单级圆柱齿轮减速器设计

合集下载

单级圆柱齿轮减速器设计说明书

单级圆柱齿轮减速器设计说明书

单级圆柱齿轮减速器设计说明书设计说明书:单级圆柱齿轮减速器引言:圆柱齿轮减速器作为一种常见的传动装置,广泛应用于机械设备中的减速传动系统中。

本设计说明书旨在详细介绍单级圆柱齿轮减速器的设计原理、结构特点、性能参数以及选型要点,为读者提供有关该减速器的全面指导和参考。

一、设计原理及结构特点:单级圆柱齿轮减速器是由一个输入轴和一个输出轴组成。

其中输入轴与电机相连,输出轴与被驱动机械设备相连。

通过齿轮传递动力,实现减速效果。

该减速器结构简单,耐久性强,承载能力较大,传动效率较高,对于大功率传动系统非常适用。

二、性能参数:1. 传动比:传动比是指减速器输入轴转速与输出轴转速之间的比值。

在设计中,通过合理选择齿轮模数、齿数等参数来确定传动比。

传动比的选择直接影响到输出扭矩和转速,需要根据实际应用需求进行优化设计。

2. 承载能力:减速器的承载能力是指其可以承受的最大轴向和径向力矩。

在设计中,需要考虑被驱动机械设备的扭矩要求,并确保减速器可以承受该扭矩而不损坏。

3. 效率:减速器的效率是指输入功率与输出功率之间的比值。

高效率的减速器能够最大程度地将电机输入的功率转化为机械设备需要的输出功率,减少能量损失。

三、选型要点:在选型过程中,需要综合考虑以下几个要点,以确保减速器的使用效果和寿命:1. 转速要求:根据被驱动机械设备的转速要求,选择合适的传动比,使得输出轴转速满足要求。

2. 扭矩要求:根据被驱动机械设备的扭矩要求,选择合适的减速器承载能力,保证减速器不会因为超负荷工作而损坏。

3. 空间限制:考虑被安装环境的空间限制,选择适当大小的减速器尺寸,以便于安装和维护。

4. 质量和可靠性:选择优质的材料和制造工艺,确保减速器的质量和可靠性,以减少故障概率和维修次数。

结论:单级圆柱齿轮减速器是一种可靠、高效的传动装置,广泛应用于各种机械设备中的减速传动系统。

通过本设计说明书的介绍,读者对单级圆柱齿轮减速器的设计原理、结构特点、性能参数以及选型要点有了更全面的了解,并可以根据实际需求进行合理的设计和选型,以满足各类机械设备的传动需求。

单级直齿圆柱齿轮减速器设计说明书1

单级直齿圆柱齿轮减速器设计说明书1

机械制造与自动化毕业设计
题目直齿圆柱齿轮减速器设计
学生姓名郑柏浩
指导教师王云辉
专业班级11春机制1班
完成时间2013.03.15
设计题目:
用于胶带运输的直齿圆柱齿轮减速器,传送带允许的速度误差为±5%。

双班制工作,有轻微振动,批量生产。

运动简图:
1—电动机 2—联轴器 3—单级齿轮减速器4—链传动 5—卷筒 6—传送胶带原始数据:
目录:
一、传动方案的拟定及说明 (1)
二、电动机的选择和计算 (4)
三、传动装置的运动和动力参数计算 (5)
四、传动件的设计计算 (6)
五、初选滚动轴承 (9)
六、选择联轴器 (9)
七、轴的设计计算 (9)
八、键联接的选择及校核计算 (17)
九、滚动轴承校核 (18)
十、设计小结 (20)
十一、设计任务书 (20)
十二、参考资料 (24)
5,链轮的传动比范5。

则电动机转速可选的范围为
2335
n n
=min
r
其中,
3
93.4min
r
=。

一级圆柱齿轮减速器设计说明(参考标准版)

一级圆柱齿轮减速器设计说明(参考标准版)

目录一、课程设计任务书 (2)二、传动方案拟定 (2)三、电动机选择 (3)四、计算总传动比及分配各级的伟动比 (3)五、运动参数及动力参数计算 (4)六、传动零件的设计计算 (4)七、轴的设计计算 (8)八、滚动轴承的选择及校核计算 (13)九、键联接的选择及校核计算 (15)一、课程设计任务书1、已知条件1)工作条件:连续单向运转,载荷平稳,空载启动,使用年限10年,工作为二班工作制。

2)使用折旧期:8年。

3)检修间隔期:四年大修一次,两年一次中修,半年一次小修。

4)动力来源:电力,三相交流,电压380/220V。

5)运输带速度允许误差:±5%。

6)制造条件及生产批量:一般机械厂制造,小批量生产。

2、设计任务量1)完成手工绘制减速器装配图1张(A2)。

2)完成CAD绘制零件工图2张(轴、齿轮各一张),同一组两人绘制不同的齿轮和轴。

3)编写设计计算说明书1份。

3、设计主要内容1)基本参数计算:传动比、功率、扭矩、效率、电机类型等。

2)基本机构设计:确定零件的装配形式及方案(轴承固定方式、润滑和密封方式等)。

3)零件设计及校核(零件受力分析、选材、基本尺寸的确定)。

4)画装配图(总体结构、装配关系、明细表)。

5)画零件图(型位公差、尺寸标注、技术要求等)。

6)写设计说明书。

7)设计数据及传动方案。

二、传动方案拟定第××组:设计单级圆柱齿轮减速器和一级带传动。

图2.1 带式输送机的传动装置简图1-电动机;2-三角带传动;3-减速器;4-联轴器;5-传动滚筒;6-皮带运输机(1)工作条件:连续单向运转,载荷平稳,空载启动,使用年限10年,小批量生产,工作为二班工作制,运输带速允许误差正负5%。

(2)原始数据:工作拉力;带速;滚筒直径;滚筒长度。

三、电动机选择1、电动机类型的选择:Y系列三相异步电动机2、电动机功率选择:(1)传动装置的总功率:按表2-5确定各部分的效率为:V带传动效率η=0.96,滚动轴承效率(一对)η=0.98,闭式齿轮传动效率η=0.96,联轴器传动效率η=0.98,传动滚筒效率η=0.95,代入得(2)电机所需的工作功率:因载荷平稳,电动机额定功率略大于即可。

单级圆柱齿轮减速器设计答辩

单级圆柱齿轮减速器设计答辩
动力传递
本次设计主要针对某机械 制造企业的实际需求,对 单级圆柱齿轮减速器进行
了详细设计
减速器设计要点
减速器设计要点
1. 齿轮设计
根据实际需求,选择 了合适的齿轮材料、 热处理方式及齿轮参 数。为保证减速器的 传动效率和使用寿命 ,对齿轮进行了精确 的几何设计和强度分 析
减速器设计要点
2. 箱体设计
-
感谢观赏
THANK YOU
单级圆柱齿轮减速
器设计答辩
XXXX:xxx
XX:xxx
单级圆柱齿轮减速器设计答辩
减速器设计背景 减速器设计要点 减速器性能分析 结语
目录
减速器设计背景
减速器设计背景
1
2
3
减速器作为一种高效传递 动力的设备,广泛应用于
各种机械系统中
单级圆柱齿轮减速器结构 简单、效率高、维护方便, 特别适合于工业生产中的
箱体作为减速器的支撑和固定部 分,需具备足够的刚度和强度。 本次设计采用了铸造工艺,合理 布置了加强筋,优化了箱体的结 构
减速器设计要点
3. 润滑与密封
为保证减速器的正常运转,润滑 与密封至关重要。本次设计采用 了合适的润滑剂和密封结构,有 效降低了减速器的摩擦与磨损
减速器性能分析
减速器性能分析
Hale Waihona Puke 通过理论分析和实验测 试,验证了减速器的传 动效率、承载能力和使 用寿命均达到了预期目

此外,还对减速器的振 动和噪声进行了评估, 确保其在正常工作时具 有良好的动态性能
结语
结语
本次设计的单级圆柱齿轮减速器 在理论上和实验上都表现出了优
良的性能
相信在实际应用中,该减速器将 为企业带来良好的经济效益和社 会效益

单级圆柱齿轮减速器的课程设计有图

单级圆柱齿轮减速器的课程设计有图

K K小齿轮传递的转矩= z/ zz/cos/cos初选齿宽系数K K K=1Y==端面重合度近似为S10/510=14=====102 ==()aT判断危险截面的并验算强度 右起第四段剖面C 处的当量弯矩最大,而其直径与相邻段相差不大,所以为危险截面。

已知2ec M =558N.m ,由课本1-σ]=60MP a aB MP 640=σ a MP a MP T 1551=- 3224//(0.1)ec W M D ==558/(0.1×365)=20.31N.m ≤[1-σ] D 处虽仅受转矩但其直径较小,故该面也为危险截面:2)=0.6×871.44=522.864N.m31/(0.1)D W M D ==522.864/(0.1×350)=41.83≤[1-σ]十.设计总结经过两周紧张的课程设计,终于体会到了什么叫设计。

原来设计并非自己想的那么简单、随便,比如说,设计减速器时,里面的每一个零件几乎都有其国家标准,我们设计时必需得按标准进行设计,最后才能符合要求。

我觉得从事设计工作的人一定得要有很好的耐性,并且要有足够的细心,因为设计过程中我们要对数据不断的计算,对图形不断的修改,这需要耐心。

因此,我觉得我们有必要从现在就开始培养这样一种耐心的工作态度,细心的工作作风,以便以后更快的进入到工作中,避免不必要的错误。

我觉得,虽然这次设计出的结果与自己所想的有一定差距,但我想至少是自己动手了,并且通过这次设计,使自己更明白自己在这方面的欠缺和不足之处,懂得要从头到尾自己设计出一样东西是多么的难。

因此,我想在剩下的一年半时间里,我会针对自己专业方面欠缺知识进行提高,拓宽。

我想不管谁找出了自己的弱点,一定要努力的去改进、提高它,这样自己才会不断的进步,虽然“人无完人”,但我想我们不断的改进、提升自己,最后会使自己成为比现在的自己更强,更优秀的人的,再次感谢辅导老师的指导与帮助!机械设计课程设计说明书十一.参考资料[1]《机械设计课程设计》,中国矿业大学出版社,张建中主编,2006年9月第2版;[2]《机械设计(第八版)》,高等教育出版社,濮良贵,纪名刚主编,2006年5月第八版;[3]《工程机械构造图册》,机械工业出版社,刘希平主编[4]《机械制图(第四版)》,高等教育出版社,刘朝儒,彭福荫,高治一编,2001年8月第四版;[5]《互换性与技术测量(第四版)》,中国计量出版社,廖念钊,古莹庵,莫雨松,李硕根,杨兴骏编,2001年1月第四版。

单级圆柱齿轮减速器课程设计说明书

单级圆柱齿轮减速器课程设计说明书

单级圆柱齿轮减速器课程设计说明书单级圆柱齿轮减速器课程设计说明书1.引言1.1 编写目的本文档旨在提供关于单级圆柱齿轮减速器的课程设计说明,深入介绍该减速器的结构、工作原理、制造要求和使用注意事项,为课程设计的开展提供参考和指导。

1.2 背景单级圆柱齿轮减速器是一种常用的传动装置,广泛应用于各种机械设备中,具有结构简单、传动效率高等优点。

本课程设计的目标是通过深入研究单级圆柱齿轮减速器实现对其工作原理的理解和对其设计参数的分析。

2.减速器概述2.1 结构组成单级圆柱齿轮减速器主要由输入轴、输入齿轮、输出齿轮和输出轴组成。

输入轴与输入齿轮相连,输出齿轮与输出轴相连。

2.2 工作原理当输入轴转动时,通过输入齿轮的旋转将动力传递到输出齿轮上,从而将输入轴的高速运动转变为输出轴的低速运动。

3.设计要求3.1 传动比计算根据实际应用需求确定所需的传动比,结合输入轴的转速和输出轴的转速计算减速器的传动比。

3.2 齿轮尺寸设计根据所需的传动比和减速器的工作负载,设计合适的齿轮模数、齿数、齿形等参数。

3.3 轴承选择根据输入轴和输出轴的负载以及转速要求,选择适当的轴承以保证减速器的稳定运行。

4.使用注意事项4.1 安装与调试减速器安装前应检查各部件是否完好无损,安装过程中要注意对各部件进行正确的组装和配合,调试时应确保齿轮的啮合状态和轴线的对中度。

4.2 运行与维护在正常运行期间,应监测减速器的运行状态,定期检查润滑油的情况,及时更换和补充润滑油。

5.附件本文档涉及的附件包括:齿轮图、尺寸图、工程计算表格等。

6.法律名词及注释6.1 法律名词1:根据《机械传动设计规范》,减速器是一种通过齿轮和其他传动装置进行能量传递和转换的机械装置。

6.2 法律名词2:传动比是指输入轴转速与输出轴转速之间的比值,通常用N表示。

6.3 注释1:齿轮模数是一个用来描述齿轮尺寸的参数,是每毫米齿宽上的齿数。

6.4 注释2:齿形是用来描述齿轮对齿轮啮合的牙形形状,决定齿轮的传动效率和噪音水平。

单级圆柱齿轮减速器课程设计

单级圆柱齿轮减速器课程设计

单级圆柱齿轮减速器课程设计(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除机械课程设计说明书课程设计题目:带式输送机传动装置姓名:学号:专业:完成日期:中国石油大学(北京)远程教育学院目录一、前言................................ 错误!未指定书签。

(一) 设计任务......................... 错误!未定义书签。

(二) 设计目的......................... 错误!未指定书签。

(三) 传动方案的分析................... 错误!未指定书签。

二、传动系统的参数设计................... 错误!未指定书签。

(一) 电动机选择.................................................. 错误!未指定书签。

(二) 计算传动装置的总传动比及分配各级传动比错误!未指定书签。

(三) 运动参数及动力参数计算.......................... 错误!未指定书签。

三、传动零件的设计计算 ........................................ 错误!未指定书签。

(一)V带传动的设计...................................... 错误!未指定书签。

(二)齿轮传动的设计计算 ............................. 错误!未指定书签。

(三)轴的设计计算.......................................... 错误!未指定书签。

1、Ⅰ轴的设计计算............................................ 错误!未指定书签。

四、滚动轴承的选择及验算 .................................... 错误!未指定书签。

单级圆柱齿轮减速器设计说明书

单级圆柱齿轮减速器设计说明书

设计
项目
计算公式及说明主要结果
1.设计任务
(1)设计带式传送机的传动系统,采用单级圆柱齿轮减速器和开式圆柱齿轮传动。

(2)原始数据
输送带的有效拉力 F=4000N
输送带的工作转速 V=s(允许误差 5%)
输送带滚筒的直径 d=380mm
减速器的设计寿命为5年
(3)工作条件
两班工作制,空载起动,载荷平稳,常温下连续单向运转,工作环境多尘;三相交流电源,电压为380V/220V。

2.传动方案的拟定
带式输送机传动系统方案如下所示:
带式输送机由电动机驱动。

电动机1通过联轴器2将动
力传入减速器3,再经联轴器4及开式齿轮5将动力传至输送
机滚筒6,带动输送带7工作。

传动系统中采用单级圆柱齿轮
减速器,其结构简单,齿轮相对于轴位置对称,为了传动的
平稳及效率采用斜齿圆柱齿轮传动,开式则用圆柱直齿传动。

传动系统方
案图见附图(一)
参考文献
[1] 诸文俊主编,机械原理与设计,机械工业出版社,2001
[2] 任金泉主编,机械设计课程设计,西安交通大学出版社,2002
[]3朱文俊钟发祥主编,机械原理及机械设计,西安交通大学城市学院,2009
马小龙
2009年6月30日。

单级圆柱齿轮减速器 设计书

单级圆柱齿轮减速器 设计书

单级圆柱齿轮减速器设计书课程设计题目:设计带式运输机传动装置1已知条件:运输带工作拉力 F = 3200 N。

运输带工作速度 v= 2 m/s滚筒直径 D = 375 mm工作情况两班制,连续单向运转,载荷较平稳。

,室,工作,水分和灰度正常状态,环境最高温度35℃。

要求齿轮使用寿命十年。

一、传动装置总体设计一、传动方案1)外传动用v带传动2)减速器为单级圆柱齿轮齿轮减速器3)方案如图所示二、该方案的优缺点:该工作机有轻微振动,由于V带有缓冲吸振能力,采用V带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。

减速器部分单级渐开线圆柱齿轮减速器。

轴承相对于齿轮对称,要求轴具有较大的刚度。

原动机部分为Y系列三相交流异步电动机。

总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。

计算与说明(一)电机的选择工作机所需要的功率 P w =F ×v=6400w =6.4 kw m in .110134.014.36.1•-=⨯==R D V n π 传动装置总效率:η总=η带轮×η齿轮×η轴承×η轴承×η联轴器=0.95×0.97×0.99×0.99×0.99=0.89电机输出功率 P =P w/η总= 7.11 kw所以取电机功率P =7.5kw技术数据: 额定功率 7.5 kw 满载转速 970 R/min额定转矩 2.0 n •m 最大转矩 2.0 n •m选用Y160 M-6型外形查表19-2(课程设计书P 174)A:254 B:210 C:108 D:42 E:110 F:12 G:37H:160 K:15 AB:330 AC:32 AD:255 HD:385 BB:270 L:600二、 V 带设计总传动比 6.959.9101970≈===n i nm 定 V 带传动比i 1=3.2定 齿轮传动比i 2=3外传动带选为V 带由表12-3(P 216)查得K a =1.2P ca =K a ×P = 1.1×7.5=9KW所以 选用B 型V 带设小轮直径d 1=125 d 1/2<Hs m d n V a ⋅-=⨯⨯⨯=⨯⋅⋅=11116100060125970100060ππ大带轮直径 d 2=i 1×d 1=3.2×125=439.6所以取d 2=400所以 i 1=d 2/d 1=3.2所以大带轮转速n 2=n 1/i 1=303(R/min)确定中心距a 和带长L 00.7(d 1+d 2)≤a ≤2(d 1+d 2)367.5≤a ≤1050 所以初选中心距 a 0=5002)()(22221210d d d d L a ++++=π=1861 查表12-2(P 210)得L 0 =2000 中心距mm a L L a d 5.569218612000500200=-+=-+= 中心距调整围a max =a+0.03l d =629.5a min =a -0.015l d =539.5小带轮包角 ︒≥︒=︒⨯--︒≈1207.1663.57180121a d d α确定V 带根数Z 参考12-27 取P 0=1.32KW由表12-10 查得△P 0=0.11Kw由查表得12-5 查得包角系数K ≈0.96由表12-2(P 210)查得长度系数K L =1.06计算V 带根数Z ,由式(5-28机设)97.413.195.0)3.013.2(75.9)(00≈⨯⨯+=∇+≥K K P P PL caZ α 取Z=5根计算单根V 带初拉力F0,由式(12-22)机设。

单级直齿圆柱齿轮减速器课程设计说明书

单级直齿圆柱齿轮减速器课程设计说明书

机械设计基础课程设计题目单级直齿圆柱齿轮减速器学生姓名小樊指导教师xx专业班级完毕时间2023.01.07设计题目:用于胶带运送的单级圆柱齿轮减速器, 传送带允许的速度误差为±5%。

双班制工作, 有轻微振动, 批量生产。

运动简图:61— 电动机 2—联轴器 3—单级齿轮减速器4—链传动 5—卷筒 6—传送胶带原始数据:目录:一、传动方案的拟定及说明 (1)二、电动机的选择和计算 (4)三、传动装置的运动和动力参数计算 (5)四、传动件的设计计算 (6)五、初选滚动轴承 (9)六、选择联轴器 (9)七、轴的设计计算 (9)八、键联接的选择及校核计算 (17)九、滚动轴承校核 (18)十、设计小结 (20)十一、设计任务书 (20)十二、参考资料 (24)3456 DFv211.传动方案的分析说明:2.方案中采用链传动。

避免了带传动中出现的弹性滑动和打滑;并且作用在轴上的压力小, 可减少轴承的摩擦损失;制造和安装的精度低, 有效减少生产成本。

由于链传动的润滑至关重要, 应选择合宜的润滑方式。

方案中采用单级圆柱齿轮减速器。

此类减速器工艺简朴, 精度易于保证, 适宜批量生产。

由题目数据可知, 载荷较小, 传动速度也较低。

总体来说, 该传动方案满足工作机的性能规定, 适应工作条件、工作可靠, 此外结构简朴、尺寸紧凑、成本低传动效率高。

二、电动机的选择和计算1.电动机类型的选择:2.分析工作机工作条件及电源, 选用Y系列三相交流异步电动机。

电动机功率的选择:工作机所需功率2335minr393.4minr=由以上可以拟定电动机的型号为: Y2-132M-4d) 按弯矩复合强度校核已知小齿轮分度圆直径 , 轴的转矩 。

则圆周力22238.182t TF N d== 径向力tan 814.63r t F F N α==①. 轴受力分析简图(a )407.4152r AY BY FF F N === 1119.0912t AZ BZFF F N === 由于轴承两轴承关于齿轮对称, 故②. 垂直面弯矩图(b )截面a-a 在垂直面的弯矩为117.5a AY A M F l N m =⋅≈⋅③. 水平面弯矩图(c )截面a-a 在水平面的弯矩为248.1a AZ A M F l N m =⋅≈⋅④. 合弯矩图(d )221251.2a a a M M M N m=+≈⋅⑤. 扭矩图(e )22d mm =2. 低速轴(即前述Ⅱ轴)1) 根据扭矩初算轴颈材料选用45#钢, 调质解决, 硬度 取轴的C 值为110。

机械设计之单级圆柱齿轮减速器

机械设计之单级圆柱齿轮减速器

# 机械设计之单级圆柱齿轮减速器简介单级圆柱齿轮减速器是一种常见的机械设备,用于将输入转速减小并增加输出扭矩。

它由两个或多个齿轮组成,在传动过程中,通过齿轮的啮合,实现输入和输出轴的动力传递。

单级圆柱齿轮减速器的设计和选择对于机械设备的正确运行和性能至关重要。

本文将探讨单级圆柱齿轮减速器的设计原理、参数计算和选型过程。

设计原理1. 齿轮的基本性质齿轮是单级圆柱齿轮减速器的核心组件。

通过齿轮的啮合,输入轴的运动能量被传递给输出轴,实现转速和扭矩的转换。

在设计齿轮减速器时,需要考虑以下几个重要的齿轮性质:•齿轮模数(Module):齿轮模数是齿轮的重要几何参数,定义为每个齿轮齿数与齿轮的分度圆直径的比值。

模数越大,齿轮的尺寸越大,传递能力也越强。

•齿数(Number of teeth):齿数是齿轮的重要几何参数,决定了齿轮啮合时的传动比。

齿数较多的齿轮输出转矩较大,转速较小,齿数较少的齿轮输出转矩较小,转速较大。

•压力角(Pressure angle):压力角是指齿轮齿面法线与齿轮轴线之间的夹角,常见的压力角有20度和14.5度两种。

较大的压力角有利于提高齿轮的啮合性能和传力能力。

•齿宽(Face width):齿宽是齿轮上齿部与间隙部分的长度,决定了齿轮的传力能力。

齿宽越大,齿轮传力能力越强。

•啮合角(Pressure angle):啮合角是指两个相互啮合的齿轮之间的接触面的夹角,常见的啮合角有20度和14.5度两种。

较小的啮合角有利于减小齿轮啮合时的摩擦损失和噪音。

2. 减速比计算减速比是单级圆柱齿轮减速器设计中的重要参数,它是输入轴转速与输出轴转速的比值。

减速比的计算公式如下:减速比 = (输出轴转速) / (输入轴转速) = (输入轮齿数) / (输出轮齿数)根据减速比的计算公式,可以通过给定输入轮的齿数和输出轮的齿数,来确定减速比。

3. 扭矩传递和效率计算在单级圆柱齿轮减速器中,扭矩的传递是通过齿轮的啮合实现的。

单级斜齿轮圆柱齿轮减速器设计

单级斜齿轮圆柱齿轮减速器设计

单级斜齿轮圆柱齿轮减速器设计随着工业化的发展,减速器的应用范围越来越广泛。

而在众多减速器中,单级斜齿轮圆柱齿轮减速器以其精度高、可靠性好、噪声低等特点,被广泛应用于各种机械传动中。

一、设计的目的本次设计旨在开发一种单级斜齿轮圆柱齿轮减速器,满足各种类型的机械传动的需求,同时使其具有高效、稳定的特点。

二、设计的基本结构单级斜齿轮圆柱齿轮减速器的基本结构包括输入轴、输出轴、斜齿轮、圆柱齿轮等部分。

其中,输入轴与斜齿轮的啮合传递动力,从而带动圆柱齿轮旋转,最终通过输出轴输出,实现将输入轴的高速转动转化为输出轴的低速高扭矩输出。

三、设计的优点1.高效:单级斜齿轮圆柱齿轮减速器的效率一般在90%以上,与其他减速器相比,其效率更高。

2.精度高:由于斜齿轮是通过直线与斜面的啮合传动动力,因此其传动精度更高,传动的力矩更平稳。

3.可靠性好:单级斜齿轮圆柱齿轮减速器采用模块化设计,各个部件之间配合精度高,制造质量稳定,因此其可靠性更高。

4.噪声低:单级斜齿轮圆柱齿轮减速器传动过程中,声音低,运转噪声小,使其在一些机械配置要求噪音小的场合得到了广泛应用。

四、设计注意事项在进行单级斜齿轮圆柱齿轮减速器的设计时,需要注意以下几点:1. 需要注意输入轴与斜齿轮的啮合处,要保证啮合精度。

2. 要保证圆柱齿轮的模数与斜齿轮的模数相同,从而保证两者的啮合传动效果。

3. 选择合适的材料,使其具有高硬度、耐磨性、抗腐蚀性等特点,从而保证其使用寿命长。

五、结论单级斜齿轮圆柱齿轮减速器具有高效、精度高、可靠性好、噪声低等特点,可应用于各种传动设备中。

在设计时需要注意输入轴与斜齿轮的啮合处,圆柱齿轮的模数与斜齿轮的模数要相同,并选择合适的材料。

在使用过程中,可加强润滑次数和强度,延长使用寿命。

单级圆柱齿轮减速器课程设计说明书

单级圆柱齿轮减速器课程设计说明书

三。

计算传动装置的总传动比和分配级的传动比。

1、总传动比:总I =n电机/n滚筒=960/55.2=17.39带传动设计1.选择常见的V带截面:根据教材P188表11.5,kA=1.2,PC=KAP功= 1.2× 5.5 = 6.6kw。

根据教材P188的图11.15:选择A型V带。

2.确定皮带轮的参考直径并检查皮带速度:根据教材P189的表11.6:D1 = 100毫米> dmin = 75毫米,D2=i波段D1(1-ε)= 3.48×100×(1-0.01)= 344.52mm,根据教材P179的表11.4:D2 = 355毫米,D1 = 100毫米。

实际从动轮转速nⅱ' = nⅰD1/D2 = 960×100/355 = 270.42 r/min转速误差为1-nⅱ'/nⅱ= 1-270.42/275.86 = 0.0197 < 0.05(允许)带速V =πD1 n1/60×1000 =π×100×960/60×1000 = 5.03m/s,带速在 5 ~ 25 m/s范围内为宜。

3.确定皮带长度和中心距离:0.65(D1+ D2)≤a0≤2(D1+ D2),即0.65(100+355)≤a0≤2×(100+355),所以是297.75mm≤a0≤910mm,初始中心距a0=650mm。

长度l0 = 2 A0+1.57(D1+D2)+(D2-D1)2/4a 0= 2×650+1.57(100+355)+(355-100)2/(4×650)= 2039.36mm根据教材P179的图11.4:Ld = 2000mm中心距离a≈a0+(Ld-L0)/2= 650+(2000-2039.36)/2 = 650-19.68 = 631毫米4.检查小滑轮的包角:α1 = 1800-57.30×(D2-D1)/a = 1800-57.30×(355-100)/631=156.840>1200(适用)5.确定皮带的根数:根据教材P191的表11.8:P0 = 0.97 kw根据教材P193的表11.10:△P0 = 0.11 kw。

单级圆柱齿轮减速器设计说明书

单级圆柱齿轮减速器设计说明书

单级圆柱齿轮减速器设计说明书设计说明书:单级圆柱齿轮减速器1.引言本设计说明书旨在详细说明单级圆柱齿轮减速器的设计方案、工作原理以及相关参数,并给出制造和装配的指导。

2.设计目标在本节中,将阐明设计减速器所需要达到的目标,包括但不限于输出转矩、输入转速、轴向力等。

3.工作原理描述单级圆柱齿轮减速器的工作原理,包括输入和输出轴的运动相对方向、齿轮的传动方式以及摩擦损失等。

4.构成要素及材料选择本节将介绍单级圆柱齿轮减速器的构成要素,包括齿轮、轴承、壳体等,并对每个要素所选择的材料进行说明。

5.减速器的设计过程详细描述单级圆柱齿轮减速器的设计过程,包括齿轮参数的计算、齿轮副的布置设计、轴的选取及布置、轴承的选用等。

6.制造和装配指南给出制造和装配单级圆柱齿轮减速器的指导,包括零件的加工工艺、装配顺序、紧固力矩等。

7.性能测试方法及标准描述对单级圆柱齿轮减速器进行性能测试的方法和标准,包括转矩测试、转速测试以及噪音测试等。

8.质量控制说明质量控制的准则和方法,包括零部件的检验、装配质量检查以及出厂前的整机测试等。

9.维护与维修介绍单级圆柱齿轮减速器的维护与维修方法,包括常见故障的诊断和处理、润滑油更换周期等。

10.安全注意事项列出使用单级圆柱齿轮减速器时需要注意的安全事项,包括操作注意事项、维护保养注意事项以及紧急情况处理措施等。

11.附件提供与本文档有关的附件,包括技术图纸、设计计算表格、实验数据等。

12.法律名词及注释列出本文档中涉及的法律名词,并提供相应的注释和解释,以确保读者对相关法律概念有准确的理解。

【附件】1.技术图纸2.设计计算表格3.试验报告【法律名词及注释】1.版权:指对著作权人就其作品享有的法律权利,包括复制权、发行权、表演权等。

2.专利:指对于发明的技术解决方案的一种保护形式,授予专利权人在一定期限内对其发明进行独占性使用的权利。

3.商标:指对于产品或服务的标志,授予商标权人在特定领域内以独占性方式使用该标志的权利。

单级圆柱齿轮减速器机械设计

单级圆柱齿轮减速器机械设计

目录第一章绪论 (2)第二章课题题目及主要技术参数说明 (3)第三章减速器结构选择及相关性能参数计算 (4)第四章齿轮的设计计算(包括小齿轮和大齿轮) (6)))))19)19)(1)培养了我们理论联系实际的设计思想,训练了综合运用机械设计课程和其他相关课程的基础理论并结合生产实际进行分析和解决工程实际问题的能力,巩固、深化和扩展了相关机械设计方面的知识。

(2)通过对通用机械零件、常用机械传动或简单机械的设计,使我们掌握了一般机械设计的程序和方法,树立正确的工程设计思想,培养独立、全面、科学的工程设计能力和创新能力。

(3)另外培养了我们查阅和使用标准、规范、手册、图册及相关技术资料的能力以及计算、绘图数据处理、计算机辅助设计方面的能力。

(4)加强了我们对Office软件中Word功能的认识和运用。

第二章课题题目及主要技术参数说明2.1课题题目带式输送机传动系统的减速器。

要求传动系统中含有单级圆柱齿轮减第八章结论通过本次毕业设计,使自己对所学的各门课程进一步加深了理解,对于各方面知识之间的联系有了实际的体会。

同时也深深感到自己初步掌握的知识与实际需要还有很大的距离,在今后还需要继续学习和实践。

本设计由于时间紧张,在设计中肯定会有许多欠缺,若想把它变成实际产品的话还需要反复的考虑和探讨。

但作为一次练习,确实给我们带来了很大的收获,设计涉及到机械、电气等多方面的内容,通过设计计算、认证、画图,提高了我对机械结构设计、控制系统设计及步进电动机的选用等方面的认识和应用能力。

总之,本次设计让我受益非浅,各方面的能力得到了一定的提高。

5、《工程力学》教材6、其它机械类专业课程教材。

单级圆柱齿轮减速器设计说明

单级圆柱齿轮减速器设计说明

单级圆柱齿轮减速器设计说明一、设计原理齿轮副由主动轮和从动轮组成,一般情况下采用直齿轮、斜齿轮或锥齿轮。

当主动轮齿数大于从动轮齿数时,减速器为减速比大于1的减速器;反之,则为减速比小于1的增速器。

二、设计构造1.减速比选择:根据需要确定减速比,同时要考虑齿轮副的登齿系数、传动效率和材料强度等因素。

一般情况下,齿轮副的登齿系数应为1-1.5,传动效率应在0.95以上。

2.齿轮材料选择:根据工作条件和负载要求选择合适的齿轮材料。

常用的齿轮材料有20CrMnTi、40Cr、45#钢等,其中硬度要求一般在58-62HRC之间。

3.轴承选择:根据输出轴受力大小和转速要求选择合适的轴承。

一般情况下,使用圆柱滚子轴承或角接触球轴承,且滚动体要求使用钢球或钢针。

4.结构布局:根据设计空间和机器布局确定减速器的整体结构布局。

要考虑轴承的支座设计、润滑系统的布置、轴向气隙的调整等因素。

三、选型要点在进行单级圆柱齿轮减速器选型时,要综合考虑以下几个要点:1.转矩要求:根据输出负载的转矩要求选择减速器的额定转矩。

一般情况下,额定转矩应大于实际转矩的1.3-1.5倍。

2.转速要求:根据工作要求选择减速器的额定转速。

要注意减速器的最大转速和工作转速。

3.允许误差:根据传动精度要求选择减速器的精度等级。

一般情况下,选择高精度的减速器,以保证传动精度和稳定性。

4.安装方式:根据机械布局和安装条件选择减速器的安装方式。

常见的安装方式有法兰连接、挂牙连接等。

总结起来,单级圆柱齿轮减速器的设计需要考虑减速比、齿轮材料、轴承选择、结构布局等因素。

在选型时要综合考虑转矩要求、转速要求、允许误差和安装方式等因素,以满足实际应用需求。

一级直齿圆柱齿轮减速器设计

一级直齿圆柱齿轮减速器设计
由课本表10-2查得KA=1
由课本表10-4用插值法查得8级精度、小齿轮相对支承非对称布置时,KHβ=1.448
由b/h=9.33,KHβ=1.448查课本表10-13得KFβ=1.35:故载荷系数
K=KA×KV×KHa×KFβ=1×1.06×1×1.448=1.535
6)按实际的载荷系数校正所算得的分度圆直径,由课本式(10-10a)
大齿轮的齿数z2=7.2×28=201.6取z2=202
这样设计出的齿轮传动,既满足了齿面接触疲劳强度,并做到结构紧凑,避免浪费。
4.几何尺寸计算
(1)计算分度圆直径d1= z1m=28×1.25=35mm
d2= z2m=202×1.25=252.5mm
(2)计算中心距a=(d1+ d2)/2=(35+252.5)/2=143.75mm
YFa2YSa2/[σF]2=2.14×1.83/266=0.01472
大齿轮的数值大。
8)设计计算
m≥[2×1.431×18020×0.01472 /(1×212)]1/3=1.198mm
对比计算结果,由齿面接触疲劳强度计算的模数m大于齿根弯曲疲劳强度计算的模数m的大小重腰取决于弯曲强度的承载能力,而齿面接触疲劳强度所决定的承载能力,仅与齿轮直径(即模数与齿数的乘积)有关,可取由弯曲强度算得的模数1.198并就近圆整为标准值m=1.25mm,按接触强度的的分度圆直径d1=34.81mm,算出小齿轮的齿数z1=d1/m=34.81/1.25=27.848mm
4)计算齿宽与齿高之比b/h。
模数:mt=d1t/Z1=34.81/21=1.658mm
齿高:h=2.25mt=2.25×1.658=3.7305mm
b/h=34.81/3.7305=9.33

一级圆柱齿轮减速器设计(开式齿轮传动)

一级圆柱齿轮减速器设计(开式齿轮传动)

一级圆柱齿轮减速器设计说明书一、传动方案拟定 (3)二、电动机的选择 (4)三、确定传动装置总传动比及分配各级的传动比 (6)四、传动装置的运动和动力设计 (7)五、齿轮传动的设计 (15)六、传动轴的设计 (18)七、箱体的设计 (27)八、键连接的设计 (29)九、滚动轴承的设计 (31)十、润滑和密封的设计 (32)十一、联轴器的设计 (33)十二、设计小结 (33)计算过程及计算说明一、传动方案拟定设计单级圆柱齿轮减速器1、工作条件:输送带常温下连续工作,空载起动,工作载荷平稳,使用期限5年,两班制工作,输送带速度容许误差为±5%,环境清洁。

2、原始数据:输送带有效拉力F=6500N;带速V=0.8m/s;滚筒直径D=335mm;方案拟定:采用开始齿轮传动与减速齿轮的组合,即可满足传动比要求;同时由于带传动具有良好的缓冲、吸振性能,适应大起动转矩工况要求,结构简单,成本低,使用维护方便。

二、电动机选择1、电动机类型和结构的选择:选择Y系列三相异步电动机,此系列电动机属于一般用途的全封闭自扇冷电动机,其结构简单,工作可靠,价格低廉,维护方便,适用于不易燃,不易爆,无腐蚀性气体和无特殊要求的机械。

2、电动机容量选择:电动机所需工作功率为:式(1):Pd=PW/ηa(KW)由式(2):PW=FV/1000(KW)因此P d=FV/1000ηa(KW)由电动机至运输带的传动总效率为:η总=η1³η2³η2³η3³η4³η5式中:η1、η2、η3、η4、η5分别为开式齿轮传动、轴承、圆柱齿轮传动、联轴器和滚筒的传动效率。

取η1=0.98(开式齿轮传动),η2=0.98,η3=0.98,η4=0.99(弹性联轴器),η5=0.96(卷筒)。

则:η总=0.98³0.98³0.98³0.98³0.99³0.97=0.886所以:电机所需的工作功率:P d= FV/1000η总=(6500³0.8)/(1000³0.886)=5.87(KW)3、确定电动机转速卷筒工作转速为:n卷筒=60³1000²V/(π²D)=(60³1000³0.8)/(335²π)=45.63(r/min)根据《机械设计基础课程设计指导书》上推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’=3~6,取开式齿轮传动比I1’=2~4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计说明书课程名称:机械设计课程设计题目名称:单级圆柱齿轮减速器设计年级专业及班级:姓名:学号:指导教师:评定成绩:教师评语:指导老师签名:20 年月日目录一、设计题目、原始数据-------------------------------------------------------------------------------3二、电动机的选择---------------------------------------------------------------------------------------3三、确定传动装置的总传动比和分配传动比-------------------------- 5四、计算传动装置的运动和动力参数-------------------------------- 6五、传动零件的设计计算------------------------------------------71.皮带轮的设计计算--------------------------------------------72.齿轮的设计计算--------------------------------------- ------10六、轴的设计---------------------------------------------- -----131.输出轴的设计计算---------------------------------------- ---132.输入轴的设计计算--------------------------------------- ----18七、滚动轴承的设计计算-----------------------------------------23八、键的选择及设计计算-----------------------------------------26九、箱体的结构设计---------------------------------------------27十、润滑与密封-------------------------------------------------28设计结果十一、设计总结----------------------------------------------------30十二、参考资料目录-----------------------------------------------------------------------------------------30设计计算一、设计题目、原始数据1、工作条件:a、传动不逆转 b、工作连续、平稳 c、启动载荷为公称载荷的1.25倍D、每天工作16个小时,寿命6年 e、批量生产2、原始数据:输送带拉力F=900N;速度V=2.3m/s;鼓轮直径D=400m/s。

3、设计方案:单级圆柱齿轮减速器和一级带传动本设计原动机为电动机。

工作机为皮带输送机。

传动方案采用了单级传动,为了估计传动装置的总传动比范围,以便选择合适的传动机构和拟订传动方案,可以由已知道条件计算驱动卷筒的转速:n筒=60×1000V/πD=60×1000×2.3/π×400=109.8 r/min二.电动机选择1、电动机类型的选择:卧式封闭型Y系列(ZP44)三相异步电动机2、电动机功率选择:①传动装置的总功率:查表2-4取弹性连轴器、圆柱齿轮、滚动轴承、V带的效率分别为η联轴器=0.99;η齿轮=0.97;η轴承=0.98;η带=0.96; η=0.95;η总=η带×η轴承3η齿轮×η联轴器×η=0.824②电机所需的工作功率:P工作=FV/1000η带=900×2.3/1000×0.824 =2.51 kw按手册表推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比I1=3~6。

取V带传动比I2=2~4,则总传动比范围为I总=6~24。

故电动机转速范围为n电动机=I总×n筒=(6~24)×109.8=658.8-2635.2 r/min符合这一范围的同步转速有1000、和1500r/min。

根据容量和转速,查有关手册有三种适用的电动机型号:现比较两种如下根据传动方案:综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,可见第2方案比较适合,则选Y100L2-4③确定电动机型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y100L2-4。

其主要性能:额定功率:3kW,满载转速1430 r/min。

三、计算总传动比及分配各级的传动比1、总传动比:i总=n电动/n筒=1430/109.8=13.022、分配各级传动比:1).取V带i带=2.8(单级减速器i=2~4合理)2).∵i总=i齿轮×i带∴i齿轮=i总/ i带=13.02/2.8=4.65所得传动比符合一般圆柱齿轮传动和单级圆柱齿轮传动的常用范围四、传动装置的运动参数及动力参数计算1、计算各轴转速电动机轴为Ⅰ轴,减速器高速轴为Ⅱ轴,低速轴为Ⅲ轴n I =n电动机=1430 r/minn II =nI/i带=1430/2.8=510.71 r/minn III =nII/i齿轮=510.71/4.65=109.83 r/min2、计算各轴的功率PI= 3kwP II =PI×η带=2.51×0.96=2.41kwP III =PII×η轴承×η齿轮=2.41×0.98×0.97=2.29kw3、计算各轴扭矩T 1 = 9550×Po/nI=9550×2.51/1430=16.76 N·mT II =9550×PII/nII=9550×2.41/510.71=45.07 N·mT III =9550×PIII/nIII=9550×2.29/109.83=199.12 N·m运动和动力参数计算结果整理于下表:五、传动零件的设计计算㈠.皮带轮传动的设计计算1).确定计算功率Pc由于每天工作时间T=16h,运输装置工作时有轻度冲击,由机械设计基础表13-8查得工作情况系数KA =1.2,故Pc=KA×P=1.2×3kW =3.6kW2).选择V带的带型根据Pc,n1由机械设计基础图13-5选择A型V带。

3).确定带轮的基准直径并验算带υ①由机械设计基础表13-9取小带轮的基准直径d1=95mm>dmin=75。

d2=i×d1(1-0.02)=260.68mm由机械设计基础表13-9得,取d2=265mmV带的速度V=π×d1×n/60×1000=π×95×1430/60×1000=7.11 m/s 其中速度在5-25 m/s的范围内,带速合格。

5).确定V带的中心距a和基准长度Ld①根据式0.7(d d1+d d2)<a<2(d d1+d d2) 算得336<a<960 mm则取ao=540mm②由式(8-22)计算基准长度L≈2a0+0.5π(d1+d2)+0.25(d2-d1)2/a0=2×540+0.5π×(95+265)+0.25×(265-95)2/540=1658.87mm由机械设计基础P212页,取Ld=1600mm确定中心距a=ao+(Ld-L)/2=510mm6).验算小带轮的包角α由包角公式α≈1800-(d2-d1)57.50=1800-(265-95)×57.50=160.90 >12007).计算带的根数z①由d1=95mm和n I=1430r/min,查机械设计基础图13-3得Po=1.41kW.根据n I =960r/min,i=208和A型V带,查机械设计基础表13-5得ΔPo=0.17kW查表13-7得Kα =0.96,Kl=0.99,②V带根数z=Pc/(Po+ΔPo)KαK l =3.6/(1.41+0.17)×0.96×0.99=2.39(根),取整z=3根9).计算单根V带的初拉力的最小值(Fo)min由机械设计基础表13-1得A型带的单位长度质量q=0.10kg/m,所以(Fo)min=500(2.5-Kα)Pc/zυKα+qυ2=500×(2.5-0.96)×3.6/(0.96×3×7.11)+0.1×7.112=140.4 N 实际处拉力Fo>(Fo)min10).计算压轴力Fp最小值压轴力为(Fp)min=2z(Fo)min Sin(0.5α1)=2×3×140.4×Sin(160.9/2)=830.7N㈡.齿轮设计计算1).选定齿轮类型、精度等级、材料及齿数。

①由传动方案,选用直齿圆柱齿轮传动。

②输送机为一般工作机,速度不高,故选用8级精度(GB10095—88)。

③材料选择:由表10-1选择小齿轮材料为45号钢(调质),硬度为260HBS, σHlim 1=610 MPa,σFE1=460 MPa。

大齿轮材料为45钢(正火处理),硬度为215 HBS,σHlim 2=400MPa,σFE2=320 MPa两者材料硬度差为45HBS由机械设计基础表11-5,取SH =1.0, SF=1[σH ]1=σHlim 1/SH=610/1.0 MPa=610 MP a[σH ]2=σHlim 2/SH=400×1.05/1.0 MPa=420 MPa[σF ]1=σFE1/SF=460/1.0 MPa=460MPa[σF ]2=σFE2/SF=320/1.0 MPa=320 MPa2).按齿面接触强度设计①由机械设计基础表11-3试选载荷系数Kt=1.2. 由机械设计基础表11-6取齿宽系数φd=0.9②计算小齿轮传递的转矩。

由公式T1=95.5×105P1/n1=95.5×105×2.41/510.71=45066 N·m④由表11-4查得材料的弹性影响系数ZE=188 MPa1/2。

⑥由公式10-13计算应力循环次数(一年按300计算)N1=60 n1jLh=60×510.71×(6×300×16)=8.83×108N2=8.83×108/4.65 = 1.90×108⑨由设计计算公式(10-9a)进行试算,即d≥[2(u+1)Z H2K t T1Z E2/u [σH]2φd]1/3则小齿轮分度圆直径d 1t ,代入[σH]中较小的值得:d1t≥ (2×1.2×45066×5.65×2.52×1882/1.1×4.65×420)1/3 =53.9mm取小齿轮的齿数为Z1 =24,则大齿轮的齿数为Z2=i×Z1=4.65×24=111.6 取Z2=112故实际传动比i=112/24=4.67⑾计算齿宽 b=φd ·d1t=0.9×53.09mm = 47.781mm由此取 b1=55mm b2=50mm ⑿计算齿宽与齿高之比b/h。

相关文档
最新文档