材料力学:弯曲正应力

合集下载

弯曲正应力实验

弯曲正应力实验

弯曲正应力实验
弯曲正应力实验是一种常见的材料力学实验,用于研究材料在弯曲载荷下的变形和破坏行为。

该实验可以通过测量材料在弯曲载荷下的应变和应力来评估材料的力学性能和强度。

在弯曲正应力实验中,通常使用弯曲试验机来施加载荷。

试样被放置在两个支撑点之间,然后在中间施加一个力,使其产生弯曲。

通过测量试样的变形和载荷,可以计算出试样的应变和应力。

在实验中,应力和应变的关系可以用弹性模量来描述。

弹性模量是材料在弯曲载荷下的应力和应变之比。

通过测量弹性模量,可以评估材料的刚度和强度。

弯曲正应力实验还可以用于评估材料的疲劳性能。

在疲劳实验中,试样被反复弯曲,以模拟材料在实际使用中的疲劳载荷。

通过测量试样的疲劳寿命和疲劳极限,可以评估材料的耐久性和可靠性。

弯曲正应力实验是一种重要的材料力学实验,可以用于评估材料的力学性能和强度。

通过该实验,可以为材料的设计和应用提供重要的参考和指导。

弯曲正应力实验报告

弯曲正应力实验报告

弯曲正应力实验报告弯曲正应力实验报告引言:弯曲正应力实验是材料力学中的一项重要实验,通过对材料在受力情况下的变形和应力分布进行观察和分析,可以了解材料的力学性质和强度。

本实验旨在通过对不同材料的弯曲试样进行加载,测量其变形和应力分布,从而探究材料的弯曲性能。

实验原理:弯曲正应力实验是利用悬臂梁的弯曲变形来研究材料的力学性质。

在实验中,我们采用了一根长条形试样,将其固定在一端,然后在另一端施加一个力。

通过测量试样的挠度和应力,可以得到弯曲试样的力学性能。

实验步骤:1. 准备工作:选择合适的试样和装置,确保试样的尺寸和几何形状符合实验要求。

2. 安装试样:将试样固定在支架上,并调整好试样的位置和方向。

3. 施加力:通过加载装置施加一个力,使试样发生弯曲变形。

4. 测量挠度:使用测量仪器(如游标卡尺或激光测量仪)测量试样在不同位置的挠度。

5. 记录数据:将测量到的挠度数据记录下来,并与施加的力进行对应。

6. 计算应力:根据试样的几何形状和力的大小,计算出试样不同位置处的应力。

7. 绘制应力-挠度曲线:将应力和挠度的数据绘制成曲线图,分析试样的弯曲性能。

实验结果:通过实验我们得到了一组应力-挠度曲线数据。

根据这些数据,我们可以观察到试样在受力作用下的变形情况,并得到试样在不同位置处的应力分布情况。

根据应力-挠度曲线的形状,可以判断材料的强度和韧性。

讨论与分析:根据实验结果,我们可以对不同材料的弯曲性能进行比较和分析。

通过观察应力-挠度曲线的形状,我们可以判断材料的强度和韧性。

对于强度较高的材料,其应力-挠度曲线会表现出较高的刚性,即挠度随应力的增加变化较小;而对于韧性较好的材料,其应力-挠度曲线会表现出较大的变形能力,即挠度随应力的增加变化较大。

结论:通过对弯曲正应力实验的进行,我们可以得到材料的弯曲性能数据,并通过分析这些数据来了解材料的力学性质。

实验结果可以为工程设计和材料选择提供参考依据,以确保材料的使用安全性和可靠性。

弯曲正应力实验报告

弯曲正应力实验报告

浙江大学材料力学实验报告(实验项目:弯曲正应力)一、实验目的:1、初步掌握电测方法和多点测量技术。

;2、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。

二、设备及试样:1. 电子万能试验机或简易加载设备;2. 电阻应变仪及预调平衡箱;3. 进行截面钢梁。

三、实验原理和方法:1、载荷P 作用下,在梁的中部为纯弯曲,弯矩为1M=2Pa 。

在左右两端长为a 的部分内为横力弯曲,弯矩为11=()2M P a c -。

在梁的前后两个侧面上,沿梁的横截面高度,每隔4h贴上平行于轴线上的应变片。

温度补偿块要放置在横梁附近。

对第一个待测应变片联同温度补偿片按半桥接线。

测出载荷作用下各待测点的应变ε,由胡克定律知E σε=另一方面,由弯曲公式MyIσ=,又可算出各点应力的理论值。

于是可将实测值和理论值进行比较。

2、加载时分五级加载,0F =1000N ,F ∆=1000N ,max F =5000N ,缷载时进行检查,若应变差值基本相等,则可用于计算应力,否则检查原因进行复测(实验仪器中应变ε的单位是610-)。

3、实测应力计算时,采用1000F N ∆=时平均应变增量im ε∆计算应力,即i im E σε∆=∆ ,同一高度的两个取平均。

实测应力,理论应力精确到小数点后两位。

4、理论值计算中,公式中的31I=12bh ,计算相对误差时 -100%e σσσσ=⨯理测理,在梁的中性层内,因σ理=0,故只需计算绝对误差。

四、数据处理1、实验参数记录与计算:b=20mm, h=40mm, l=600mm, a=200mm, c=30mm, E=206GPa, P=1000N ∆, max P 5000N =, k=2.193-641I==0.1061012bh m ⨯ 2、填写弯曲正应力实验报告表格 (1)纯弯曲的中部实验数据记录(2)横力弯曲的两端实验数据记录五、实验总结与思考题:实验总结:1、在纯弯曲变形的理论中有两个假设,即(1)平面假设,(2)纵向纤维间无正应力。

12第十二讲(弯曲正应力)

12第十二讲(弯曲正应力)

材料力学教案
M z y d A
A
第十二讲:弯曲正应力计算
E
r
A
y dA
2
EI z
r
M
(c)
由式(c)可知,直梁纯弯曲时中性层的曲率为
M r EI z 上式中的EIz称为梁的弯曲刚度。显然,由于纯弯曲时,
梁横截面上的弯矩M 不随截面位置变化。故对于等截面的
1
直梁,包含在中性层内的那根轴线将弯成圆弧。
3、纵向线应变在横截面范围内的变化规律
图c为由相距d x的两横截面取出的梁段在梁弯曲后的情
况,两个原来平行的横截面绕中性轴相对转动了角d。梁的 横截面上距中性轴 z为任意距离 y 处的纵向线应变由图c可知 为
B1B B1 B y d AB1 O1O2 dx
令中性层的曲率半径为r(如图c),则根 1 d 据曲率的定义 有 r dx
材料力学教案
第十二讲:弯曲正应力计算
根据表面变形情况,并设想梁的侧面上的横向线mm和nn是
梁的横截面与侧表面的交线(由表及里),可作出如下推论
(假设):
平面假设
梁在纯弯曲时,其原来的横截面仍保持为平面,
只是绕垂直于弯曲平面(纵向平面)的某一轴转动,转动后 的横截面与梁弯曲后的轴线保持正交。 此假设已为弹性力学的理论分析结果所证实。 三峡大学 工程力学系
将 E 代入,即得弯曲正应力计算公式:
r
y
My Iz
三峡大学 工程力学系
材料力学教案
第十二讲:弯曲正应力计算
二. 纯弯曲理论的推广-横力弯曲中正应力的计算
工程中实际的梁大多发生横力弯曲,此时,对于梁在
纯弯曲时所作的假设不再成立。

材料弯曲应力

材料弯曲应力

材料弯曲应力
在材料力学中,弯曲应力是指在横截面上的一个点上由于外部载荷而引起的正应力(垂直于横截面的方向)。

弯曲应力的大小取决于材料的弯曲形状、外部载荷的大小和分布、以及材料的截面性质。

弯曲应力(σb)可以用以下的公式表示:
其中:
•σb是弯曲应力;
•Mc是在横截面上的一个点上的弯矩;
•S是该点处横截面的静力矩。

弯曲应力的单位通常是帕斯卡(Pascal,Pa)或兆帕(Megapascal,MPa)。

弯曲应力会导致材料产生弯曲变形。

对于均匀材料的简单弯曲梁,弯曲应力在横截面上是不均匀的,最大的弯曲应力通常出现在横截面的最外层纤维,而中性轴上的应力为零。

了解弯曲应力是设计和分析工程结构、梁、梁板等零件的重要因素。

在工程实践中,通常需要考虑弯曲应力来确保结构的安全性和稳定性。

弯曲应力—纯弯曲时的正应力(材料力学)

弯曲应力—纯弯曲时的正应力(材料力学)

§5-2 正应力计算公式
3、物理关系
σ Eε
M
?
所以 σ E y
z
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。待解决问题中性轴的位置?
中性层的曲率半径
§5-2 正应力计算公式
4、静力关系
横截面上内力系为垂直于横截面的空 间平行力系,这一力系简化得到三个内力分 M 量。
y t max
M
z
y
σtmax
σ cmax My cmax Iz
§5-2 正应力计算公式
二、横力弯曲时梁横截面上的正应力
实际工程中的梁,其横截面上大多同时存在着弯矩和剪力,为横 力弯曲。但根据实验和进一步的理论研究可知,剪力的存在对正应力 分布规律的影响很小。因此对横力弯曲的情况,前面推导的正应力公 式也适用。
(2)最大正应力发生在横截面上离中性轴最远的点处。
σ max M y max Iz
引用记号
Wz
Iz ymax
—抗弯截面系数
则公式改写为
σ max
M Wz
§5-2 正应力计算公式
对于中性轴为对称轴的横截面
矩形截面
Wz
Iz h/2
bh3 / 12 h/2
bh2 6
实心圆截面
Wz
Iz d /2
πd 4 / 64 d /2
推论:必有一层变形前后长度不变的纤维—中性层
⊥ 中性轴 横截面对称轴
中性层
中性轴
横截面对称轴
§5-2 正应力计算公式
2、变形几何关系
d
dx
图(a)
O’
b’ z

材料力学第五章 弯曲应力

材料力学第五章  弯曲应力
x
F F d F 0 N 2 N 1 S
将FN2、FN1和dFS′的表达式带入上式,可得
* M M d M * S S b d x 0 z z
I z I z
简化后可得
dM S z* dx I z b
dM F S ,代入上式得 由公式(4-2), dx

* 式中 S z

A1
y1dA ,是横截面距中性轴为 y 的横线 pq 以下的面积对中性轴的静矩。同理,
可以求得左侧面 rn 上的内力系的合力 FN 1 为
M * FN 1 S z Iz
在顶面rp上,与顶面相切的内力系的合力是
d F b d x S
根据水平方向的静平衡方程
F 0 ,可得
综上所述,对于各横截面剪力相同的梁和剪力不相同的
细长梁(l>5h),在纯弯曲情况下推导的弯曲正应力公式 (5-2)仍然适用。
例5-1
图5-10(a)所示悬臂梁,受集中力F与集中力
偶Me作用,其中F=5kN,Me=7.5kN· m,试求梁上B点左邻 面1-1上的最大弯曲正应力、该截面K点处正应力及全梁的 最大弯曲正应力。
第五章 弯曲应力
5.1 弯曲正应力 5.2 弯曲切应力简介 5.3 弯曲强度条件及其应用 5.4 提高梁弯曲强度的主要措施
5.1 弯曲正应力
上一章研究表明,一般情况下,梁横截面上同时存在
剪力FS和弯矩M。由于只有切向微内力τ dA才可能构成剪力, 也只有法向微内力σdA才可能构成弯矩,如图5-1(a)所示。 因此,在梁的横截面上将同时存在正应力σ和切应力τ(见图 5-1(b))。梁弯曲时横截面上的正应力与切应力分别称为 弯曲正应力与弯曲切应力。

材料力学第5章弯曲应力

材料力学第5章弯曲应力
3 R2
4)
最大切应力: max
k
FS A
矩形:k =3/2 工字形:k =1 圆形:k =4/3
5)
切应力强度条件: max
F S* S max z max Izb
[
]
梁的强度条件小结:
1)应力公式:
正应力: My
Iz
最大值在距中 性轴最远处 max
M W
切应力:
FS Sz* Izb
最大值在 中性轴处
。 F位于跨中时,M最大
FRA
F
FRB
Mmax=Fl/4 F靠近支座时,FS最大 Qmax=F 按弯曲正应力强度条件选择截面
Wz
Fl
4
3.0 104 m3
300cm 3
max
FS z max Izd
14.11MPa
选择 22a工字钢
Iz / Szmax 18.9cm
d=7.5mm
5.16 铸铁梁的载荷及横截面尺寸如图所示。许用 拉应力[ t ] 40,MP许a 用压应力 [ c ] 。 1试60按MP正a 应力
My Iz
My
zdA
E
yzdA
E
I yz
0——y为主惯轴
总结: • 应力应变沿高度线性变化,中间有零应力应变层
• 应力应变公式的适用范围 • 最大应力、应变点在哪里
§5.3 横力弯曲时的正应力
1)横力弯曲时的正应力公式
横力弯曲时,基本假设不成立,但
My 满足精度要求,可使用。
Iz
max
Mmax ymax Iz
应变: (bb bb) / bb
(
y)d d
d
y
2)物理方程: E Ey /

材料力学--弯曲正应力及其强度条件

材料力学--弯曲正应力及其强度条件

C
E
15 106 200 109
7.5 105
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
例21:图示木梁,已知下边缘纵向总伸
长为 10 mm,E=10GPa,求载荷P的大小。
P
300
A
C
B 200
2m
2m
解: AC
l/2
(x) dx
0
l/2 (x) d x l/2 M ( x) d x
1m
例20:简支梁受均布荷载,在其C截面
的下边缘贴一应变片,已知材料的 E=200GPa,试问该应变片所测得的应变 值应为多大?
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
解:C截面的弯矩
ql2 MC 8 45kN m
C截面下边缘的应力 C
MC Wz
15MPa
应变值
P
y1
y2
Cz
解:
max
M max y1 Iz
[ ]
(1)
max
M max y2 Iz
[ ]
(2)
(1) 得: y1 [ ]
(2)
y2 [ ]
例16:图示外伸梁,受均布载荷作用,
材料的许用应力[σ]=160 MPa,校核 该梁的强度。
10 kN / m
2m
4m
200 100
10 kN / m
变形几何关系 从三方面考虑: 物理关系
静力学关系
1、变形几何关系
m
mn
m
aa
bb
mn
m
m
观察到以下变形现象: (1)aa、bb弯成弧线,aa缩短,bb伸长 (2)mm、nn变形后仍保持为直线,且仍与变为

弯曲正应力测定实验报告

弯曲正应力测定实验报告

弯曲正应力测定实验报告弯曲正应力测定实验报告• 实验目的: 1. 理解弯曲应力的概念和计算方法; 2. 掌握使用梁的弯曲应力测试仪器的操作方法; 3. 通过实验探究材料的弯曲应力。

• 实验设备:梁的弯曲应力测试仪器、杆状试样。

• 实验原理:梁的弯曲应力是指纵向拉伸状态下的应力状态。

采用三点弯曲法进行测定,使试样左右两端之间产生应力。

根据弯曲梁的基本原理,应力随距离的变化呈现出弧形曲线,计算得到杆状试样左右两端的弯曲应力。

• 实验步骤: 1. 将杆状试样放入梁的弯曲应力测试仪器中,调整完善器中的设置,并将试样固定到夹具上; 2. 打开仪器电源,进行仪器自检,调整试样外形和位置,保证试样在中心点上; 3. 选择合适的测量单位,设置仪器仪表,确定测量参数并进行校准; 4. 开始测量,记录试样左右两端的弯曲应力数据; 5. 根据实验原理和公式计算出杆状试样的弯曲应力。

• 实验结果:在测量过程中,我们发现在试样左右两端的应力状态并不相同,应力值普遍较大而且存在波动明显的情况。

在进行多次试验的数据统计和计算中,确定了试样的实际弯曲应力值。

根据实验所得数据,我们得到弯曲应力的平均值为XMPa,弯曲应变为X。

• 实验结论:通过本次实验,我们深入了解了材料的弯曲应力特性,掌握了梁的弯曲应力测试仪器的操作方法。

实验结果表明,在杆状试样被弯曲的过程中,左右两端存在明显的应力波动,但经过多次试验得出试样的弯曲应力值比较稳定。

本次实验对于材料力学的理解和应用有着深远的意义。

• 实验中可能存在的误差及影响因素: 1. 杆状试样自身的内部缺陷和材料差异等因素对测量值有一定的影响; 2. 杆状试样在被夹具夹住后,由于夹具形状对试样弯曲形状的影响并未考虑,测量值可能出现较大误差; 3. 实验过程中的环境条件(如温度、湿度等)也可能会对测量值产生一定的影响。

• 实验的改进方案: 1. 选取更加均匀的材料、充分检查试样内部是否有缺陷; 2. 优化夹具形状,减少对试样弯曲形状的影响; 3. 保证实验环境的稳定性,消除室温等环境因素造成的影响。

材料弯曲实验报告doc

材料弯曲实验报告doc

材料弯曲实验报告篇一:3-材料力学实验报告(弯曲)材料力学实验报告(二)实验名称:弯曲正应力实验一、实验目的二、实验设备及仪器三、实验记录测点1的平均读数差ΔA1平=? ? ? ? A? 10 ? ?61平1平梁的材料:低碳钢(Q235) 梁的弹性模量E=200GPa梁的截面尺寸高H=宽b= 加载位置 a=W ? bH2抗弯截面模量 Z 6?平均递增载荷? P 平 ?与ΔP相应的弯矩 ? M ? ?Pmax2平? a ?四、测点1实验应力值与理论应力值的比较?1 实 ?E . ??1平?? ?Mmax1 理 ?W?Z误差: ?1理??1实? 100?%?1理五、回答问题1.根据实验结果解释梁弯曲时横截面上正应力分布规律。

2.产生实验误差的原因是由哪些因素造成的?审阅教师篇二:材料力学实验报告(2)实验一拉伸实验一、实验目的1.测定低碳钢(Q235)的屈服点?s,强度极限?b,延伸率?,断面收缩率?。

2.测定铸铁的强度极限?b。

3.观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。

4.熟悉试验机和其它有关仪器的使用。

二、实验设备1.液压式万能实验机;2.游标卡尺;3.试样刻线机。

三、万能试验机简介具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成;1)加载部分,利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。

2)测控部分,指示试件所受载荷大小及变形情况。

四、试验方法1.低碳钢拉伸实验(1)用画线器在低碳钢试件上画标距及10等分刻线,量试件直径,低碳钢试件标距。

(2)调整试验机,使下夹头处于适当的位置,把试件夹好。

(3)运行试验程序,加载,实时显示外力和变形的关系曲线。

观察屈服现象。

(4)打印外力和变形的关系曲线,记录屈服载荷Fs=22.5kN,最大载荷Fb =35kN。

(5)取下试件,观察试件断口: 凸凹状,即韧性杯状断口。

弯曲正应力测试实验报告

弯曲正应力测试实验报告

弯曲正应力测试实验报告引言弯曲正应力测试是一种常用的力学实验方法,用于评估材料在弯曲条件下的性能。

本实验旨在研究材料在受到弯曲载荷时的应力分布情况,以及该应力分布对材料的破坏行为的影响。

本报告将详细描述实验的设计、操作步骤、结果分析和结论。

实验设计实验材料选择一种具有广泛应用的材料,例如常见的金属、塑料或复合材料。

确保该材料可在实验设备中进行弯曲测试。

实验设备1.弯曲测试机:用于施加弯曲载荷于样品。

2.测试夹具:用于固定和支撑样品以便进行弯曲。

3.应变测量装置:用于测量样品在受力时的应变情况。

4.弯曲测试样品:根据实验需要制备。

实验步骤1.准备弯曲测试样品:根据实验设计要求,制备符合尺寸和几何要求的弯曲测试样品。

2.安装测试样品:将测试样品固定在测试夹具上,确保样品在施加载荷时保持稳定。

3.设置弯曲测试机:根据实验要求,设置弯曲测试机的参数,例如施加载荷的大小和速率。

4.进行弯曲试验:启动弯曲测试机开始施加载荷,并记录载荷-位移曲线。

5.测量应变:使用应变测量装置,测量样品在受力时的应变情况。

6.数据记录:记录实验数据,包括载荷、位移和应变的数值。

7.多次试验:重复以上步骤,进行多次试验以获得可靠的数据。

结果分析载荷-位移曲线根据实验结果绘制载荷-位移曲线,该曲线描述了在施加弯曲载荷时材料的力学行为。

通常载荷-位移曲线会有以下几个特点:1.弹性阶段:在加載起始階段,材料呈現線性彈性行為,即施加的载荷与位移成正比关系,称为弹性阶段。

2.屈服点:超过一定载荷后,材料开始发生塑性变形,呈现非线性行为,此时称为屈服点。

3.塑性阶段:在此阶段,材料经历更大的变形,但没有发生明显的破坏。

加载卸载曲线有所差别。

4.破坏点:达到材料的极限强度时,会出现明显的载荷下降,并最终发生破坏。

应力分布根据实验测量到的应变数据,可以计算出样品在不同位置处的应力值。

通常在材料表面和截面最远处的应力最大,逐渐向内部减小。

对于不同材料和不同几何形状的样品,应力分布会有所不同。

弯曲正应力测试实验报告

弯曲正应力测试实验报告

弯曲正应力测试实验报告弯曲正应力测试实验报告一、实验目的本实验旨在通过对材料的弯曲正应力测试,探究材料的弯曲性能及其对应的力学特性参数。

二、实验原理弯曲正应力测试是一种常用的材料力学测试方法,它通过施加一个垂直于试件轴线方向的外力,在试件上产生一个弯曲变形,从而测定材料在这种变形状态下所承受的正应力。

具体来说,当一个悬臂梁试件被施加外力时,试件会发生一定程度的挠曲变形。

根据悬臂梁挠曲理论可知,试件中心处所受到的最大弯矩M为:M = (FL)/4其中F为施加在试件上的外力,L为试件长度。

根据材料力学原理可知,在弯矩作用下,试件中心处产生一个最大正应力σ_max,其计算公式为:σ_max = (My)/I其中y为离中心距离,I为截面惯性矩。

三、实验步骤1. 将样品固定在支架上,并确保样品与支架之间无缝隙。

2. 调整试验机的加载速度和位移量。

3. 施加外力,记录试件挠曲变形程度及所受外力大小。

4. 重复以上步骤,直至得到足够多的数据。

四、实验数据处理根据实验得到的数据,可计算出材料在弯曲状态下所承受的正应力。

为了更好地理解材料的弯曲性能及其对应的力学特性参数,我们可以将实验数据绘制成图表,并进行数据分析和处理。

具体来说,我们可以通过绘制荷载-挠度曲线、荷载-应变曲线以及应力-应变曲线等图表来分析材料的弯曲性能及其对应的力学特性参数。

五、实验结果分析通过对实验得到的数据进行分析和处理,我们可以得出以下结论:1. 材料在弯曲状态下所承受的正应力与施加在试件上的外力大小成正比例关系。

2. 材料在弯曲状态下所产生的挠曲变形程度与施加在试件上的外力大小成反比例关系。

3. 材料在弯曲状态下所承受的最大正应力与试件截面惯性矩成反比例关系。

六、结论通过本次弯曲正应力测试实验,我们深入了解了材料的弯曲性能及其对应的力学特性参数。

同时,我们也掌握了一种常用的材料力学测试方法,并了解了其原理和操作步骤。

在今后的学习和工作中,这些知识和技能将对我们起到重要的指导作用。

纯弯曲正应力实验报告

纯弯曲正应力实验报告

纯弯曲正应力实验报告一、实验目的1. 掌握纯弯曲正应力的基本原理和实验方法;2. 通过实验数据分析,了解梁在不同弯曲程度下的正应力分布情况;3. 培养实验操作能力,提高数据处理和分析水平。

二、实验原理纯弯曲正应力是指在受力构件的横截面上只有弯矩作用而无轴向力作用的情况下的正应力。

根据材料力学的基本理论,纯弯曲正应力可以用以下公式表示:σ=My/I其中,σ为正应力,M为弯矩,y为截面点到弯曲中心的距离,I为截面对弯曲中心的惯性矩。

三、实验步骤1. 准备实验器材:梁、砝码、测力计、测量尺、支撑架等;2. 将梁放在支撑架上,调整梁的位置,使其一端固定,另一端自由;3. 在梁上放置砝码,施加弯矩;4. 使用测力计测量梁上的作用力,记录数据;5. 使用测量尺测量梁的弯曲程度,记录数据;6. 改变砝码的数量和位置,重复步骤4和5,获取多组数据;7. 将实验数据整理成表格。

四、实验数据分析与结论通过实验数据,我们可以计算出梁在不同弯曲程度下的正应力值。

根据计算结果,我们可以得出以下结论:1. 随着弯矩的增大,梁的正应力值逐渐增大;2. 随着梁的弯曲程度的增加,正应力分布不均匀程度逐渐增大;3. 在实验条件下,纯弯曲正应力的计算公式适用。

五、实验总结与建议通过本次实验,我们掌握了纯弯曲正应力的基本原理和实验方法,了解了梁在不同弯曲程度下的正应力分布情况。

在实验过程中,我们需要注意以下几点:1. 确保梁的放置位置正确,避免支撑架的移动或倾斜对实验结果的影响;2. 在测量梁的弯曲程度时,要选择合适的测量点,避免误差的产生;3. 在计算正应力时,要确保数据的准确性和可靠性。

弯曲应力-材料力学

弯曲应力-材料力学
已知:弯矩M、横截面的惯性矩Iz、许用应力[]。求:判断不等号。
max
Mymax Iz
工程力学 Engineering Mechanics
典型例题
例1 图示矩形截面梁,梁上载荷q=100kN/m,梁跨度l=6m,截面尺寸:
b=400mm,h=600mm,材料许用应力[]=100MPa,试判断该梁是否安全。
弹性力学精确分析表明,当跨度l与横截面高度h之比l/h>5(细长梁)时, 纯弯曲正应力公式对于横力弯曲近似成立。
横力弯曲最大正应力
max
M max ymax Iz
弯曲正应力适用范围 细长梁的纯弯曲或横力弯曲 横截面惯性积Iyz=0 弹性变形阶段
工程力学 Engineering Mechanics
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
My Iz
惯性矩
Iz
1 12
50 903
3.0375106 mm4
弯矩
M 10kN.m
典型例题
例1 求图示矩形截面梁指定截面上对应点的正内力。
10kN
1
A
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
M max
1 8
ql 2
1 8
q
62
q
533.3kN/m
练习1
受均布载荷作用的简支梁如图,求 ① 1-1截面上1、2两点的正应力; ② 1-1截面上的最大正应力; ③ 全梁的最大正应力; ④ 已知E=200GPa,求1-1截面的曲率半径。

材料力学弯曲应力

材料力学弯曲应力

六. 弯曲应力
从变形特点分析,到材料本构关系,到静力平衡
1、研究对象:等直、细长、对称截面梁
细长梁:长度比其高度大许多倍的梁, 一般来讲长高比 L/h > 20
有关细长梁的理论:经典梁理论, 或叫 Euler-Bernoulli 梁理论
2、基本假设:
(a) 小变形——在弹性变形范围内,
(b) 满足平面弯曲条件, (c) 纯弯曲。
dA
x
s
y
I yz 0
(d)
即:y -轴,z -轴为截面的形心主惯性轴
材料力学
六. 弯曲应力
§6.1 纯弯曲时梁横截面上的正应力
对于实心截面,若截面无对称轴,要使梁产生平面弯曲,
亦必须满足 I yz 。0即 y、z 轴为截面的形心主惯性轴。
所以只要外力作用在形心主惯性平面内同样可产生平面弯曲。
中性轴的特点:
q=0.5KN/m
D
A
B
d
z
L= 4m
1 qL2 8
(+)
M 图
M
max
1 8
qL2
材料力学
§6.3 弯曲正应力强度条件
解:
M max
1 8
qL2
1.0
103
N.m
由强度条件
Wz
D3(1 4 )
32
M max
[s ]
D 0.113m
六. 弯曲应力
1 qL2 8
(+)
M 图
若外径 D增加一倍,则 D 0.226m, 仍由强度条件,得
(x) EI
正应力计算公式为
s (x) M (x) y
I
材料力学
六. 弯曲应力

材料力学 第七章弯曲正应力(1,2)解析

材料力学 第七章弯曲正应力(1,2)解析

M
1.平面假设: 梁各个横截面变形后仍保持为平面,并仍垂直于变形 后的轴线,横截面绕某一轴旋转了一个角度。 2.单向受力假设: 假设各纵向纤维之间互不挤压。于是各纵向纤维均 处于单向受拉或受压的状态。
中性层 梁在弯曲变形时,凹面部分纵向纤维缩短,凸面 部分纵向纤维伸长,必有一层纵向纤维既不伸长也不 缩短,保持原来的长度,这一纵向纤维层称为中性层. 中性轴
C截面
Fb/4 拉应力 压应力 B截面
20
y 20
拉应力
压应力
可见:压应力强度条件由B截面控制,拉应力强度 条件则B、C截面都要考虑。
Fb/2
40 180
120 C 形心 86 z 134
Fb/4 考虑截面B :
t,max
c, max
M B y1 F / 2 2 103 mm134 mm 90 MPa 4 4 Iz 5493 10 mm F 73.8 kN
c
注:强度校核(选截面、荷载) ( 1) ( 2)
[ ]t [ ]c (等截面)只须校核Mmax处
[ ]t [ ]c (等截面)
(a)对称截面情况只须校核Mmax处使
maxt [ ]t , maxc [ ]c
(b)非对称截面情况,具体分析,一般要校核 M+max与 M-max两处。
查型钢表得56b号工字钢的Wz比较接近要求值
Wz 2447cm3 2447103 mm3
此时 max
M max 153MPa Wz
误差小于5%,可用
例4-17 跨长 l= 2m 的铸铁梁受力如图,已知铸铁 的许用拉应力[ t ]=30 MPa,许用压应力[ c ] =90 MPa。试根据截面最为合理的要求,确定T字形梁 横截面的尺寸d ,并校核梁的强度 。

纯弯曲正应力的测量实验指导书

纯弯曲正应力的测量实验指导书

实验五纯弯曲梁的正应力测量一、实验目的1、测定梁在纯弯曲时横截面上正应力的大小和分布规律。

2、验证纯弯曲梁的正应力计算公式。

二、实验设备材料力学多功能实验台(见图1)、力/应变综合参数测试仪、游标卡尺、钢板尺图1 材料力学多功能实验台三、试件制备试件是一个横截面为矩形b×h的长条形钢块。

在其顶面、底面和侧面均匀、对称、平行地贴着五个应变片,其中应变片3#应在中性层的位置上(见图2)。

图2 应变片在梁中的位置四、实验原理如图1所示,在材料力学多功能实验台上顺时针转动手轮可对下横梁加力,下横梁再带动其两侧的拉杆机构对实验台的上横梁两侧对称地施加压力。

从而在上横梁的中间段形成一个纯弯曲梁。

在纯弯曲条件下,梁横截面上任一点的正应力的理论计算公式为zI My =σ理式中M 为弯矩,Iz 为横截面对中性轴的惯性矩,y 为所求应力点至中性轴的距离。

弯矩可按公式M = ΔF/2×a 求出,惯性矩可按公式Iz = bh3/12求出。

仍采用1/4桥方法(单臂测量方式)测量各纵向应变ε,其原理图及接线示意图参照实验三的图4、5、6。

加载采用增量法,即每增加等量的载荷ΔF ,测出各点的应变增量Δε,然后分别取各点应变增量的平均值Δε平均,可按以下公式依次求出各点的实测正应力值。

平均实ε∆=σE将实测应力值与理论应力值进行比较,可验证上述的纯弯曲正应力计算公式。

五、实验步骤1、用游标卡尺和钢板尺分别测量梁横截面的宽度b 和高度h 、梁的跨度L 、力作用点位置a 以及各应变片到中性层的距离y 。

2、按1/4桥方法接线。

在接线中应确定所采用的测量应变片在梁上的位置以及所引出的导线的颜色。

另外应确定所采用的通道号。

3、打开力/应变综合参数测试仪电源开关,将加力手柄摇到使试件完全放松的位置。

然后在力的测试面板上清零,再在应变的测试面板上进行所有通道的自动平衡。

4、按下通道按钮选择所采用的通道号,准备开始试验。

材料力学07弯曲应力ppt课件

材料力学07弯曲应力ppt课件
分离部分 ——平衡分析……
x
y 26
dA1
s
, b s
顶面有 ,存在.
两截面M 不等—— s 不等
(X 0)
左侧面
dx
N1
M
A1 sdA1 I z
A1 ydA1
右侧面
MS
z
Iz
dM
S
* z
, b( dx ) 0
Iz
FS
,
dM dx
S
z
Izb
FS
S
z
Izb
(∵切应力互等 )
2s
h
2 ( bdy )y s
bh2
M
0
4
s
4M bh2
2. 按沿梁高线性分布:
s max
M h2 Iz
s
6M bh2
s1 2 s2 3
(相差三分之一)
13
[例2]:
15KN
6KN
求B截面K点应力
B
1m
1m
解: M
3
6kNm
s
My Iz
90
K 90
60
120 ( 拉? 压应力? )
IZ
bh3 12
第七章 弯曲应力
§1 弯曲正应力 §2 正应力强度条件 §3 弯曲剪应力 §4 剪应力强度条件 梁的合理截面 §5 非对称截面梁弯曲弯曲中心 §6 考虑塑性的极限弯矩
1
概述

-F
Q
Fa

M
CD段:只有弯矩没有剪力- 纯弯曲
AC和BD段:既有弯矩又有剪力- 剪切弯曲
2
剪力FS
弯矩M
切应力τ
正应力s
先分析纯弯梁横截面的正应力s ,

弯曲正应力测定实验报告(一)

弯曲正应力测定实验报告(一)

弯曲正应力测定实验报告(一)弯曲正应力测定实验前言弯曲正应力测定实验是一项常见的材料力学实验,通过对杆件在弯曲过程中产生的应力进行测量和分析,可以得出杆件的弹性模量等力学参数。

实验步骤1.准备实验材料:一根直径适中的钢棒,两个支撑架,一个万能测试机。

2.将钢棒固定在支撑架上,确保钢棒在水平状态下。

3.在距离两支撑架中心点大约一半长度的位置处固定一根细长的应力计,该应力计与钢棒平行。

4.在另一端设置一个移动方式,可在不同的位置外加载荷。

5.用万能测试机施加不同大小的载荷,记录下杆件的挠度和施加的载荷大小。

6.根据载荷大小、跨度、应变等参数计算出弯曲正应力。

实验注意事项1.实验中需注意安全,避免被弯曲杆件伤及身体。

2.在测量钢棒挠度时,需保证杆件处于静定状态,以避免挠度受到外部干扰。

3.弯曲杆件时,载荷大小需逐渐增加,以避免瞬间施加大载荷导致杆件断裂。

实验结果分析通过实验测量得到杆件在不同载荷下的弯曲挠度和载荷大小,可计算出杆件的弯曲正应力,进而求出弹性模量等材料力学参数。

通过对不同材料进行实验测量,可以比较不同材料的力学性能。

结束语弯曲正应力测定实验是一项重要的力学实验,能够帮助工程师和科研人员了解材料力学性能,为工程设计和材料研发提供重要的数据支持。

在实验中需注意安全,遵守实验规程,以确保实验顺利进行。

实验总结本次实验通过对钢棒在弯曲过程中产生的应力测量,得出了杆件的弯曲正应力和弹性模量。

实验中需注意保证杆件静定状态,避免挠度受到外部影响。

此外,需要逐渐增加载荷,避免瞬间施加大载荷导致杆件断裂。

通过实验,我们掌握了一种测量材料弯曲正应力的方法,也加深了对材料力学性能的理解和掌握。

参考文献1.材料力学实验教材,中国科学技术大学出版社。

2.基础力学实验,北京理工大学出版社。

3.张三,李四,王五。

弯曲正应力测定实验报告,2019。

致谢感谢实验室的老师和助教们的指导和帮助,在实验中深入了解了材料力学的相关理论知识,并增强了对实验操作的熟练程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z
dA
M Z A y (dA)
y
FN dA
A
0
dA
1 dA
M y A z (dA) 0
M
Z
M Z A y (dA) M
y
O
ห้องสมุดไป่ตู้
x
dA
dA Z
因为该梁段是纯弯曲,因此 FN 和 My 均等于零, 而 Mz 就是 上横截面的弯矩 M 。
y
E E
变弯后的曲率半径。
在横截面上取距中性轴为 y 处 的纵向线 AB。 作 O2B1 与 O1A 平行。 O2B1 的长度为 y 。
O1
dx
y
O2
d
y
A
B
B1
d
AB1 为变形前 AB 的长度 B1B 为 AB1 的伸长量 AB1 为 A 点的纵向线应变。
l AB1 B1 B AB1 O1 O2 l
b m n
b
梁在加力前先在其侧面上画上一系列的横向线(如 mm ,nn 等) 以及横向线相垂直的一系列的纵向线 (如 aa ,bb 等) 。
m a
n a
m
m
b m n
b
梁变形后观察到的现象 (1)变形前相互平行的纵向直线(aa ,bb 等),变形后均为 圆弧线(a’a’ ,b’b’等 ),且靠上部的缩短靠下部的伸长。
=E

y

E
y E E
上式为横截面上 正应力 变化规律的表达式。
y E E
上式说明,横截面上任一点处
的正应力与该点到中性轴的距
Z
O
离 y 成正比 ; 在距中性轴为 y 的同一横线上
各点处的 正应力 均相等 。
y
y1
x
y
需要解决的问题
如何确定 中性轴的位置 ? 如何计算 1/ ?
I yz 0
因为 y 轴是横截面的对称轴,所以 Iyz 一定为零。 该式自动满足
中性轴是横截面的形心主惯性轴
M Z A y (dA)
E

A y dA
2
E

Iz M
1 M EI z
E

Sz
0
SZ 0
中性轴必通过横截面的形心
中性轴过截面形心且与横截面的对称轴 y 垂直
C
Z
C
Z 中性轴 中性轴
y
y

M M C
Z
C
Z

中性轴
中性轴 拉
y
y

中性轴将横截面分为 受拉 和 受压 两部分。
My
A z (dA)
E

A z
y dA
E

I yz 0
m a
n a
m m’ n’
m
b m n
b
m’ n’
(2)变形前垂直于纵向直线的横向线( mm , nn 等)变形后仍 为直线( m’m’ , n’n’ 等) ,但相对转了一个角度,且与
弯曲后的纵向直线垂直。
平面假设 :梁在受力弯曲后,原来的横截面仍 为平面,它绕着该横截面上的 某一轴 旋转了一 个角度,且仍垂直于梁弯曲后的轴线 。
材料力学:弯 曲正 应 力
对称弯曲的概念及计算简图 梁的剪力和弯矩 • 剪力图和弯矩图 平面刚架和曲杆的内力图
梁横截面上的正应力 • 梁的正应力强度条件 梁横截面上的切应力 • 梁的切应力强度条件
梁的合理设计
§ 4-4 梁截面上的正应力 • 梁的强度条件
当梁上有横向外力作用时,一般情况下,梁的横截面上 既又弯矩 M , 又有剪力 Fs 。
O1
dx
O2
O1O2 的长度为 dx 。
d
中性层与横截面的交线称
为 中性轴 。
中性轴与横截面的 对称轴成正交 。
O1
dx
O2
d
横截面的 对称轴
横截面
O1
dx
O2
中性层
中性轴
d
将梁的轴线取为 x 轴 。 横截面的对称轴取为 y 轴 。 中性轴取为 z 轴 。
Z
O1
dx
O2
x
y
d
为中性层上的纵向线段 O1O2
m
M
m
Fs
m
m

M
m
Fs
m
只有与切应力有关的切向内力元素 dFs = dA 才能合成剪力
只有与正应力有关的法向内力元素 dFN = dA 才能合成弯矩 所以,在梁的横截面上一般既有 正应力,又有 切应力
一、纯弯曲梁截面上的正应力
F F
若梁在某段内各横截面上的 弯矩为常量 ,剪力为零,
σ Eε E
y
ρ
M
中性轴
弯曲正应力
3. 静力学方面 在横截面上法向内力元素 dA
dA
1 dA
M
Z
构成了空间平行力系。
y
O
x
dA
dA Z
y
该空间平行力系简化为 x 轴方向的主矢
FN dA
A
dA
1 dA
M
O
Z
x
dA
对y 轴和 z 轴主矩
M y A z (dA)
y
O1
dx
y
O2
d
y
y ( d ) dx
A
dx B1
B
d
AB1 B1 B y ( d ) AB1 O1 O 2 dx
中性层的曲率为
1 d dx


d dx
因为 是个非负的量于是
O1
dx y
O2
d
y

y

A
dx
B
B1
d


y

该式说明 , 和 y 坐标成正比 , 而与中性轴 z 坐标无关 。 , 因而, 横截面上到中性轴等
O1
dx
O2
d
y
远的各点,其线应变相等。 变
y
A d x dx
B
B1
d


y

Z
O1
dx
O2 O
d
x
y
y
A d x dx
B
y y
B1
2. 物理方面
假设: 纯弯曲时横截面上各点处的处于单轴应力状态 。 材料在线弹性范围内工作,且拉,压弹性模量相等 。 由单轴应力状态下的 胡克定律 可得物理关系
y

Sz
FN dA E A ydA E A


0
E I yz 0
My
A z (dA)
E

A z
y dA

M Z A y (dA)
E

A y dA
2
E

Iz M
FN dA
A
E

A
ydA
d
(3)公式推导 用两个横截面从梁中假想地截取
长为 dx 的一段 。
由平面假设可知,在梁弯曲时, 这两个横截面将相对地旋转一个 角度 d 。
d
横截面的转动将使梁的凹边的纵 向线段缩短,凸边的纵向线段伸 长。由于变形的连续性,中间必 有一层纵向线段 O1O2 无长度改 变。此层称为 中性层 。
C
D
a
F
a
则该段梁的弯曲就称为
纯弯曲。
+
F
+
简支梁 CD 段任一横截面
上,剪力等于零,而弯矩
为常量,所以该段梁的弯
Fa
+
曲就是 纯弯曲 。
推导 纯弯曲 梁横截面上正应力的计算公式。
推导公式时,要综合考虑 几何 ,物理 和 静力学 三方面 。 取 一 纯弯曲 梁来研究 。
1. 几何方面
m a n a
相关文档
最新文档