2021年中考数学第五讲 一次方程组(25PPT)

合集下载

2025年湖南省中考数学一轮复习 第二单元 第五讲 整式方程(组)的概念及解法(含答案)

2025年湖南省中考数学一轮复习 第二单元 第五讲 整式方程(组)的概念及解法(含答案)

2025年湖南省中考数学一轮复习第五讲 整式方程(组)的概念及解法学生版知识要点对点练习1.整式方程(组)的定义 1.(1)下列是一元一次方程的是( )A.3-2xB.6+2=8C.x2-49=0D.5x-7=3(x+1)(2)下列是二元一次方程组的是( )A.{x2-y3=1y-z=2B.{2x2+y=13y-x=4C.{3x-y3=2x+y=5D.{x+y=73y+x=0(3)(教材再开发·湘教九上P28练习T1改编)下列方程中,不是一元二次方程的是( )A.x2-1=0B.x2+1x+3=0C.x2+2x+1=0D.3x2+ 2x+1=02.方程(组)的解(1)方程的解:使方程两边的的值.只含一个未知数的方程的解,也叫 2.如果方程x-y=3与下面方程中的一个组成的方程组的解为{x=4y=1,那么这个方程可以是( )A.3x-4y=16B.14x+2y=5方程的.(2)方程组的解:使方程组中的各个方程都的未知数的值. C.12x+3y=8D.2(x-y)=6y3.等式的性质(1)等式两边同时(或)同一个整式,等式仍然成立.(2)等式两边同时或同一个的整式,等式仍然成立. 3.下列变形不正确的是( )A.若x=y,则x+5=y+5B.若x=y,则xa=yaC.若x=y,则1-3x=1-3yD.若a=b,则ac=bc续表知识要点对点练习4.整式方程(组)的解法 4.(1)研究下面解方程1+4(2x-3)=5x-(1-3x)的过程:去括号,得1+8x-12=5x-1-3x,①移项,得8x-5x+3x=-1-1+12,②合并同类项,得6x=10,③系数化为1,得x=53.对于上面的解法,你认为( )A.完全正确B.变形错误的是①C.变形错误的是②D.变形错误的是③(2)(教材再开发·湘教九上P33例3改编)一元二次方程x 2-4x -8=0的解是()A .x 1=-2+2 3,x 2=-2-2 3B .x 1=2+2 3,x 2=2-2 3C .x 1=2+2 2,x 2=2-2 2D .x 1=2 3,x 2=-2 3(3)关于x 的一元二次方程(m +1)x |m |+1+4x +2=0的解为()A .x 1=1,x 2=-1B .x 1=x 2=1C .x 1=x 2=-1 D.无解(4)下列关于x 的一元二次方程没有实数根的是( )A .x 2+2x -5=0B .x 2-6=xC .5x 2+1=5D .x 2-2x +2=0(5)方程组{2x +y =1x -2y =8的解是{x =2y =-3.(6)已知x 1,x 2是一元二次方程2x 2+3x -5=0的两个根,则x 1+x 2=32,x 1x 2=52.(7)目前以5G 为代表的新兴产业蓬勃发展,某市2021年底有5G 用户20万户,计划到2023年底该市5G 用户数累计达到33.8万户.设该市5G 用户数年平均增长率为x ,则x 的值是 .考点1 整式方程(组)的解【例1】(1)(2024·聊城模拟)已知方程组{ax +by =0x +2by =-3c 的解是{x =3y =-1则a -b +c 的值为()A .1B .0C .-2D .-1(2)(2024·凉山州中考)若关于x 的一元二次方程(a +2)x 2+x +a 2-4=0的一个根是x =0,则a 的值为()A .2B .-2C .2或-2D .12【方法技巧】“让根回家”来求值 已知方程的根,一般将其代回原方程,得到关于未知系数(参数)的方程(组)求解,注意还要符合“二次项系数不为0”等隐含条件.【变式训练】1.(2024·聊城模拟)关于x 的一元一次方程2x -3m =6-x 的解是负数,则m 的取值范围是()A .m <-1B .m <-2C .m >1D .m >02.(2024·吉林模拟)若方程组{2x +y =m 2x -y =10的解为{x =3y =n ,小亮求解时不小心滴上了两滴墨水,刚好遮住了m 和n 两个数,则这两个数分别为( )A .6和4B .10和0C .2和-4D .4和23.(2024·深圳中考)一元二次方程x 2-3x +a =0的一个解为x =1,则a = .考点2 一次方程(组)的解法【例2】(1)解方程:x -12-2x +36=1.(2)解方程组:{2x +3y =83x -2y =-14.【自主解答】(1)x -12-2x +36=1,去分母得,3(x -1)-(2x +3)=6,去括号得,3x -3-2x -3=6,移项得,3x -2x =6+3+3,合并同类项得,x =12.(2){2x +3y =8①3x -2y =-14②,①×2得4x +6y =16③,②×3得9x -6y =-42④,③+④得13x =-26,解得x =-2,把x =-2代入①得-2×2+3y =8,解得y =4,所以原方程组的解是{x =-2y =4.【变式训练】1.(2024·西安模拟)已知关于x ,y 的方程组{2x -y =5ax +by =2和{x +y =4ax +2by =10有相同的解,那么2a +b 值是( )A .3B .4C .5D .62.(2024·南阳模拟)解方程(组).(1)x 2=2-x 3+1.(2){3x +2y =122x -y =1.考点3 一元二次方程的解法【例3】(1)(2024·阜阳模拟)4位同学以接龙的方式解一元二次方程,每人负责完成一个步骤,如图所示,其中有一位同学所负责的步骤是错误的,则这位同学是()A .小张B .小王C .小李D .小赵(2)(2023·新疆中考)用配方法解一元二次方程x 2-6x +8=0,配方后得到的方程是()A .(x +6)2=28B .(x -6)2=28C .(x +3)2=1D .(x -3)2=1【方法技巧】方程解法选择的“优胜劣汰”1.未指明用什么方法的前提下,优先考虑因式分解法.2.特殊形式,如a(x+b)2=b(b≥0),可用直接开平方法.3.判断不明时,当选公式法.提醒:配方法烦琐,但二次项系数为1,且一次项系数为偶数时,一般运用配方法.【变式训练】1.(2024·贵州中考)一元二次方程x2-2x=0的解是( )A.x1=3,x2=1B.x1=2,x2=0C.x1=3,x2=-2D.x1=-2,x2=-12.(2024·滨州中考)解方程:x2-4x=0.3.(2024·齐齐哈尔中考)解方程:x2-5x+6=0.考点4 根的判别式及根与系数的关系【例4】(2023·岳阳二模)已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为( )A.-10B.4C.-4D.10【方法技巧】判别式的“双向应用”1.正向:系数已知,可以判断方程根的情况.2.逆向:已知方程根的情况,可以求未知系数或参数的值.提醒:要根据a ≠0和Δ≥0这两个前提进行所求参数值的检验和取舍.【变式训练】1.(2024·自贡中考)关于x 的方程x 2+mx -2=0根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2024·乐山中考)若关于x 的一元二次方程x 2+2x +p =0两根为x 1,x 2,且1x 1+1x 2=3,则p 的值为()A .-23 B .23 C .-6 D .61.(2022·株洲中考)对于二元一次方程组{y =x -1①x +2y =7②,将①式代入②式,消去y 可以得到( )A .x +2x -1=7B .x +2x -2=7C .x +x -1=7D .x +2x +2=72.(2022·常德中考)关于x 的一元二次方程x 2-4x +k =0无实数解,则k 的取值范围是()A .k >4B .k <4C .k <-4D .k >13.(2023·怀化中考)已知关于x 的一元二次方程x 2+mx -2=0的一个根为-1,则m 的值为,另一个根为.4.(2024·湖南中考)若关于x的一元二次方程x2-4x+2k=0有两个相等的实数根,则k 的值为.5.(2024·长沙中考)为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘10,再加上4.6,将此时的运算结果再乘10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是.6.(2023·岳阳中考)已知关于x的一元二次方程x2+2mx+m2-m+2=0有两个不相等的实数根,且x1+x2+x1·x2=2,则实数m=.7.(2023·常德中考)解方程组:{x-2y=1①3x+4y=23②.2025年湖南省中考数学一轮复习第五讲 整式方程(组)的概念及解法 教师版知识要点对点练习1.整式方程(组)的定义1.(1)下列是一元一次方程的是(D)A .3-2x B .6+2=8C .x 2-49=0D .5x -7=3(x +1)(2)下列是二元一次方程组的是(D)A .{x 2-y3=1y -z =2B .{2x 2+y =13y -x =4C .{3x-y 3=2x +y =5D .{x +y =73y +x =0(3)(教材再开发·湘教九上P28练习T1改编)下列方程中,不是一元二次方程的是(B)A .x 2-1=0B .x 2+1x+3=0C .x 2+2x +1=0D .3x 2+ 2x +1=02.方程(组)的解(1)方程的解:使方程两边 相等 的 未知数 的值.只含一个未知数的方程的 2.如果方程x -y =3与下面方程中的一个组成的方程组的解为{x =4y =1,那么这个方程可以是(D)A .3x -4y =16B .14x +2y =5解,也叫方程的 根 .(2)方程组的解:使方程组中的各个方程都 成立 的未知数的值.C .12x +3y =8 D .2(x -y )=6y 3.等式的性质(1)等式两边同时 加上 (或 减去 )同一个整式,等式仍然成立. (2)等式两边同时 乘 或 除以 同一个 不为0 的整式,等式仍然成立.3.下列变形不正确的是(B)A .若x =y ,则x +5=y +5B .若x =y ,则x a =y aC .若x =y ,则1-3x =1-3yD .若a =b ,则ac =bc续表知识要点对点练习4.整式方程(组)的解法 4.(1)研究下面解方程1+4(2x -3)=5x -(1-3x )的过程:去括号,得1+8x -12=5x -1-3x ,①移项,得8x -5x +3x =-1-1+12,②合并同类项,得6x =10,③系数化为1,得x =53.对于上面的解法,你认为(B)A.完全正确B.变形错误的是①C.变形错误的是②D.变形错误的是③(2)(教材再开发·湘教九上P33例3改编)一元二次方程x 2-4x -8=0的解是(B)A .x 1=-2+2 3,x 2=-2-2 3B .x 1=2+2 3,x 2=2-2 3C .x 1=2+2 2,x 2=2-2 2D .x 1=2 3,x 2=-2 3(3)关于x 的一元二次方程(m +1)x |m |+1+4x +2=0的解为(C)A .x 1=1,x 2=-1B .x 1=x 2=1C .x 1=x 2=-1 D.无解(4)下列关于x 的一元二次方程没有实数根的是(D)A .x 2+2x -5=0B .x 2-6=xC .5x 2+1=5D .x 2-2x +2=0(5)方程组{2x +y =1x -2y =8的解是 {x =2y =-3 . (6)已知x 1,x 2是一元二次方程2x 2+3x -5=0的两个根,则x 1+x 2= -32 ,x 1x 2= -52 .(7)目前以5G 为代表的新兴产业蓬勃发展,某市2021年底有5G 用户20万户,计划到2023年底该市5G 用户数累计达到33.8万户.设该市5G 用户数年平均增长率为x ,则x 的值是 30% .考点1 整式方程(组)的解【例1】(1)(2024·聊城模拟)已知方程组{ax +by =0x +2by =-3c 的解是{x =3y =-1则a -b +c 的值为(D)A .1B .0C .-2D .-1(2)(2024·凉山州中考)若关于x 的一元二次方程(a +2)x 2+x +a 2-4=0的一个根是x =0,则a 的值为(A)A .2B .-2C .2或-2D .12【方法技巧】“让根回家”来求值 已知方程的根,一般将其代回原方程,得到关于未知系数(参数)的方程(组)求解,注意还要符合“二次项系数不为0”等隐含条件.【变式训练】1.(2024·聊城模拟)关于x 的一元一次方程2x -3m =6-x 的解是负数,则m 的取值范围是(B)A .m <-1B .m <-2C .m >1D .m >02.(2024·吉林模拟)若方程组{2x +y =m 2x -y =10的解为{x =3y =n ,小亮求解时不小心滴上了两滴墨水,刚好遮住了m 和n 两个数,则这两个数分别为(C)A .6和4 B .10和0C .2和-4D .4和23.(2024·深圳中考)一元二次方程x 2-3x +a =0的一个解为x =1,则a = 2 . 考点2 一次方程(组)的解法【例2】(1)解方程:x -12-2x +36=1.(2)解方程组:{2x +3y =83x -2y =-14.【自主解答】(1)x -12-2x +36=1,去分母得,3(x -1)-(2x +3)=6,去括号得,3x -3-2x -3=6,移项得,3x -2x =6+3+3,合并同类项得,x =12.(2){2x +3y =8①3x -2y =-14②,①×2得4x +6y =16③,②×3得9x -6y =-42④,③+④得13x =-26,解得x =-2,把x =-2代入①得-2×2+3y =8,解得y =4,所以原方程组的解是{x =-2y =4.【变式训练】1.(2024·西安模拟)已知关于x ,y 的方程组{2x -y =5ax +by =2和{x +y =4ax +2by =10有相同的解,那么2a +b 值是(B)A .3B .4C .5D .62.(2024·南阳模拟)解方程(组).(1)x 2=2-x 3+1.(2){3x +2y =122x -y =1.【解析】(1)x 2=2-x 3+1,去分母得,3x =2(2-x )+6,去括号得,3x =4-2x +6,移项,合并同类项得,5x =10,系数化为1得,x =2,∴原方程的解为x =2.(2){3x +2y =12①2x -y =1②,由①+②×2得,7x =14,解得x =2,将x =2代入②式得,2×2-y =1,解得y =3,∴原方程组的解为{x =2y =3.考点3 一元二次方程的解法【例3】(1)(2024·阜阳模拟)4位同学以接龙的方式解一元二次方程,每人负责完成一个步骤,如图所示,其中有一位同学所负责的步骤是错误的,则这位同学是(D)A .小张B .小王C .小李D .小赵(2)(2023·新疆中考)用配方法解一元二次方程x 2-6x +8=0,配方后得到的方程是(D)A .(x +6)2=28B .(x -6)2=28C.(x+3)2=1D.(x-3)2=1【方法技巧】方程解法选择的“优胜劣汰”1.未指明用什么方法的前提下,优先考虑因式分解法.2.特殊形式,如a(x+b)2=b(b≥0),可用直接开平方法.3.判断不明时,当选公式法.提醒:配方法烦琐,但二次项系数为1,且一次项系数为偶数时,一般运用配方法.【变式训练】1.(2024·贵州中考)一元二次方程x2-2x=0的解是(B)A.x1=3,x2=1B.x1=2,x2=0C.x1=3,x2=-2D.x1=-2,x2=-12.(2024·滨州中考)解方程:x2-4x=0.【解析】∵x2-4x=0,∴x(x-4)=0,∴x=0或x-4=0,解得x1=0,x2=4.3.(2024·齐齐哈尔中考)解方程:x2-5x+6=0.【解析】∵x2-5x+6=0,∴(x-2)(x-3)=0,则x-2=0或x-3=0,解得x1=2,x2=3.考点4 根的判别式及根与系数的关系【例4】(2023·岳阳二模)已知m ,n 是关于x 的一元二次方程x 2-3x +a =0的两个解,若(m -1)(n -1)=-6,则a 的值为(C)A.-10B.4C.-4D.10【方法技巧】判别式的“双向应用”1.正向:系数已知,可以判断方程根的情况.2.逆向:已知方程根的情况,可以求未知系数或参数的值.提醒:要根据a ≠0和Δ≥0这两个前提进行所求参数值的检验和取舍.【变式训练】1.(2024·自贡中考)关于x 的方程x 2+mx -2=0根的情况是(A)A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2024·乐山中考)若关于x 的一元二次方程x 2+2x +p =0两根为x 1,x 2,且1x 1+1x 2=3,则p 的值为(A)A .-23B .23C .-6D .61.(2022·株洲中考)对于二元一次方程组{y =x -1①x +2y =7②,将①式代入②式,消去y 可以得到(B)A .x +2x -1=7B .x +2x -2=7C .x +x -1=7D .x +2x +2=72.(2022·常德中考)关于x的一元二次方程x2-4x+k=0无实数解,则k的取值范围是(A)A.k>4B.k<4C.k<-4D.k>13.(2023·怀化中考)已知关于x的一元二次方程x2+mx-2=0的一个根为-1,则m的值为 -1 ,另一个根为 2 .4.(2024·湖南中考)若关于x的一元二次方程x2-4x+2k=0有两个相等的实数根,则k 的值为 2 .5.(2024·长沙中考)为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘10,再加上4.6,将此时的运算结果再乘10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是 2009 .6.(2023·岳阳中考)已知关于x的一元二次方程x2+2mx+m2-m+2=0有两个不相等的实数根,且x1+x2+x1·x2=2,则实数m= 3 .7.(2023·常德中考)解方程组:{x-2y=1①3x+4y=23②.【解析】①×2+②得5x=25,解得x=5,将x=5代入①得5-2y=1,解得y=2,所以原方程组的解是{x=5y=2.。

专题05 一元一次方程与二元一次方程组-

专题05 一元一次方程与二元一次方程组-

专题05.一元一次方程与二元一次方程组一、单选题1.(2021·湖南株洲市·中考真题)方程122x -=的解是( ) A .2x = B .3x = C .5x = D .6x =2.(2021·浙江杭州市·中考真题)某景点今年四月接待游客25万人次,五月接待游客60.5万人次,设该景点今年四月到五月接待游客人次的增长率为x (0x >),则( )A .()60.5125x -=B .()25160.5x -=C .()60.5125x +=D .()25160.5x +=3.(2021·浙江温州市·中考真题)解方程()221x x -+=,以下去括号正确的是( )A .41x x -+=-B .42x x -+=-C .41x x --=D .42x x --=4.(2021·安徽中考真题)设a ,b ,c 为互不相等的实数,且4155b a c =+,则下列结论正确的是( ) A .a b c >> B .c b a >> C .4()a b b c -=- D .5()a c a b -=-5.(2021·湖北武汉市·中考真题)我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( ) A .()()8374x x -=+ B .8374x x +=- C .3487y y -+= D .3487y y +-= 6.(2021·湖南株洲市·中考真题)《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十……”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米……”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得粝米为( )A .1.8升B .16升C .18升D .50升7.(2021·湖南中考真题)已知二元一次方程组2521x y x y -=⎧⎨-=⎩,则x y -的值为( ) A .2 B .6 C .2-D .6- 8.(2021·新疆中考真题)某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是( )A .26216x y x y +=⎧⎨+=⎩B .26216x y x y +=⎧⎨+=⎩C .16226x y x y +=⎧⎨+=⎩D .16226x y x y +=⎧⎨+=⎩ 9.(2021·湖北宜昌市·中考真题)我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x 人,物价为y 钱,下列方程组正确的是( )A .8374y x y x =-⎧⎨=+⎩B .8374y x y x =+⎧⎨=+⎩C .8374y x y x =-⎧⎨=-⎩D .8374y x y x =+⎧⎨=-⎩10.(2021·江苏苏州市·中考真题)某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x 架,乙种型号无人机y 架.根据题意可列出的方程组是( )A .()()111,3122x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩B .()()111.3122x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩C .()()111,2123x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩D .()()111,2123x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩11.(2021·天津中考真题)方程组234x y x y +=⎧⎨+=⎩的解是( )A .02x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .22x y =⎧⎨=-⎩D .33x y =⎧⎨=-⎩ 12.(2021·浙江宁波市·中考真题)我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( )A .510330x y x y +=⎧⎨+=⎩B .531030x y x y +=⎧⎨+=⎩C .305103x y x y +=⎧⎪⎨+=⎪⎩D .305310x y x y +=⎧⎪⎨+=⎪⎩ 13.(2020·湖南益阳市·中考真题)同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( )A.45xy=⎧⎨=-⎩B.45xy=-⎧⎨=⎩C.23xy=-⎧⎨=⎩D.36xy=⎧⎨=-⎩14.(2020·辽宁铁岭市·)我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,所列方程组正确的是()A.2 23400 x yx y=-⎧⎨+=⎩B.223()40050x yx x y=-⎧⎨++=-⎩C.22340050x yx y=+⎧⎨+=-⎩D.223()40050x yx x y=+⎧⎨++=-⎩15.(2020·黑龙江齐齐哈尔市·中考真题)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种16.(2020·黑龙江牡丹江市·朝鲜族学校中考真题)若21ab=⎧⎨=⎩是二元一次方程组3522ax byax by⎧+=⎪⎨⎪-=⎩的解,则x+2y的算术平方根为()A.3 B.3,-3 CD17.(2020·天津中考真题)方程组241x yx y+=⎧⎨-=-⎩的解是()A.12xy=⎧⎨=⎩B.32xy=-⎧⎨=-⎩C.2xy=⎧⎨=⎩D.31xy=⎧⎨=-⎩18.(2020·浙江绍兴市·中考真题)同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km19.(2020·浙江嘉兴市·中考真题)用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是( )A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×320.(2020·贵州毕节市·中考真题)由于换季,超市准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元;而按原售价的九折出售,将盈利20元,则该商品的原售价为( )A .300元B .270元C .250元D .230元21.(2020·广西玉林市·中考真题)观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…;若最后三个数之和是3000,则n 等于( )A .499B .500C .501D .100222.(2020·湖北恩施土家族苗族自治州·中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ). A .1- B .1 C .0 D .223.(2020·江苏盐城市·中考真题)把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )A .1B .3C .4D .624.(2020·青海中考真题)根据图中给出的信息,可得正确的方程是( )A .2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭B .2286(5)22x x ππ⎛⎫⎛⎫⨯=⨯⨯- ⎪ ⎪⎝⎭⎝⎭ C .2286(5)x x ππ⨯=⨯⨯+ D .22865x ππ⨯=⨯⨯ 25.(2019·内蒙古赤峰市·中考真题)如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉; ②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为( ).A .20192B .201812 C .201912 D .20201226.(2019·四川南充市·中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9 B .8 C .5 D .427.(2019·辽宁朝阳市·中考真题)关于x ,y 的二元一次方程组2mx y n x ny m +=⎧⎨-=⎩的解是02x y =⎧⎨=⎩,则m n +的值为( )A .4B .2C .1D .028.(2019·广西柳州市·中考真题)阅读(资料),完成下面小题.(资料):如图,这是根据公开资料整理绘制而成的2004﹣2018年中美两国国内生产总值(GDP )的直方图及发展趋势线.(注:趋势线由Excel 系统根据数据自动生成,趋势线中的y 表示GDP ,x 表示年数)依据(资料)中所提供的信息,可以推算出中国的GDP 要超过美国,至少要到( )A.2052年B.2038年C.2037年D.2034年29.(2019·江苏南通市·中考真题)已知a、b满足方程组324236a ba b+=⎧⎨+=⎩,则a+b的值为( )A.2 B.4 C.-2 D.-430.(2019·广西贺州市·中考真题)已知方程组2325x yx y+=⎧⎨-=⎩,则26x y+的值是()A.﹣2 B.2 C.﹣4 D.431.(2019·湖南永州市·中考真题)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁32.(2019·湖北荆门市·)已知实数,x y满足方程组3212x yx y-=⎧⎨+=⎩,则222x y-的值为()A.1-B.1 C.3 D.3-33.(2019·山东菏泽市·中考真题)已知32xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=-⎩的解,则+a b的值是()A.﹣1 B.1 C.﹣5 D.5二、填空题34.(2021·湖南邵阳市·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱.35.(2021·江苏扬州市·中考真题)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.36.(2021·重庆中考真题)若关于x 的方程442x a -+=的解是2x =,则a 的值为__________. 37.(2021·重庆中考真题)盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A ,B ,C 三种盲盒各一个,其中A 盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B 盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C 盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A 盒的成本为145元,B 盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C 盒的成本为__________元.38.(2021·重庆中考真题)方程2(3)6x -=的解是__________.39.(2021·四川广安市·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______. 40.(2021·浙江金华市·中考真题)已知2x y m=⎧⎨=⎩是方程3210x y +=的一个解,则m 的值是____________. 41.(2021·四川凉山彝族自治州·中考真题)已知13x y =⎧⎨=⎩是方程2ax y +=的解,则a 的值为___________. 42.(2021·浙江嘉兴市·中考真题)已知二元一次方程314+=x y ,请写出该方程的一组整数解_________.43.(2021·四川遂宁市·中考真题)已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____.44.(2021·山东泰安市·中考真题)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己23的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱数为x ,乙持钱数为y ,可列方程组为________.45.(2020·辽宁朝阳市·中考真题)已知关于x 、y 的方程221255x y a x y a +=+⎧⎨+=-⎩的解满足3x y +=-,则a 的值为__________. 46.(2020·重庆中考真题)为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.47.(2020·甘肃天水市·中考真题)已知1023a b +=,16343a b +=,则+a b 的值为_________. 48.(2020·浙江绍兴市·中考真题)若关于x ,y 的二元一次方程组20x y A +=⎧⎨=⎩的解为11x y =⎧⎨=⎩,则多项式A 可以是_____(写出一个即可). 49.(2020·湖北中考真题)对于实数,m n ,定义运算2*(2)2m n m n =+-.若2*4*(3)a =-,则a =_____.50.(2020·湖北随州市·中考真题)幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方---九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为______.51.(2020·江苏无锡市·中考真题)我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是___________尺.52.(2019·河北中考真题)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数. 示例:即4+3=7则(1)用含x 的式子表示m =_____;(2)当y =﹣2时,n 的值为_____.53.(2019·内蒙古呼和浩特市·中考真题)关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.54.(2019·湖北鄂州市·中考真题)若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是____.55.(2019·四川眉山市·中考真题)已知关于x ,y 的方程组21254x y k x y k +=-⎧⎨+=+⎩的解满足x +y =5,则k 的值为_____. 56.(2019·四川内江市·中考真题)若,,x y z 为实数,且2421x y z x y z +-=⎧⎨-+=⎩,则代数式2223x y z -+的最大值是_____. 57.(2019·湖北中考真题)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为______和______.三、解答题58.(2021·湖南邵阳市·中考真题)为庆祝中国共产党成立100周年,某校计划举行“学党史·感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.59.(2021·江苏扬州市·中考真题)已知方程组271x yx y+=⎧⎨=-⎩的解也是关于x、y的方程4ax y+=的一个解,求a的值.60.(2021·四川泸州市·中考真题)某运输公司有A 、B 两种货车,3辆A 货车与2辆B 货车一次可以运货90吨,5辆A 货车与4辆B 货车一次可以运货160吨.(1)请问1辆A 货车和1辆B 货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A 、B 两种货车将全部货物一次运完(A 、B 两种货车均满载),其中每辆A 货车一次运货花费500元,每辆B 货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.61.(2021·重庆中考真题)对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”例如:3507m =,因为372(50)+=⨯+,所以3507是“共生数”:4135m =,因为452(13)+≠⨯+,所以4135不是“共生数”;(1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记()3n F n =.求满足()F n 各数位上的数字之和是偶数的所有n .62.(2021·四川眉山市·中考真题)解方程组3220021530x y x y -+=⎧⎨+-=⎩63.(2021·浙江台州市·中考真题)解方程组:241 x yx y+=⎧⎨-=-⎩64.(2021·江苏苏州市·中考真题)解方程组:3423 x yx y-=-⎧⎨-=-⎩.65.(2020·辽宁大连市·中考真题)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?66.(2020·江苏镇江市·中考真题)(算一算)如图①,点A、B、C在数轴上,B为AC的中点,点A表示﹣3,点B表示1,则点C表示的数为,AC长等于;(找一找)如图②,点M、N、P、Q中的一点是数轴的原点,点A、B﹣1,Q 是AB的中点,则点是这个数轴的原点;(画一画)如图③,点A、B分别表示实数c﹣n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹);(用一用)学校设置了若干个测温通道,学生进校都应测量体温,已知每个测温通道每分钟可检测a个学生.凌老师提出了这样的问题:假设现在校门口有m个学生,每分钟又有b个学生到达校门口.如果开放3个通道,那么用4分钟可使校门口的学生全部进校;如果开放4个通道,那么用2分钟可使校门口的学生全部进校.在这些条件下,a、m、b会有怎样的数量关系呢?爱思考的小华想到了数轴,如图④,他将4分钟内需要进校的人数m+4b记作+(m+4b),用点A表示;将2分钟内由4个开放通道检测后进校的人数,即校门口减少的人数8a记作﹣8a,用点B表示.①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G,并写出+(m+2b)的实际意义;②写出a、m的数量关系:.67.(2020·湖北黄石市·中考真题)我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子,问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.68.(2020·四川凉山彝族自治州·中考真题)解方程:221123x xx---=-69.(2020·山西中考真题)2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张)某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.70.(2020·浙江杭州市·中考真题)以下是圆圆解方程1323+--x x=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.71.(2019·湖南娄底市·中考真题)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?72.(2019·吉林中考真题)问题解决:糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?反思归纳: 现有a 根竹签,b 个山楂.若每根竹签串c 个山楂,还剩余d 个山楂,则下列等式成立的是________(填写序号)⑴bc d a +=;⑵ac d b +=;⑶ac d b -=.73.(2019·湖南张家界市·中考真题)阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为1a ,排在第二位的数称为第二项,记为2a ,依此类推,排在第n 位的数称为第n 项,记为n a .所以,数列的一般形式可以写成:1a ,2a ,3a ,…,n a .一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,其中1a 1=,2a 3=,公差为3a 2=.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d 为______,第5项是______.(2)如果一个数列1a ,2a ,3a ,…,n a …,是等差数列,且公差为d ,那么根据定义可得到:21a a =d -,32a a d -=,43a a d -=,…,n n 1a a d --=,….所以21a =a +d ,()3211a a d a d d a 2d =+=++=+,()4311a a d a 2d d a 3d =+=++=+,……, 由此,请你填空完成等差数列的通项公式:n 1a =a +(______)d .(3)4041-是不是等差数列5-,7-,9-…的项?如果是,是第几项?。

2021年中考数学一轮复习课件-第五讲 一次方程组(25PPT)

2021年中考数学一轮复习课件-第五讲 一次方程组(25PPT)

【跟踪训练】 1.(2020·金华中考)如图,在编写数学谜题时,“□”内要求填写同一个数字, 若设“□”内数字为x.则列出方程正确的是 ( D )
A.3×2x+5=2x C.3×20+x+5=20x
B.3×20x+5=10x×2 D.3×(20+x)+5=10x+2
2.(2020·绥化中考)“十一”国庆期间,学校组织466名八年级学生参加社会实
三、二元一次方程组及其解法 1.定义:含有___两____个未知数,并且含有___未__知__数__的__项____的次数都是1的___整__ _式____方程叫做二元一次方程.把具有___相__同__未__知__数____的两个二元一次方程组 合在一起叫做二元一次方程组. 2.二元一次方程组的解:能够使方程组的每个方程都成立的未知数的值. 3.解二元一次方程组的思想:___消__元____.
【自主解答】(1)设跳绳的单价为x元,毽子的单价为y元,
可得
30x 10x
60y 720, 50y 360,
解得
x y
16, 4.
答:跳绳的单价为16元,毽子的单价为4元.
(2)设该店的商品按原价的x折销售,可得:
(100×16+100×4)× x =1 800,解得:x=9.
10
答:该店的商品按原价的9折销售.
乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),
小明的购买方案共有 ( B )
A.3种
B.4种
C.5种
D.6种
4.(2019·百色中考)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲 地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时. (1)求该轮船在静水中的速度和水流速度. (2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所 用的航行时间相同,问甲、丙两地相距多少千米?

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
①-②,得 2y=2,∴y=1, x=2, x=2,
∴原方程组的解为y=1,将y=1 代入 2kx-3y<5 得 2×k×2-3<5,解得 k<2.
命题点 2:一次方程(组)的应用(近 3 年考查 15 次)
7.(数学文化)(2021·武汉第 7 题 3 分)我国古代数学名著《九章算术》
中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价
32 人.2 艘大船与 1 艘小船一次共可以满载游客 46 人.则 1 艘大船与 1
艘小船一次共可以满载游客的人数为
( B)
A.30
B.26
C.24
D.22
11.★(2022·武汉第 10 题 3 分)幻方是古老的数学问题,我国古代的《洛 书》中记载了最早的幻方——九宫格.将 9 个数填入幻方的空格中,要 求每一横行、 每一竖列以及两条对角线上的 3 个数之和相等,例如图① 就是一个幻方.图②是一个未完成的幻方,则 x 与 y 的和是 ( D ) A.9 B.10 C.11 D.12
14.(2020·仙桃第 12 题 3 分)篮球联赛中,每场比赛都要分出胜负,每 队胜 1 场得 2 分,负 1 场得 1 分.某队 14 场比赛得到 23 分,则该队胜 了__99__场.
15.(2020·黄冈第 19 题 6 分)为推广黄冈各县市名优农产品,市政府组 织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买 6 盒 羊角春牌绿茶和 4 盒九孔牌藕粉,共需 960 元,如果购买 1 盒羊角春牌 绿茶和 3 盒九孔牌藕粉共需 300 元,请问每盒羊角春牌绿茶和每盒九孔 牌藕粉分别需要多少元?
【分层分析】设购进创意文具袋 x 个,由题干信息①得购进笔记本为
((2x2+x+10)个,由题干信息②可列方程为 xx++(2(x2+x1+0)1=0)190.

2025年湖南中考数学一轮复习考点研析第二章 方程(组)与不等式(组)第5讲 一次方程(组)及其应用

2025年湖南中考数学一轮复习考点研析第二章 方程(组)与不等式(组)第5讲 一次方程(组)及其应用
(1)该超市采购员发现,购进2盒甲品牌月饼和1盒乙品牌月饼共需120元,购进
1盒甲品牌月饼和3盒乙品牌月饼共需185元.求甲、乙两种品牌月饼每盒的
进价分别为多少元;
(2)该超市购进甲、乙两种品牌月饼若干盒进行销售,若乙品牌月饼每盒的
售价比甲品牌月饼每盒的售价的2倍少40元,且4盒甲品牌月饼和3盒乙品牌
性质2
同一个数(或式)(除数
或除式不能为0),所得
结果仍是等式
拓展
公式表达
如果a=b,那么ac=
______
bc

如果a=b,那么 =


(d≠0)
___________

对称性:如果a=b,那么b=a.
传递性:如果a=b,b=c,那么a=c
在解方程中的应用
去分母(此时c≠0)
系数化为1
根据等式的性质2变形时,需考虑等式两边同乘的数为0时,该等式是否仍成
共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数
为( B )
A.25
B.75
C.81
D.90
答案
1.[学科融合]在物理学中,导体中的电流I跟导体两端的电压U、导体的电阻

R之间有以下关系:I= ,去分母得IR=U,那么其变形的依据是(

B )
A.等式的性质1
B.等式的性质2
C.分式的基本性质
解:(1)设参加此次研学活动的师生人数是x,原计划租用y辆45座客车.
= 600,
45+15 = ,
根据题意,得ቊ
解得ቊ
= 13.
60(-3) = ,
答:参加此次研学活动的师生人数是600,原计划租用13辆45座客车.

专题二 方程(组)与不等式(组)-2021年中考数学暑假知识点复习(重点)

专题二 方程(组)与不等式(组)-2021年中考数学暑假知识点复习(重点)

2021年中考数学暑假重点知识点总结专题二 方程(组)与不等式(组)一、一次方程(组)1、定义定义1:含有未知数的等式叫做方程。

定义2:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程,它的一般形式是()00ax b a +=≠。

定义3:使方程中等号左右两边相等的未知数的值叫做方程的解。

定义4:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。

定义5:把两个方程合在一起,就组成了方程组。

定义6:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。

定义7:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

定义8:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

2、等式的性质性质1:若a =b ,则a ±c =b ±c 。

等式两边加(或减)同一个数(或式子),结果仍相等。

性质2:若a =b ,则ac =bc ;a b c c=(c ≠0)。

等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

3、解一元一次方程的一般步骤①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。

4、解二元一次方程组的方法①代入消元法;②加减消元法。

代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这种方法叫做代入消元法,简称代入法。

加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

这种方法叫做加减消元法,简称加减法。

5、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。

认真读题,分析题中各个量之间的关系。

2022年中考数学人教版一轮复习课件:第5课 一次方程(组)的解法及应用

2022年中考数学人教版一轮复习课件:第5课 一次方程(组)的解法及应用

19.(2021·青海)已知 a,b 是等腰三角形的两边长,且 a,b 满足
2a-3b+5+(2a+3b-13)2=0,则此等腰三角形的周长为
A.8
( D)
B.6 或 8
C.7
D.7 或 8
20.(2021·眉山)解方程组:32xx- +21y5+y-203= =00① ②, .
解:方程组整理,得23xx+-125y=y=-3②20.①, ①×15+②×2,得 49x=-294, 解得 x=-6, 把 x=-6 代入②,得 y=1, ∴这个方程组的解为xy==1-. 6,
个肉粽和 5 个素粽共用去 70 元,设每个肉粽 x 元,则可列方
程为
( A)
A.10x+5(x-1)=70
B.10x+5(x+1)=70
C.10(x-1)+5x=70
D.10(x+1)+5x=70
15.(2021·东营)某玩具商店周年店庆,全场八折促销,持会员卡
可在促销活动的基础上再打六折.某电动汽车原价 300 元,
圆在该快递公司寄一件 8 千克的物品,需要付费
( B)
A.17 元
B.19 元
C.21 元
D.23 元
18.(2021·大连)某校为实现垃圾分类投放,准备在校园内摆放大、 小两种垃圾桶.购买 2 个大垃圾桶和 4 个小垃圾桶共需 600 元;购买 6 个大垃圾桶和 8 个小垃圾桶共需 1 560 元. (1)求大、小两种垃圾桶的单价; (2)该校购买 8 个大垃圾桶和 24 个小垃圾桶共需多少元?
26.(2020·绍兴)若关于 x,y 的二元一次方程组 xA+=y0=2,的解为
xy==11,,则多项式 A 可以是 xx--y(答yx案-不y唯x-一)(写出一个即可).

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.

第05讲 一次方程(组)及其应用(练习)(原卷版)-2024年中考数学复习

第05讲 一次方程(组)及其应用(练习)(原卷版)-2024年中考数学复习

第05讲一次方程(组)及其应用目录题型01利用等式的变形判断式子正误题型02利用等式的性质求解题型03判断一元一次方程.题型04解一元一次方程题型05错看或错解一元一次方程题型06二元一次方程(组)的概念题型07解二元一次方程组题型08错看或错解二元一次方程组问题题型09构造二元一次方程组求解题型10利用一元一次方程解决实际问题题型11利用二元一次方程解决实际问题题型01利用等式的变形判断式子正误题型02利用等式的性质求解题型03判断一元一次方程.题型04解一元一次方程题型05错看或错解一元一次方程+=发现正整数被嘉淇猜是题型06二元一次方程(组)的概念题型07解二元一次方程组题型08错看或错解二元一次方程组问题1.(2023·广东惠州·统考二模)小丽和小明同时解一道关于、的方程组B+=3−B=5,其中、为常数.在解方程组的过程中,小丽看错常数“”,解得=−1=3;小明看错常数“”,解得=2=1.(1)求、的值;(2)求出原方程组正确的解.2.(2021·广东汕头·统考一模)甲、乙两人同解方程组B+5=15①4−B=−10②,由于甲看错了方程①中的a,得到方程组的解为=−3=1乙看错了方程②中的b,得到方程组的解为=5=−4(1)求a,b的值;(2)若关于x的一元二次方程B2−B+=0两实数根为1,2,且满足71−22=7,求实数m的值.3.(2022许昌市二模)下面是小颖同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:2−=4①8−3=20②.解:①×4,得8−4=16③,………………第一步,②−③,得−=4,…………………第二步,=−4.……………第三步,将=−4代入①,得=0.…………第四步,所以,原方程组的解为=0=−4.……………第五步.填空:(1)这种求解二元一次方程组的方法叫做______.、代入消元法、加减消元法(2)第______步开始出现错误,具体错误是______;(3)直接写出该方程组的正确解:______.4.(2021·浙江嘉兴·统考二模)解方程组:3−2=6①+=5②,小海同学的解题过程如下:解:由②得=5+,③⋯⋯⋯⋯⋯(1)把③代入①得3−2+5=6,⋯⋯⋯⋯⋯(2)=−1⋯⋯⋯⋯⋯(3)把=−1代入③得=1,⋯⋯⋯⋯⋯(4)∴此方程组的解为=−1=1.⋯⋯⋯⋯⋯(5)判断小海同学的解题过程是否正确,若不正确,请指出错误的步骤序号,并给出正确的解题过程.题型09构造二元一次方程组求解题型10利用一元一次方程解决实际问题1.(2022·陕西宝鸡·统考一模)某医疗器械企业计划购进20台机器生产口罩,已知生产口罩面的机器每台每天的产量为12000个,生产耳挂绳的机器每台每天的产量为96000个,口罩是一个口罩面和两个耳挂绳构成,为使每天生产的口罩面和耳挂绳刚好配套,该企业应分别购进生产口罩面和生产耳挂绳的机器各多少台?2.(2022·山西运城·统考一模)在落实国家“精准扶贫”政策的过程中,政府为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后乙工程队加入,两工程队联合施工4天后,还剩70米的工程.已知甲工程队每天比乙工程队多施工5米,求甲、乙工程队每天各施工多少米?3.(2022·安徽马鞍山·安徽省马鞍山市第七中学校联考二模)某奶茶店的一款主打奶茶分为线上和线下两种销售模式,消费者从线上下单,每次可使用“满30减28”消费券一张(线下下单没有该消费券),同规格的一杯奶茶,线上价格比线下高20%,外卖配送费为4元/次,订单显示用券后线上一次性购买6杯实际支付金额和线下购买6杯支付金额一样多,求该款奶茶线下销售价格.4.(2023·陕西西安·陕西师大附中校考模拟预测)为有效落实双减工作,切实做到减负提质,很多学校高度重视学生的体育锻炼,不定期举行体育比赛.已知在一次足球比赛中,胜一场得4分,平一场得2分,负一场得0分,某队在已赛的13场比赛中保持连续不败的战绩,共得40分,求该队获胜的场数.5.(2023·河北沧州·统考三模)嘉嘉和淇淇玩游戏,下面是两人的对话.(1)如果淇淇想的数是−6,求他告诉嘉嘉的结果;(2)设淇淇心里想的数是x,求淇淇告诉嘉嘉的结果;若淇淇告诉嘉嘉的结果是66,求淇淇想的那个数是几.6.(2023·陕西西安·交大附中分校校考三模)如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.若扩充后的矩形绿地的长是宽的2倍,求新的矩形绿地的长与宽;7.(2023·陕西西安·陕西师大附中校考模拟预测)以井测绳.若将绳三折测之,绳多五尺;若将绳四折测之,绳多半尺.则井深几何?题目大意:古人用绳子测量水井的深度.如果将绳子折成三等份测量,绳子比井深多五尺;如果将绅子折成四等份测量,则绳子比井深多半尺.求此水井的深度.8.(2023·陕西西安·西北大学附中校考模拟预测)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,求店中共有多少间房?9.(2022·安徽合肥·合肥市第四十五中学校考一模)《九章算术》中有一道题,原文是:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”题目意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步,且两人的步长相等,若走路慢的人先走100步,求走路快的人走多少步才能追上走路慢的人?(注释:“步”是古代的一种计量单位)题型11利用二元一次方程解决实际问题1.(2023·福建泉州·福建省泉州第一中学校考模拟预测)元旦期间,七(1)班明明等同学随家长一同到某景区游玩,该景区门票价格规定如图:(1)明明他们一共12人,分别按成人和学生购票,共需550元,求他们一共去了几个成人,几个学生?(2)购完票后,明明发现,如果购团体票更省钱,正在此时,七(2)班涛涛等8名同学和他们的12名家长共20人也来购票,请你为七(2)班设计出最省钱的购票方案,并求出此时的购票费用.2.(2023·广东东莞·模拟预测)A、B两地相距4千米,甲从A地出发步行到B地,乙从B地出发骑自行车到A地,两人同时出发,30分钟后两人相遇,又经过10分钟,甲剩余路程为乙剩余路程的3倍.(1)求甲、乙每小时各行多少千米?(2)在他们出发后多长时间两人相距1千米?3.(2021·江苏泰州·统考中考真题)甲、乙两工程队共同修建150km的公路,原计划30个月完工.实际施工时,甲队通过技术创新,施工效率提高了50%,乙队施工效率不变,结果提前5个月完工.甲、乙两工程队原计划平均每月分别修建多长?4.(2017·安徽·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.5.(2023·福建厦门·厦门一中校考一模)学校为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶.购买2个大垃圾桶和4个小垃圾桶共需600元;购买6个大垃圾桶和8个小垃圾桶共需1560元.求大、小两种垃圾桶的单价.6.(2023·陕西西安·西安市铁一中学校考模拟预测)如图,用8块形状、大小完全相同的矩形地砖拼成一块长方形地面,且B=60cm,地砖的拼放方式如图,求每块地砖的长与宽.1.(2023·湖南永州·统考中考真题)关于x的一元一次方程2+=5的解为=1,则m的值为()A.3B.−3C.7D.−7如:的常数项,即可表示方程+4=23,则湖南娄底·统考中考真题)若干个同学参加课后社团——学均匀排成一个以O点为圆心,r为半径的圆圈(每个同学对应圆周上一个点)同学都沿各自所在半径往后移a米,再左右调整位置,使这+2的距离(即在圆周上两人之间的圆弧的长)相等.这+2个同学排成圆圈后,又有一个同学要加入队伍,米(请用关于a的代数式表示)21.(2023·辽宁大连·统考中考真题)我国的《九章算术》中记载道:不足四.问有几人.”(1)请在相应的方框内用横线划出小红的错误处;(2)写出你的解答过程.25.(2023·山东枣庄·统考中考真题)对于任意实数例如:3※1=3−1=2,5(1)4※3=___________,(−(2)若(3+2)※(−1)=5,求26.(2023·湖南常德·统考中考真题)解方程组:27.(2023·北京·统考中考真题)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是均为天头长与地头长的和的28.(2023·河北·统考中考真题)某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投(1)求珍珍第一局的得分;(2)第二局,珍珍投中A29.(2023·吉林·统考中考真题)鱼,如果购买1箱A种鱼和别求每箱A种鱼和每箱30.(2023·湖南张家界用45座客车若干辆,但有坐满.现有甲、乙两种客车,它们的载客量和租金如下表所示:甲型客车。

2021年中考数学复习专题3 方程、函数思想 - 副本(教学课件)

2021年中考数学复习专题3 方程、函数思想 - 副本(教学课件)

精讲释疑
重重点点题题型型
题组训练
题 型 一 用方程思想解决实际问题
例1.欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中 一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服 装的盈利情况是( B )
A.盈利
B.亏损
C.不盈不亏
D.与售价a有关
重重点点题题型型
题组训练
【解析】列一元一次方程求出两件衣服的进价,进而求出总盈 亏.设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设 第二件衣服的进价为y元,依题意得:y(1-20%)=a,得出x(1 +20%)=y(1-20%),整理得:3x=2y,该服装店卖出这两件 服装的盈利情况为:0.2x-0.2y=0.2x-0.3x=-0.1x,即赔了 0.1x元.
重重点点题题型型
题组训练
解:(1)根据题意,得y与x的解析式为:y=22+2(x-1)=2x+ 20(1≤x≤12); (2)设当天的销售利润为w元,则当1≤x≤6时,w=(1200-800)(2x +20)=800x+8000,∵800>0,∴w随x的增大而增大,∴当x =6时,w最大值=800×6+8000=12800.
重重点点题题型型
题组训练
题 型 二 用方程思想解决几何问题
例 3.(温州一模)如图,在△ABC 中,分别以 AB,AC 为边向外 作正方形 ABED,ACGF.若点 E,A,G 在同一直线上,EG=8 2 ,
15 BC=7,则△ABC 的面积为__4__.
重重点点题题型型
题组训练
【解析】设 AB=x,AC=y,∵EG=8 2 ,BC=7,∴x2 +y2=72, 2 x+ 2 y=8 2 ,∴x+y=8,∴(x+y)2=x2+y2 +2xy=64,∴2xy=15,∴xy=125 ,∴△ABC 的面积=12 AB·AC =12 xy=145 .

最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第5讲一次方程(组)及应用

最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第5讲一次方程(组)及应用
返回
数学
考点2 二元一次方程组及其应用
3.(2021 金华)已知 x=2,是方程 3x+2y=10 的一个解,则 m 的值 y=m
是2 .
返回
数学
4.(2021 眉山)解方程组: 3x-2y+20=0, 2x+15y-3=0.
解:方程组整理得 3x-2y=-20① ,①×15+②×2 得 49x=-294, 2x+15y=3②
第一部分 数与代数
第二章 方程与不等式
第5讲 一次方程(组)及应用
数学
目录
01 命题分析
02 课前预习
03 考点梳理
04 课堂精讲
05 广东中考
06
新题速递(创新思维题)——全国视野
数学
命题分析
广东省卷近年中考数学命题分析
命题点 2021 2020 2019 2018 2017 2016
解一元一次
由题意得 x+y=55 .解得 x=5.9 .
y=9x-4
y=49.1
答:港珠澳大桥的桥梁长度和隧道长度分别为 49.1 km 和
5.9 km.
返回
数学
广东中考
6.(2013深圳)某商场将一款空调按标价的八折出售,仍可获利 10%,若该空调的进价为2 000元,则标价为 2 750 元.
返回
数学
若 a=b,则a = b(d≠0).
dd
(2)解法的一般步骤:
①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数
化为1.
返回
数学
2.解下列方程: (1)4x-2=3-x; x=1
(2)x+2 = x.
54
x=8

2021年中考数学真题(全国通用)专题06 一次方程(组)及应用(共40题)-(原卷版)

2021年中考数学真题(全国通用)专题06 一次方程(组)及应用(共40题)-(原卷版)

专题6一次方程(组)及应用(共40题)一、单选题1.(2021·浙江温州市·中考真题)解方程,以下去括号正确的是( )()221x x-+=A .B .C .D .41x x-+=-42x x-+=-41x x--=42x x--=2.(2021·安徽)设a ,b ,c 为互不相等的实数,且,则下列结论正确的是( )4155b a c =+A .B .C .D .a b c>>c b a>>4()a b b c -=-5()a c ab -=-3.(2021·天津中考真题)方程组的解是( )234x y x y +=⎧⎨+=⎩A .B .C .D .02x y =⎧⎨=⎩11x y =⎧⎨=⎩22x y =⎧⎨=-⎩33x y =⎧⎨=-⎩4.(2021·浙江杭州市·中考真题)某景点今年四月接待游客25万人次,五月接待游客60.5万人次,设该景点今年四月到五月接待游客人次的增长率为(),则( )x 0x >A .B .()60.5125x -=()25160.5x -=C .D .()60.5125x +=()25160.5x +=5.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米元.该地区某用户上月用水量为20立方米,则应缴水费为()()1.2a +A .元B .元C .元D .元20a ()2024a +()17 3.6a +()20 3.6a +6.(2021·四川南充市·中考真题)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x 元,则可列方程为( )A .B .105(1)70x x +-=105(1)70x x ++=C .D .10(1)570x x -+=10(1)570x x ++=7.(2021·江苏苏州市·中考真题)某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x 架,乙种型号无人机架.根据题意可列出的方程组是()yA .B .()()111,3122x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩()()111.3122x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩C .D .()()111,2123x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩()()111,2123x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩8.(2021·四川成都市·中考真题)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50,23问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为( )A .B .C .D .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩15022503x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩2502503x y x x -=⎧⎪⎨-=⎪⎩2502503x y x y -=⎧⎪⎨-=⎪⎩9.(2021·浙江宁波市·中考真题)我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为()A .B .C .D .510330x y x y +=⎧⎨+=⎩531030x y x y +=⎧⎨+=⎩305103x y x y+=⎧⎪⎨+=⎪⎩305310x y x y +=⎧⎪⎨+=⎪⎩10.(2021·甘肃武威市·中考真题)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有人,辆车,则x y 可列方程组为()A .B .C .D .3(2)29y xy x -=⎧⎨-=⎩3(2)29y xy x +=⎧⎨+=⎩3(2)29y xy x -=⎧⎨+=⎩3(2)29y xy x -=⎧⎨+=⎩二、填空题11.(2021·四川凉山彝族自治州·中考真题)已知是方程的解,则a 的值为13x y =⎧⎨=⎩2ax y +=______________.12.(2021·浙江嘉兴市·中考真题)已知二元一次方程,请写出该方程的一组整数解314+=x y __________________.13.(2021·浙江金华市·中考真题)已知是方程的一个解,则m 的值是2x y m =⎧⎨=⎩3210x y +=____________.14.(2021·四川广安市·中考真题)若、满足,则代数式的值为______.x y 2223x y x y -=-⎧⎨+=⎩224x y -15.(2021·重庆中考真题)若关于x 的方程的解是,则a 的值为__________.442xa -+=2x =16.(2021·重庆中考真题)方程的解是__________.2(3)6x -=17.(2021·浙江绍兴市·中考真题)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有_______两.(注:明代时1斤=16两)18.(2021·江苏扬州市·中考真题)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.19.(2021·湖南邵阳市·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱.20.(2021·重庆中考真题)盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A ,B ,C 三种盲盒各一个,其中A 盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B 盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C 盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A 盒的成本为145元,B 盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C 盒的成本为__________元.21.(2021·四川遂宁市·中考真题)已知关于x ,y 的二元一次方程组满足,则235423x y ax y a +=⎧⎨+=+⎩0x y ->a 的取值范围是____.22.(2021·山东泰安市·中考真题)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙23各有多少钱?”设甲持钱数为x ,乙持钱数为y ,可列方程组为________.三、解答题23.(2021·江苏扬州市·中考真题)已知方程组的解也是关于x 、y 的方程的一个解,271x y x y +=⎧⎨=-⎩4ax y +=求a 的值.24.(2021·江苏连云港市·中考真题)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A 型消毒液和3瓶B 型消毒液共需41元,5瓶A 型消毒液和2瓶B 型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B 型消毒液的数量不少于A 型消毒液数量的,请设计出最13省钱的购买方案,并求出最少费用.25.(2021·浙江丽水市·中考真题)解方程组:.26x y x y =⎧⎨-=⎩26.(2021·四川眉山市·中考真题)解方程组3220021530x y x y -+=⎧⎨+-=⎩27.(2021·浙江台州市·中考真题)解方程组:241x y x y +=⎧⎨-=-⎩28.(2021·江苏苏州市·中考真题)解方程组:.3423x y x y -=-⎧⎨-=-⎩29.(2021·陕西中考真题)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.30.(2021·重庆中考真题)某工厂有甲、乙两个车间,甲车间生产A 产品,乙车间生产B 产品,去年两个车间生产产品的数量相同且全部售出.已知A 产品的销售单价比B 产品的销售单价高100元,1件A 产品与1件B 产品售价和为500元.(1)A 、B 两种产品的销售单价分别是多少元?(2)随着5G 时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B 产品的生产车间.预计A 产品在售价不变的情况下产量将在去年的基础上增加a %;B 产品产量将在去年的基础上减少a %,但B 产品的销售单价将提高3a %.则今年A 、B 两种产品全部售出后总销售额将在去年的基础上增加%.求a 的值.2925a31.(2021·山东泰安市·中考真题)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?32.(2021·安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为 (用含n的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?33.(2021·四川成都市·中考真题)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,现在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?34.(2021·四川眉山市·中考真题)为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若千个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?35.(2021·湖南邵阳市·中考真题)为庆祝中国共产党成立100周年,某校计划举行“学党史·感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.36.(2021·浙江温州市·中考真题)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成份每千克含铁42毫克原料每千克含铁甲食材50毫克配料表乙食材10毫克规格每包食材含量每包单价A 包装1千克45元B 包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A 的数量不低于B 的数量,则A 为多少包时,每日所获总利润最大?最大总利润为多少元?37.(2021·四川资阳市·中考真题)我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的,应12如何购买才能使总费用最少?并求出最少费用.38.(2021·四川泸州市·中考真题)某运输公司有A 、B 两种货车,3辆A 货车与2辆B 货车一次可以运货90吨,5辆A 货车与4辆B 货车一次可以运货160吨.(1)请问1辆A 货车和1辆B 货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A 、B 两种货车将全部货物一次运完(A 、B 两种货车均满载),其中每辆A 货车一次运货花费500元,每辆B 货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.39.(2021·重庆中考真题)对于任意一个四位数m ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“共生数”例如:,因为,3507m =372(50)+=⨯+所以3507是“共生数”:,因为,所以4135不是“共生数”;4135m =452(13)+≠⨯+(1)判断5313,6437是否为“共生数”?并说明理由;(2)对于“共生数”n ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记.求满足各数位上的数字之和是偶数的所有n .()3nF n =()F n 40.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低.统计5月的销量和销售额发现:3a%4“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加,这两种小面的总销售额在5%2a 4月的基础上增加.求a 的值.5%11a。

考点05 一次方程(组)(精讲)-2024年中考数学一轮复习之核心考点精讲精练(全国通用)(原卷版)

考点05 一次方程(组)(精讲)-2024年中考数学一轮复习之核心考点精讲精练(全国通用)(原卷版)

考点05. 一次方程(组)(精讲)【命题趋势】一次方程(组)在中考数学中较为简单,每年考查2-3题左右,分值为10分左右。

各地中考中,对于两个方程的解法以及注意事项是必须掌握的,而在其应用上也是中考代数部分结合型较强的一类考点,也有在一次函数、二次函数的应用中解一元一次方程、二元一次方程组的工具性的考查。

预计2024年各地中考还将继续考查一次方程的解法和应用题,为避免丢分,学生应扎实掌握。

【知识清单】1:等式的基本性质(☆☆)1)等式两边都加上(或减去) 同一个数或同一个整式 ,所得的结果仍是等式; 2)等式两边都乘以(或除以) 同一个不等于零的数 ,所得的结果仍是等式; 3)若a =b ,b =c ,则 a=c (传递性)。

2:一元一次方程(☆☆)1)方程:含有 未知数 的 等式 叫做方程.2)方程的解:使方程左右两边 相等 的 未知数 的值叫做方程的解;求方程的解的过程叫做 解方程 。

3)一元一次方程:只含有 一个 未知数,并且未知数的次数为 1 ,这样的 整式 方程叫做一元一次方程。

它的一般形式为0(0)ax b a +=≠。

注意:x 前面的系数不为0。

4)一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做 一元一次方程的解 。

5)一元一次方程0(0)ax b a +=≠的求解步骤31)二元一次方程:含有 2个 未知数,并且含有未知数的项的次数都是1的 整式方程 叫做二元一次方程。

2)二元一次方程的解:使二元一次方程左右两边相等的 未知数的值 叫做二元一次方程的解。

3)二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组。

方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩。

4)解二元一次方程组的基本思想解二元一次方程组的基本思想是 消元 ,即将二元一次方程组转化为一元一次方程。

5)二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程。

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
x+y=40, x+y=12, A.4x+3y=12 B.4x+3y=40
x+y=40, x+y=12, C.3x+4y=12 D.3x+4y=40
6.(2019·岳阳第 15 题 4 分)我国古代的数学名著《九章算术》中有下 列问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”其意思 为:今有一女子很会织布,每日加倍增长,5 日共织布 5 尺.问每日各织 多少布?根据此问题中的已知条件,可求得该女子第一天织布335115 尺.
8. (2019·娄底第 23 题 9 分)某商场用 14 500 元购进甲、乙两种矿泉水
共 500 箱,矿泉水的成本价与销售价如表所示:
类别
成本价(元/箱)
销售价(元/箱)

25
35

35
48
求:(1)购进甲、乙两种矿泉水各多少箱?
解:设购进甲矿泉水 x 箱,购进乙矿泉水 y 箱,依题意,得
x+y=500, 25x+35y=14 500,
2 次,2020 年考查 2 次)
2x-y=5, 1.(2021·郴州第 6 题 3 分)已知二元一次方程组x-2y=1,则 x-y 的
值为
( A)
A.2
B.6
C.-2
D.-6
2.(2021·株洲第 2 题 4 分)方程x2-1=2 的解是 A.x=2 B.x=3 C.x=5 D.x=6
( D)
3.(2019·湘潭第 6 题 4 分)若关于 x 的方程 3x-kx+2=0 的解为 2,则 k 的值为 44 .
m=8,m=5, m=2, ∴n=2,n=6,或n=10, ∴共有 3 种运输方案,
方案 1:安排 A 型车 8 辆,B 型车 2 辆, 所需费用:500×8+400×2=4 800(元); 方案 2:安排 A 型车 5 辆,B 型车 6 辆, 所需费用:500×5+400×6=4 900(元); 方案 3:安排 A 型车 2 辆,B 型车 10 辆, 所需费用:500×2+400×10=5 000(元). ∵4 800<4 900<5 000, ∴安排 A 型车 8 辆,B 型车 2 辆最省钱,最省钱的运输费用为 4 800 元.

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

13.(2021·毕节适应性考试)如图,点 A 在数轴上表示的数是-16.点 B 在数轴上表示的数是 8.若点 A 以 6 个单位长度/秒的速度向右匀速运动, 同时点 B 以 2 个单位长度/秒的速度向左匀速运动,问:当 AB=8 时,运 动时间为__2或4 __秒.
14.(2021·贺州)为了提倡节约用水,某市制定了两种收费方式:当每 户每月用水量不超过 12 m3时,按一级单价收费;当每户每月用水量超过 12 m3 时,超过部分按二级单价收费. 已知李阿姨家五月份用水量为 10 m3, 缴纳水费 32 元,七月份因孩子放假在家,用水量为 14 m3,缴纳水费 51.4 元. (1)问该市一级水费,二级水费的单价分别是多少? (2)某户某月缴纳水费为 64.4 元时,用水量为多少?
1 y=4 的一个解,则 a 的值为 2 .
7.(2020·南京)已知
x,y
x+3y=-1, 满足方程组2x+y=3, 则
x+y
的值为__11__.
8.(2020·牡丹江)某种商品每件的进价为 120 元,标价为 180 元.为了
拓展销路,商店准备打折销售.若使利润率为 20%,则商店应打__88__折.
解:(1)-1;5. (2)设铅笔的单价为 m 元,橡皮的单价为 n 元,日记本的单价为 p 元,依 题意,得 20m+3n+2p=32,① 39m+5n+3p=58,② 由 2×①-②可得 m+n+p=6, ∴5m+5n+5p=5×6=30. 答:购买 5 支铅笔、5 块橡皮、5 本日记本共需 30 元.
15.(2020·扬州)阅读感悟: 有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于 未知数的代数式的值,如以下问题: 已知实数 x,y 满足 3x-y=5①,2x+3y=7②,求 x-4y 和 7x+5y 的值. 本题常规思路是将①②两式联立组成方程组,解得 x,y 的值再代入欲求 值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方 程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式 的值,如由①-②可得 x-4y=-2,由①+②×2 可得 7x+5y=19.这样 的解题思想就是通常所说的“整体思想”.

2021全国中考真题:方程与不等式(一元一次方程答案版)

2021全国中考真题:方程与不等式(一元一次方程答案版)

2021全国中考真题分类汇编(方程与不等式)----一次方程(组)一、选择题1.(2021·安徽省)设a ,b ,c 为互不相等的实数,且4155b ac =+,则下列结论正确的是()A.a b c>> B.c b a>> C.4()a b b c -=- D.5()a c ab -=-【答案】D 【解析】【分析】举反例可判断A 和B ,将式子整理可判断C 和D .【详解】解:A .当5a =,10c =,41655b ac =+=时,c b a >>,故A 错误;B .当10a =,5c =,41955b ac =+=时,a b c >>,故B 错误;C .4()a b b c -=-整理可得1455b ac =-,故C 错误;D .5()a c a b -=-整理可得4155b ac =+,故D 正确;故选:D .2.(2021•甘肃省定西市)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为()A .B .C .D .【分析】设共有x 人,y 辆车,根据“如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行”,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】解:设共有x 人,y 辆车,依题意得:.故选:C .3.(2021•湖北省武汉市)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱;每人出7钱,还差4钱.问人数,物价是y 钱,则下列方程正确的是()A .8(x ﹣3)=7(x +4)B .8x +3=7x ﹣4C .=D .=【分析】根据人数=总钱数÷每人所出钱数,得出等式即可.【解答】解:设物价是y 钱,根据题意可得:=.故选:D .4.(2021•株洲市)方程122x-=的解是()A.2x =B.3x = C.5x = D.6x =【答案】D5.(2021•四川省成都市)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为()A .B .C .D .【分析】设甲需持钱x ,乙持钱y ,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.【解答】解:设甲需持钱x ,乙持钱y ,根据题意,得:,故选:A6(2021•四川省南充市)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x 元,则可列方程为()A .10x +5(x ﹣1)=70B .10x +5(x +1)=70C .10(x ﹣1)+5x =70D .10(x +1)+5x =70【分析】设每个肉粽x 元,则每个素粽(x ﹣1)元,根据总价=单价×数量,结合购买10个肉粽和5个素粽共用去70元,即可得出关于x 的一元一次方程,此题得解.【解答】解:设每个肉粽x 元,则每个素粽(x ﹣1)元,依题意得:10x +5(x ﹣1)=70.故选:A .7.(2021•天津市)方程组234x y x y +=⎧⎨+=⎩的解是()A.02x y =⎧⎨=⎩ B.11x y =⎧⎨=⎩C.22x y =⎧⎨=-⎩ D.33x y =⎧⎨=-⎩【答案】B 【解析】【分析】直接利用加减消元法解该二元一次方程组即可.【详解】234x y x y +=⎧⎨+=⎩①②,②-①得:32x y x y +--=,即22x =,∴1x =.将1x =代入①得:12y +=,∴1y =.故原二元一次方程组的解为11x y =⎧⎨=⎩.故选B .8.(2021•新疆)某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是()A.26216x yx y+=⎧⎨+=⎩B.26216x yx y+=⎧⎨+=⎩C.16226x yx y+=⎧⎨+=⎩D.16226x yx y+=⎧⎨+=⎩【答案】D9.(2021•浙江省杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则()A.60.5(1﹣x)=25B.25(1﹣x)=60.5C.60.5(1+x)=25D.25(1+x)=60.5【分析】依题意可知四月份接待游客25万,则五月份接待游客人次为:25(1+x),进而得出答案.【解答】解:设该景点今年四月到五月接待游客人次的增长率为x(x>0),则25(1+x)=60.8.故选:D.10.(2021•浙江省温州市).解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x 【分析】可以根据乘法分配律先将2乘进去,再去括号.【解答】解:根据乘法分配律得:﹣(4x+2)=x,去括号得:﹣3x﹣2=x,故选:D.11.(2021•江苏省无锡市)方程组的解是()A.B.C.D.【分析】将两个方程相加,可消去y,得到x的一元一次方程,从而解得x=4,再将x =4代入①解出y的值,即得答案.【解答】解:,①+②得:2x=8,∴x=4,把x=4代入①得:4+y=5,∴y=1,∴方程组的解为.故选:C.12.(2021•黑龙江省龙东地区)为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有()A.5种B.6种C.7种D.8种【答案】A【解析】【分析】设购买甲种奖品为x件,乙种奖品为y件,由题意可得15x+10y=180,进而求解即可.【详解】解:设购买甲种奖品为x件,乙种奖品为y件,由题意可得:15x+10y=180,3∴y=18-x,2∵x>0,y>0,且x、y都为正整数,∴当x=2时,则y=15;当x=4时,则y=12;当x=6时,则y=9;当x=8时,则y=6;当x=10时,则y=3;∴购买方案有5种;故选A.13.(2021•齐齐哈尔市)周末,小明的妈妈让他到药店购买口罩和消精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有()A.3种B.4种C.5种D.6种【答案】B 【解析】【分析】设购买口罩x 包,酒精湿巾y 包,根据总价=单价⨯数量,即可列出关于,x y 的二元一次方程,结合,x y 均为正整数,即可得出购买方案的个数.【详解】解:设购买口罩x 包,酒精湿巾y 包,依据题意得:3230x y +=2103x y ∴=-,x y 均为正整数,83x y =⎧∴⎨=⎩或66x y =⎧⎨=⎩或49x y =⎧⎨=⎩或212x y =⎧⎨=⎩∴小明共有4种购买方案.故选:B .二.填空题1.(2021•江苏省扬州)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.【答案】20【解析】【分析】设良马行x 日追上驽马,根据路程=速度×时间结合两马的路程相等,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设快马行x 天追上慢马,则此时慢马行了(x +12)日,依题意,得:240x =150(x +12),解得:x =20,∴快马20天追上慢马,故答案为:20.2.(2021•山东省泰安市)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为.【分析】根据乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50和题目中所设的未知数,可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.3.(2021•陕西省).幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,则图中a的值为﹣2.【分析】根据各行的三个数字之和相等,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:依题意得:﹣1﹣6+3=0+a﹣4,解得:a=﹣7.故答案为:﹣2.⎧x+2y=2-_________4.(2021•广东省)二元一次方程组⎨的解为.⎩2x+y=2【答案】22x y =⎧⎨=-⎩【解析】2222x y x y +=-⎧⎨+=⎩①②,①+②可得0x y +=③,①-③得,2y =-,把2y =-代入③得2x =因此22x y =⎧⎨=-⎩,考查二元一次方程组的解法5.(2021•四川省凉山州)已知13x y =⎧⎨=⎩是方程2ax y +=的解,则a 的值为______________.【答案】-1【解析】【分析】根据方程解的定义,将x =1,y =3代入方程2ax y +=,即可求得a 的值.【详解】解:根据题意,将x =1,y =3代入方程2ax y +=,得:32a +=,解得:a =-1,故答案为:-1.6.(2021•浙江省嘉兴市)已知二元一次方程x +3y =14,请写出该方程的一组整数解(答案不唯一).【分析】把y 看做已知数求出x ,确定出整数解即可.【解答】解:x +3y =14,x =14﹣3y ,当y =1时,y =11,则方程的一组整数解为.故答案为:(答案不唯一).7.(2021•浙江省金华市)已知是方程3x +2y =10的一个解,则m 的值是2.【分析】把方程组的解代入到方程中,得到关于m 的一元一次方程,解方程即可.【解答】解:把代入方程得:3×2+2m=10,∴m=2,故答案为:2.8.(2021•浙江省绍兴市)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两;若每人9两,则差8两.银子共有46两.【分析】通过设两个未知数,可以列出银子总数相等的二元一次方程组,本题得以解决.【解答】解:设有x人,银子y两,由题意得:,解得,故答案为46.9.(2021•重庆市B)方程2(x﹣3)=6的解是x=6.【分析】按照去括号,移项,合并同类项的步骤解方程即可.【解答】解:方程两边同除以2得:x﹣3=3.移项,合并同类项得:x=6.故答案为:x=6.【点评】本题主要考查了解一元一次方程.解一元一次方程常见的过程有去分母,去括号、移项、合并同类项,系数化为1等.10.(2021•重庆市A)若关于x的方程442x a-+=的解是2x=,则a的值为__________.【答案】3【解析】【分析】将x=2代入已知方程列出关于a的方程,通过解该方程来求a的值即可.【详解】解:根据题意,知4-2+a=4,2解得a=3.故答案是:3.11.(2021•湖北省江汉油田)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为_______尺.(其大意为:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺.)【答案】20【解析】【分析】设绳索长x 尺,根据两种量竿的方法建立方程,解方程即可得.【详解】解:设绳索长x 尺,由题意得:552xx -=+,解得20x =,即绳索长20尺,故答案为:20.三、解答题1.(2021•四川省广元市)解方程:31423x x --+=.【答案】7x =【解析】【分析】根据整式方程的计算过程,去分母、去括号、移项、合并同类项、系数化为1,就可以得到结果.【详解】解:去分母得:()()332124x x -+-=,去括号得:392224x x -+-=,移项并合并同类项得:535x =,系数化为1得:7x =,故答案为:7x =.2.(2021•浙江省台州)解方程组:241x y x y +=⎧⎨-=-⎩【答案】12x y =⎧⎨=⎩.【解析】【分析】观察方程组中同一未知数的系数特点:x 的系数存在倍数关系,而y 的系数互为相反数,因此将两方程相加,消去y 求出x ,再求出y 的值,可得到方程组的解.【详解】解:①+②得:3x =3,即x =1,把x =1代入①得:y =2,则方程组的解为12x y =⎧⎨=⎩.3.(2021•四川省眉山市)解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×15+②×2得:49x =﹣294,解得:x =﹣6,把x =﹣6代入②得:y =1,则方程组的解为4.(2021•呼和浩特市)解方程组1.5(2010)150001.2(110120)97200x y x y +=⎧⎨+=⎩解:1.5(2010)150001.2(110120)97200x y x y +=⎧⎨+=⎩,化简得210001112810x y x y +=⎧⎨+=⎩①②①×12-②得:133900x =解得300x =把300x =代入①得:400y =∴方程组的解为:300400x y =⎧⎨=⎩5.(2021•江苏省扬州)已知方程组271x y x y +=⎧⎨=-⎩的解也是关于x 、y 的方程4ax y +=的一个解,求a 的值.1【答案】a =2【解析】【分析】求出方程组的解得到x 与y 的值,代入方程计算即可求出a 的值.【详解】解:方程组271x y x y +=⎧⎨=-⎩①②,把②代入①得:()217y y -+=,解得:3y =,代入①中,解得:2x =,把2x =,3y =代入方程4ax y +=得,234a +=,解得:12a =.6.(2021·安徽省)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n 的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?【答案】(1)2;(2)2n +4;(3)1008块【解析】【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量.【详解】解:(1)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖;故答案为:2;(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖;当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4;所以当地砖有n 块时,等腰直角三角形地砖有(24n +)块;故答案为:24n +;(3)令242021n +=则1008.5n =当1008n =时,242020n +=此时,剩下一块等腰直角三角形地砖∴需要正方形地砖1008块.7.(2021•湖南省邵阳市)为庆祝中国共产党成立100周年,某校计划举行“学党史•感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品店购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.【分析】设钢笔购买了x 支,笔记本购买了y 本,篮球个数+钢笔支数+笔记本本数=56,篮球总价+钢笔总价+笔记本总价=1000,利用这两个相等关系列出二元一次方程组,解出即得钢笔和笔记本的数量,乘以各自单价即得各自总价.【解答】解:设钢笔购买了x 支,笔记本购买了y 本.由题意得:,解得:,∴15×15=225(元),35×5=175(元),答:钢笔购买了15支共225元,笔记本购买了35本共175元.8.(2021•陕西省)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.【分析】设这种服装每件的标价是x 元,根据“这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等”从而得出等式方程,解方程即可求解;【解答】解:设这种服装每件的标价是x 元,根据题意得,10×0.8x =11(x ﹣30),解得x =110,答:这种服装每件的标价为110元.9.(2021•广西贺州市)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m 时,按一级单价收费;当每户每月用水量超过312m 时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m ,缴纳水费32元.七月份因孩子放假在家,用水量为314m ,缴纳水费51.4元.(1)问该市一级水费,二级大费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?【答案】(1)一级水费的单价为3.2元/3m ,二级水费的单价为6.5元/3m ;(2)316m 【解析】【分析】(1)设该市一级水费的单价为x 元/3m ,二级水费的单价为y 元/3m ,根据题意,列出二元一次方程组,即可求解;(2)先判断水量超过312m ,设用水量为3m a ,列出方程,即可求解.【详解】(1)设该市一级水费的单价为x 元/3m ,二级水费的单价为y 元/3m ,依题意得()103212141251.4x x y =⎧⎨--=⎩,解得 3.26.5x y =⎧⎨=⎩,答:该市一级水费的单价为3.2元/3m ,二级水费的单价为6.5元/3m .(2)当水费为64.4元,则用水量超过312m ,设用水量为3m a ,得,()12 3.212 6.564.4a ⨯+-⨯=,解得:16a =.答:当缴纳水费为64.4元时,用水量为316m .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
答:甲、丙两地相距
22千5 米.
4
5.(2020·遂宁中考)新学期开始时,某校九年级一班的同学为了增添教室绿色 文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A,B两种花苗.据 了解,购买A种花苗3盆,B种花苗5盆需210元;购买A种花苗4盆,B种花苗10盆需 380元. (1)求A,B两种花苗的单价分别是多少元? (2)经九年级一班班委会商定,决定购买A,B两种花苗共12盆进行搭配装扮教室. 种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种 花苗,B种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至 少准备多少元?最多准备多少元?
x 3,
3.二元一次方程组
x 2y 1, 3x 2y 11
的解是___y____1.___ .
高频考点·疑难突破
考点一 一次方程(组)的相关概念
【示范题1】(2020·绍兴中考)若关于x,y的二元一次方程组
x y A 0
2,
的解为
x y
1, 1,
则多项式A可以是___x_-_y_(_答__案__不__唯__一__)___(写出一个即可).
第五讲 一次方程(组)
一、等式的性质
等式的性质1:如果a=b,那么a±c=___b_±__c___;
等式的性质2:如果a=b,那么ac=___b_c___;如果a=b,那么
a c
b
=__c_____
(c≠0).
二、一元一次方程及其解法 1.定义:含有___一__个____未知数,且未知数的___次__数__为__1___,等号两边都是___整__ _式____的方程,一般形式:___a_x_+_b_=_0_(_a_≠__0_且__a_,_b_为__常__数__)___. 2.一元一次方程的解:能使一元一次方程左右两边___相__等____的未知数的值. 3.解一元一次方程的步骤:去分母、___去__括__号____、___移__项____、___合__并__同__类__ _项____、系数化为1.
3.(2020·桂林中考)解二元一次方程组:
2x 4x
y y
1, ① 5.②
【解析】①+②得:6x=6,解得:x=1,
把x=1代入①得:y=-1,
则方程组的解为
x y
1, 1.
考点三 一次方程(组)的应用 【示范题3】(2019·河池中考)在某体育用品商店,购买30根跳绳和60个毽子共 用720元,购买10根跳绳和50个毽子共用360元. (1)跳绳、毽子的单价各是多少元? (2)该店在“五四”青年节期间开展促销活动,所有商品按同样的折数打折销售. 节日期间购买100根跳绳和100个毽子只需1 800元,该店的商品按原价的几折销 售?
【跟踪训练】
(2019·常州中考)若
x y
1,是关于x,y的二元一次方程ax+y=3的解,则a=
2
___1___.
考点二 一次方程(组)的解法
【示范题2】(2020·玉林中考)解方程组:
x 3y 2x y
2, 3.
【自主解答】
x 3y 2x y
2①, 3②
①+②×3得:7x=7,
解得:x=1,
【解析】(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时.
依题意可得: 16(0(xx解yy)得)9:900,,
x 12, y 3.
答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时.
(2)设甲、丙两地相距a千米.
依题意可得, a 90 a,
解法: (1)___代__入____消元法. (2)___加__减____消元法.
【自我诊断】
1.一元一次方程2x=4的解是 ( B )
A.x=1
B.x=2
C.x=3
D.x=4
2.小明星期天到体育用品商店购买一个篮球花了120元,已知篮球按标价打八折,
那么篮球的标价是___1_5_0___元.
三、二元一次方程组及其解法 1.定义:含有___两____个未知数,并且含有___未__知__数__的__项____的次数都是1的___整__ _式____方程叫做二元一次方程.把具有___相__同__未__知__数____的两个二元一次方程组 合在一起叫做二元一次方程组. 2.二元一次方程组的解:能够使方程组的每个方程都成立的未知数的值. 3.解二元一次方程组的思想:___消__元____.
【跟踪训练】 1.(2020·金华中考)如图,在编写数学谜题时,“□”内要求填写同一个数字, 若设“□”内数字为x.则列出方程正确的是 ( D )
A.3×2x+5=2x C.3×20+x+5=20x
B.3×20x+5=10x×2 D.3×(20+x)+5=10x+2
2.(2020·绥化中考)“十一”国庆期间,学校组织466名八年级学生参加社会实
【解析】(1)设A,B两种花苗的单价分别是x元和y元,则
解得
x y
20, 30.
3x 4x
5y 210, 10y 380,
答:A,B两种花苗的单价分别是20元和30元.
(2)设购买B种花苗x盆,则购买A种花苗为(12-x)盆,设总费用为w元, 由题意得: w=20(12-x)+(30-x)x =-x2+10x+240(0≤x≤12), ∵-1<0.故w有最大值,当x=5时,w的最大值为265,当x=12时,w的最小值为216, 故本次购买至少准备216元,最多准备265元.
【跟踪训练】
1.(2020·南京中考)已知x,y满足方程组
x 3y 2x y
1,则x+y的值为___1___.
3,
2.(2020·凉山州中考)解方程: x x 2=1 2x 1.
2
3
【解析】去分母,得:6x-3(x-2)=6+2(2x-1), 去括号,得:6x-3x+6=6+4x-2, 移项,得:6x-3x-4x=6-6-2, 合并同类项,得:-x=-2, 系数化为1,得:x=2.
把x=1代入①得:y=1,
则方程组的解为
【答题关键指导】 1.解一元一次方程的一般步骤 (1)去分母.(2)去括号.(3)移项.(4)合并同类项.(5)系数化为1. 2.解方程组时应注意的问题 (1)当方程组中某一个未知数的系数是1或者-1时,选用代入消元法较合适. (2)当方程组中某一个方程的常数项为0时,选用代入消元法较合适. (3)当两个方程中同一个未知数的系数相同或互为相反数时,选用加减消元法较 合适. (4)当两个方程中同一个未知数的系数成整数倍关系时,选用加减消元法较合适.
【答题关键指导】 1.当已知某个(对)数为一次方程(组)的解时,把解代入方程(组),消去原来的未 知数,得到新的方程(组),求解方程(组),得出所求字母的取值. 2.一元一次方程ax+b=0,二元一次方程ax+by=c中,未知数的系数不等于0,如(k1) xk2 +3=0是一元一次方程的条件为k=-1,而非k=±1.
【自主解答】(1)设跳绳的单价为x元,毽子的单价为y元,
可得
30x 10x
60y 720, 50y 360,
解得
x y
16, 4.
答:跳绳的单价为16元,毽子的单价为4元.
(2)设该店的商品按原价的x折销售,可得:
(100×16+100×4)× x =1 800,解得:x=9.
10
答:该店的商品按原价的9折销售.
【答题关键指导】 解二元一次方程组应用题的步骤 (1)审题:找出问题中的已知条件和未知量及它们之间的关系. (2)设元:找出题中的两个关键的未知量,并用字母表示出来. (3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组. (4)求解. (5)检验作答:检验所求解是否符合实际意义,并作答.
乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),
小明的购买方案共有 ( B )
A.3种
B.4种
C.5种
D.6种
4.(2019·百色中考)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲 地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时. (1)求该轮船在静水中的速度和水流速度. (2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所 用的航行时间相同,问甲、丙两地相距多少千米?
践活动,现已准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37
座客车y辆.根据题意,得( A )
A.
x y 10, 49x 37y
466
C.
x y 466, 49x 37y 10
B.3x7xy4190y, 466 D.3x7xy494y66,10
3.(2020·齐齐哈尔中考)母亲节来临,小明去花店为妈妈准备节日礼物.已知康
相关文档
最新文档