电力网的电压降落和功率损耗

合集下载

电力系统分析第二章-新

电力系统分析第二章-新

•★ 一般情况下,功率分点总是该网络的最低电压点; •★ 当有功分点和无功分点不一致时,常常在无功分点解开网络 。
•2.3 电力网络的潮流分布计算
• 3)网络的分解和潮流计算• :设节点3为无功功率分点,则
•设全网都为额定电压UN,从无功分点3开始,以

•推算始端,分别向1和1′方向推算:一去过程计算功率分布;
•阻抗Z12中功率损耗 •节点1的电压 •导纳支路Y10功率损耗:
•结果:电源处母线电压为 •输入功率为
•2.3 电力网络的潮流分布计算
•3、已知不同节点的电压和功率时,循环往返推算潮流分布:
•1)若已知
,记为
•,假设节点4电压为 ;
•2)根据
,按照将电压和功率由已知节点向未知节点
• 逐段交替递推的方法,可得
•2.3 电力网络的潮流分布计算

•第二步:用回路电流法求解等值简单环网
•循环功率SC
同理
•与回路电压为0 的环网相比,不同 在于循环功率SC •的出现。
•2.3 电力网络的潮流分布计算
•3、闭式网络的分解及潮流分布计算(以简单单一环网为例): • 1)基本思路
• a. 求得网络功率分布后,确定其功率分点以及流向功率分点的

的比值,常以百分数表示:
• 线损率或网损率:
ቤተ መጻሕፍቲ ባይዱ

线路上损耗的电能与线路始端输入的电能的比值。
•二、变压器中电能损耗:
• 包括电阻中的铜耗和电导中铁耗两部分。
•2.3 电力网络的潮流分布计算
•一、简单开式网络潮流分布计算:
•1、基本步骤: •① 由已知电气接线 • 图作出等值电路; •② 简化等值电路; •③ 用逐段推算法从 • 一端向另一端逐 • 个元件地确定电 • 压和功率传输。

电力系统潮流计算

电力系统潮流计算

3.2.1 节点电压方程与节点导纳矩阵和阻抗矩阵
将节点电压法应用于电力系统潮流计算,变量为节点电压与节
点注入电流。通常以大地作为电压幅值的参考(U0 = 0),以
系统中某一指定母线的电压角度作为电压相角的参考,以支路
导纳作为电力网的参数进行计算。节点注入电流规定为流向网
络为正,流出为负。
Pmax P
表征年有功负荷曲线特点的两个指标
0
年最大负荷利用小时数 Tmax
t Tmax 8760
根据年负荷曲线,可求得全年所需电能:
8760
A 0
Pdt MWh
定义年最大负荷(最大值 Pmax)利用小时: Tmax
A Pmax
h
Tmax 越大,负荷曲线越平坦
负荷曲线为一水平线时, Tmax 达到最大值8760 (h)
2
1 ZT1
2
Zl
T2
34
3
ZT2 4
YT3
Yl /2
YT2
已知末端功率和电压, 计算网上潮流分布。
1 ZT1 2 Zl
3 ZT2 4
已知始端功率和电压, 计算网上潮流分布。
Y20
Y30
已知末端功率和始端电 压,计算网上的潮流。
不管哪种情况,先作等值电路
3.1.3 辐射形网络的分析计算
1)已知末端功率、电压 利用前面的方法,从末端逐级 往上推算,直至求得各要求的量。
Pm(t)
损耗称年电能损耗,是电网运行经
济性的指标。
Pmi
1)年电能损耗的准确计算方法
已知各负荷的年有功和无功负荷曲线 时,理论上可准确计算年电能损耗。
8760小时分为 n 段,第 i 时段时间为 Dti (h),全网功率损耗为DPi (MW),则 全网年电能损耗为

电力系统教学 3 简单电力网络潮流的分析与计算

电力系统教学 3 简单电力网络潮流的分析与计算

L1
1 S~ 1
L2
T
2
~ S2
整P理2 课件jQ2
RL1 j BL1
2
jX L1 j BL1 2
1 j QyL2 2 ~ S1
j QyL1 2
等值负荷
RL2 j BL2
2
jX L2 j BL2 2
RL1
j BL1 2
由于母线电压在额定电 压附近,因此,线路对 地电容所消耗的功率近
似固定
RL1
S~1 U1
1
则:首端电压为
Y 2
U1 U2
3IZZ U 2
3(
S
' 2
)* Z
3U 2
电压降落 纵分量
U 2
( P2'
j
Q
' 2
)* ( R
U2
jX )
(U 2
P2' R
Q
' 2
X
U2
)
j ( P2' X
Q
' 2
R
)
U2
(U 2 U ) j ( U )
即: U1 (U2U)2(U)2
Sy1
Y2)*U12
1 2
(G
jB)U12
1 2
GU12
j
1 2
BU12
Py1 jQy1
整理课件
无功功率损耗为负 值,意味着发出无
功功率
III.电力线路中的功率损耗计算
流出线路阻抗支路功率
S2' S2 Sy2 流入线路阻抗支路功率
S1' S2' SZ
流入线路的功率
110/10.5
整理课件

电压降落及电压损失的定义

电压降落及电压损失的定义

电压降落及电压损失的定义1.引言1.1 概述概述在电力系统中,电压降落和电压损失是两个重要的电学概念。

电压降落是指电流通过导线或电路元件时,电压在导线中的逐渐减小的情况。

而电压损失则是指在电力传输过程中,由于电流通过电线产生的电阻导致的电能损失。

电压降落和电压损失是不可避免的,它们会对电力系统的运行和设备的性能产生影响。

当电流通过导线时,导线的电阻会导致电压的降低,因此电压在电力系统中传输的距离越远,电压降落也会越大。

而电压损失则是由于电流通过电阻产生的热量,导致电能的损失。

电能的损失不仅会浪费能源,还会导致线路的损坏和设备的性能下降。

了解电压降落和电压损失的定义对于电力系统的设计和运行非常重要。

在电力系统的设计过程中,需要通过合理的线路规划和优化来减少电压降落和电压损失。

同时,及时检测和修复线路中存在的问题,也是减少电压损失的有效方法之一。

本文将从电压降落和电压损失的定义出发,探讨它们对电力系统的影响,并提出减少电压损失的方法。

通过深入理解电压降落和电压损失,电力系统的设计和运行将更加高效和可靠。

1.2文章结构1.2 文章结构本文将首先进行引言,概述电压降落及电压损失的重要性和影响。

接着,正文部分将分为两个小节,分别定义电压降落和电压损失。

在定义的基础上,我们将详细讨论电压降落和电压损失对电力系统的影响和重要性。

结论部分将总结电压降落的影响,并探讨一些减少电压损失的方法。

通过本文的阐述,读者将对电压降落及电压损失有更深入的理解,并能够应用相关的措施来解决电力系统中的问题。

1.3 目的本文旨在探讨和解释电压降落及电压损失的定义。

电压降落是指在电流通过导线、电缆或其他电气系统的过程中,电压从输入端到输出端的降低程度。

而电压损失则是指在电气系统中由于电阻、电感、电容等元件的存在,导致电压在传输过程中被消耗或耗散的情况。

理解和定义电压降落及电压损失对于电气工程师、电路设计师和相关领域的专业人士来说至关重要。

电力系统分析(下)考试复习资料(完整版)

电力系统分析(下)考试复习资料(完整版)

电力系统分析(下)复习题10-1 网络元件的电压降落和功率损耗1.电压降落纵分量和横分量的计算公式(分两种情况,见图10-2,掌握计算,画相量图);✓ 答:电压降落纵分量222sin cos ϕϕXI RI V +=∆;横分量222sincos δϕϕRI XI V -=以电压相量2V 作参考轴,⎪⎪⎩⎪⎪⎨⎧-=+=∆2222""δ""V RQ X P V V X Q R P V ,222221)δ()(V V V V +∆+=以电压相量1V 作参考轴,⎪⎪⎩⎪⎪⎨⎧'-'='+'=∆1111δV RQ X P V V X Q R P V ,212112)δ()(V V V V +∆-=✓ 2.电压降落、电压损耗、电压偏移的定义有所不同答:网络元件的电压降落是指元件首末端两点电压的相量差,即12()V V R jX I -=+;把两点间电压绝对值之差称为电压损耗,用V ∆表示,12V V V ∆=-;电压偏移是指网络中某点的实际电压同网络该处的额定电压之差,可以用KV 表示,也可以用额定电压的百分数表示。

若某点的实际电压为V ,该处的额定电压为N V ,则用百分数表示的电压偏移为,电压偏移(%)100NNV V V -=⨯ ✓ 3.电压降落公式的分析(为何有功和相角密切相关,无功和电压密切相关?);答:从电压降落的公式可见,不论从元件的哪一端计算,电压降落的纵、横分量计算公式的结构都是一样的,元件两端的电压幅值差主要由电压降落的纵分量决定,电压的相角差则由横分量确定。

高压输电线的参数中,电抗要比电阻大得多,作为极端情况,令R=0,便得/V QX V ∆=,/V PX V δ=,上式说明,在纯电抗元件中,电压降落的纵分量是因传送无功功率而产生,电压降落的横分量则因传送有功功率产生。

换句话说,元件两端存在电压幅值差是传送无功功率的条件,存在电压相角差则是传送有功功率的条件。

电力网的电压降落与功率损耗(ppt 63页)

电力网的电压降落与功率损耗(ppt 63页)
电压降落、电压损失和电压偏移适用于
线路、变压器。
2020/10/3
9
二、功率分布和功率损耗
I
Sˆ Uˆ
S~
U ˆI
1、输电线路的功率损耗
••
U 1 I1,S1
S'

R jX S " I 2

U2,S2
S ~PjQ
共轭
jB/2 jB/2
U ˆIU (Y ˆU ˆ) U2Y ˆ
图3-3 线路的等值电路

U 1U 2( U 1j U 1)
电压降落纵分量:
1
U2RI2cos2 XI2sin2
2
(P2RQ2X)/U2
电压降落横分量
1
U2 I2XCos2 I2RSin2
2
(P2XQ2R)/U2
U 1
2
••

U2

I1 I2 I
I2R
I2 X
U 2
U 2
求首端电压
•1•
U1U2ΔU2 jδδ2
•2
U1U2
1

U2
• 线路功率与电压的关系
• ••
I1 I2 I
高压输电线路 X>>R
U QX/ U
U PX/ U
• 无功流动方向与电压高低有关;
• 有功流动方向与电压相位差有关。
2020/10/3
8
2.电压损耗(kV)
U1U2 U (PRQX)/U

U1
• U2
G
3.电压偏移
电压偏 % ) U 移 UN ( 10% 0 UN
3U
P2 Q2 QL U2 X
11

张晓辉电力系统分析第三章课件PPT学习

张晓辉电力系统分析第三章课件PPT学习

U 2
jU 2
(3-4)
2021年4月7日星期三
第2页/共40页
§3-1 电力网的电压降落和功率损耗
dU 2
P2R Q2 X U2
j P2 X Q2R U2
U 2
jU 2
U1
实部
U 2
P2R Q2 X U2
电压降落的纵分量
dU 2 U 2
0
θ
U 2
U 2
虚部
U 2
P2 X Q2R U2
电压降落的横分量
U1 U1 U 2 dU 2 U2 U2 jU2
(3-7)
U1 U2 U2 2 U2 2
tan1 U2
U 2 U 2
一般情况下,线路两端电压相位差较小,U2+ΔU2 >>δU2
2021年4月7日星期三
U1
U2
U 2
U2
P2R Q2 X U2
第3页/共40页
§3-1
电力网的电压降落和功率损耗
(3-18)
近似计算中常用电压降落的纵分量代替电压损耗。
电压偏移:线路始端电压和末端电压与线路额定电压之间的差值。
U1
始端电压偏移% U1 U N 100 UN
0
末端电压偏移% U2 U N 100 UN
θ
dU 2 U 2
U 2 a U 2 b c
2021年4月7日星期三
第5页/共40页
§3-1 电力网的电压降落和功率损耗
二、功率分布和功率损耗
1. 线路的功率分布和功率损耗
2. 变压器的功率分布
当线路流过电流或功率时,在线路的电阻中将产生有功功率损耗,线路的电抗 中则产生无功功率损耗,它们都与通过线路的电流或功率有关。

电力系统分析第三章简单潮流计算

电力系统分析第三章简单潮流计算

jB jB 22
Iy2 U 2
Q y 2

1 2
BU 22
U U2BX 2
I y2

1 2
BU 2
U U2BR 2
Iy2
U 1
U
dU
U2 U1
U U 2
2) 输电线传输功率极限问题
U1
X
U2
线路首端末端有功功率相等
以末端电压U2为参考向量 比较两个表达式的虚部,有
电力系统分析 Power System Analysis
(三)
主讲人:孙醒涛
第三章 输电系统运行特性及简单电力系 统潮流估算
潮流计算的概念
电力系统潮流计算是电力系统中运行和规划中最基本和最 经常的计算,其任务是要在已知(或给定)某些运行参数 的情况下,计算出系统中全部的运行参数。
所谓电力系统的潮流:是指系统中所有运行参数的总体,包 括各个母线电压的大小和相位,各个发电机和负荷功率及电 流,以及各个变压器和线路等元件所通过的功率、电流和其 中的损耗。
有功功率与电压相位差关系密切;
无功功率与电压有效值之差关系密切
20
二、变压器运行状况的计算和分析
1、变压器中的电压降落、功率损耗和电能损耗
用变压器的 型电路
1) 功率
A、变压器阻抗支路中损耗的功率
S~1
S~1
S~ZT


S
' 2
U2
2
ZT


P2'2 Q2' 2
U 2
U1

P1R1 Q1 X1 U1

j
P1 X1 Q1R1 U1

5电力网络的功率和电压分布计算

5电力网络的功率和电压分布计算
Z Z Z
% S′ 1 & I′
1
& & % I z ,dV,∆S Z
R jX
% S′ 2 & I′ 2
% S2 & & V2 I2
jB/2
jB/2
% & I y1 , ∆S y1
% & I y2 ,∆S y2
S′ ′ (P2 )2 + (Q′ )2 2 2 ∆PZ = R = R 2 V2 V2 S′ ′ (P2 )2 + (Q′ )2 2 2 ∆Q Z = X = X 2 V2 V2
2 1
2 与负载功率无关; 感性, 感性,空载损耗∝ V ,与负载功率无关;近似恒定
当 V=VN: ∆Sy T =
∆P0 I% + j 0 SNT 1000SNT 100
空载试验损耗
第五章 电力网络的功率和电压分布计算
5.1 网络元件的电压降落和功率损耗 5.1.3 变压器 的 电压降落 与 功率损耗
2
2
S′ (P1′)2 + (Q′ )2 1 1 ∆PZ = R = R 2 V1 V1 S′ (P1′ )2 + (Q′ )2 1 1 ∆Q Z = X = X 2 V1 V1 % & ˆ & ∆S = 3(I′ Z)I′ = 3ZI′2
Z 1 1 1
第五章 电力网络的功率和电压分布计算
5.1 网络元件的电压降落和功率损耗 5.1.2 线路的功率损耗 (5) 线路首、末端的功率与电压平衡关系 线路首、
A) 已知
% V2 、 2 = P2 + jQ 2 S
% ∆S y2 ≈ j∆Q B2 = -jV22 Bl / 2 2 % % % S′ = S 2 + j∆Q B 2 = S 2 - jV2 B l / 2 2 2 % ∆S Z = ( S′ / V2 ) (R + jX) 2 % % % S′ = S′ + ∆S Z 1 2 % ∆S y1 ≈ j∆Q B1 = -jV12 Bl / 2 S = S′ + j∆Q = S′ - jV 2 B / 2 % % % l 1 B1 1 1 1

第三章 简电力网络的计算和分析新

第三章 简电力网络的计算和分析新

第三章 简单电力网络的计算和分析本章阐述的是电力系统正常运行状况的分析和计算,重点在电压、电流、功率的分布,即潮流分布(power flow ,load flow ),我们关心的主要是节点电压,支路功率。

第一节 电力线路运行状况的分析与计算电流或功率从电源向负荷沿电力网流动时,在电力网元件上将产生功率损耗和电压降落。

要了解整个电力系统的潮流分布,必然要进行电力网元件上的功率损耗和电压降落的计算。

一、 电力线路运行状况的计算1、电力线路上的功率损耗和电压降落也可运用欧姆定律等,但需要复数运算,手算时尽量避免复数运算。

电力线路的π型等值电路如图3-1所示,若已知线路参数和末端电压2U •、功率2S •,求始端的电压1U •和功率1S •。

因为这种电路较简单,可以运用基本的电路关系式写出有关的计算公式。

(以单相电路分析,结果推广到三相,采用复功率的计算式)图3-1中,设末端电压(相电压)0220U U •=∠,末端功率(单相功率)222S P jQ •=+,则末端导纳支路的功率损耗2y S •∆为22222()()222yY G B S U U U j *••*∆==-2222221122y y GU jBU P j Q =-=∆-∆ (3-1) 阻抗支路末端的功率2S •'为 2222222()()y y y S S S P jQ P j Q •••'=+∆=++∆-∆222222()()y y P j P j Q Q P jQ ''=+∆+-∆=+ 阻抗支路中损耗的功率Z S •∆为222222222()()Z S P Q S Z R jX U U ••'''+∆==+ 222222222222Z Z P Q P Q R j X P j Q U U ''''++=+=∆+∆ (3-2) 阻抗支路始端的功率1S •'为1222()()Z Z Z S S S P jQ P j Q •••''''=+∆=++∆+∆2211()()Z Z P j P j Q Q P jQ ''''=+∆++∆=+始端导纳支路的功率yl S •∆为2111()()222ylY G BS U U U j *••*∆==-2211111122y y GU jBU P j Q =-=∆-∆ (3-3) 始端功率1S •,为1111()()yl yl yl S S S P jQ P j Q •••'''=+∆=++∆-∆1111()()yl yl P j P j Q Q P jQ ''=+∆+-∆=+这就是电力线路功率计算的全部内容。

电力系统分析第三章

电力系统分析第三章

L-2
d
SLD
d'
A
c'
j B'2/2
R'2+ j X'2 j B'2/2
3-3 闭式网络的电压和功率分布
1、两端供电网络的功率分布 (1) 不计功率损耗的功率初分布
A
1
Z

Z

Z

A
2
I SI , I
III S III , I
II S II , I
1 S1 , I
2 S2 , I
U ( R jX ) I ( R jX ) I U 1 2 2 1
参考向量,已知 I , cos , AB 就是电压降 若以 U 2 2 2 向量 I2 ( R jX ) 平行和垂直的两个向量 把之分解为与 U 2 AD 和 BD
AD U 2 RI2 cos 2 XI2 sin 2 BD U 2 XI2 cos 2 RI2 sin 2
R3+ jX3
d S3 Sd
S1
j B1/2
Sb
S d , S L 3 S3
Sc
" S3 " ( ) 2 ( R3 jX 3 ), S3' S3 S L 3 UN " S2 ' " ( ) 2 ( R2 jX 2 ), S 2 S2 S L 2 UN
" ' S2 Sc S3 , S L 2
功率分点:功率由两 个方向流入的节点。 有功分点和无功分点 可能出现在不同节点。
A
1
Z
S I
, .

Z

7.电压降落和功率损耗(新)

7.电压降落和功率损耗(新)

始端电压108KV,输入功率20+15MVA。求 变压器末端电压和输出功率
21
练习: 110KV架空线路,长150km,型号LGJ-120, 三相导线几何平均距离5m, 末端负荷30+j15MVA,末端电压106KV, 求首端电压。
22
谢谢观赏!
1
S1 G
SLD
2 S2
1
S1 SLD
SS SP
S22
S′2
SY2
9
四、电能损耗的计算
P2Q2 APT U2 RT
10
第二节 电力网的电压计算
一、电压计算
1、电压降落:电力网中任意两点之间电压的相量差
d U 1 2 U 1 U 2 U jU
U 1
ΔU12为dU12在实轴上的投影, 称为电压降落的纵分量;
dU12
U
jIX
δU12为dU12在虚轴上的投影, 称为电压降落的横分量。
U 2 IR I
U U12
11
2、电压损耗:电力网中任意两点之间电压的代数差 U12
3、电压偏移:电力网中某点实
U 1
际电压与额定电压的代数差, 用额定电压的百分数表示。
dU12
U
jIX
m%UUN 100 UN
U 2 IR
时的Q值为负值,就会出现末端电压值高于始端电压 值的情况。
17
简化计算:
高压输电系统中,往往元件的参数X>>R,可认为R=0
U Q X U
U PX U
电力系统中的一个重要慨念:在高压输电系统中,元件两端电
压的大小之差主要取决于无功功率,而两端电压的相角之差主
要取决于有功功率。
18
二、电力网环节中功率的流动方向

第三章简单电力网络的计算和分析夏道止版

第三章简单电力网络的计算和分析夏道止版
第三章 输电线路运行特性及简单电力 系统潮流估算
1. 电力线路和变压器的运行状况 的计算和分析
2. 简单电力网络的潮流分布和控 制
1
基本要求: 加强对电力系统运行潮流的了解,培养计算能力。
重点: (1)线路运行相量图的画法; (2)电压损耗、功率损耗有关的定义式; (3)辐射形网络潮流计算
2
电力网络特性计算所需的原始数据:
tg1
U '
U2
U
' 2
(二)电压质量指标
1) 电压降落:指线路始末两端电压的相量差。为相量。
2) 电压损耗:指线路始末两端电压的数值差。为数值。 标量以百分值表示:
电压损耗% U1 U2 100
UN
6
3) 电压偏移:指线路始端或末端电压与线路额定电压 的数值差。为数值。标量以百分值表示:
始 端 电 压 偏 移% U1 U N 100 UN
线路的总功率损耗为
S~1 S~2 S~Y 1 S~Z S~Y 2
(PY 1 PZ PY 2 ) j(QY 1 QZ QY 2 )
10
2. 电力线路上的电能损耗
1) 最大负荷利用小时数Tmax:指一年中负荷消费的电能 W除以一年中的最大负荷Pmax,即:
Tmax W / Pmax
)U
2 2
j 2.66 104
209.482
( j11.67)MV .A
19
所以末端功率
~
~~
S2 P1 jQ1 SZ S y2
120 j65.32 (7.0 j27.22) ( j11.67)
(113 j49.77)MV .A

20
第二节 输电线路的运行特性
一、输电线路的空载运行特性

【国家电网】线上性价比课程讲义-知识点讲解-电力系统分析-答案版(新)

【国家电网】线上性价比课程讲义-知识点讲解-电力系统分析-答案版(新)

电力系统分析答案DAY1Ponit1电力系统的组成1.【答案】ABCD。

解析:电力系统是由发电厂、送变电线路、供配电所和用电等环节组成的电能生产与消费系统。

2.【答案】CD。

解析:汽轮机和水轮机属于动力部分。

3.【答案】D。

解析:由于联合电力系统容量大,按照比例可装设容量较大的机组。

Ponit3电力系统的基本参量1.【答案】B。

解析:全网任意时刻的频率都是统一的。

2.【答案】A。

解析:系统总装机容量为实际安装的发电机额定有功之和。

6*150MW=900MW。

Ponit5电能生产、输送、消费的特点1.【答案】AC。

解析:电力系统运行的特点:(1)电能与国民经济各部门联系密切;(2)电能不能大量储存;(3)生产、输送、消费电能各环节所组成的统一整体不可分割;(4)电能生产、输送、消费工况的改变十分迅速。

Ponit6电力系统运行的基本要求1.【答案】ABD。

解析:电能质量的基本指标可简记为电压、频率和波形。

2.【答案】C。

解析:我国实行的标准是50Hz在电力系统正常状况下,供电频率的允许偏差为:1.电网装机容量在300万千瓦及以上的,为±0.2Hz;2.电网装机容量在300万千瓦以下的,为±0.5Hz。

如无特殊说明,我国给定的允许频率偏差是±0.2~0.5Hz。

3.【答案】A。

解析:建设投资、占地面积并不是衡量经济性的指标。

Ponit7电力系统的电压等级1.【答案】D。

解析:我国的电力网额定电压等级有:0.22,0.38,3,6,10,35,60,110,220,330,500(kV)。

2.【答案】B。

解析:发电机端口电压是额定电压的1.05倍。

3.【答案】C。

解析:连接线路的降压变压器一次侧电压即为线路电压。

降压变压器二次侧经过输电线路连接负荷(用电设备),变压器二次侧额定电压取比线路额定电压高10%,因此额定变比为220/121kV。

4.【答案】B。

解析:双绕组变压器的高压侧绕组和三绕组变压器的高、中压侧绕组都设有几个分接头供选择使用。

9-10电力系统电压降落和功率损耗剖析

9-10电力系统电压降落和功率损耗剖析
S″、S´:线路两端的一相功率;
I
δ Φ2
A V 2
RI
jXI
D
SLD:负荷一相功率
图10-2 相量图
ΔV2(AD)——电压降落的纵分量(参考轴) δV2(DB)——电压降落的横分量
(1)以V2做为参考相量,已知İ和φ2 B V
1
δ φ2
A V 2
RI

jXI
V2
V2
~ ' 2
阻抗支路始端功率
' S1 ~ ~ ~ ' S 2 S Z ' ' P jQ 1 1 ' P2' jQ2 PZ jQZ



始端导纳支路功率
S y1
~
1 1 Y 2 2 U1 U1 GU1 jBU1 Py1 jQ y1 2 2 2
P2 R Q2 X U2
例题1
案例一:一回110kV的三相架空输电线路,长100km,线
路电阻0.1313Ω/km,电抗0.3923Ω/km,电纳2.84 ×106S/km,线路末端运行电压105kV,负荷42MW, cosφ=0.85。 求:线路电压降落、功率损耗和输电效率
RL=0.13 ×100=13Ω XL=0.39×100=39Ω 0.5BL=0.5×100×2.84 ×10-6 =1.42×10-4S
如果把负荷功率因数增大到0.95会怎样
如果把负荷功率因数增大到0.95会怎样
计算结果总结: 末端电压 受端功率 功率损耗 输电效率
105kV 42MW 2.2792MW 94.853%
首端电压 功率因数
115.6 0.95

第3章 简单电力系统的潮流计算 §3.1 概述§3.2 网络元件的电压降落和功率损耗§3.3 潮流计算的

第3章 简单电力系统的潮流计算 §3.1    概述§3.2    网络元件的电压降落和功率损耗§3.3    潮流计算的

A j I&ij X V & j I&i j R
D
图3-2 向量图
2020/5/19
§3.2.1输电线路的电压降落和功率损耗
当输电线路不长,首末两端的相角差不大时,近似
地有:
V &i B
Vi Vj V
I&i j
A j I&ij X V & j I&i j R
D
图3-2 向量图
2020/5/19
§3.2.1输电线路的电压降落和功率损耗
2020/5/19
1 近似功率重叠原理
如果忽略功率损耗,认为各点电压都等于V 则在以上两式中两边各乘以 V N ,则得到
N
,
*
S1
Z2 Z1 Z2
*
S
V&1 Z1
V&2 Z2
VN
V
&
1
1
ZI
V &3
Z II
SI
3
S II
V &2
2
*
S2
Z2 Z1 Z2
*
S
V&1 Z1
V&2 Z2
VN
I
1
jX
V&2 P2 jQ2
I&1 2 2
2020/5/19
§3.2 网络元件的电压降落和功率损耗 最基本的网络元件:输电线路、变压器
• §3.2.1输电线路的电压降落和功率损耗 • §3.2.2变压器的电压降落和功率损耗
2020/5/19
§3.2.2变压器的电压降落和功率损耗
如图3.4的模型,串联支路计算方法与线路完全 相同,并联支路的损耗:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 输电线路运行特性及 简单电力系统潮流估算
潮流计算:各节点电压(大小、相位),各支路
电流及功率分布(功率的传输和功率损耗)。
从简单网络潮流计算入手,掌握手算潮流的方法
和了解系统稳态运行下的物理现象,然后学习复杂网
络的计算机算法。
3.1 电力网的电压降落和功率损耗
3.2 简单辐射网络和闭式网络的潮流



这是电力线路功率计算的全部内容

始端电压
' ' ' S2 P jQ 2 Z U2 2 R jX U1 U 2 U U2 2 ' ' P R Q X 2 2 U 2 U2
* Βιβλιοθήκη ' P2' X Q2 R U 2 U jU j U2
估算方法
复功率的符号说明
~ I 3UI( ) S 3U u i
S (cos j sin ) P jQ
有功功率与视在功率的比值称为功率因数。 无功功率为正--------电流滞后--------感性负荷 无功功率为负--------电流超前--------容性负荷
' S1
~




始端导纳支路功率
S y1

~
1 1 Y 2 2 U1 U1 GU1 jBU1 Py1 jQ y1 2 2 2
*
始端功率
S1
~
~ ' S1 SY 1
~
' ' P jQ 1 1 Py1 jQ y1 P 1 jQ 1


U1 U 2 100% 电压损耗(%) UN
电压偏移:线路始端或末端电压与线路额定电压差U1 U N 或 U 2 U N 。
始端电压偏移(%) 末端电压偏移(%)

U1 U N 100% UN
经济性能指标
U 2 U N 100% UN
输电效率:指线路末端输出有功功率与线路始端输入有功功率的比值, 以百分数表示: P 输电效率% 2 100% P 1
定义:电压降落纵分量 定义:电压降落横分量
' P2' R Q2 X U U2
' P2' X Q2 R U U2
U1
U 2 U
电压幅值
2
U
2
tg 1
U
U 2 U
相角(功率角)
U1 U 2 U jU
较短线路两端电压相角差一般都不大, 可略去jδU,得到:
电压幅值
U1
相角
U 2 U
2
U
1
2
tg
U
U 2 U

简化为
U1 U 2
U 2 U
2U 2
P2 R Q2 X U2
U 1 U 2 U 2 U 2

末端导纳支路功率
S y 2

~
阻抗支路末端功率
~ ' S2 ~ ~
1 1 Y 2 2 U 2 U 2 GU2 jBU2 Py 2 jQ y 2 2 2 2
*
' S 2 S y 2 P2 jQ2 Py 2 jQy 2 P2' jQ2
2



阻抗支路损耗功率
' 2
S P2'2 U 2'2 P2'2 Q2'2 P2'2 Q2'2 S z U Z U 2 R jX U 2 R j U 2 X PZ jQZ 2 2 2 2
~

阻抗支路始端功率
~ ~ ' S 2 S Z ' ' P jQ 1 1 ' P2' jQ2 PZ jQZ
3.1 电力网的电压降落和功率损耗
一、线路电压降落和功率损耗
已知条件:末端电压U2,末端功率S2=P2+jQ2, 以及线路参数。 求解:线路中的功率损耗和始端电压和功率。

上述方法要用到复数乘除运算
3.1 电力网的电压降落和功率损耗
一、线路电压降落和功率损耗
已知条件:末端电压U2,末端功率S2=P2+jQ2, 以及线路参数。 求解:线路中的功率损耗和始端电压和功率。

~
变压器电压降落
' ' P2' RT Q2 XT P2' X T Q2 RT UT , UT U2 U2

始端电压
* ' P2' jQ2 R jX U2 ' P2' X Q2 R j U 2 U jU U2
' S2 U1 U 2 U Z U2 2 ' P2' R Q2 X U 2 U2
P2 R Q2 X U1 U 2 U 2 U 2 U2
已知始端功率和电压时的求法类似于上述推导,注意正方向。 上述计算可用于标幺制,也可用于有名值。
这就是电力线路功率、电压计算的全部内容。所有计算都 避免了复数乘除。
二、线路电压质量指标
电压降落:线路始末两端电压的相量差U 1 U 2或 d U,本身也是相量。 电压损耗:线路始末两端电压的数值差或有效值差 U1 U 2 。

线路无功损耗
线路等值电抗消耗的无功:与负荷平方成正比 对地等值电纳发出的无功:充电功率,与所加电压平方成正比, 与通过负荷无直接关系。 轻载时,线路消耗很少的无功,甚至发出无功。
三、变压器电压和功率损耗

变压器阻抗支路损耗功率
S ZT
~
2 ' '2 '2 '2 '2 P' 2 Q' 2 S2 P Q P Q 2 2 2 2 2 ZT 2 R jX R j XT T T T 2 2 U U2 U2 U2 2 2 PZT jQZT

变压器励磁支路损耗功率
~
*U G jB U 2 G U 2 jB U 2 P jQ SYT YT U 1 1 T T 1 T 1 T 1 YT YT
注意:变压器励磁支路的无功功率与线路导纳支路的无功功率符号相反



变压器始端功率
~ ~ ~
S1 S 2 S ZT SYT ( P2 PZT PyT ) j (Q2 QZT Q yT )
相关文档
最新文档