数字信号处理实验报告-FFT算法的MATLAB实现

合集下载

数字信号处理实验报告-FFT算法的MATLAB实现

数字信号处理实验报告-FFT算法的MATLAB实现

数字信号处理 实验报告实验二:FFT 算法的MATLAB 实现一、实验目的通过本实验的学习,掌握离散傅立叶变换的理论,特别是FFT 的基本算法以及其在在数字信号处理中的应用。

二、实验内容题一:若x(n)=cos(n*pi/6)是一个N =12的有限序列,利用MATLAB 计算它的DFT 并画出图形。

题二:一被噪声污染的信号,很难看出它所包含的频率分量,如一个由50Hz 和120Hz 正弦信号构成的信号,受均值随机噪声的干扰,数据采样率为1000Hz ,对这污染信号进行傅立叶变换,以检查所包含的频率分量题三:调用原始语音信号mtlb ,对其进行FFT 变换后去掉幅值小于1的FFT 变换值,最后重构语音信号。

(要求有四幅语音信号的频谱图在同一图形窗口以便比较:分别是1、原始语音信号;2、FFT 变换;3去掉幅值小于1的FFT 变换值;4、重构语音信号)三、实验原理1、有限长序列x(n)的DFT 的概念和公式:⎪⎪⎩⎪⎪⎨⎧-≤≤=-≤≤=∑∑-=--=101010)(1)(10)()(N k kn N N n kn N N n W k x N n x N k W n x k x2、基2的FFT 算法四、实验条件(1)微机(2)MATLAB 编程工具五、用matlab 程序实现:实验一:clc;N=12;n=0:N-1;k=0:N-1;xn=cos(n*pi/6);W=exp(-j*2*pi/N);kn=n'*kXk=xn*(W.^kn)stem(n,Xk);xlabel('k');ylabel('Xk');实验二clc;fs=1000;N=1024;n=0:N-1;t=n/fs;x=sin(2*pi*50*t)+sin(2*pi*120*t)+rand(1,N);y=fft(x,N);mag=abs(y);f=n*fs/N;subplot(1,2,1),plot(f,mag);xlabel('频率/Hz');ylabel('振幅');title('N=1024');subplot(1,2,2),plot(f(1:N/2),mag(1:N/2)); xlabel('频率/Hz');ylabel('振幅');title('N=1024');实验三:clc;load mtlbN=1500;subplot(2,2,1)plot([1:N],mtlb(1:N));title('原始语音信号');y=fft(mtlb(1:N));subplot(2,2,2)plot([1:N],y);title('原始语音信号FFT变换');y(y<1)=0;subplot(2,2,3)plot([1:N],y);title('去掉幅值小于1的FFT变换值');subplot(2,2,4)plot([1:N],ifft(y));title('重构语音信号');六、实验心得:(1)通过这次实验,掌握离散傅立叶变换的理论,特别是FFT的基本算法以及其在在数字信号处理中的应用。

基于MATLAB的FFT算法实现

基于MATLAB的FFT算法实现

基于MATLAB的FFT算法实现摘要:本文研究了基于MATLAB的快速傅里叶变换(FFT)算法的实现。

傅里叶变换是一种重要的信号处理工具,广泛应用于图像处理、语音处理、通信系统等领域。

FFT是一种快速计算傅里叶变换的算法,可以大大提高傅里叶变换的计算效率。

本文详细介绍了FFT算法的原理和实现步骤,并通过MATLAB编程实现了FFT算法,并对不同信号和数据集进行了测试和分析。

实验结果表明,基于MATLAB的FFT算法可以有效地计算傅里叶变换,并且具有较高的精确性和稳定性。

关键词:MATLAB、FFT、傅里叶变换、计算效率、精确性、稳定性一、引言傅里叶变换是一种将时域信号转换到频域的重要工具,可以解析复杂的周期信号和非周期信号。

傅里叶变换在图像处理、语音处理、通信系统等领域有广泛的应用。

由于传统的傅里叶变换算法计算复杂度较高,耗时较长,因此需要一种快速计算傅里叶变换的算法。

快速傅里叶变换(FFT)算法是一种通过分治和递归的方法,将傅里叶变换计算的时间复杂度从O(N^2)降低到O(NlogN),大大提高了傅里叶变换的计算效率。

二、FFT算法原理FFT算法是一种递归的分治算法,它将长度为N的输入序列分为两个长度为N/2的子序列,然后通过对子序列进行FFT变换,再利用蝶形运算(butterfly operation)将结果合并,最终得到整个输入序列的傅里叶变换结果。

FFT算法的关键步骤包括序列分组、计算旋转因子、递归计算和合并。

通过这些步骤,可以将傅里叶变换的计算复杂度从O(N^2)降低到O(NlogN)。

三、基于MATLAB的FFT算法实现步骤1.读入输入序列,并将序列长度补齐为2的指数幂,方便进行分组计算。

2.进行FFT算法的递归计算。

首先将输入序列分为两个长度为N/2的子序列,然后对子序列进行递归计算,最终得到子序列的傅里叶变换结果。

3.计算旋转因子。

根据旋转因子的定义,计算出旋转因子的实部和虚部。

实验三用FFT对信号进行频谱分析和MATLAB程序

实验三用FFT对信号进行频谱分析和MATLAB程序

实验三用FFT对信号进行频谱分析和MATLAB程序实验三中使用FFT对信号进行频谱分析的目的是通过将时域信号转换为频域信号,来获取信号的频谱信息。

MATLAB提供了方便易用的函数来实现FFT。

首先,我们需要了解FFT的原理。

FFT(快速傅里叶变换)是一种快速计算离散傅里叶变换(DFT)的算法,用于将离散的时间域信号转换为连续的频域信号。

FFT算法的主要思想是将问题划分为多个规模较小的子问题,并利用DFT的对称性质进行递归计算。

FFT算法能够帮助我们高效地进行频谱分析。

下面是一个使用MATLAB进行频谱分析的示例程序:```matlab%生成一个10秒钟的正弦波信号,频率为1Hz,采样率为100Hzfs = 100; % 采样率t = 0:1/fs:10-1/fs; % 时间范围f=1;%正弦波频率x = sin(2*pi*f*t);%进行FFT计算N = length(x); % 信号长度X = fft(x); % FFT计算magX = abs(X)/N; % 幅值谱frequencies = (0:N-1)*(fs/N); % 频率范围%绘制频谱图figure;plot(frequencies, magX);xlabel('频率(Hz)');ylabel('振幅');title('信号频谱');```上述代码生成了一个10秒钟的正弦波信号,频率为1 Hz,采样率为100 Hz。

通过调用MATLAB的fft函数计算信号的FFT,然后计算每个频率分量的幅值谱,并绘制出信号频谱图。

在频谱图中,横轴表示频率,纵轴表示振幅。

该实验需要注意以下几点:1.信号的采样率要与信号中最高频率成一定比例,以避免采样率不足导致的伪频谱。

2.FFT计算结果是一个复数数组,我们一般只关注其幅值谱。

3.频率范围是0到采样率之间的频率。

实验三的报告可以包含以下内容:1.实验目的和背景介绍。

实验二 FFT算法的MATLAB实现

实验二	FFT算法的MATLAB实现

班级:学号:姓名实验二FFT算法的MATLAB实现(一)实验目的:(1)掌握用matlab进行FFT在数字信号处理中的高效率应用。

(2)学习用FFT对连续信号和时域离散信号进行谱分析。

(二)实验内容及运行结果:题1:若x(n)=cos(nπ/6)是一个N=12的有限序列,利用MATLAB计算它的DFT 并进行IDFT变换同时将原图与IDFT变换后的图形进行对比。

当求解IFFT变换中,采样点数少于12时,会产生什么问题。

程序代码:N=12;n=0:11;Xn=cos(n*pi/6);k=0:11;nk=n'*k;WN=exp(-j*2*pi/N)WNnk=WN.^nkXK=Xn*WNnk;figure(1)stem(Xn)figure(2)stem(abs(XK))运行结果:IFFT变换中,当采样点数少于12时图像如下图显示:分析:由图像可以看出,当采样点数小于12时,x(n)的频谱不变,周期为6,而XK 的频谱图发生改变。

题2:对以下序列进行谱分析132()()103()8470x n R n n n x n nn =+≤≤⎧⎪=-≤≤⎨⎪⎩其他n选择FFT 的变换区间N 为8和16点两种情况进行频谱分析,分别打印其幅频特性曲线并进行对比、分析和讨论。

㈠ 程序代码:x=ones(1,3);nx=0:2; x1k8=fft(x,8);F=(0:length(x1k8)-1)'*2/length(x1k8); %进行对应的频率转换 stem(f,abs(x1k8));%8点FFT title('8点FFTx_1(n)'); xlabel('w/pi'); ylabel('幅度');N=8时:x=ones(1,3);nx=0:2;x1k16=fft(x,16);f=(0:length(x1k16)-1)'*2/length(x1k16); %进行对应的频率转换stem(f,abs(x1k16));%16点FFTtitle('16点FFTx_1(n)');xlabel('w/pi');ylabel('幅度');N=16时:分析:对x1进行分析,两图像相似,N越大图像分辨率越高。

数字信号处理实验 matlab版 快速傅里叶变换(FFT)

数字信号处理实验 matlab版 快速傅里叶变换(FFT)

实验14 快速傅里叶变换(FFT)(完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word 格式会让很多部分格式错误,谢谢)XXXX 学号姓名处XXXX一、实验目的1、加深对双线性变换法设计IIR 数字滤波器基本方法的了解。

2、掌握用双线性变换法设计数字低通、高通、带通、带阻滤波器的方法。

3、了解MA TLAB 有关双线性变换法的子函数。

二、实验内容1、双线性变换法的基本知识2、用双线性变换法设计IIR 数字低通滤波器3、用双线性变换法设计IIR 数字高通滤波器4、用双线性变换法设计IIR 数字带通滤波器三、实验环境MA TLAB7.0四、实验原理1、实验涉及的MATLAB 子函数(1)fft功能:一维快速傅里叶变换(FFT)。

调用格式:)(x fft y =;利用FFT 算法计算矢量x 的离散傅里叶变换,当x 为矩阵时,y 为矩阵x每一列的FFT 。

当x 的长度为2的幂次方时,则fft 函数采用基2的FFT 算法,否则采用稍慢的混合基算法。

),(n x fft y =;采用n 点FFT 。

当x 的长度小于n 时,fft 函数在x 的尾部补零,以构成n点数据;当x 的长度大于n 时,fft 函数会截断序列x 。

当x 为矩阵时,fft 函数按类似的方式处理列长度。

(2)ifft功能:一维快速傅里叶逆变换(IFFT)。

调用格式:)(x ifft y =;用于计算矢量x 的IFFT 。

当x 为矩阵时,计算所得的y 为矩阵x 中每一列的IFFT 。

),(n x ifft y =;采用n 点IFFT 。

当length(x)<n 时,在x 中补零;当length(x)>n 时,将x 截断,使length(x)=n 。

(3)fftshift功能:对fft 的输出进行重新排列,将零频分量移到频谱的中心。

调用格式:)(x fftshift y =;对fft 的输出进行重新排列,将零频分量移到频谱的中心。

数字信号处理,实验,Matlab实验FFT算法实现nd

数字信号处理,实验,Matlab实验FFT算法实现nd

实验二 应用FFT 对信号进行频谱分析一、实验目的1、加深对离散信号的DTFT 和DFT 的及其相互关系的理解。

2、在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉FFT 算法极其程序的编写。

3、熟悉应用FFT 对典型信号进行频谱分析的方法。

4、了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT 。

二、实验原理和方法一个连续信号)(t x a 的频谱可以用它的傅里叶变换表示⎰+∞∞-Ω-=Ωdt et x j X tj a a)()(^ (2—1)如果对该信号进行理想采样,可以得到采样序列:)()(nT X n x a = (2—2)同样可以对该序列进行Z 变换,其中T 为采样周期 ∑+∞-∞=-=n nzn x z X )()( (2—3)当jweZ =得时候,我们就得到了序列的傅里叶变换∑+∞-∞=-=n jwnjwen x e X )()( (2—4)其中w 称为数字频率,它和模拟频域的关系为s f T w Ω=Ω= (2—5)式中的s f 是采样频率,上式说明数字频率是模拟频率对采样频率s f 的归一化。

同模拟域的情况相似,数字频率代表了序列值变化的速率,而序列的傅里叶变换称为序列的频谱。

序列的傅里叶变换和对应的采样信号频谱具有下式的对应关系 : ∑+∞∞--=)2(1)(Tm w jX TeX a jwπ (2—6)即序列的频谱是采样信号频谱的周期延拓。

从式(2—6)可以看出,只要分析采样序列的频谱,就可以得到相应的连续信号的频谱。

注意:这里的信号必须是带限信号,采样也必须满足Nyquist 定理。

在各种信号序列中 ,有限长序列在数字信号处理中占有很重要的地位。

无限长的序列也往往可以用有限长序列来逼近。

对于有限长的序列我们可以使用离散傅里叶变换(DFT ),这一变换可以很好的放映序列的频域特性,并且容易利用快速算法在计算机上实现当序列的长度是N 时,我们定义离散傅里叶变化为:∑-===1)]([)(N n knNWn x DFT k X (2—7)其中,Njkn NeWπ2-=,它的反变换定义为:∑-=-==1)(1)]([)(N k knNW k X Nk X IDFT n x (2—8)根据式(2—3)和(2—7)令kN W Z -=,则有)]([)()(1n x DFT Wn x z X N n kn Nw z kN==∑-==- (2—9)可以得到kNjkNeW z z X k X π2)()(==-=,kN W -是Z 平面单位圆上幅角为k Nw π2=的点,就是见单位圆进行N 等分以后第K 个点。

数字信号处理,matlab实验报告

数字信号处理,matlab实验报告

Matlab实验报告实验一:1.实验Matlab代码:N=25;Q=0.9+0.3*j;WN=exp(-2*j*pi/N);x=zeros(25,1);format long; %长整型科学计数for k0=1:25x(k0,1)=Q^(k0-1);end;for k1=1:25;X1(k1,1)=(1-Q^N)/(1-Q*WN^(k1-1));end;X1;X2=fft(x,32);subplot(3,1,1);stem(abs(X1),'b.');axis([0,35,0,15]);title('N=25,formular');xlabel('n'); subplot(3,1,2);stem(abs(X2),'g.');axis([0,35,0,15]);title('N=32, FFT');xlabel('n');for(a=1:25)X3(a)=X1(a)-X2(a)end;subplot(3,1,3);stem(abs(X3),'r.');title('difference');xlabel('n');实验结果如图:实验结论:可以看出基2时间抽选的FFT算法与利用公式法所得到的DFT结果稍有偏差,但不大,在工程上可以使用计算机利用FFT处理数据。

2.实验Matlab代码:N = 1000; % Length of DFTn = [0:1:N-1];xn = 0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-pi/4);Xk = fft(xn,N);k=[0:1:N-1];subplot(5,1,1);stem(k,abs(Xk(1:1:N)));title('DFT x(n)');xlabel('k');axis([140,240,0,6])subplot(5,1,2);stem(k, abs(Xk(1:1:N)),'r');%画出sin(0.3npi)-cos(0.302npi-pi/4) axis([140,160,0,6]);title('sin(0.3*pi*n)-cos(0.302*pi*n) ');xlabel('k');subplot(5,1,3);stem(k, 1000*abs(Xk(1:1:N)),'g');%画出0.001*cos(0.45npi)axis([220,230,0,6]);title('cos(0.45*pi*n) ');xlabel('k');subplot(5,1,4);stem(k,0.01*abs(Xk(1:1:N)),'k');%画%sin(0.3npi)-cos(0.302npi-pi/4)axis([140,160,0,6]);title('sin(0.3*pi*n)-cos(0.302*pi*n) ');xlabel('k');subplot(5,1,5);stem(k, 10*abs(Xk(1:1:N)),'m');%画出0.001*cos(0.45npi)axis([220,230,0,6]);title('cos(0.45*pi*n) ');xlabel('k');实验结果如图:实验结论:由上图及过程可知,当DFT变换长度为1000时所得到的谱线非常理想。

简单FFT实验报告Matlab

简单FFT实验报告Matlab

MATLAB EXAM.4 用语言编程实现DFT和FFT实验报告专业班级:姓名学号指导教师:完成时间:一、实验题目1. 用语言编程实现DFT和FFT二、实验目的1.不使用MATLAB现有的FFT函数,自己编写所有具体算法2.给出流程图和理论计算结果。

3.设计实验,给出DFT和FFT算法差异的证明,如复杂度等。

(精度、不同长度的序列等)4.分析数据,得出结论。

三、实验内容1.不使用MATLAB现有的FFT函数,自己编写所有具体算法2.给出流程图和理论计算结果。

3.设计实验,给出DFT和FFT算法差异的证明,如复杂度等。

(精度、不同长度的序列等)4.分析数据,得出结论。

四、实验步骤(一)文件与文件夹管理1.自行编写8点FFT流程算法下图为8点FFT的蝶形运算图,我们采用基2蝶形运算单元来实现8点FFT的变换。

图1 8点FFT蝶形运算图2.给出流程图和理论计算结果()x n 2⎛+ ⎝x n N ()(n )2=++N A x n x ()[(n )]2-+⨯n N N x n x W图2 基2蝶形运算单元图3 8点FFT 架构模型利用Matlab 对已知输入数据进行 DFT 运算,得出其理论值假设输入数据为:实现DFT 算法:得出其理论值3.设计实验,给出DFT 和FFT 算法差异的证明,如复杂度等。

(精度、不同长度的序列等)通过在matlab中对DFT 和FFT的建模,计算相同点数的变换所需要的加法次数和乘法次数。

以此来比较两种不同算法的差异性。

首先DFT 算法中,由于一次循环需要一次复数乘法和一次复数加法(第一次循环不需要加法,所以需要加法次数为计算结果减1)同理在FFT的蝶形运算中,每一次蝶形运算所消耗的复数乘法和复数加法都可以通过参数来计算出来。

每次运行基2蝶形模块一次,都需要消耗两次复数加法,一次复数乘法。

通过运行matlab 程序我们可以得出其中的运算复杂度的数值可以看出一个8点的DFT运算需要64次复数乘法,63次复数加法,符合理论值。

用matlab实现fft算法

用matlab实现fft算法

A1=str2double(get(handles.edit8,'String'));A2=str2double(get(handles.edit9,'String'));F1=str2double(get(handles.edit10,'String'));F2=str2double(get(handles.edit11,'String'));Fs=str2double(get(handles.edit12,'String'));N=str2double(get(handles.edit13,'String'));t=[0:1/Fs:(N-1)/Fs];x=A1*sin(2*pi*F1*t)+A2*sin(2*pi*F2*t); %信号x的离散值axes(handles.axes1) %在axes1中作原始信号图plot(x);grid onm=nextpow2(x);N=2^m; % 求x的长度对应的2的最低幂次mif length(x)<Nx=[x,zeros(1,N-length(x))];% 若x的长度不是2的幂,补零到2的整数幂endnxd=bin2dec(fliplr(dec2bin([1:N]-1,m)))+1;% 求1:2^m数列序号的倒序y=x(nxd); %将x倒序排列作为y的初始值for L=1:m; %将DFT作m次基2分解,从左到右,对每次分解作DFT运算,共做m级蝶形运算,每一级都有2^(L-1)个蝶形结B=2^(L-1);%两个输入数据相距2^(L-1)for j=0:B-1 ;%J代表了不同的旋转因子p=2^(m-L)*j;for k=(j+1):2^L:N ;%本次蝶形运算的跨越间隔为2^LWN=exp(-i*2*pi*p/N);%计算本次运算的旋转因子T=y(k)+y(k+B)*WN ;%计算K地址上蝶形项y(k+B)=y(k)-y(k+B)*WN ;%计算(K+B)地址上的蝶形项并仍然放回(K+B)y(k)=T ;%将原来计算的K地址蝶形项放回K地址,注意必须先进行复数加法运算endendendaxes(handles.axes2) %在axes2中作自编fft运算后的幅频特性图Ayy = (abs(y)); %取模Ayy=Ayy/(N/2); %换算成实际的幅度F=([1:N]-1)*Fs/N; %换算成实际的频率值stem(F(1:N/2),Ayy(1:N/2)); %显示换算后的FFT模值结果axes(handles.axes3) %在axes3中作系统fft运算后的幅频特性图G=fft(x,N); %利用系统作N点FFT变换,作对比Ayy1= (abs(G)); %取模Ayy1=Ayy1/(N/2); %换算成实际的幅度F=([1:N]-1)*Fs/N; %换算成实际的频率值stem(F(1:N/2),Ayy1(1:N/2)); %显示换算后的FFT模值结果GUI界面所得频谱图:图1由图1可知,我所编写的fft算法与系统自带的fft算法结果一致,是正确的倘若我未知信号频率f1,f2,仍然设f1=50Hz,f2=80Hz,在保证Fs大于两倍信号频率的前提下(Fs仍然为256Hz)改变采样点数,取N=64图2由图2可知,50Hz频率点处产生误差取N=40图3由图3可知,50Hz频率点和80Hz频率点处均产生误差再取N=8图4误差更大了!取N=1000图5由图五可知,当N=1000时,所得图形接近理想值再取N=1024图6与理想值符合,但与图1比,分辨率更高结论:当我们已知一个周期信号的周期时,我们对其进行频谱分析的时候,(由图1和图6可知)对其进行fft运算所取的点数N必须满足分辨率(Fs/N)能够被信号频率整除才能保证没有误差,但是在实际的情况中,我们往往不知道信号的周期是多少,所以我们在对这类未知信号进行频谱分析的时候,在保证时域采样频率满足乃奎斯特条件的情况下,对其作FFT运算的时候采样点数N尽量地取大一点,这样才能保证减小误差,由图3与图5对比可知,当N的值较大时,所得到的频谱图误差较小,反之误差很大。

《数字信号处理》Matlab实验

《数字信号处理》Matlab实验

《数字信号处理》Matlab 实验一.离散信号的 FFT 分析1.用Matlab 编程上机练习。

已知:N=2^5。

这里Q=0.9+j0.3。

可以推导出 ,首先根据这个式子计算X(k)的理论值,然后计算输入序列x(n)的32个值,再利用基2时间抽选的FFT 算法,计算x(n)的DFT X(k),与X(k)的理论值比较(要求计算结果最少6位有效数字)。

解:函数代码:>> function xn()>> format long>> q=0.9+0.3*i;>> wn=exp(-2*pi*i/32);>> xk=(1-q^32)./(1-q*wn.^[0:31])>>xn=q.^[0:31]>> xk1=fft(xn,32)>>diff=xk-xk1具体执行情况:>> function xn()format longq=0.9+0.3*i;wn=exp(-2*pi*i/32);xk=(1-q^32)./(1-q*wn.^[0:31])xk =Columns 1 through 20.5698 + 3.3840i 2.8369 + 8.8597iColumns 3 through 49.3189 - 9.8673i 1.2052 - 3.5439iColumns 5 through 61.8846 -2.0941i 0.8299 - 1.2413i11,011)()()(k k 10nk 10-=--===∑∑-=-=N k QW Q QW W n x k X N NnN N n N N n ,0.9214 - 1.0753i 0.3150 - 0.0644i Columns 9 through 100.9240 - 0.8060i 0.4202 - 0.2158i Columns 11 through 120.8513 - 0.6357i 0.5040 - 0.1701i Columns 13 through 140.6217 - 0.6931i 0.2441 - 0.8978i Columns 15 through 160.9454 - 0.2800i 0.7139 - 0.3158i Columns 17 through 180.6723 - 0.6496i 0.0263 + 0.5093i Columns 19 through 200.5671 + 0.6914i 0.3173 + 0.9841i Columns 21 through 220.8929 + 0.7792i 0.4066 + 0.8452i Columns 23 through 240.5847 + 0.9017i 0.9129 + 0.9283i Columns 25 through 260.0573 + 0.5531i 0.4219 + 0.9562i Columns 27 through 280.3298 + 0.3143i 0.4513 + 0.2638i0.7214 + 0.1879i 0.0933 + 1.7793iColumns 31 through 320.9483 + 1.9802i 0.4932 + 2.6347i>> xn=q.^[0:31]xn =Columns 1 through 21.0000 0.0000 + 0.0000i Columns 3 through 40.0000 + 0.0000i 0.0000 + 0.0000iColumns 5 through 60.0000 + 0.0000i -0.0000 + 0.0000iColumns 7 through 8-0.0000 + 0.0000i -0.0000 + 0.0000iColumns 9 through 10-0.0000 + 0.0000i -0.0000 + 0.0000iColumns 11 through 12-0.0000 - 0.0000i -0.0000 - 0.0000iColumns 13 through 14-0.2000 - 0.4000i -0.3600 - 0.5200iColumns 15 through 16-0.9680 - 0.1760i 0.4816 - 0.3488i0.2381 - 0.2695i 0.2951 - 0.1711i Columns 19 through 200.1169 - 0.4655i 0.4449 - 0.9838i Columns 21 through 220.6955 + 0.2480i 0.5516 + 0.4319i Columns 23 through 240.3669 + 0.5542i 0.9639 + 0.2088i Columns 25 through 260.3049 + 0.9771i -0.5187 + 0.4709i Columns 27 through 28-0.6081 + 0.2682i -0.1278 + 0.5589i Columns 29 through 30-0.4827 + 0.0647i -0.6538 + 0.5134i Columns 31 through 32-0.8425 - 0.4341i -0.1280 - 0.1434i >> xk1=fft(xn,32)xk1 =Columns 1 through 20.5698 + 3.3839i 2.8366 + 8.8599i Columns 3 through 49.3182 - 9.8692i 1.2051 - 3.5439i1.8845 -2.0942i 0.8298 - 1.2413i Columns 7 through 80.9213 - 1.0754i 0.3150 - 0.0645i Columns 9 through 100.9240 - 0.8060i 0.4202 - 0.2158i Columns 11 through 120.8514 - 0.6356i 0.5040 - 0.1701i Columns 13 through 140.6217 - 0.6931i 0.2441 - 0.8977i Columns 15 through 160.9454 - 0.2800i 0.7139 - 0.3159i Columns 17 through 180.6723 - 0.6496i 0.0263 + 0.5093i Columns 19 through 200.5671 + 0.6913i 0.3172 + 0.9840i Columns 21 through 220.8929 + 0.7792i 0.4065 + 0.8452i Columns 23 through 240.5846 + 0.9016i 0.9129 + 0.9283i Columns 25 through 260.0572 + 0.5531i 0.4219 + 0.9563i0.3297 + 0.3144i 0.4512 + 0.2638iColumns 29 through 300.7213 + 0.1879i 0.0932 + 1.7793iColumns 31 through 320.9480 + 1.9802i 0.4928 + 2.6347i>> diff=xk-xk1diff =1.0e-013 *Columns 1 through 20.4625 + 0.8501i 0.9504 - 0.4003iColumns 3 through 40.6010 + 0.4028i 0.4752 + 0.7001iColumns 5 through 60.5502 + 0.8501i 0.4625 + 0.8501iColumns 7 through 80.7751 + 0.9250i 0 + 0.3875i Columns 9 through 100.7751 - 0.4625i 0.3126 - 0.4625iColumns 11 through 12-0.4625 - 0.3126i 0.4625 + 0.3875iColumns 13 through 14-0.9250 + 0.6938i 0.3875 - 0.0781iColumns 15 through 160.3875 - 0.6156i 0 + 0.9641iColumns 17 through 180.9250 - 0.7598i -0.4625 - 0.0422iColumns 19 through 200.4625 + 0.1172i 0.4625 + 0.3094iColumns 21 through 220.9250 + 0.4625i 0.9250 + 0.2313iColumns 23 through 240.3875 + 0.1563i 0.3875 - 0.2313iColumns 25 through 260.8501 -0.9250 - 0.4625iColumns 27 through 280.0127 - 0.7751i 0.7001 - 0.9250iColumns 29 through 300.1626 0.7814 - 0.9250iColumns 31 through 320.4816 + 0.9250i 0.7255 - 0.8501i由以上结果可知,由基2时间抽选的FFT算法所得到的DFT结果与利用公式法所得的理论值稍有偏差,但误差较小,从结果可以看出大概在小数点第15位才开始出现误差,故而用计算机FFT处理数据在精度上是可以接受的。

硕士信号处理实验报告(3篇)

硕士信号处理实验报告(3篇)

第1篇一、实验背景随着信息技术的飞速发展,数字信号处理(DSP)技术已成为通信、图像处理、语音识别等领域的重要工具。

本实验旨在通过一系列实验,加深对数字信号处理基本原理和方法的理解,提高实际应用能力。

二、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握常用信号处理算法的MATLAB实现。

3. 培养分析和解决实际问题的能力。

三、实验内容本实验共分为五个部分,具体如下:1. 离散时间信号的基本操作(1)实验目的:熟悉离散时间信号的基本操作,如加法、减法、乘法、除法、延时、翻转等。

(2)实验步骤:- 使用MATLAB生成两个离散时间信号。

- 对信号进行基本操作,如加法、减法、乘法、除法、延时、翻转等。

- 观察并分析操作结果。

2. 离散时间系统的时域分析(1)实验目的:掌握离散时间系统的时域分析方法,如单位脉冲响应、零状态响应、零输入响应等。

(2)实验步骤:- 使用MATLAB设计一个离散时间系统。

- 计算系统的单位脉冲响应、零状态响应和零输入响应。

- 分析系统特性。

(1)实验目的:掌握离散时间信号的频域分析方法,如快速傅里叶变换(FFT)、离散傅里叶变换(DFT)等。

(2)实验步骤:- 使用MATLAB生成一个离散时间信号。

- 对信号进行FFT和DFT变换。

- 分析信号频谱。

4. 数字滤波器的设计与实现(1)实验目的:掌握数字滤波器的设计与实现方法,如巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等。

(2)实验步骤:- 使用MATLAB设计一个低通滤波器。

- 使用窗函数法实现滤波器。

- 对滤波器进行性能分析。

5. 信号处理在实际应用中的案例分析(1)实验目的:了解信号处理在实际应用中的案例分析,如语音信号处理、图像处理等。

(2)实验步骤:- 选择一个信号处理应用案例。

- 分析案例中使用的信号处理方法。

- 总结案例中的经验和教训。

四、实验结果与分析1. 离散时间信号的基本操作实验结果表明,离散时间信号的基本操作简单易懂,通过MATLAB可以实现各种操作,方便快捷。

北邮数字信号处理MATLAB实验报告

北邮数字信号处理MATLAB实验报告

数字信号处理软件实验——MatLab仿真实验报告学院:电子工程学院班级:2013211202姓名:学号:实验一:数字信号的 FFT 分析1、实验内容及要求(1) 离散信号的频谱分析:设信号 此信号的0.3pi 和 0.302pi 两根谱线相距很近,谱线 0.45pi 的幅度很小,请选择合适的序列长度 N 和窗函数,用 DFT 分析其频谱,要求得到清楚的三根谱线。

(2) DTMF 信号频谱分析用计算机声卡采用一段通信系统中电话双音多频(DTMF )拨号数字 0~9的数据,采用快速傅立叶变换(FFT )分析这10个号码DTMF 拨号时的频谱。

2、实验目的通过本次实验,应该掌握:(a) 用傅立叶变换进行信号分析时基本参数的选择。

(b) 经过离散时间傅立叶变换(DTFT )和有限长度离散傅立叶变换(DFT ) 后信号频谱上的区别,前者 DTFT 时间域是离散信号,频率域还是连续的,而 DFT 在两个域中都是离散的。

(c) 离散傅立叶变换的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。

(d) 获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。

(e) 建立 DFT 从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用是数字音频压缩中的分析滤波器,例如 DVD AC3 和MPEG Audio 。

3.设计思路及实验步骤1)离散信号的频谱分析:该信号中要求能够清楚的观察到三根谱线。

由于频率0.3pi 和0.302pi 间隔非常小,要清楚的显示,必须采取足够大小的N ,使得分辨率足够好,至少到0.001单位级,而频率0.45pi 的幅度很小,要清楚的观察到它的谱线,必须采取幅度够大的窗函数,使得它的频谱幅度变大一些。

同时还要注意频谱泄漏的问题,三个正弦函数的周期(2pi/w )分别为20,40,1000,所以为了避免产生频谱泄漏(k=w/w0为整数),采样点数N 必须为1000的整数倍。

数字信号处理实验报告MATLAB

数字信号处理实验报告MATLAB

数字信号处理实验报告姓名:班级:09电信一班学号:2)]得下图二,图二图一3.将如下文件另存为:sigadd.m文件function [y,n] = sigadd(x1,n1,x2,n2)% 实现y(n) = x1(n)+x2(n)% -----------------------------% [y,n] = sigadd(x1,n1,x2,n2)% y = 在包含n1 和n2 的n点上求序列和,% x1 = 在n1上的第一序列% x2 = 在n2上的第二序列(n2可与n1不等)n = min(min(n1),min(n2)):max(max(n1),max(n2)); % y(n)的长度y1 = zeros(1,length(n)); y2 = y1; % 初始化y1(find((n>=min(n1))&(n<=max(n1))==1))=x1; % 具有y的长度的x1y2(find((n>=min(n2))&(n<=max(n2))==1))=x2; % 具有y的长度的x2y = y1+y2;在命令窗口输入:x1=[1,0.5,0.3,0.4];n1=-1:2;x2=[0.2,0.3,0.4,0.5,0.8,1];n2=-2:3; [y,n] = sigadd(x1,n1,x2,n2)得:y =n=-1:10;x=sin(0.4*pi*n);y=fliplr(x);n1=-fliplr(n);subplot(2,1,1),stem(n,x) subplot(2,1,2),stem(n1,y在命令窗口键入:n=-1:10; x=sin(0.4*pi*n);n (samples)实验结果:1.(1)在命令窗口输入:tic; [am,pha]=dft1(x)N=length(x);w=exp(-j*2*pi/N);for k=1:Nsum=0;for n=1:Nsum=sum+x(n)*w^((k-1)*(n-1));endam(k)=abs(sum);pha(k)=angle(sum);end;toc得到如下结果:am =Columns 1 through 11120.0000 41.0066 20.9050 14.3996 11.3137 9.6215 8.6591 8.1567 8.0000 8.1567 8.6591Columns 12 through 169.6215 11.3137 14.3996 20.9050 41.0066pha =Columns 1 through 110 1.7671 1.9635 2.1598 2.3562 2.5525 2.7489 2.9452 3.1416 -2.9452 -2.7489Columns 12 through 16-2.5525 -2.3562 -2.1598 -1.9635 -1.7671Elapsed time is 0.047000 seconds.(2)在命令窗口输入:tic;[am,pha]=dft2(x)N=length(x);n=[0:N-1];k=[0:N-1];w=exp(-j*2*pi/N);nk=n’*k;wnk=w.^(nk); Xk=x*wnk; am= abs(Xk); pha=angle(Xk); toc得到下图:figure(1)00.10.20.30.40.50.60.70.80.91signal x(n), 0 <= n <= 99(2)在命令窗口键入:n3=[0:1:99];y3=[x(1:1:10) zeros(1,90)]; %添90个零。

数字信号处理实验报告_完整版

数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。

matlab fft谱分析实验报告

matlab fft谱分析实验报告

Matlab FFT 谱分析实验报告介绍本实验报告旨在通过使用Matlab进行FFT(快速傅里叶变换)谱分析,详细介绍该方法的步骤和应用。

FFT是一种常用的信号处理技术,可将时域信号转换为频域信号,并提供了对信号频谱特征进行分析的能力。

实验步骤以下是进行FFT谱分析的步骤:1. 导入信号数据首先,我们需要将待分析的信号数据导入Matlab中。

可以使用load函数加载存储信号数据的文件,或者直接在脚本中定义信号数据。

2. 对信号数据进行预处理在进行FFT谱分析之前,通常需要对信号数据进行预处理。

这可能包括去除噪声、滤波等操作。

在本实验中,我们将假设信号数据已经经过了必要的预处理步骤。

3. 执行FFT变换使用fft函数对信号数据执行FFT变换。

该函数将信号从时域转换为频域,并返回频谱数据。

4. 计算频谱幅度通过对FFT变换结果应用幅度函数,可以计算出信号在不同频率下的幅度。

这将揭示信号中包含的主要频率分量。

5. 绘制频谱图通过使用Matlab的绘图功能,可以将频谱数据可视化为频谱图。

频谱图可以帮助我们更好地理解信号的频谱分布情况。

6. 分析结果根据频谱图,我们可以观察信号的主要频率成分以及它们的幅度。

这有助于我们了解信号的频域特征,并可以用于识别信号中的噪声或其他异常。

实验应用FFT谱分析在许多领域中都有广泛的应用。

以下是一些常见的应用领域:1. 信号处理FFT谱分析可用于处理和分析各种类型的信号,例如音频信号、生物医学信号和电力信号等。

通过分析信号的频谱特征,我们可以提取出信号中的重要信息。

2. 通信系统在通信系统中,FFT谱分析可以用于频谱分配、频谱监测和信号调制等方面。

通过分析信号的频谱特征,我们可以更好地设计和优化通信系统。

3. 振动分析FFT谱分析可用于振动分析领域,用于分析和诊断机械系统的振动特征。

通过分析振动信号的频谱,可以检测到机械系统中的故障和异常。

4. 音频处理在音频处理中,FFT谱分析可用于音频信号的频谱分析、音频合成和音频特征提取等方面。

Matlab数字信号处理实验报告

Matlab数字信号处理实验报告
subplot(2,1,2); plot(n,X); grid title('FFT|X|'); xlabel('f(pi)');
实验 2-3
n=0:30;%输入x(n)和冲激响应 h(n) x=zeros(1,length(n)); h=zeros(1,length(n)); x([find((n>=0)&(n<=4))] ) =1; h([find((n>=0)&(n<=8))] ) =0.5; subplot(3,1,1); stem(x); title('x(n)'); axis([0,30,0,2]); subplot(3,1,2); stem(h); title('h(n)'); axis([0,30,0,2]); X=fft(x); H=fft(h); Y=X.*H; y=ifft(Y); subplot(3,1,3);
变换及 h(n) 的 Z 变换,则
H (z) zesT

1 T

Ha (s
m
j
2 T
m)
(2) 双线性变换法
s
平面与
z
平面之间满足以下映射关系:
s

2 T
1 1

z 1 z 1
s 平面的虚轴单值地映射于 z 平面的单位圆上,s 平面的左半平面完全映射 到 z 平面的单位圆内。双线性变换不存在混叠问题。双线性变换时一种非线性变
subplot(3,1,2); stem(n,h); axis([0,30,0,2]); title('冲激响应序列'); xlabel('n'); ylabel('h(n)');

数字信号处理实验报告

数字信号处理实验报告

实验报告课程名称:数字信号处理授课班级:学号:姓名:指导老师:实验一离散时间信号及系统的时域分析实验类别:基础性实验1实验目的:(1)了解MA TLAB 程序设计语言的基本特点,熟悉MA TLAB软件运行环境。

(2)熟悉MA TLAB中产生信号和绘制信号的基本命令,学会用MA TLAB在时域中产生一些基本的离散时间信号,并对这些信号进行一些基本的运算。

(3)通过MA TLAB仿真一些简单的离散时间系统,并研究它们的时域特性。

(4)通过MA TLAB进行卷积运算,利用卷积方法观察分析系统的时域特性。

2. 实验报告要求●简述实验原理及目的。

●结合实验中所得给定典型序列幅频特性曲线,与理论结果比较,并分析说明误差产生的原因以及用FFT作谱分析时有关参数的选择方法。

●记录调试运行情况及所遇问题的解决方法。

3.实验内容:思考题:9.2.1 运行程序P9.2.1,哪个参数控制该序列的增长或衰减:哪个参数控制该序列的振幅?若需产生实指数序列,应对程序作何修改?9.2.2运行程序P9.2.1,该序列的频率是多少?怎样改变它?哪个参数控制该序列的相位?哪个参数可以控制该序列的振幅?该序列的周期是多少?9.2.3 运行程序P9.2.3,对加权输入得到的y(n)与在相同权系数下输出y1(n)和y2(n)相加得到的yt(n)进行比较,这两个序列是否相等?该系统是线性系统吗?9.2.4 假定另一个系统为y(n)=x(n)x(n-1)修改程序,计算这个系统的输出序列y1(n),y2(n)和y(n)。

比较有y(n)和yt(n)。

这两个序列是否相等?该系统是线性系统吗?(提高部分)9.2.5运行程序P9.2.4,并比较输出序列y(n)和yd(n-10)。

这两个序列之间有什么关系?该系统是时不变系统吗?9.2.6 考虑另一个系统:修改程序,以仿真上面的系统并确定该系统是否为时不变系统。

(选做)n = 0:40; D = 10;a = 3.0;b = -2;x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n);[x1,n1]=sigmult(n,n,x,n)[x2,n2]=sigshift(x,n,1)[y,ny1]= sigadd(x1,n1,x2,n2)[y1,ny11]= sigshift(y,ny1,D)[sx,sn]= sigshift(x,n,D)[sx1,sn1]=sigmult(n,n, sx,sn)[sx2,sn2]=sigshift(sx,sn,1)[y2,ny2]= sigadd(sx1,sn1,sx2,sn2)D= sigadd(y1,ny11,y2,ny22)六、实验心得体会:实验时间批阅老师实验成绩实验二 FFT 实现数字滤波实验类别:提高性实验 1.实验目的(1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。

数字信号处理MATLAB中FFT实现

数字信号处理MATLAB中FFT实现

MATLAB中FFT的使用方法说明:以下资源来源于《数字信号处理的MATLAB实现》万永革主编一.调用方法X=FFT(x);X=FFT(x,N);x=IFFT(X);x=IFFT(X,N)用MATLAB进行谱分析时注意:(1)函数FFT返回值的数据结构具有对称性。

例:N=8;n=0:N-1;xn=[43267890];Xk=fft(xn)→Xk=39.0000-10.7782+6.2929i0-5.0000i 4.7782-7.7071i 5.0000 4.7782+7.7071i0+5.0000i-10.7782-6.2929iXk与xn的维数相同,共有8个元素。

Xk的第一个数对应于直流分量,即频率值为0。

(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。

在IFFT时已经做了处理。

要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。

二.FFT应用举例例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。

采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

clf;fs=100;N=128;%采样频率和数据点数n=0:N-1;t=n/fs;%时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);%信号y=fft(x,N);%对信号进行快速Fourier变换mag=abs(y);%求得Fourier变换后的振幅f=n*fs/N;%频率序列subplot(2,2,1),plot(f,mag);%绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;subplot(2,2,2),plot(f(1:N/2),mag(1:N/2));%绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;%对信号采样数据为1024点的处理fs=100;N=1024;n=0:N-1;t=n/fs;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);%信号y=fft(x,N);%对信号进行快速Fourier变换mag=abs(y);%求取Fourier变换的振幅f=n*fs/N;subplot(2,2,3),plot(f,mag);%绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;subplot(2,2,4)plot(f(1:N/2),mag(1:N/2));%绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;运行结果:fs=100Hz,Nyquist频率为fs/2=50Hz。

matlab实验四 信号处理中FFT的应用

matlab实验四  信号处理中FFT的应用

(数字信号处理)实验报告实验名称 实验四 信号处理中FFT 的应用 实验时间 年 月 日专业班级 学 号 姓 名成 绩 教师评语:一、 实验目的1、理解用FFT 对周期序列进行频谱分析时所面临的问题并掌握其解决方法。

2、掌握用时域窗函数加权处理的技术。

3、理解用FFT 对非周期信号进行频谱分析所面临的问题并掌握其解决方法。

二、 实验原理与计算方法1、对周期序列进行频谱分析应注意的问题对时间序列作FFT 时,实际上要作周期延拓(如果取长序列的一段进行计算还要先作截断)。

周期序列是无限长时间序列,如果截断区间刚好就是该序列周期的整数倍,那么在进行周期延拓后,将还原出原来的周期序列,由此可以较精确地计算出的该周期序列的频谱。

反之,如果截断区间并不是该序列周期的整数倍,那么在进行周期延拓后,就不可能还原出原来的周期序列,由此计算出的频谱与该周期序列的频谱存在误差,而且误差的大小与截断区间的选取直接相关,如图4-1所示,其中幅度频谱的量值表示为)(log 20k X ,以dB(分贝)为单位。

这种误差是由于周期序列与矩形截断序列相乘在频域产生二者的频谱卷积形成的。

矩形窗的频谱是抽样函数序列f N j e f fN )1()sin()sin(--πππ,如图4-2所示。

除了k = 0处主瓣内集中了大部分的能量外,两旁的较小峰值处的旁瓣也分散了一部分能量,它与周期序列频谱卷积的结果使原来集中的频谱展宽,称为频率泄漏。

如果对已知周期的信号作频谱分析,在进行时域截断时,完全可以选取其周期的整数倍裁取,从而可以避免这种频率泄漏的发生。

不过,通常需要进行频谱分析的信号是周期未知的信号,或随机信号,无法判断它的周期值,为了尽量避免频率泄漏对结果的影响,在作时间截断时,就应选取其频谱的旁瓣较小的截断函数,以减轻泄漏问题。

2、时域窗函数的应用作为截断函数,矩形窗在作时间截断时,对所截取区间内的信号不加以任何影响,而其它的窗函数都将对所截取区间内的信号作加权处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理 实验报告
实验二:FFT 算法的MATLAB 实现
一、实验目的
通过本实验的学习,掌握离散傅立叶变换的理论,特别是FFT 的基本算法以及其在在数字信号处理中的应用。

二、实验内容
题一:若x(n)=cos(n*pi/6)是一个N =12的有限序列,利用MATLAB 计算它的DFT 并画出图形。

题二:一被噪声污染的信号,很难看出它所包含的频率分量,如一个由50Hz 和120Hz 正弦信号构成的信号,受均值随机噪声的干扰,数据采样率为1000Hz ,对这污染信号进行傅立叶变换,以检查所包含的频率分量
题三:调用原始语音信号mtlb ,对其进行FFT 变换后去掉幅值小于1的FFT 变换值,最后重构语音信号。

(要求有四幅语音信号的频谱图在同一图形窗口以便比较:分别是1、原始语音信号;2、FFT 变换;3去掉幅值小于1的FFT 变换值;4、重构语音信号)
三、实验原理
1、有限长序列x(n)的DFT 的概念和公式:
⎪⎪⎩⎪⎪⎨⎧-≤≤=-≤≤=∑∑-=--=10101
0)(1)(10)()(N k kn N N n kn N N n W k x N n x N k W n x k x
2、基2的FFT 算法
四、实验条件
(1)微机
(2)MATLAB 编程工具
五、用matlab 程序实现:
实验一:
clc;
N=12;
n=0:N-1;
k=0:N-1;
xn=cos(n*pi/6);
W=exp(-j*2*pi/N);
kn=n'*k
Xk=xn*(W.^kn)
stem(n,Xk);
xlabel('k');
ylabel('Xk');
实验二
clc;
fs=1000;
N=1024;
n=0:N-1;
t=n/fs;
x=sin(2*pi*50*t)+sin(2*pi*120*t)+rand(1,N);
y=fft(x,N);
mag=abs(y);
f=n*fs/N;
subplot(1,2,1),plot(f,mag);
xlabel('频率/Hz');
ylabel('振幅');title('N=1024');
subplot(1,2,2),plot(f(1:N/2),mag(1:N/2)); xlabel('频率/Hz');
ylabel('振幅');title('N=1024');
实验三:
clc;
load mtlb
N=1500;
subplot(2,2,1)
plot([1:N],mtlb(1:N));
title('原始语音信号');
y=fft(mtlb(1:N));
subplot(2,2,2)
plot([1:N],y);
title('原始语音信号FFT变换');
y(y<1)=0;
subplot(2,2,3)
plot([1:N],y);
title('去掉幅值小于1的FFT变换值');
subplot(2,2,4)
plot([1:N],ifft(y));
title('重构语音信号');
六、实验心得:
(1)通过这次实验,掌握离散傅立叶变换的理论,特别是FFT的基本算法以及其在在数字信号处理中的应用。

并且知道可以用离散傅里叶变换进行信号的分离和重构
(2)通过这次实验,让我真正的了解了通过离散傅里叶变换可以消除噪声对信号的干扰,可以重构语音信号。

相关文档
最新文档