高三文科数学圆锥曲线教案教学教材

合集下载

圆锥曲线高中数学解读教案

圆锥曲线高中数学解读教案

圆锥曲线高中数学解读教案教学内容:圆锥曲线
课时安排:2课时
教学目标:
1. 理解圆锥曲线的定义以及各种形式的表达;
2. 掌握圆锥曲线的性质和特点;
3. 能够应用所学知识解决相关问题。

教学重点:
1. 圆锥曲线的定义和性质;
2. 椭圆、双曲线、抛物线的特点与区别;
3. 圆锥曲线的图像及方程。

教学内容和步骤:
第一课时:
1. 引入学习,了解学生对圆锥曲线的理解和认识;
2. 讲述圆锥曲线的定义及一般方程;
3. 分别介绍椭圆、双曲线和抛物线的定义和特点;
4. 指导学生做相关习题,巩固所学知识。

第二课时:
1. 复习前一节课的内容,解答学生提出的问题;
2. 讲解圆锥曲线的图像和方程的变化规律;
3. 继续指导学生进行练习和讨论;
4. 小结本节课的学习内容,布置相关作业。

教学方法:
1. 教师讲授与学生互动相结合,注重启发式教学方法;
2. 多媒体教学辅助,展示圆锥曲线的图像和方程;
3. 组织学生进行讨论和小组合作,促进彼此之间的交流和学习。

教学评价:
1. 课后布置相关练习和作业,及时进行批改和评价;
2. 观察学生学习情况,及时调整教学进度和方法;
3. 定期进行测试和考查,全面评估学生对圆锥曲线的掌握情况。

人教版高中数学圆锥曲线及方程全部教案

人教版高中数学圆锥曲线及方程全部教案

椭圆及其标准方程一、教学目标知识教学点使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程.能力训练点通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力.学科渗透点通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力.二、教材分析1解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.2.难点:椭圆的标准方程的推导.解决办法:推导分4步完成,每步重点讲解,关键步骤加以补充说明.3.疑点:椭圆的定义中常数加以限制的原因.解决办法:分三种情况说明动点的轨迹.三、活动设计提问、演示、讲授、详细讲授、演板、分析讲解、学生口答.四、教学过程椭圆概念的引入前面,大家学习了曲线的方程等概念,哪一位同学回答:问题1对上述问题学生的回答基本正确,否则,教师给予纠正.这样便于学生温故而知新,在已有知识基础上去探求新知识.提出这一问题以便说明标准方程推导中一个同解变形.问题3一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.对同学提出的轨迹命题如:“到两定点距离之和等于常数的点的轨迹.”“到两定点距离平方差等于常数的点的轨迹.”“到两定点距离之差等于常数的点的轨迹.”教师要加以肯定,以鼓励同学们的探索精神.比如说,若同学们提出了“到两定点距离之和等于常数的点的轨迹”,那么动点轨迹是什么呢?这时教师示范引导学生绘图:取一条一定长的细绳,把它的两端固定在画图板上的F1F2两点如图2-13 ,当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆.教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等……在此基础上,引导学生概括椭圆的定义:平面内到两定点F1F2的距离之和等于常数大于|F1F2| 的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.学生开始只强调主要几何特征――到两定点F1F2的距离之和等于常数、教师在演示中要从两个方面加以强调:1 将穿有铅笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面内”.2 这里的常数有什么限制吗?教师边演示边提示学生注意:若常数|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.二椭圆标准方程的推导1.标准方程的推导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分: 1 2 点的集合;3 代数方程;4 化简方程等步骤.1 建系设点建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.以两定点F1F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系如图2-14 .设|F1F2| 2c c>0 ,M x,y 为椭圆上任意一点,则有F1 -1,0 ,F2 c,0 .2 点的集合由定义不难得出椭圆集合为:P M||MF1|+|MF2| 2a3 代数方程4 化简方程化简方程可请一个反映比较快、书写比较规范的同学板演,其余同学在下面完成,教师巡视,适当给予提示:①原方程要移项平方,否则化简相当复杂;注意两次平方的理由详见问题3 a2-c2 x2+a2y2 a2 a2-c2②为使方程对称和谐而引入bb还有几何意义,下节课还要a>b>0 .关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略.示的椭圆的焦点在xF1 -c,0 、F2 c,0 .这里c2 a2-b2.2.两种标准方程的比较引导学生归纳0 、F2 c,0 ,这里c2 a2-b2;-c 、F2 0,c ,这里c2 a2+b2,只须将 1 方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.三例题与练习例题 8,写出到这两定点的距离的和是10的点的轨迹的方程.分析:先根据题意判断轨迹,再建立直角坐标系,采用待定系数法得出轨迹方程.解:这个轨迹是一个椭圆,两个定点是焦点,用F1F2表示.取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系.∵2a 10,2c 8.∴a 5,c 4,b2 a2-c2 52-45 9.∴b 3因此,这个椭圆的标准方程是请大家再想一想,焦点F1F2放在y轴上,线段F1F2的垂直平分练习1练习2 [ ]由学生口答,答案为D四小结1.定义:椭圆是平面内与两定点F1、F2的距离的和等于常数大于|F1F2| 的点的轨迹.3.图形如图2-15、2-16.4.焦点:F1 -c,0 ,F2 c,0 .F1 0,-c ,F2 0,c .五、布置作业12-17,在椭圆上的点中,A1与焦点F1的距离最小,|A1F1| 2,A2F1的距离最大,|A2F1| 14,求椭圆的标准方程.3.求适合下列条件的椭圆的标准方程:是过F1ABF2的周长.作业答案:4ABF2的周长为4a.六、板书设计一、教学目标知识教学点使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程.能力训练点通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力.学科渗透点通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力.二、教材分析1解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.2.难点:椭圆的标准方程的推导.解决办法:推导分4步完成,每步重点讲解,关键步骤加以补充说明.3.疑点:椭圆的定义中常数加以限制的原因.解决办法:分三种情况说明动点的轨迹.三、活动设计提问、演示、讲授、详细讲授、演板、分析讲解、学生口答.四、教学过程椭圆概念的引入前面,大家学习了曲线的方程等概念,哪一位同学回答:问题1对上述问题学生的回答基本正确,否则,教师给予纠正.这样便于学生温故而知新,在已有知识基础上去探求新知识.提出这一问题以便说明标准方程推导中一个同解变形.问题3一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.对同学提出的轨迹命题如:“到两定点距离之和等于常数的点的轨迹.”“到两定点距离平方差等于常数的点的轨迹.”“到两定点距离之差等于常数的点的轨迹.”教师要加以肯定,以鼓励同学们的探索精神.比如说,若同学们提出了“到两定点距离之和等于常数的点的轨迹”,那么动点轨迹是什么呢?这时教师示范引导学生绘图:取一条一定长的细绳,把它的两端固定在画图板上的F1F2两点如图2-13 ,当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆.教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等……在此基础上,引导学生概括椭圆的定义:平面内到两定点F1F2的距离之和等于常数大于|F1F2| 的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.学生开始只强调主要几何特征――到两定点F1F2的距离之和等于常数、教师在演示中要从两个方面加以强调:1 将穿有铅笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面内”.2 这里的常数有什么限制吗?教师边演示边提示学生注意:若常数|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.二椭圆标准方程的推导1.标准方程的推导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分: 1 2 点的集合;3 代数方程;4 化简方程等步骤.1 建系设点建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.以两定点F1F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系如图2-14 .设|F1F2| 2c c>0 ,M x,y 为椭圆上任意一点,则有F1 -1,0 ,F2 c,0 .2 点的集合由定义不难得出椭圆集合为:P M||MF1|+|MF2| 2a3 代数方程4 化简方程化简方程可请一个反映比较快、书写比较规范的同学板演,其余同学在下面完成,教师巡视,适当给予提示:①原方程要移项平方,否则化简相当复杂;注意两次平方的理由详见问题3 a2-c2 x2+a2y2 a2 a2-c2②为使方程对称和谐而引入bb还有几何意义,下节课还要a>b>0 .关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略.示的椭圆的焦点在xF1 -c,0 、F2 c,0 .这里c2 a2-b2.2.两种标准方程的比较引导学生归纳0 、F2 c,0 ,这里c2 a2-b2;-c 、F2 0,c ,这里c2 a2+b2,只须将 1 方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.三例题与练习例题 8,写出到这两定点的距离的和是10的点的轨迹的方程.分析:先根据题意判断轨迹,再建立直角坐标系,采用待定系数法得出轨迹方程.解:这个轨迹是一个椭圆,两个定点是焦点,用F1F2表示.取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系.∵2a 10,2c 8.∴a 5,c 4,b2 a2-c2 52-45 9.∴b 3因此,这个椭圆的标准方程是请大家再想一想,焦点F1F2放在y轴上,线段F1F2的垂直平分练习1练习2 [ ]由学生口答,答案为D四小结1.定义:椭圆是平面内与两定点F1、F2的距离的和等于常数大于|F1F2| 的点的轨迹.3.图形如图2-15、2-16.4.焦点:F1 -c,0 ,F2 c,0 .F1 0,-c ,F2 0,c .五、布置作业12-17,在椭圆上的点中,A1与焦点F1的距离最小,|A1F1| 2,A2F1的距离最大,|A2F1| 14,求椭圆的标准方程.3.求适合下列条件的椭圆的标准方程:是过F1ABF2的周长.作业答案:4ABF2的周长为4a.六、板书设计一、教学目标知识教学点通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用.能力训练点通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力.学科渗透点使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等.二、教材分析1解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结.2.难点:椭圆离心率的概念的理解.解决办法:先介绍椭圆离心率的定义,再分析离心率的大小对椭圆形状的影响,最后通过椭圆的第二定义讲清离心率e的几何意义.3.疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变.解决办法:利用方程分析椭圆性质之前就先给学生说明.三、活动设计提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结.四、教学过程复习提问1.椭圆的定义是什么?2.椭圆的标准方程是什么?学生口述,教师板书.几何性质根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是b0 来研究椭圆的几何性质.说明:椭圆自身固有几何量所具有的性质是与坐标系选择无关,即不随坐标系的改变而改变.1.范围即|x|a,|y|≤b,这说明椭圆在直线x ±a和直线y ±b所围成的矩形里图2-18 .注意结合图形讲解,并指出描点画图时,就不能取范围以外的点.2.对称性先请大家阅读课本椭圆的几何性质2设问:为什么“把x-x,或把y换成-y?,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称的”呢?事实上,在曲线的方程里,如果把x-x而方程不变,那么当点P x,y 在曲线上时,点P关于y轴的对称点Q -x,y 也在曲线上,所以曲线关于y轴对称.类似可以证明其他两个命题.同时向学生指出:如果曲线具有关于yx轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称.如:如果曲线关于x轴和原点对称,那么它一定关于y轴对称.事实上,设P xy 在曲线上,因为曲线关于x轴对称,所以点P1 x,-y 必在曲线上.又因为曲线关于原点对称,所以P1关于原点对称点P2 -x,y 必在曲线上.因P x,y 、P2 -x,y 都在曲线上,所以曲线关于y轴对称.最后指出:xy轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心.3.顶点只须令x 0y ±b,点B1 0,-b 、B2 0,b 是椭圆和y轴的两个交点;令y 0,得x ±a,点A1 -a,0 、A2 a,0 是椭圆和x轴的两个交点.强调指出:椭圆有四个顶点A1 -a,0 、A2 a,0 、B1 0,-b 、B2 0,b .教师还需指出:1 A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a和2b;2 a、b的几何意义:a是长半轴的长,b是短半轴的长;这时,教师可以小结以下:由椭圆的范围、对称性和顶点,再进行描点画图,只须描出较少的点,就可以得到较正确的图形.4教师直接给出椭圆的离心率的定义:等到介绍椭圆的第二定义时,再讲清离心率e先分析椭圆的离心率e∵a>c>0,∴ 0<e<1.再结合图形分析离心率的大小对椭圆形状的影响:2 e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;3 当e 0时,c 0,a b两焦点重合,椭圆的标准方程成为x2+y2 a2,图形就是圆了.三应用为了加深对椭圆的几何性质的认识,掌握用描点法画图的基本方法,给出如下例1例1 16x2+25y2 400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.本例前一部分请一个同学板演,教师予以订正,估计不难完成.后一部分由教师讲解,以引起学生重视,步骤是:2 图2-19 .要强调:利用对称性可以使计算量大大减少.本例实质上是椭圆的第二定义,是为以后讲解抛物线和圆锥曲线的统一定义做准备的,同时再一次使学生熟悉求曲线方程的一般步骤,因此,要详细讲解:设dM到直线l的距离,根据题意,所求轨迹就是集合P M将上式化简,得: a2-c2 x2+a2y2 a2 a2-c2这是椭圆的标准方程,所以点M由此例不难归纳出椭圆的第二定义.椭圆的第二定义1.定义平面内点M线叫做椭圆的准线,常数e2.说明这时还要讲清e五小结解法研究图形的性质是通过对方程的讨论进行的,同一曲线由于坐标系选取不同,方程的形式也不同,但是最后得出的性质是一样的,即与坐标系的选取无关.前面我们着重分析了第一个标准方程的椭圆的性质,类似可以理解第二个标准方程的椭圆的性质.布置学生最后小结下列表格:五、布置作业11 25x2+4y2-100 0,2 x2+4y2-1 0.2.我国发射的科学实验人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,近地点距地面266Km,远地点距地面1826Km,求这颗卫星的轨道方程.3.点P与一定点F 2,0 的距离和它到一定直线x 8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形.的方程.作业答案:4 0,2 可能是长轴的端点,也可能是短轴的一个端点,故分两种情况求方程:六、板书设计一、教学目标知识教学点通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用.能力训练点通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力.学科渗透点使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等.二、教材分析1解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结.2.难点:椭圆离心率的概念的理解.解决办法:先介绍椭圆离心率的定义,再分析离心率的大小对椭圆形状的影响,最后通过椭圆的第二定义讲清离心率e的几何意义.3.疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变.解决办法:利用方程分析椭圆性质之前就先给学生说明.三、活动设计提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结.四、教学过程复习提问1.椭圆的定义是什么?2.椭圆的标准方程是什么?学生口述,教师板书.几何性质根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是b0 来研究椭圆的几何性质.说明:椭圆自身固有几何量所具有的性质是与坐标系选择无关,即不随坐标系的改变而改变.1.范围即|x|a,|y|≤b,这说明椭圆在直线x ±a和直线y ±b所围成的矩形里图2-18 .注意结合图形讲解,并指出描点画图时,就不能取范围以外的点.2.对称性先请大家阅读课本椭圆的几何性质2设问:为什么“把x-x,或把y换成-y?,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称的”呢?事实上,在曲线的方程里,如果把x-x而方程不变,那么当点P x,y 在曲线上时,点P关于y轴的对称点Q -x,y 也在曲线上,所以曲线关于y轴对称.类似可以证明其他两个命题.同时向学生指出:如果曲线具有关于yx轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称.如:如果曲线关于x轴和原点对称,那么它一定关于y轴对称.事实上,设P xy 在曲线上,因为曲线关于x轴对称,所以点P1 x,-y 必在曲线上.又因为曲线关于原点对称,所以P1关于原点对称点P2 -x,y 必在曲线上.因P x,y 、P2 -x,y 都在曲线上,所以曲线关于y轴对称.最后指出:xy轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心.3.顶点只须令x 0y ±b,点B1 0,-b 、B2 0,b 是椭圆和y轴的两个交点;令y 0,得x ±a,点A1 -a,0 、A2 a,0 是椭圆和x轴的两个交点.强调指出:椭圆有四个顶点A1 -a,0 、A2 a,0 、B1 0,-b 、B2 0,b .教师还需指出:1 A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a和2b;2 a、b的几何意义:a是长半轴的长,b是短半轴的长;这时,教师可以小结以下:由椭圆的范围、对称性和顶点,再进行描点画图,只须描出较少的点,就可以得到较正确的图形.4教师直接给出椭圆的离心率的定义:等到介绍椭圆的第二定义时,再讲清离心率e先分析椭圆的离心率e∵a>c>0,∴ 0<e<1.再结合图形分析离心率的大小对椭圆形状的影响:2 e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;3 当e 0时,c 0,a b两焦点重合,椭圆的标准方程成为x2+y2 a2,图形就是圆了.三应用为了加深对椭圆的几何性质的认识,掌握用描点法画图的基本方法,给出如下例1例1 16x2+25y2 400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.本例前一部分请一个同学板演,教师予以订正,估计不难完成.后一部分由教师讲解,以引起学生重视,步骤是:2 图2-19 .要强调:利用对称性可以使计算量大大减少.本例实质上是椭圆的第二定义,是为以后讲解抛物线和圆锥曲线的统一定义做准备的,同时再一次使学生熟悉求曲线方程的一般步骤,因此,要详细讲解:设dM到直线l的距离,根据题意,所求轨迹就是集合P M将上式化简,得: a2-c2 x2+a2y2 a2 a2-c2这是椭圆的标准方程,所以点M由此例不难归纳出椭圆的第二定义.椭圆的第二定义1.定义平面内点M线叫做椭圆的准线,常数e2.说明这时还要讲清e五小结解法研究图形的性质是通过对方程的讨论进行的,同一曲线由于坐标系选取不同,方程的形式也不同,但是最后得出的性质是一样的,即与坐标系的选取无关.前面我们着重分析了第一个标准方程的椭圆的性质,类似可以理解第二个标准方程的椭圆的性质.布置学生最后小结下列表格:五、布置作业11 25x2+4y2-100 0,2 x2+4y2-1 0.2.我国发射的科学实验人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,近地点距地面266Km,远地点距地面1826Km,求这颗卫星的轨道方程.3.点P与一定点F 2,0 的距离和它到一定直线x 8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形.的方程.作业答案:4 0,2 可能是长轴的端点,也可能是短轴的一个端点,故分两种情况求方程:六、板书设计一、教学目标知识教学点使学生掌握双曲线的定义和标准方程,以及标准方程的推导.能力训练点在与椭圆的类比中获得双曲线的知识,从而培养学生分析、归纳、推理等能力.学科渗透点本次课注意发挥类比和设想的作用,与椭圆进行类比、设想,使学生得到关于双曲线的定义、标准方程一个比较深刻的认识.二、教材分析1解决办法:通过一个简单实验得出双曲线,再通过设问给出双曲线的定义;对于双曲线的标准方程通过比较加深认识.2.难点:双曲线的标准方程的推导.解决办法:引导学生完成,提醒学生与椭圆标准方程的推导类比.3.疑点:双曲线的方程是二次函数关系吗?解决办法:教师可以从引导学生回忆函数定义和观察双曲线图形来解决,同时让学生在课外去研究在什么附加条件下,双曲线方程可以转化为函数式.三、活动设计提问、实验、设问、归纳定义、讲解、演板、口答、重点讲解、小结.四、教学过程复习提问1.椭圆的定义是什么?学生回答,教师板书平面内与两定点F1F2的距离的和等于常数大于|F1F2| 的点的轨迹叫做椭圆.教师要强调条件: 1 平面内; 2 到两定点F1、F2的距离的和等于常数; 3 常数2a>|F1F2|.2.椭圆的标准方程是什么?学生口答,教师板书二双曲线的概念把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?它的方程是怎样的呢?1 边演示、边说明如图2-23F1、F2是两个按钉,MN是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M移动时,|MF1|-|MF2|是常数,这样就画出曲线的一支;由|MF2|-|MF1|是同一常数,可以画出另一支.注意:常数要小于|F1F2|2.设问问题1F1、F2与动点M不在平面上,能否得到双曲线?请学生回答,不能.强调“在平面内”.问题2|MF1|与|MF2|哪个大?请学生回答,不定:当M|MF1|>|MF2|;当点M在双曲线左支上时,|MF1|<|MF2|.问题3M与定点F1、F2距离的差是否就是|MF1|-|MF2|?请学生回答,不一定,也可以是|MF2|-|MF1|||MF2|-|MF1||.问题4|F1F2|?请学生回答,应小于|F1F2| |F1F2|时,轨迹是以F1、F2为端点的两条射线;当常数>|F1F2|时,无轨迹.3.定义在上述基础上,引导学生概括双曲线的定义:平面内与两定点F1F2的距离的差的绝对值是常数小于|F1F2| 的点的轨迹叫做双曲线.这两个定点F1、F2叫做双曲线的焦点,两个焦点之间的距离叫做焦距.教师指出:双曲线的定义可以与椭圆相对照来记忆,不要死记.双曲线的标准方程现在来研究双曲线的方程.我们可以类似求椭圆的方程的方法来求双曲线的方程.这时设问:求椭圆的方程的一般步骤方法是什么?不要求学生回答,主要引起学生思考,随即引导学生给出双曲线的方程的推导.标准方程的推导:1取过焦点F1F2的直线为x轴,线段F1F2的垂直平分线为y轴如图2-24 建立直角坐标系.设M xy 为双曲线上任意一点,双曲线的焦距是2c c>0 ,那么F1、F2的坐标分别是 -c,0 、 c,0 .又设点M与F1、F2的距离的差的绝对值等于常数.2 点的集合由定义可知,双曲线就是集合:P M||MF1|-|MF2|| 2a M|MF1|-|MF2| 2a .3 代数方程。

高中文科数学圆锥曲线教案

高中文科数学圆锥曲线教案

高中文科数学圆锥曲线教案
学科:数学
年级:高中
课时:1课时
教学目标:
1. 了解圆锥曲线的基本概念和性质;
2. 掌握圆、椭圆、双曲线和抛物线的方程及其图像特征;
3. 能够通过方程判断图像种类和位置。

教学内容:
1. 圆锥曲线的定义和分类;
2. 圆的方程和图像特征;
3. 椭圆的方程和图像特征;
4. 双曲线的方程和图像特征;
5. 抛物线的方程和图像特征。

教学步骤:
一、导入(5分钟)
1. 引导学生回顾基础知识,复习圆的相关概念;
2. 提出问题:“什么是圆锥曲线?有哪些种类?”
二、讲解(20分钟)
1. 解释圆锥曲线的概念和分类;
2. 介绍圆、椭圆、双曲线和抛物线的方程和图像特征;
3. 分别讲解每种圆锥曲线的方程及其图像形状。

三、练习(20分钟)
1. 给学生练习一些简单的题目,让他们通过方程确定图像的种类;
2. 提示学生注意每种圆锥曲线的特征,做好区分。

四、总结(10分钟)
1. 总结本节课学习的重点内容,强调圆锥曲线的分类和特征;
2. 提醒学生在以后的学习中要注意圆锥曲线的应用。

五、作业布置(5分钟)
1. 布置相关练习题目,巩固今天学习的知识;
2. 提醒学生复习圆锥曲线的相关理论。

教学反思:
本节课内容相对简单,主要是让学生掌握圆锥曲线的基本概念和特征。

教学中应注意引导学生运用所学知识解决问题,培养他们的思维能力和分析能力。

同时,也要注重引导学生合理安排学习时间,将知识运用到实际问题中,提高学习效果。

圆锥曲线教案

圆锥曲线教案

圆锥曲线教案圆锥曲线教案一、教学目标:1. 理解什么是圆锥曲线,学会在笛卡尔坐标系中表示圆锥曲线。

2. 学会求解圆锥曲线的焦点、直径、离心率等相关性质。

3. 掌握对圆锥曲线进行方程变换、平移、旋转等操作的方法。

二、教学准备:1. 教师准备黑板、彩色粉笔等教学用具。

2. 学生准备笔记本、书籍等学习用具。

三、教学过程:1. 导入新知识:通过展示一张圆锥曲线的图片,询问学生对这个图形有什么了解,引导学生思考圆锥曲线的定义和性质。

2. 理论讲解:(1) 定义圆锥曲线:对圆锥在一个经过顶点的剖面研究所得到的曲线称为圆锥曲线。

(2) 表示方法:在笛卡尔坐标系中,圆锥曲线可由方程表示,例如椭圆的方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。

(3) 常见圆锥曲线:椭圆、双曲线、抛物线。

3. 实例演示:以椭圆为例,给出一个椭圆的标准方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,引导学生求解椭圆的焦点、直径、离心率等相关性质。

4. 计算练习:给出多个圆锥曲线的方程,让学生进行计算练习,提高其运算能力。

5. 方程变换:介绍如何对圆锥曲线进行方程变换,包括水平方向和垂直方向的方程变换。

6. 平移与旋转:讲解如何对圆锥曲线进行平移和旋转,以及平移和旋转对方程的影响。

7. 总结归纳:对学过的内容进行总结归纳,梳理知识框架。

8. 解答疑问:解答学生对圆锥曲线相关问题的疑惑。

9. 课堂练习:布置一些课堂练习题,让学生巩固所学知识。

四、教学延伸:1. 引导学生进行实际应用:让学生寻找生活中的圆锥曲线,并分析其性质和特点。

2. 继续深入学习:对于学有余力的学生,可以探究更高级的圆锥曲线知识,如圆锥曲线的参数方程、极坐标方程等。

五、教学评价:1. 课堂练习的成绩。

2. 学生对于圆锥曲线相关问题的提问及解答情况。

3. 学生对于课堂知识的掌握和应用情况。

六、课后作业:1. 完成课堂练习题。

高中数学旧版圆锥曲线教案

高中数学旧版圆锥曲线教案

高中数学旧版圆锥曲线教案课题:圆锥曲线教学目标:1.了解圆锥曲线的定义和性质。

2.掌握圆锥曲线的方程,并能够根据已知条件求解圆锥曲线的方程。

3.能够应用圆锥曲线解决实际问题。

教学重点:1.圆锥曲线的定义和性质。

2.圆锥曲线的方程。

3.应用圆锥曲线解决实际问题。

教学难点:1.如何根据已知条件求解圆锥曲线的方程。

2.如何应用圆锥曲线解决实际问题。

教学准备:1.教材《高中数学》第一学期教材。

2.多媒体教学设备。

3.课堂练习题。

教学过程:一、导入(5分钟)教师简要介绍圆锥曲线的概念,并引出本节课的学习内容。

二、讲解圆锥曲线的定义和性质(15分钟)1. 圆锥曲线的定义:直角圆锥内所有的点到一个固定点的距离与到一条固定线的距离的比值等于一个常数,这个数称为离心率。

2. 圆锥曲线的性质:包括椭圆、双曲线、抛物线三种,每种都有特定的方程和性质。

三、讲解圆锥曲线的方程及求解(20分钟)1. 根据已知条件列方程。

2. 解方程得到圆锥曲线的方程。

四、应用题训练(15分钟)教师给学生出几道应用题,要求学生应用所学知识解决实际问题。

五、总结(5分钟)教师对本节课的内容进行总结,并提出下节课的预习内容。

六、布置作业(5分钟)布置课后作业,巩固学生的知识。

教学反思:圆锥曲线是高中数学中的一个重要内容,需要学生掌握严谨的数学思维和解题方法。

在教学中,应该注重引导学生理解概念,培养学生的解题能力和应用能力。

同时,通过案例分析和实际问题的应用,激发学生学习的兴趣和主动性。

【教案结束】。

圆锥曲线教案

圆锥曲线教案

及圆锥曲线有关的几种典型题一、教学目标(一)知识教学点使学生掌握及圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、及圆锥曲线有关的最值(极值)问题、及圆锥曲线有关的证明问题以及圆锥曲线及圆锥曲线相交问题等.(二)能力训练点通过对圆锥曲线有关的几种典型题的教学,培养学生综合运用圆锥曲线知识的能力.(三)学科渗透点通过及圆锥曲线有关的几种典型题的教学,使学生掌握一些相关学科中的类似问题的处理方法.二、教材分析1.重点:圆锥曲线的弦长求法、及圆锥曲线有关的最值(极值)问题、及圆锥曲线有关的证明问题.(解决办法:先介绍基础知识,再讲解应用.)2.难点:双圆锥曲线的相交问题.(解决办法:要提醒学生注意,除了要用一元二次方程的判别式,还要结合图形分析.)3.疑点:及圆锥曲线有关的证明问题.(解决办法:因为这类问题涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法,所以比较灵活,只能通过一些例题予以示范.)三、活动设计演板、讲解、练习、分析、提问.四、教学过程(一)引入及圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、及圆锥曲线有关的最值(极值)问题、及圆锥曲线有关的证明问题以及圆锥曲线及圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到,为了让大家对这方面的知识有一个比较系统的了解,今天来讲一下“及圆锥曲线有关的几种典型题”.(二)及圆锥曲线有关的几种典型题1.圆锥曲线的弦长求法设圆锥曲线C∶f(x,y)=0及直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为:(2)若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|.A、B两点,旦|AB|=8,求倾斜角α.分析一:由弦长公式易解.由学生演板完成.解答为:∵抛物线方程为x2=-4y,∴焦点为(0,-1).设直线l的方程为y-(-1)=k(x-0),即y=kx-1.将此式代入x2=-4y中得:x2+4kx-4=0.∴x1+x2=-4,x1+x2=-4k.∴ k=±1.∴|AB|=-(y1+y2)+p=-[(kx1-1)+(kx2-1)]+p=-k(x1+x2)+2+p.由上述解法易求得结果,由学生课外完成.2.及圆锥曲线有关的最值(极值)的问题在解析几何中求最值,关键是建立所求量关于自变量的函数关系,再利用代数方法求出相应的最值.注意点是要考虑曲线上点坐标(x,y)的取值范围.例2 已知x2+4(y-1)2=4,求:(1)x2+y2的最大值及最小值;(2)x+y的最大值及最小值.解(1):将x2+4(y-1)2=4代入得:x2+y2=4-4(y-1)2+y2=-3y2+8y由点(x,y)满足x2+4(y-1)2=4知:4(y-1)2≤4 即|y-1|≤1.∴0≤y≤2.当y=0时,(x2+y2)min=0.解(2):分析:显然采用(1)中方法行不通.如果令u=x+y,则将此代入x2+4(y-1)2=4中得关于y的一元二次方程,借助于判别式可求得最值.令x+y=u,则有x=u-y.代入x2+4(y-1)2=4得:5y2-(2u+8)y+u2=0.又∵0≤y≤2,(由(1)可知)∴[-(2u+8)]2-4×5×u2≥0.3.及圆锥曲线有关的证明问题它涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法.例3 在抛物线x2=4y上有两点A(x1,y1)和B(x2,y2)且满足|AB|=y1+y2+2,求证:(1)A、B和这抛物线的焦点三点共线;证明:(1)∵抛物线的焦点为F(0,1),准线方程为y=-1.∴ A、B到准线的距离分别d1=y1+1,d2=y2+1(如图2-46所示).由抛物线的定义:|AF|=d1=y1+1,|BF|=d2=y2+1.∴|AF|+|BF|=y1+y2+2=|AB|.即A、B、F三点共线.(2)如图2-46,设∠AFK=θ.∵|AF|=|AA1|=|AK|+2=|AF|sinθ+2,又|BF|=|BB1|=2-|BF|sinθ.小结:及圆锥曲线有关的证明问题解决的关键是要灵活运用圆锥曲线的定义和几何性质.4.圆锥曲线及圆锥曲线的相交问题直线及圆锥曲线相交问题,一般可用两个方程联立后,用△≥0来处理.但用△≥0来判断双圆锥曲线相交问题是不可靠的.解决这类问题:方法1,由“△≥0”及直观图形相结合;方法2,由“△≥0”及根及系数关系相结合;方法3,转换参数法(以后再讲).实数a的取值范围.可得:y2=2(1-a)y+a2-4=0.∵△=4(1-a)2-4(a2-4)≥0,如图2-47,可知:(三)巩固练习(用一小黑板事先写出.)2.已知圆(x-1)2+y2=1及抛物线y2=2px有三个公共点,求P的取值范围.顶点.请三个学生演板,其他同学作课堂练习,教师巡视.解答为:1.设P的坐标为(x,y),则2.由两曲线方程消去y得:x2-(2-2P)x=0.解得:x1=0,x2=2-2P.∵0<x<2,∴0<2-2P<2,即0<P<1.故P的取值范围为(0,1).四个交点为A(4,1),B(4,-1),C(-4,-1),D(-4,1).所以A、B、C、D是矩形的四个顶点.五、布置作业1.一条定抛物线C1∶y2=1-x及动圆C2∶(x-a)2+y2=1没有公共点,求a的范围.2.求抛线y=x2上到直线y=2x-4的距离为最小的点P的坐标.3.证明:从双曲线的一个焦点到一条渐近线的距离等于虚半轴长.作业答案:1.当x≤1时,由C1、C2的方程中消去y,得x2-(2a+1)x+a2=0,离为d,则似证明.六、板书设计。

圆锥曲线高三文科教案

圆锥曲线高三文科教案

圆锥曲线考题分析【知识梳理】考点一、定状态问题、存在性问题(方程问题)题目的设问都建立在给定状态的前提条件下,只需要设未知数进行求解即可。

如:【例1】椭圆)0(1:2222>>=+b a by a x C 的两个焦点为F 1,F 2,点P 在椭圆C 上,且PF 1⊥F 1F 2,.314||,34||21==PF PF(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过圆02422=-++y x y x 的圆心M ,交椭圆C 于A ,B 两点,且A ,B 关于点M 对称,求直线l 的方程.【解析】(Ⅰ)因为点P 在椭圆C 上,所以=a 2|PF 1|+|PF 2|=6,a =3.在Rt △PF 1F 2中,|F 1F 2|=52||||2122=-PF PF ,故椭圆的半焦距5=c ,从而,4222=-=c a b所以椭圆C 的方程为.14922=+y x (Ⅱ)设A ,B 的坐标分别为().,(),,2211y x y x已知圆的方程为5)1()2(22=-++y x ,所以圆心M 的坐标为(-2,1),从而可设直线l 的方程为1)2(++=x k y ,代入椭圆C 的方程得.0273636)1836()94(2222=-+++++k k x k k x k因为A ,B 关于点M 对称,所以29491822221-=++-=+k kk x x , 解得98=k , 所以直线l 的方程为,1)2(98++=x y即.02598=+-y x(经检验,所求直线方程符合题意.)【例2】在平面直角坐标系xoy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于13-.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由。

【解析】(I )因为点B 与A (1,1)-关于原点O 对称,所以点B 得坐标为(1,1)-.设点P 的坐标为(,)x y 由题意得311111-=-+⋅+-x y x y 化简得 2234(1)x y x +=≠±.故动点P 的轨迹方程为2234(1)x y x +=≠±(II )设点P 的坐标为00(,)x y ,点M ,N 得坐标分别为(3,)M y ,(3,)N y . 则直线AP 的方程为0011(1)1y y x x --=++,直线BP 的方程为0011(1)1y y x x ++=--令3x =得000431M y x y x +-=+,000231N y x y x -+=-.于是PMN ∆得面积1)3()3(212020000--+=--=∆x x y x x y y S N M PMN又直线AB 的方程为0x y +=,||AB = 点P 到直线AB的距离d =于是PAB ∆的面积 0021y x d AB S PAB +=⋅=∆ 当PMN PABS S ∆∆=时,得20000020||(3)|||1|x y x x y x +-+=-又00||0x y +≠,所以20(3)x -=20|1|x -,解得05|3x =。

圆锥曲线高中数学讲解教案

圆锥曲线高中数学讲解教案

圆锥曲线高中数学讲解教案
一、教学目标:
1. 了解圆锥曲线的定义和基本性质;
2. 掌握圆锥曲线的标准方程和性质;
3. 能够根据给定的条件求解圆锥曲线的方程;
4. 能够利用圆锥曲线解决实际问题。

二、教学重点:
1. 圆锥曲线的定义;
2. 圆锥曲线的标准方程;
3. 圆锥曲线的性质。

三、教学难点:
1. 圆锥曲线的方程求解;
2. 圆锥曲线的性质证明。

四、教学过程:
1. 圆锥曲线的定义和基本概念(15分钟)
- 圆锥曲线的定义;
- 圆锥曲线的类别;
- 圆锥曲线的几何性质。

2. 圆锥曲线的标准方程和性质(20分钟)
- 圆的标准方程和性质;
- 椭圆的标准方程和性质;
- 双曲线的标准方程和性质;
- 抛物线的标准方程和性质。

3. 圆锥曲线的方程求解(30分钟)
- 根据给定的条件求解圆锥曲线的方程;
- 利用圆锥曲线求解实际问题。

4. 圆锥曲线的性质证明(15分钟)
- 圆锥曲线的对称性证明;
- 圆锥曲线的焦点、准线和直径关系证明。

五、教学总结:
通过本节课的学习,我们对圆锥曲线的定义、标准方程和性质有了更深入的了解,掌握了圆锥曲线的求解方法和应用能力。

希望同学们能够认真复习,做好练习,提高对圆锥曲线的理解和应用能力。

下节课将继续深入学习圆锥曲线的相关内容,敬请期待。

高中数学圆锥曲线教案

高中数学圆锥曲线教案

高中数学圆锥曲线教案
一、教学目标
1.了解圆锥曲线的定义和基本性质。

2.能够掌握圆锥曲线的标准方程及其图像特点。

3.能够解决与圆锥曲线相关的问题。

二、教学重点和难点
重点:掌握圆锥曲线的标准方程及其图像特点。

难点:理解圆锥曲线的定义及性质。

三、教学内容
1.圆锥曲线的定义和基本性质。

2.圆锥曲线的标准方程及其图像特点。

3.圆锥曲线的相关问题解决方法。

四、教学过程
1.导入新知识:通过引入一个问题或实际应用场景引起学生的兴趣。

2.讲解圆锥曲线的定义和基本性质,包括椭圆、双曲线和抛物线。

3.介绍圆锥曲线的标准方程及其图像特点。

4.通过实例分析,让学生熟悉解决与圆锥曲线相关的问题的方法。

5.组织学生进行练习和讨论,巩固所学知识。

6.总结本节课内容,提出问题进行思考,激发学生的学习兴趣。

五、课堂作业
1.完成练习题。

2.思考如何将圆锥曲线应用到实际生活中。

六、教学反思
本节课主要对圆锥曲线的定义和基本性质进行了讲解,并通过实例让学生掌握了圆锥曲线的标准方程及其图像特点。

同时也引导学生思考如何将所学知识应用到实际生活中。

在教学过程中需要注意引导学生正确理解圆锥曲线的概念,帮助他们建立深刻的认识。

新版高中数学圆锥曲线教案

新版高中数学圆锥曲线教案

新版高中数学圆锥曲线教案一、教学目标:1. 熟练掌握圆锥曲线的基本概念和性质;2. 能够理解常见圆锥曲线方程的几何意义;3. 能够运用圆锥曲线解决实际问题。

二、教学重点:1. 圆锥曲线的定义和分类;2. 圆锥曲线的方程及性质;3. 圆锥曲线的应用实例。

三、教学内容:1. 圆锥曲线的基本概念:椭圆、双曲线、抛物线;2. 圆锥曲线的方程:椭圆方程、双曲线方程、抛物线方程;3. 圆锥曲线的性质:焦点、准线、离心率等;4. 圆锥曲线的应用:求解实际问题。

四、教学步骤:1. 引入:通过生活实例引入圆锥曲线的概念,引发学生兴趣;2. 讲解:介绍圆锥曲线的定义、分类、方程和性质;3. 练习:让学生进行练习,巩固所学内容;4. 应用:通过应用题,让学生运用所学知识解决实际问题;5. 总结:对本节课所学内容进行总结,强化记忆。

五、教学工具:1. 讲义、教材:提供相关知识点及例题;2. 幻灯片:辅助讲解,呈现图形与方程对应关系;3. 黑板、彩色粉笔:展示解题过程;4. 习题册、练习册:让学生进行巩固练习。

六、教学评价:1. 课堂表现:学生是否积极参与讨论、思维活跃;2. 作业情况:学生对作业的完成情况及正确率;3. 考试成绩:检验学生掌握情况。

七、教学反馈:1. 整理学生反馈意见,根据学生反馈调整教学方式;2. 总结本节课教学经验,为下一节课改进教学方法做准备。

八、教学延伸:1. 给学生留下更多实例让学生探究,提高学生学习兴趣;2. 引导学生自主进行拓展探索,培养学生解决问题的能力。

以上是本节课的教案范本,希望能够对教学工作有所帮助,祝教学顺利!。

关于学习圆锥曲线的教案

关于学习圆锥曲线的教案

关于学习圆锥曲线的教案一、引言学习圆锥曲线是高中数学教学中的重点内容之一。

通过学习圆锥曲线的性质和应用,可以帮助学生深入理解数学中的几何概念和解决实际问题的能力。

本教案旨在为教师提供一个有条理、有效的教学方案,以帮助学生更好地学习和应用圆锥曲线。

二、教学目标1. 让学生了解圆锥曲线的定义和基本性质;2. 培养学生分析和解决圆锥曲线相关问题的能力;3. 引导学生掌握圆锥曲线的方程和图形特征;4. 培养学生运用圆锥曲线解决实际问题的能力。

三、教学内容1. 圆锥曲线的定义和分类a. 椭圆b. 双曲线c. 抛物线2. 圆锥曲线的方程和图形特征a. 椭圆的标准方程b. 双曲线的标准方程c. 抛物线的标准方程3. 圆锥曲线的性质和应用a. 焦点和准线的关系b. 椭圆的离心率和焦距的关系c. 双曲线的渐近线d. 抛物线的顶点和对称轴e. 圆锥曲线在物理和工程领域的应用四、教学方法1. 导入法:通过引入日常生活或实际问题,激发学生对圆锥曲线的兴趣和学习动力。

2. 讲授法:通过讲解圆锥曲线的概念、性质和方程,帮助学生建立起知识体系。

3. 示例法:通过解析和解题示例,引导学生熟练掌握圆锥曲线的应用方法。

4. 探究法:组织学生进行实验和探究活动,培养学生的实际操作和问题解决能力。

五、教学步骤1. 导入引导学生观察身边物体的形状,并通过问答帮助学生了解到圆锥曲线的普遍存在。

2. 讲解概念a. 介绍圆锥曲线的定义和分类,引导学生理解椭圆、双曲线和抛物线的区别和特点。

b. 通过示意图和实例,讲解圆锥曲线的方程及其与图形特征的对应关系。

3. 解析示范运用示例,详细解析椭圆、双曲线和抛物线的相关概念、方程和特征。

4. 练习巩固分别给学生提供一些练习题,以巩固他们对圆锥曲线基本知识的理解和掌握。

5. 拓展应用融合实际问题,引导学生运用所学知识解决日常生活或工程领域中的相关问题。

6. 总结回顾归纳总结圆锥曲线的性质和应用,与学生一起回顾所学内容,强化对知识的理解和记忆。

高三文科数学圆锥曲线教案

高三文科数学圆锥曲线教案

学生姓名年级 ________ 授课时间__________老师姓名_________课时 ______3.弦中点问题的特殊解法-----点差法:即若已知弦AB 的中点为M(x o ,y o ),先设两个交点为A(x 1,y 1),B(x 2,y 2);分别代入圆锥曲线的方程,得0)y ,x (f ,0)y ,x (f 2211==,两式相减、分解因式,再将o 21o 212y y y ,2x x x =+=+代入其中,即可求出直线的斜率。

4.弦长公式:]x 4x )x x )[(k 1(|x x |k 1|AB |212212212-++=-+=( k 为弦AB 所在直线的斜率)三、高考真题 1.【2019高考新课标文4】设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32a x =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为( ) ()A 12()B23()C 34()D 45【答案】C【命题意图】本题主要考察椭圆的性质及数形结合思想,是简洁题. 【解析】∵△21F PF 是底角为030的等腰三角形,∴0260PF A ∠=,212||||2PF F F c ==,∴2||AF =c ,∴322c a =,∴e =34,故选C.2.【2019高考新课标文10】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【答案】C【命题意图】本题主要考察抛物线的准线、直线与双曲线的位置关系,是简洁题.【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:可得22222212121212(42)(22)43cos 2422242PF PF F F F PF PF PF +-+-∠===⋅⨯⨯。

《圆锥曲线》教学案

《圆锥曲线》教学案

第二章《圆锥曲线》教学案教学目标:1. 椭圆的定义、标准方程、焦点、焦距,椭圆的几何性质,椭圆的画法;双曲线的定义、标准方程、焦点、焦距,双曲线的几何性质,双曲线的画法,等轴双曲线;抛物线的定义、标准方程、焦点、焦距,抛物线的几何性质,抛物线的画法,2. 结合教学内容对学生进行运动变化和对立统一的观点的教育教学重点:椭圆、双曲线、抛物线的定义、方程和几何性质;坐标法的应用.教学难点:椭圆、双曲线的标准方程的推导过程;利用定义、方程和几何性质求有关焦点、焦距、准线等.教学过程:一、课前预习二、复习引入:椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.椭圆的标准方程:1by a x 2222=+,12222=+b x a y (0>>b a )3.椭圆的性质:由椭圆方程12222=+by a x (0>>b a )(1)范围: a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中. (2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称原点叫椭圆的对称中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点: )0,(),0,(2a A a A -,),0(),,0(2b B b B -加两焦点)0,(),0,(21c F c F -共有六个特殊点21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为b a 2,2 b a ,分别为椭圆的长半轴长和短半轴长椭圆的顶点即为椭圆与对称轴的交点(4)离心率: 椭圆焦距与长轴长之比a c e =⇒2)(1abe -=10<<e 椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例4.双曲线的定义:平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线 即a MF MF 221=- 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距在同样的差下,两定点间距离较长,则所画出的双曲线的开口较开阔(→两条平行线)两定点间距离较短(大于定差),则所画出的双曲线的开口较狭窄(→两条射线)双曲线的形状与两定点间距离、定差有关5.双曲线的标准方程及特点:(1)双曲线的标准方程有焦点在x 轴上和焦点在y 轴上两种:焦点在x 轴上时双曲线的标准方程为:);0b ,0a (1b y a x 2222>>=- 焦点在y 轴上时双曲线的标准方程为:).0b ,0a (1bx a y 2222>>=- 6.a 、b 、c 有关系式222b a c +=成立,且a>0,b>0,c>0.其中a 与b 的大小关系:可以为a =b ,a<b, a>b.7焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母2x 、2y 项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴而双曲线是根据项的正负来判断焦点所在的位置,即2x 项的系数是正的,那么焦点在x 轴上;2y 项的系数是正的,那么焦点在y 轴上8.双曲线的几何性质: (1)范围、对称性由标准方程12222=-by a x ,从横的方向来看,直线x =-a ,x =a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线双曲线不封闭,但仍称其对称中心为双曲线的中心(2)顶点顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21实轴:21A A 长为2a , a 叫做半实轴长虚轴:21B B 长为2b ,b 叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 (3)渐近线过双曲线12222=-by a x 的渐近线x a b y ±=(0=±b y a x )(4)离心率双曲线的焦距与实轴长的比aca c e ==22,叫做双曲线的离心率范围:1>e 双曲线形状与e 的关系:1122222-=-=-==e ac a a c a b k ,e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔由此可知,双曲线的离心率越大,它的开口就越阔9.等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e10.共渐近线的双曲线系如果已知一双曲线的渐近线方程为x a b y ±=)0(>±=k x kakb,那么此双曲线方程就一定是:)0(1)()(2222>±=-k kb y ka x 或写成λ=-2222by a x 11.共轭双曲线以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 区别:三量a ,b ,c 中a ,b 不同(互换)c 相同共用一对渐近线 双曲线和它的共轭双曲线的焦点在同一圆上确定双曲线的共轭双曲线的方法:将1变为-112.双曲线的焦点弦:定义:过焦点的直线割双曲线所成的相交弦 焦点弦公式:当双曲线焦点在x 轴上时,过左焦点与左支交于两点时:|AB|=-2a-e (x1+x2) 过右焦点与右支交于两点时:|AB|=-2a+e (x1+x2) 当双曲线焦点在y 轴上时,过左焦点与左支交于两点时:|AB|=-2a-e (y1+y2) 过右焦点与右支交于两点时:|AB|=-2a+e (y1+y2) 13.双曲线的通径:定义:过焦点且垂直于对称轴的相交弦 ab d 22=14 抛物线定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线15.抛物线的准线方程: (1))0(22>=p px y , 焦点:)0,2(p ,准线l :2p x -= (2))0(22>=p py x , 焦点:)2,0(p ,准线l :2py -= (3))0(22>-=p px y , 焦点:)0,2(p -,准线l :2p x =(4) )0(22>-=p py x ,焦点:)2,0(p -,准线l :2p y = 相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的41,即242p p = 不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2±、左端为2y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2±,左端为2x (2)开口方向在X 轴(或Y 轴)正向时,焦点在X 轴(或Y 轴)的正半轴上,方程右端取正号;开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号16.抛物线的几何性质 (1)范围因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y )满足不等式x ≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y |也增大,这说明抛物线向右上方和右下方无限延伸.(2)对称性以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.(3)顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y =0时,x =0,因此抛物线()022>=p px y 的顶点就是坐标原点.(4)离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e =1.17抛物线的焦半径公式:抛物线)0(22>=p px y ,0022x pp x PF +=+= 抛物线)0(22>-=p px y ,0022x pp x PF -=-= 抛物线)0(22>=p py x ,0022y pp y PF +=+=抛物线)0(22>-=p py x ,0022y pp y PF -=-= 18.直线与抛物线: (1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点) 将b kx y l +=:代入0:22=++++F Ey Dx Cy Ax C ,消去y ,得到 关于x 的二次方程02=++c bx ax (*) 若0>∆,相交;0=∆,相切;0<∆,相离 综上,得: 联立⎩⎨⎧=+=pxy bkx y 22,得关于x 的方程02=++c bx ax 当0=a (二次项系数为零),唯一一个公共点(交点) 当0≠a ,则若0>∆,两个公共点(交点)0=∆,一个公共点(切点) 0<∆,无公共点 (相离)(2)相交弦长: 弦长公式:21k ad +∆=, (3)焦点弦公式:抛物线)0(22>=p px y , )(21x x p AB ++= 抛物线)0(22>-=p px y , )(21x x p AB +-= 抛物线)0(22>=p py x , )(21y y p AB ++= 抛物线)0(22>-=p py x ,)(21y y p AB +-=(4)通径:定义:过焦点且垂直于对称轴的相交弦 通径:p d 2= (5)若已知过焦点的直线倾斜角θ则⎪⎩⎪⎨⎧=-=px y p x k y 2)2(20222=--⇒p y k p y ⎪⎩⎪⎨⎧-==+⇒221212py y k p y y θsin 24422221p p kp y y =+=-⇒θθ221sin 2sin 1p y y AB =-=⇒(6)常用结论:⎪⎩⎪⎨⎧=-=pxyp x k y 2)2(20222=--⇒p y k p y 和04)2(22222=++-p k x p p k x k 221p y y -=⇒和421px x =四、【例题】1.动点A 到定点F 1(0, -2)和F 2(0, 2)的距离的和为4,则动点A 的轨迹为 ( B ) A . 椭圆 B . 线段 C . 无图形D . 两条射线;2.动点P 到定点F 1(1, 0)的距离比它到定点F 2(3, 0)的距离小2,则点P 的轨迹是 ( C )A .双曲线B .双曲线的一支C .一条射线D .两条射线3.人造地球卫星的运行轨道是以地心为一个焦点的椭圆.社地球的半径为R ,卫星近地点、远地点离地面的距离分别为r1、r2,球卫星轨道的离心率.4.两定点的坐标分别为A (-1,0),B (2,0),动点M 满足,MAB 2MBA ∠=∠求动点M 的轨迹方程.。

高中高三数学《直线和圆锥曲线的参数方程》教案、教学设计

高中高三数学《直线和圆锥曲线的参数方程》教案、教学设计
(二)教学设想
1.针对重点内容,采用以下教学策略:
(1)通过直观的动态演示,帮助学生理解参数方程的几何意义,增强直观感知;
(2)设计具有层次性的例题和练习,逐步引导学生掌握参数方程的应用;
(3)结合实际情境,激发学生探究参数方程的兴趣,提高学习积极性。
2.针对难点内容,采用以下教学策略:
(1)以小组合作的形式,让学生在讨论和交流中,共同探讨参数方程的推导过程,培养学生的团队合作意识和解决问题的能力;
高中高三数学《直线和圆锥曲线的参数方程》教案、教学设计
一、教学目标
(一)知识与技能
本章节主要围绕“直线和圆锥曲线的参数方程”展开,使学生掌握以下知识与技能:
1.理解并掌握直线、椭圆、双曲线和抛物线的参数方程;
2.学会运用参数方程解决直线和圆锥曲线的相关问题;
3.能够运用坐标系和参数方程描述直线和圆锥曲线的运动变化;
(8)教学评价:通过课堂提问、作业批改等方式,了解学生的学习情况,及时调整教学策略。
4.关注学生个体差异,实施差异化教学:
(1)针对基础薄弱的学生,加强基础知识的学习,提高其学习信心;
(2)针对学有余力的学生,适当拓展课外知识,培养其创新能力和数学素养。
四、教学内容与过程
(一)导入新课,500字
1.教学活动设计:以生活中的实例导入,如一颗行星在椭圆轨道上绕太阳运动,引导学生思考如何描述行星的运动轨迹。
1.分组讨论:将学生分成若干小组,针对以下问题进行讨论:
(1)直线和圆锥曲线参数方程的推导过程;
(2)参数方程与普通方程互化的方法;
(3)如何运用参数方程解决实际问题。
2.教师引导:在学生讨论过程中,教师巡回指导,引导学生深入探讨参数方程的内涵和实际应用。

高中数学新课圆锥曲线方程教案

高中数学新课圆锥曲线方程教案

一、教案基本信息高中数学新课圆锥曲线方程教案课时安排:2课时教学对象:高中数学学生教学目标:1. 理解圆锥曲线的概念及其特点。

2. 掌握圆锥曲线的基本方程。

3. 能够运用圆锥曲线方程解决实际问题。

教学方法:1. 采用问题导入法,激发学生兴趣。

2. 利用多媒体课件,直观展示圆锥曲线的图形。

3. 采用小组讨论法,引导学生探究圆锥曲线方程的推导过程。

4. 运用例题讲解法,帮助学生掌握圆锥曲线方程的应用。

教学内容:1. 圆锥曲线的概念及特点2. 圆锥曲线的基本方程3. 圆锥曲线方程的推导过程4. 圆锥曲线方程的应用二、教学过程第一课时:1. 导入:利用多媒体课件,展示圆锥曲线的图形,引导学生观察其特点。

2. 新课讲解:1. 讲解圆锥曲线的概念及特点。

2. 引导学生探究圆锥曲线的基本方程。

3. 讲解圆锥曲线方程的推导过程。

3. 例题讲解:运用例题,讲解圆锥曲线方程的应用。

4. 课堂练习:布置练习题,让学生巩固所学内容。

第二课时:1. 复习导入:复习上一课时所讲的内容,提问学生圆锥曲线方程的应用。

2. 课堂讲解:讲解圆锥曲线方程在实际问题中的应用。

3. 例题讲解:运用例题,讲解圆锥曲线方程解决实际问题的方法。

4. 小组讨论:布置讨论题,让学生分组讨论圆锥曲线方程的应用。

5. 课堂总结:总结本节课所讲内容,强调圆锥曲线方程的重要性。

6. 课后作业:布置作业,让学生巩固所学知识。

三、教学评价1. 课后问卷调查,了解学生对圆锥曲线方程的掌握程度。

2. 课堂练习及作业批改,评估学生运用圆锥曲线方程解决实际问题的能力。

3. 课堂表现,观察学生在讨论、回答问题等方面的参与度。

四、教学反思1. 针对学生的掌握情况,调整教学方法,提高教学效果。

2. 结合学生反馈,优化教学内容,使课堂更贴近学生需求。

3. 注重培养学生的动手操作能力和实际应用能力,提高学生的综合素质。

五、教学资源1. 多媒体课件:展示圆锥曲线的图形,生动直观。

圆锥曲线学生公开课教案教学设计课件资料

圆锥曲线学生公开课教案教学设计课件资料

圆锥曲线学生公开课教案教学设计课件资料一、教学目标1. 知识与技能:(1)理解圆锥曲线的定义及其基本性质;(2)掌握圆锥曲线的标准方程及其求法;(3)能够运用圆锥曲线解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳圆锥曲线的性质,培养学生的逻辑思维能力;(2)运用数形结合的方法,引导学生感受圆锥曲线的美妙与神奇;(3)培养学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:(1)激发学生对圆锥曲线的兴趣,培养对数学的美感;(2)培养学生勇于探索、积极思考的科学精神;(3)引导学生认识数学在生活中的重要性,提高学生的数学素养。

二、教学内容1. 圆锥曲线的定义及其基本性质2. 圆锥曲线的标准方程及其求法3. 圆锥曲线的基本性质与应用4. 圆锥曲线在实际问题中的应用5. 圆锥曲线的历史与发展三、教学重点与难点1. 重点:圆锥曲线的定义、标准方程及其求法;圆锥曲线的基本性质与应用。

2. 难点:圆锥曲线的标准方程求法;圆锥曲线在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究圆锥曲线的性质;2. 利用数形结合法,直观展示圆锥曲线的特点;3. 通过实例分析,让学生学会运用圆锥曲线解决实际问题;4. 鼓励学生参与讨论、交流,提高学生的合作能力。

五、教学过程1. 导入:(1)回顾椭圆、双曲线、抛物线的定义及其性质;(2)引导学生思考:这些曲线之间有什么联系和区别?2. 新课讲解:(1)讲解圆锥曲线的定义及其基本性质;(2)引导学生探究圆锥曲线的标准方程及其求法;(3)讲解圆锥曲线的基本性质与应用。

3. 实例分析:(1)分析圆锥曲线在实际问题中的应用;(2)让学生尝试解决相关问题,巩固所学知识。

4. 课堂练习:(1)设计一些有关圆锥曲线的练习题,让学生独立完成;(2)对学生的练习情况进行点评,解答疑难问题。

5. 课堂小结:(1)总结本节课所学的主要内容;(2)强调圆锥曲线在实际问题中的应用价值。

数学圆锥曲线高中教案

数学圆锥曲线高中教案

数学圆锥曲线高中教案教学内容:圆锥曲线的基本概念和性质教学目标:掌握圆锥曲线的定义、方程和性质,能够画出圆锥曲线的图形,并解决相关问题。

教学重点与难点:圆锥曲线的定义和方程、椭圆、双曲线和抛物线的性质。

教学准备:教材、黑板、彩色粉笔、几何工具箱、PPT演示等。

教学过程:一、引入与复习(5分钟)1. 复习前几节课的知识,回顾直线及其方程的相关内容。

2. 引入圆锥曲线的定义,让学生对圆锥曲线有初步了解。

二、椭圆的定义和性质(15分钟)1. 讲解椭圆的定义和方程。

2. 讲解椭圆的性质,如焦点、长轴、短轴等。

3. 给出练习题,让学生练习画出椭圆的图形。

三、双曲线的定义和性质(15分钟)1. 讲解双曲线的定义和方程。

2. 讲解双曲线的性质,如渐近线、焦点等。

3. 给出练习题,让学生练习画出双曲线的图形。

四、抛物线的定义和性质(15分钟)1. 讲解抛物线的定义和方程。

2. 讲解抛物线的性质,如焦点、准线等。

3. 给出练习题,让学生练习画出抛物线的图形。

五、综合练习与拓展(10分钟)1. 随堂小测验,检验学生对圆锥曲线的掌握程度。

2. 给出拓展性练习题,让学生巩固和加深对圆锥曲线的理解。

六、总结与反思(5分钟)1. 总结本节课的重点知识,强调圆锥曲线的重要性。

2. 让学生思考如何运用所学知识解决实际问题。

教学反馈:对学生的表现给予及时的反馈,并根据学生的实际情况进行必要的个性化指导。

教学延伸:鼓励学生积极参与课堂讨论,提高学生的思维能力和解决问题的能力。

教学方式:结合理论讲解和实例演练,引导学生主动思考和发现问题解决方法。

教学环节设计合理,有助于学生有效地掌握圆锥曲线的相关知识,并提高学生的学习兴趣和主动性。

高中数学新课圆锥曲线方程教案

高中数学新课圆锥曲线方程教案

高中数学新课圆锥曲线方程教案一、教学目标1. 理解圆锥曲线的基本概念,掌握圆锥曲线的定义及其性质。

2. 学习圆锥曲线的标准方程及其求法。

3. 能够运用圆锥曲线方程解决实际问题,提高数学应用能力。

二、教学内容1. 圆锥曲线的定义与性质1.1 圆锥曲线的定义1.2 圆锥曲线的性质2. 圆锥曲线的标准方程2.1 椭圆的标准方程2.2 双曲线的标准方程2.3 抛物线的标准方程三、教学重点与难点1. 重点:圆锥曲线的定义、性质及标准方程的求法。

2. 难点:圆锥曲线标准方程的推导与应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究圆锥曲线的定义与性质。

2. 利用图形演示,让学生直观理解圆锥曲线的特点。

3. 运用类比法,引导学生发现圆锥曲线标准方程的规律。

4. 注重实践操作,让学生在解决问题中巩固圆锥曲线方程的应用。

五、教学准备1. 教学课件:圆锥曲线的相关图片、图形演示等。

2. 教学素材:圆锥曲线的实例问题。

3. 学生用书:《高中数学》圆锥曲线相关章节。

教案篇幅有限,后续章节(六、七、八、九、十)将陆续提供。

请随时查阅。

六、教学过程1. 导入:通过展示生活中的圆锥曲线实例,如旋转的伞、地球卫星轨道等,引导学生关注圆锥曲线在现实世界中的应用。

2. 新课导入:介绍圆锥曲线的定义,引导学生理解圆锥曲线的形成过程。

3. 性质探讨:引导学生发现圆锥曲线的性质,如对称性、渐近线等。

4. 标准方程求法:讲解椭圆、双曲线、抛物线的标准方程求法。

5. 巩固练习:布置相关练习题,让学生巩固所学知识。

七、课堂互动1. 小组讨论:让学生分组讨论圆锥曲线的性质,分享各自的发现。

2. 提问环节:鼓励学生提问,解答学生关于圆锥曲线方程的疑问。

3. 案例分析:分析实际问题,引导学生运用圆锥曲线方程解决实际问题。

八、课后作业1. 完成学生用书上的课后练习题。

2. 选取一个实际问题,运用圆锥曲线方程进行解答。

九、教学反思2. 反思教学方法:观察学生对圆锥曲线方程的掌握情况,调整教学方法,提高教学效果。

高中数学圆锥曲线满分教案

高中数学圆锥曲线满分教案

高中数学圆锥曲线满分教案
主题:圆锥曲线
目标:学生能够掌握圆锥曲线的基本概念和性质,并能够运用所学知识解决实际问题。

教学步骤:
第一步:引入(5分钟)
教师引入圆锥曲线的概念,告诉学生圆锥曲线是由平面与圆锥相交而产生的曲线,包括圆、椭圆、双曲线和抛物线。

第二步:椭圆(15分钟)
1. 讲解椭圆的定义和性质,包括离心率、焦点、直径等概念。

2. 讲解椭圆的标准方程和图像。

3. 给学生几道椭圆的练习题,让他们熟练掌握椭圆的性质和解题方法。

第三步:双曲线(15分钟)
1. 讲解双曲线的定义和性质,包括离心率、焦点、渐近线等概念。

2. 讲解双曲线的标准方程和图像。

3. 给学生几道双曲线的练习题,让他们熟练掌握双曲线的性质和解题方法。

第四步:抛物线(15分钟)
1. 讲解抛物线的定义和性质,包括焦点、准线、焦距等概念。

2. 讲解抛物线的标准方程和图像。

3. 给学生几道抛物线的练习题,让他们熟练掌握抛物线的性质和解题方法。

第五步:综合练习(15分钟)
给学生几道综合性的圆锥曲线练习题,让他们巩固所学知识,并运用所学知识解决实际问题。

第六步:总结与展望(5分钟)
教师对本节课所学内容进行总结,并展望下节课的内容,鼓励学生继续努力学习。

扩展活动:可以组织学生进行小组讨论,让他们自己设计一个圆锥曲线的应用问题,并进
行解答和讨论。

备注:教案内容仅供参考,具体教学过程可以根据学生的实陵情况进行灵活调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.抛物线:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,点F叫焦点,直线l叫做抛物线的准线。若取经过焦点F且垂直于准线l的直线为x轴,x轴与l相交于K,以线段KF的垂直平分线为y轴,建立直角坐标系,设|KF|=p,则焦点F坐标为 ,准线方程为 ,标准方程为y2=2px(p>0),离心率e=1.
2.【2012高考新课标文10】等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于 两点, ;则 的实轴长为()
【答案】C
【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题.
【解析】由题设知抛物线的准线为: ,设等轴双曲线方程为: ,将 代入等轴双曲线方程解得 = ,∵ = ,∴ = ,解得 =2,
2.解答直线与圆锥曲线相交问题的一般步骤:
设线、设点,联立、消元,韦达、代入、化简。
第一步:讨论直线斜率的存在性,斜率存在时设直线的方程为y=kx+b(或斜率不为零时,设x=my+a);
第二步:设直线与圆锥曲线的两个交点为A(x1,y1)B(x2,y2);
第三步:联立方程组 ,消去y得关于x的一元二次方程;

参数方程为 ( 为参数)。
焦点在y轴上的双曲线的标准方程为: 。
8.双曲线的相关概念,中心在原点,焦点在x轴上的双曲线: (a, b>0),
a称半实轴长,b称为半虚轴长,c为半焦距,实轴的两个端点为(-a, 0), (a, 0).左、右焦点为F1(-c,0), F2(c, 0),对应的左、右准线方程分别为 离心率 ,由a2+b2=c2知e>1。两条渐近线方程为 ,双曲线 与 有相同的渐近线,它们的四个焦点在同一个圆上。若a=b,则称为等轴双曲线。
∴ 的实轴长为4,故选C.
3.【2012高考山东文11】已知双曲线 : 的离心率为2.若抛物线 的焦点到双曲线 的渐近线的距离为2,则抛物线 的方程为
(A) (B) (C) (D)
【答案】D
考点:圆锥曲线的性质
解析:由双曲线离心率为2且双曲线中a,b,c的关系可知 ,此题应注意C2的焦点在y轴上,即(0,p/2)到直线 的距离为2,可知p=8或数形结合,利用直角三角形求解。
(a>b>0),参数方程为 ( 为参数)。
若焦点在y轴上,列标准方程为: (a>b>0)。
3.椭圆中的相关概念,对于中心在原点,焦点在x轴上的椭圆: ,
a称半长轴长,b称半短轴长,c称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(±a, 0), (0,±b), (±c, 0);与左焦点对应的准线(即第二定义中的定直线)为 ,与右焦点对应的准线为 ;定义中的比e称为离心率,且 ,由c2+b2=a2知0<e<1.
1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF1|+|PF2|=2a (2a>|F1F2|=2c).
第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0<e<1)的点的轨迹(其中定点不在定直线上),即
(0<e<1).
2.椭圆的方程,如果以椭圆的中心为原点,焦点所在的直线为坐标轴建立坐标系,由定义可求得它的标准方程,若焦点在x轴上,列标准方程为
学生姓名年级________授课时间__________教师姓名_________课时______
课题
圆锥曲线综合复习
教学目标
椭圆、双曲线、抛物线等多种圆锥曲线的综合题解答
重点
圆锥曲线综合
难点
圆锥曲线综合
教学内容
与教学过程
教学内容
与教学过程
教学内容
与教学过程
教学内容
与教学过程
一、综合复习全面讲解
一、基础知识【理解去记】
4【2012高考全国文10】已知 、 为双曲线 的左、右焦点,点 在 上, ,则
(A) (B) (C) (D)
2)斜率为k的切线方程为 ;3)过焦点F2(c, 0)倾斜角为θ的弦的长为

6.双曲线的定义,第一定义:
满足||PF1|-|PF2||=2a(2a<2c=|F1F2|, a>0)的点P的轨迹;
第二定义:到定点的距离与到定直线距离之比为常数e(>1)的点的轨迹。
7.双曲线的方程:中心在原点,焦点在x轴上的双曲线方程为
11.补充知识点
抛物线常用结论:若P(x0, y0)为抛物线上任一点,
1)焦半径|PF|= ;
2)过点P的切线方程为y0y=p(x+x0);3)过焦点倾斜角为θ的弦长为 。
二、直线与圆锥曲线的位置关系
一ቤተ መጻሕፍቲ ባይዱ知识整理:
1.考点分析:此部分的解答题以直线与圆锥曲线相交占多数,并以椭圆、抛物线为载体较多。
多数涉及求圆锥曲线的方程、求参数的取值范围等等。
第四步:由判别式和韦达定理列出直线与曲线相交满足的条件 ,
第五步:把所要解决的问题转化为x1+x2、x1x2,然后代入、化简。
3.弦中点问题的特殊解法-----点差法:即若已知弦AB的中点为M(xo,yo),先设两个交点为A(x1,y1),B(x2,y2);分别代入圆锥曲线的方程,得 ,两式相减、分解因式,再将 代入其中,即可求出直线的斜率。
9.补充知识点:
双曲线的常用结论,
1)焦半径公式,对于双曲线 ,F1(-c,0), F2(c, 0)是它的两个焦点。设P(x,y)是双曲线上的任一点,若P在右支上,则|PF1|=ex+a, |PF2|=ex-a;若P(x,y)在左支上,则|PF1|=-ex-a,|PF2|=-ex+a.
2)过焦点的倾斜角为θ的弦长是 。
椭圆有两条对称轴,分别是长轴、短轴。
4.椭圆的焦半径公式:对于椭圆 1(a>b>0), F1(-c, 0), F2(c, 0)是它的两焦点。若P(x, y)是椭圆上的任意一点,则|PF1|=a+ex, |PF2|=a-ex.
5.补充知识点:
几个常用结论:
1)过椭圆上一点P(x0, y0)的切线方程为: ;
4.弦长公式: ( k为弦AB所在直线的斜率)
三、高考真题
1.【2012高考新课标文4】设 是椭圆 的左、右焦点, 为直线 上一点, 是底角为 的等腰三角形,则 的离心率为()
【答案】C
【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.
【解析】∵△ 是底角为 的等腰三角形,
∴ , ,∴ = ,∴ ,∴ = ,故选C.
相关文档
最新文档