多元线性回归模型的实证分析
实例一
预测某国GDP增长率:收集该国历史数据,包括GDP、投资、消费、出口等变量,建立 多元线性回归模型进行预测,并根据预测结果提出政策建议。
最小二乘法原理
最小二乘法是一种数学优化技术,用 于找到最佳函数匹配数据。
残差是观测值与预测值之间的差,即 e=y−(β0+β1x1+⋯+βkxk)e = y (beta_0 + beta_1 x_1 + cdots + beta_k x_k)e=y−(β0+β1x1+⋯+βkxk)。
在多元线性回归中,最小二乘法的目 标是使残差平方和最小。
t检验
用于检验单个解释变量对被解释变量的影响 是否显著。
F检验
用于检验所有解释变量对被解释变量的联合 影响是否显著。
拟合优度检验
通过计算可决系数(R-squared)等指标, 评估模型对数据的拟合程度。
残差诊断
检查残差是否满足独立同分布等假设,以验 证模型的合理性。
04
多元线性回归模型的检验与 诊断

多元线性回归logistic回归

多元线性回归logistic回归

20
(四)自变量的筛选
基本思路:尽可能将回归效果显著的自变量选入方程 中,作用不显著的自变量排除在外。 (1)全局择优法(all possible subsets selection): (2)逐步选择法
前进法(Forward selection) 后退法(Backward elimination) 逐步法(Stepwise)
Sum of Square s
1
Re g re ssi o n
13 3.71 1
df Me an Square
4
33 .4 28
F
S i g.
8.278 .000a
Re si dua l
88 .8 41
22
4.03 8
To tal
22 2.55 2
26
a. P redict ors: (Const ant ), 总 胆 固醇 x1, 胰 岛 素x3, 糖 化 血红 蛋 白 x4, 甘 油 三脂 x2
β0为回归方程的常数项(constant),表示各自变量均为0时y的平 均值;
m为自变量的个数; β1、β2、βm为偏回归系数(Partial regression coefficient)
意义:如β1 表示在X2、X3 …… Xm固定条件下,X1 每增减 一个单位对Y 的效应(Y 增减β个单位)。 e为去除m个自变量对Y影响后的随机误差,称残差(residual)。
Sig. .047 .701 .099 .036 .016
将总胆固醇(X1) 剔除。 注意:通常每次只剔除关系最弱的一个因素。
对于同一资料,不同自变量的t值可以相互比较,t的绝对
值越大,或P越小,说明该自变量对Y所起的作用越大。

多元线性回归的计算方法

多元线性回归的计算方法

多元线性回归的计算方法 摘要在实际经济问题中,一个变量往往受到多个变量的影响。

例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。

这样的模型被称为多元线性回归模型。

多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。

这里只介绍多元线性回归的一些基本问题。

但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。

前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。

这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下:Zy=β1Zx1+β2Zx2+…+βkZxk注意,由于都化成了标准分,所以就不再有常数项a 了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端的变量都取0时,常数项也就为0了。

多元线性回归模型的建立多元线性回归模型的一般形式为Yi=β0+β1X1i+β2X2i+…+i i i i h x υβ+ =1,2,…,n其中 k 为解释变量的数目,j β=(j=1,2,…,k)称为回归系数(regression coefficient)。

上式也被称为总体回归函数的随机表达式。

它的非随机表达式为E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXkiβj 也被称为偏回归系数(partial regression coefficient) 多元线性回归的计算模型一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。

多元线性回归模型参数估计

多元线性回归模型参数估计

多元线性回归模型参数估计多元线性回归是一种用于建立自变量与因变量之间关系的统计模型。

它可以被视为一种预测模型,通过对多个自变量进行线性加权组合,来预测因变量的值。

多元线性回归模型的参数估计是指利用已知的数据,通过最小化误差的平方和来估计回归模型中未知参数的过程。

本文将介绍多元线性回归模型参数估计的基本原理和方法。

Y=β0+β1X1+β2X2+...+βpXp+ε其中,Y是因变量,X1、X2、..、Xp是自变量,β0、β1、β2、..、βp是回归系数,ε是残差项。

参数估计的目标是找到使得误差的平方和最小的回归系数。

最常用的方法是最小二乘法(Ordinary Least Squares, OLS)。

最小二乘法通过最小化残差的平方和来确定回归系数的值。

残差是观测值与回归模型预测值之间的差异。

为了进行最小二乘法参数估计,需要计算回归模型的预测值。

预测值可以表示为:Y^=β0+β1X1+β2X2+...+βpXp其中,Y^是因变量的预测值。

参数估计的目标可以表示为:argmin(∑(Y - Y^)²)通过对目标函数进行求导,可以得到参数的估计值:β=(X^TX)^-1X^TY其中,X是自变量的矩阵,Y是因变量的向量,^T表示矩阵的转置,^-1表示矩阵的逆。

然而,在实际应用中,数据往往存在噪声和异常值,这可能导致参数估计的不准确性。

为了解决这个问题,可以采用正则化方法,如岭回归(Ridge Regression)和LASSO回归(Least Absolute Shrinkage and Selection Operator Regression)。

这些方法通过在目标函数中引入正则化项,可以降低估计结果对噪声和异常值的敏感性。

岭回归通过在目标函数中引入L2范数,可以限制回归系数的幅度。

LASSO回归通过引入L1范数,可以使得一些回归系数等于零,从而实现变量选择。

这些正则化方法可以平衡模型的拟合能力与泛化能力,提高参数估计的准确性。

多因变量的多元线性回归课件

多因变量的多元线性回归课件
多因变量的多元线性回归课件
contents
目录
• 引言 • 多因变量的多元线性回归模型 • 多因变量的多元线性回归的评估指标 • 多因变量的多元线性回归的实例分析 • 多因变量的多元线性回归的优缺点与改
进方向 • 多因变量的多元线性回归在实际应用中
的注意事项
01
引言
多元线性回归的定义与背景
多元线性回归的定义
模型选择
根据实际问题和数据特点,选择合适的多元线性回归模型,如普通多元线性回 归、岭回归、Lasso回归等。
评估指标选择
选择合适的评估指标对模型进行评估,如均方误差(MSE)、均方根误差( RMSE)、决定系数(R^2)等。
模型解释与应用场景
模型解释
对选定的多元线性回归模型进行详细解释,包括模型的假设条件、参数意义、适 用范围等方面。
改进方向
验证假设
在应用多元线性回归之前,需要对假设条件 进行验证,确保满足条件。
引入其他模型
如果多元线性回归不适用,可以考虑引入其 他模型,如支持向量机、神经网络等。
降维处理
如果自变量数量过多,可以考虑进行降维处 理,减少计算复杂度。
数据预处理
对数据进行预处理,如缺失值填充、异常值 处理等,以提高回归结果的准确性。
岭回归
当自变量之间存在多重共 线性时,可以使用岭回归 来估计模型的参数。
模型的假设检验
01
02
03
04
线性性检验
检验自变量和因变量之间是否 存在线性关系。
共线性检验
检验自变量之间是否存在多重 共线性。
异方差性检验
正态性检验
检验误差项是否具有相同的方 差。
检验误差项是否服从正态分布。

多元线性回归模型检验

多元线性回归模型检验

多元线性回归模型检验引言多元线性回归是一种常用的统计分析方法,用于研究两个或多个自变量对目标变量的影响。

在应用多元线性回归前,我们需要确保所建立的模型符合一定的假设,并进行模型检验,以保证结果的可靠性和准确性。

本文将介绍多元线性回归模型的几个常见检验方法,并通过实例进行说明。

一、多元线性回归模型多元线性回归模型的一般形式可以表示为:$$Y = \\beta_0 + \\beta_1X_1 + \\beta_2X_2 + \\ldots + \\beta_pX_p +\\varepsilon$$其中,Y为目标变量,$X_1,X_2,\\ldots,X_p$为自变量,$\\beta_0,\\beta_1,\\beta_2,\\ldots,\\beta_p$为模型的回归系数,$\\varepsilon$为误差项。

多元线性回归模型的目标是通过调整回归系数,使得模型预测值和实际观测值之间的误差最小化。

二、多元线性回归模型检验在进行多元线性回归分析时,我们需要对所建立的模型进行检验,以验证假设是否成立。

常用的多元线性回归模型检验方法包括:1. 假设检验多元线性回归模型的假设包括:线性关系假设、误差项独立同分布假设、误差项方差齐性假设和误差项正态分布假设。

我们可以通过假设检验来验证这些假设的成立情况。

•线性关系假设检验:通过F检验或t检验对回归系数的显著性进行检验,以确定自变量与目标变量之间是否存在线性关系。

•误差项独立同分布假设检验:通过Durbin-Watson检验、Ljung-Box 检验等统计检验,判断误差项是否具有自相关性。

•误差项方差齐性假设检验:通过Cochrane-Orcutt检验、White检验等统计检验,判断误差项的方差是否齐性。

•误差项正态分布假设检验:通过残差的正态概率图和Shapiro-Wilk 检验等方法,检验误差项是否满足正态分布假设。

2. 多重共线性检验多重共线性是指在多元线性回归模型中,自变量之间存在高度相关性的情况。

多元回归分析法的介绍及具体应用

多元回归分析法的介绍及具体应用

多元回归分析法的介绍及具体应用————————————————————————————————作者: ————————————————————————————————日期:ﻩ多元回归分析法的介绍及具体应用在数量分析中,经常会看到变量与变量之间存在着一定的联系。

要了解变量之间如何发生相互影响的,就需要利用相关分析和回归分析。

回归分析的主要类型:一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析以及逻辑回归分析等。

这里主要讲的是多元线性回归分析法。

1. 多元线性回归的定义说到多元线性回归分析前,首先介绍下医院回归线性分析,一元线性回归分析是在排除其他影响因素或假定其他影响因素确定的条件下,分析某一个因素(自变量)是如何影响另一事物(因变量)的过程,所进行的分析是比较理想化的。

其实,在现实社会生活中,任何一个事物(因变量)总是受到其他多种事物(多个自变量)的影响。

一元线性回归分析讨论的回归问题只涉及了一个自变量,但在实际问题中,影响因变量的因素往往有多个。

例如,商品的需求除了受自身价格的影响外,还要受到消费者收入、其他商品的价格、消费者偏好等因素的影响;影响水果产量的外界因素有平均气温、平均日照时数、平均湿度等。

因此,在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。

这就产生了测定多因素之间相关关系的问题。

研究在线性相关条件下,两个或两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。

多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上更为复杂,一般需借助计算机来完成。

2. 多元回归线性分析的运用具体地说,多元线性回归分析主要解决以下几方面的问题。

(1)、确定几个特定的变量之间是否存在相关关系,如果存在的话,找出它们之间合适的数学表达式;(2)、根据一个或几个变量的值,预测或控制另一个变量的取值,并且可以知道这种预测或控制能达到什么样的精确度;(3)、进行因素分析。

多元线性回归logistic回归

多元线性回归logistic回归

X12

X1p
Y1
2
X21
X22

X2p
Y2






n
Xn1
Xn2

Xnp
Yn
Y为定量变量——Linear Regression Y为二项分类变量——Binary Logistic Regression Y为多项分类变量——Multinomial Logistic Regression Y为有序分类变量——Ordinal Logistic Regression Y为生存时间与生存结局——Cox Regression
1
(Constant) 6.500 2.396
2.713 .012
甘 油 三 脂 x2 .402
.154
.354 2.612 .016
糖 化 血 红 蛋 白 .x6463
.230
.413 2.880 .008
胰 岛 素 x3
-.287
.112
-.360 -2.570 .017
a.Dep end ent Variable: 血 糖 y
将总胆固醇(X1) 剔除。 注意:通常每次只剔除关系最弱的一个因素。
对于同一资料,不同自变量的t值可以相互比较,t的绝对
值越大,或P越小,说明该自变量对Y所起的作用越大。
多元线性回归logistic回归
14
重新建立不包含提出因素的回归方程
C oe ffi ci e na ts
Un s tan dardiz eSdtan da rdi z e d C oe ffici e n ts C oe ffici e n ts
由上表得到如下多元线性回归方程:

多元线性回归的计算方法

多元线性回归的计算方法

受约束回归在建立回归模型时,有时根据经济理论需对模型中变量的参数施加一定的约束条件。

如:0阶齐次性条件的消费需求函数1阶齐次性条件的C-D生产函数模型施加约束条件后进行回归,称为受约束回归(restricted regression);不加任何约束的回归称为无约束回归(unrestricted regression)。

受约束回归一、模型参数的线性约束二、对回归模型增加或减少解释变量三、参数的稳定性*四、非线性约束讨论:如果约束条件无效,RSSR 与RSSU的差异较大,计算的F值也较大。

于是,可用计算的F统计量的值与所给定的显著性水平下的临界值作比较,对约束条件的真实性进行检验。

注意,kU-k R恰为约束条件的个数。

合并两个时间序列为( 1,2,…,n 1,n 1+1,…,n 1+n 2),则可写出如下无约束回归模型⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛212121μμαβX 00X Y Y 如果α=β,表示没有发生结构变化,因此可针对如下假设进行检验:H 0: α=β(*)式施加上述约束后变换为受约束回归模型(*)⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛212121μμβX X Y Y (**)例中国城镇居民食品人均消费需求的邹氏检验。

1、参数稳定性检验1981~1994:)ln(92.0)ln(08.0)ln(05.163.3)ˆln(01P P X Q −−+=RSS 1=0.0032401995~2001:1ln 71.0ln 06.3ln 55.078.13ln P P X Q +−+=(9.96) (7.14) (-5.13) (1.81)1981~2001:1ln 39.1ln 14.0ln 21.100.5ln P P X Q −−+=(14.83) (27.26) (-3.24) (-11.17)在中国城镇居民人均食品消费需求例中,对零阶齐次性的检验:LR= -2(38.57-38.73)=0.32(1)=3.84,给出α=5%、查得临界值χ20.05判断:LR< χ2(1),不拒绝原约束的假设,0.05表明:中国城镇居民对食品的人均消费需求函数满足零阶齐次性条件。

回归分析方法总结全面

回归分析方法总结全面

回归分析方法总结全面回归分析是一种统计分析方法,用于研究自变量与因变量之间的关系。

它可以帮助我们了解自变量对因变量的影响程度,以及预测因变量的值。

回归分析有多种方法和技术,本文将对几种常用的回归分析方法进行总结和介绍。

1. 简单线性回归分析简单线性回归分析是回归分析的最基本形式,用于研究单个自变量与因变量之间的关系。

它假设自变量与因变量之间存在线性关系,并且通过拟合一条直线来描述这种关系。

简单线性回归分析使用最小二乘法来估计直线的参数,最小化观测值与模型预测值之间的差异。

2. 多元线性回归分析多元线性回归分析是回归分析的一种拓展形式,用于研究多个自变量与因变量之间的关系。

它假设各个自变量与因变量之间存在线性关系,并通过拟合一个多元线性模型来描述这种关系。

多元线性回归分析使用最小二乘法来估计模型的参数。

3. 逻辑回归分析逻辑回归分析是回归分析的一种特殊形式,用于研究二分类变量与一系列自变量之间的关系。

它通过拟合一个Logistic函数来描述二分类变量与自变量之间的概率关系。

逻辑回归分析可以用于预测二分类变量的概率或进行分类。

4. 多项式回归分析多项式回归分析是回归分析的一种变体,用于研究自变量与因变量之间的非线性关系。

它通过引入自变量的高次项来拟合一个多项式模型,以描述非线性关系。

多项式回归分析可以帮助我们探索自变量与因变量之间的复杂关系。

5. 非线性回归分析非线性回归分析是回归分析的一种广义形式,用于研究自变量与因变量之间的非线性关系。

它通过拟合一个非线性模型来描述这种关系。

非线性回归分析可以用于分析复杂的现象或数据,但需要更复杂的参数估计方法。

6. 岭回归分析岭回归分析是回归分析的一种正则化方法,用于处理自变量之间存在共线性的情况。

共线性会导致参数估计不稳定或不准确,岭回归通过加入一个正则化项来缩小参数估计的方差。

岭回归分析可以帮助我们在共线性存在的情况下得到更可靠的结果。

7. 主成分回归分析主成分回归分析是回归分析的一种降维方法,用于处理高维数据或自变量之间存在相关性的情况。

多元线性回归模型常见问题及解决方法

多元线性回归模型常见问题及解决方法

特点
03
04
05
适用于多个自变量对因 变量的影响研究;
适用于线性关系假设下 的数据;
可通过参数估计和模型 检验来评估模型的可靠 性和预测能力。
多元线性回归模型的应用场景
经济预测
用于预测股票价格、GDP等经济指标;
市场营销
用于分析消费者行为、预测销售额等;
医学研究
用于分析疾病风险因素、预测疾病发 病率等;
自相关问题
残差序列之间存在相关性,违 反了线性回归模型的独立性假 设。
异常值和离群点问题
异常值和离群点对回归模型的 拟合和预测精度产生影响。
解决方法的总结与评价
01
02
03
04
05
多重共线性的解 决方法
异方差性的解决 方法
自相关问题的解 决方法
解释变量的选择 异常值和离群点
方法
处理方法
如逐步回归、主成分回归 、岭回归和套索回归等。 这些方法在处理多重共线 性问题时各有优缺点,需 要根据具体问题和数据特 点选择合适的方法。
2. 稳健标准误
使用稳健标准误来纠正异方差性 对模型估计的影响。
总结词
异方差性是指模型残差在不同观 测点上的方差不相等,导致模型 估计失真。
3. 模型诊断检验
使用如White检验、BP检验等异 方差性检验方法来诊断异方差性 问题。
自相关问题
01
02
03
04
05
总结词
详细描述
1. 差分法
2. 广义最小二乘 3. 自相关图和偏
详细描述
例如,在时间序列数据中,如果一个观测值的残差 与前一个观测值的残差正相关,则会导致模型的预 测精度降低。
解决方法

你应该要掌握的7种回归分析方法

你应该要掌握的7种回归分析方法

你应该要掌握的7种回归分析方法回归分析是一种常用的数据分析方法,用于研究自变量与因变量之间的关系。

在实际应用中,有许多不同的回归分析方法可供选择。

以下是应该掌握的7种回归分析方法:1. 简单线性回归分析(Simple Linear Regression):简单线性回归是回归分析中最简单的方法之一、它是一种用于研究两个变量之间关系的方法,其中一个变量是自变量,另一个变量是因变量。

简单线性回归可以用来预测因变量的值,基于自变量的值。

2. 多元线性回归分析(Multiple Linear Regression):多元线性回归是在简单线性回归的基础上发展起来的一种方法。

它可以用来研究多个自变量与一个因变量之间的关系。

多元线性回归分析可以帮助我们确定哪些自变量对于因变量的解释最为重要。

3. 逻辑回归(Logistic Regression):逻辑回归是一种用于预测二分类变量的回归分析方法。

逻辑回归可以用来预测一个事件发生的概率。

它的输出是一个介于0和1之间的概率值,可以使用阈值来进行分类。

4. 多项式回归(Polynomial Regression):多项式回归是回归分析的一种扩展方法。

它可以用来研究变量之间的非线性关系。

多项式回归可以将自变量的幂次作为额外的变量添加到回归模型中。

5. 岭回归(Ridge Regression):岭回归是一种用于处理多重共线性问题的回归分析方法。

多重共线性是指自变量之间存在高度相关性的情况。

岭回归通过对回归系数进行惩罚来减少共线性的影响。

6. Lasso回归(Lasso Regression):Lasso回归是另一种可以处理多重共线性问题的回归分析方法。

与岭回归不同的是,Lasso回归通过对回归系数进行惩罚,并使用L1正则化来选择最重要的自变量。

7. Elastic Net回归(Elastic Net Regression):Elastic Net回归是岭回归和Lasso回归的结合方法。

计量经济学(2012B)(第二章多元线性回归)详解

计量经济学(2012B)(第二章多元线性回归)详解

2 2i
n
n
2 i
i ( yi ˆ1x1i ˆ2 x2i )
i 1
i 1
n
i yi
n
(
y
ˆ x
ˆ x
) y
i1
i
1 1i
2 2i
i
i 1
n
y 2

n
x
y
ˆ
n
x
y )
i1
i
1 i1 1i i
2 i1 2 i i
TSS ESS
2.5 单个回归参数的置信区间 与显著性检验
一、置信区间
H (4)
的拒绝域为:
0
F F (2, n 3)
(5) 推断:若
F F (2, n 3)
,则拒绝 H , 0
认为回归参数整体显著;
H 若 F F (2, n 3)
,则接受

0
认为回归参数整体上不显著。
回归结果的综合表示
yˆi 0.0905 0.426x1i 0.0084x2i
Sˆj : 或 t:
模型的估计效果. (5) 拟合优度与F 检验中的 F 统计量的关系是什么?这两个
量在评价二元线性回归模型的估计效果上有何区别? (6) 试比较一元线性回归与二元线性回归的回归误差,哪
个拟合的效果更好?
应用:
(1)预测当累计饲料投入为 20磅时,鸡的平均
重量是多少? yˆ 5.2415 f
(磅)
(2)对于二元线性回归方程,求饲料投入的边际生产率?
(0.1527) (0.0439)
(0.5928) (9.6989)
(0.0027) (3.1550)
R2 0.9855, R2 0.9831 , F 408.9551

多元线性回归

多元线性回归

多元线性回归能⽤office07发布简直是太好了,这下⼦省了很多事。

1、多元线性回归模型假定被解释变量与多个解释变量之间具有线性关系,是解释变量的多元线性函数,称为多元线性回归模型。

即(1.1)其中为被解释变量,为个解释变量,为个未知参数,为随机误差项。

被解释变量的期望值与解释变量的线性⽅程为:(1.2)称为多元总体线性回归⽅程,简称总体回归⽅程。

对于组观测值,其⽅程组形式为:(1.3)即其矩阵形式为=+即(1.4)其中为被解释变量的观测值向量;为解释变量的观测值矩阵;为总体回归参数向量;为随机误差项向量。

总体回归⽅程表⽰为:(1.5)多元线性回归模型包含多个解释变量,多个解释变量同时对被解释变量发⽣作⽤,若要考察其中⼀个解释变量对的影响就必须假设其它解释变量保持不变来进⾏分析。

因此多元线性回归模型中的回归系数为偏回归系数,即反映了当模型中的其它变量不变时,其中⼀个解释变量对因变量的均值的影响。

由于参数都是未知的,可以利⽤样本观测值对它们进⾏估计。

若计算得到的参数估计值为,⽤参数估计值替代总体回归函数的未知参数,则得多元线性样本回归⽅程:(1.6)其中为参数估计值,为的样本回归值或样本拟合值、样本估计值。

其矩阵表达形式为:(1.7)其中为被解释变量样本观测值向量的阶拟合值列向量;为解释变量的阶样本观测矩阵;为未知参数向量的阶估计值列向量。

样本回归⽅程得到的被解释变量估计值与实际观测值之间的偏差称为残差。

(1.8)2、多元线性回归模型的假定与⼀元线性回归模型相同,多元线性回归模型利⽤普通最⼩⼆乘法(OLS)对参数进⾏估计时,有如下假定:假定1 零均值假定:,即(2.1)假定2 同⽅差假定(的⽅差为同⼀常数):(2.2)假定3 ⽆⾃相关性:(2.3)假定4 随机误差项与解释变量不相关(这个假定⾃动成⽴):(2.4)假定5 随机误差项服从均值为零,⽅差为的正态分布:(2.5)假定6 解释变量之间不存在多重共线性:即各解释变量的样本观测值之间线性⽆关,解释变量的样本观测值矩阵的秩为参数个数k+1,从⽽保证参数的估计值唯⼀。

多元线性回归分析

多元线性回归分析
X
' j
=
X
j
− X Sj
j
标准化回归方程
标准化回归系数 bj ’ 的绝对值用来比较各个自变量 Xj 对 Y 的影响程度大小; 绝对值越大影响越大。标准化回归方程的截距为 0。 标准化回归系数与一般回归方程的回归系数的关系:
b 'j = b j
l jj l YY
⎛ Sj ⎞ = b j⎜ ⎜S ⎟ ⎟ ⎝ Y⎠
R = R2
^

说明所有自变量与 Y 间的线性相关程度。即 Y 与 Y 间的相关程度。联系了回归和相关
-5-

如果只有一个自变量,此时
R=r 。
3) 剩余标准差( Root MSE )
SY |12... p =
∑ (Y − Yˆ )
2
/( n − p − 1)
= SS 残 (n − p − 1 ) = MS 残 = 46.04488 = 6.78564 反映了回归方程的精度,其值越小说明回归效果越好
(SS 残) p Cp = − [n − 2(p + 1)] ( MS 残) m p≤m
2
P 为方程中自变量个数。 最优方程的 Cp 期望值是 p+1。应选择 Cp 最接近 P+1 的回归方程为最优。
5、决定模型好坏的常用指标和注意事项:
• 决定模型好坏的常用指标有三个:检验总体模型的 p-值,确定系数 R2 值和检验每一 个回归系数 bj 的 p-值。 • 这三个指标都是样本数 n、模型中参数的个数 k 的函数。样本量增大或参数的个数增 多,都可以引起 p-值和 R2 值的变化。但由于受到自由度的影响,这些变化是复杂 的。 • 判断一个模型是否是一个最优模型,除了评估各种统计检验指标外,还要结合专业知 识全面权衡各个指标变量系数的实际意义,如符号,数值大小等。 • 对于比较重要的自变量,它的留舍和进入模型的顺序要倍加小心。

多元线性回归的计算方法

多元线性回归的计算方法

多元线性回归得计算方法摘要在实际经济问题中,一个变量往往受到多个变量得影响。

例如,家庭消费支出,除了受家庭可支配收入得影响外,还受诸如家庭所有得财富、物价水平、金融机构存款利息等多种因素得影响,表现在线性回归模型中得解释变量有多个。

这样得模型被称为多元线性回归模型。

多元线性回归得基本原理与基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。

这里只介绍多元线性回归得一些基本问题。

ﻫ但由于各个自变量得单位可能不一样,比如说一个消费水平得关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)得单位显然就就是不同得,因此自变量前系数得大小并不能说明该因素得重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得得回归系数要小,但就就是工资水平对消费得影响程度并没有变,所以得想办法将各个自变量化到统一得单位上来。

前面学到得标准分就有这个功能,具体到这里来说,就就就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到得回归系数就能反映对应自变量得重要程度。

这时得回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下:Zy=β1Zx1+β2Zx2+…+βkZxkﻫ注意,由于都化成了标准分,所以就不再有常数项a了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端得变量都取0时,常数项也就为0了。

多元线性回归模型得建立多元线性回归模型得一般形式为Yi=β0+β1X1i+β2X2i+…+=1,2,…,n其中 k为解释变量得数目,=(j=1,2,…,k)称为回归系数(regress ion coefficient)。

上式也被称为总体回归函数得随机表达式。

它得非随机表达式为E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXkiβj也被称为偏回归系数(partial regression coefficient)多元线性回归得计算模型一元线性回归就就是一个主要影响因素作为自变量来解释因变量得变化,在现实问题研究中,因变量得变化往往受几个重要因素得影响,此时就需要用两个或两个以上得影响因素作为自变量来解释因变量得变化,这就就就是多元回归亦称多重回归。

多元线性回归与非线性回归的比较与分析

多元线性回归与非线性回归的比较与分析

多元线性回归与非线性回归的比较与分析回归分析是一种广泛应用于数据挖掘、机器学习、统计学等领域的一种方法。

线性回归是回归分析中最常用的一种方法,但是有时候我们需要考虑更为复杂的模型,比如多元线性回归和非线性回归模型。

那么什么是多元线性回归和非线性回归?它们有什么不同?我们该如何选择合适的回归模型呢?本文将从理论和实践两方面对这些问题进行探讨。

1. 多元线性回归多元线性回归是一种线性回归模型,与简单线性回归不同的是,它考虑多个自变量对因变量的影响。

可以用下面的公式来表示:Y = β0 + β1X1 + β2X2 + … + βpXp + ɛ其中,Y是因变量,X1 ~ Xp是自变量,β0 ~ βp是模型的系数,ɛ是误差项。

在多元线性回归中,我们需要对变量之间的相关性进行检验。

如果变量之间存在多重共线性,会导致模型的不稳定性和准确性。

因此,在多元线性回归中,我们需要通过方差膨胀因子、特征选择等方法来解决多重共线性的问题。

2. 非线性回归当自变量和因变量之间的关系不是线性的时候,我们需要使用非线性回归模型。

比如,当因变量随着自变量的增加呈指数增长或递减的趋势,就可以使用指数回归模型;当因变量随着自变量的增加呈对数增长或递减的趋势,就可以使用对数回归模型。

非线性回归的建模过程和多元线性回归类似,但是对于不同的非线性模型,我们需要使用不同的方法进行参数估计。

例如,对于指数回归模型,我们可以使用最小二乘法或非线性最小二乘法进行参数估计。

3. 多元线性回归与非线性回归的比较在实际应用中,我们需要根据数据本身的性质来选择合适的回归模型。

如果数据呈现出线性关系,那么多元线性回归是一个理想的选择;如果数据呈现出非线性关系,那么非线性回归模型会更为合适。

在多元线性回归模型中,我们有比较丰富的理论基础和应用方法,可以广泛应用于各种场景。

多元线性回归模型的优点是简单、易解释、易拓展和广泛适用。

而在非线性回归模型中,我们需要根据数据本身的特点进行调整和优化,因此建模过程会稍显复杂。

多元线性回归方法

多元线性回归方法

多元线性回归方法
多元线性回归方法指的是建立一个多元线性回归模型,通过使用多个自变量来解释因变量的方法。

在多元线性回归中,一个因变量可以被多个自变量所解释,而每个自变量的作用是独立的。

该方法可以用于预测和建模,也可以用于确定自变量与因变量之间的关系。

在进行多元线性回归分析时需要注意选择合适的自变量,并对模型进行适当的诊断和检验。

常见的多元线性回归方法包括普通最小二乘法、岭回归、脊回归和LASSO回归等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元线性回归方法介绍
回归分析主要研究因变量与自变量的关系,因变量是随机变量,自变量是因素变量,是可以加以控制的变量。

多元回归分析一般解决以下问题:第一,确定因变量与多个因素变量之间联系的定量表达式,通常称为回归方程式或数学模型,并确定它们联系的密切程度;第二,通过控制可控变量的数值,借助于球而出的数学模型来预测或控制因变量的取值和精度;第三,进行因素分析,从影响因变量变化的因素中寻找出哪些因素对因变量的影响最为显著,哪些因素不显
著,以区别主要因素和次要因素。

在操作过程中,需要列出影响Y 的多个因素与Y 之间的关系方程。

一般地,设因变量Y 于k 个自变量X1,X2,……,XK线性相关:
Y=B0+ B1X1+ B2X2+ … + B k X k+ε(1)
其中Y 为可观察的随机变量,X1,X2,…,Xk为可观察的一般变量,B0,B1,B2,…,Bk为待定模型参数,其中B0为截距,ε为不可观测的随机误差。

有n组独察的样本数据(yi,x i1,…,xik),i=1,2,…,n,带入方程(1)中,有:
y i= b0+ b1x i1+ b2x i2+ … + b k x ik+ e i i=1,2,…, n其中n 个随机变量ei相互独立且服从同一正态分布Nor(0,σ2)。

根据最小二乘原则,求B0,B1,B2,…,Bk的估计值b0,b1,…,bk,使上式的误差平方和
∑(ei)2=∑[y i-(b0+b1x i1+b2x i2+…+b k x ik)]2最小,为此,分别将上式对b0,b1,…,bk求偏导数,令其等于0,当x1,x2,…,xk相互独立时,由极值原理,
可求出总体回归系数矩阵B 总体=[B0,B1,B2,…,Bk]T
的估计值矩阵B样本=[b0,b1,…,bk]
T
:B样本=(X
T
X)
-1
X
T
X进而得到回归方程:
y=b0+b1x1+b2x2+…+b k x k 本文将依据上述原理对后面的变量关系进行回归分析。

相关文档
最新文档