铸造工艺及工装设计
铸铁平板(铸铁平板)铸造工艺及工装设计的一般步骤
铸铁平板(铸铁平板)铸造工艺及工装设计的一般步骤
铸造工艺及工装设计的一般步骤
1)l对零件图纸进行审查和进行铸造工艺性分析。
2)选择铸造方法。
3)确定铸造工艺方案。
4}绘制铸造工艺图。
5)绘制铸件图。
6)填写铸造工艺卡和绘制铸型装配图。
7绘制各种铸造工艺装备图纸。
各种工装图以铸造工艺图为主要设计依据。
金属模具设计多用于大量生产,一般都经
试生产阶段。
在这阶段中,对铸造工艺方案、各种工艺参数以及浇冒系统设计等,用木模、木芯盒进行反复调试和修改,直到符合要求为止。
在此基础上绘出正式铸造工艺图和铸件图,铸件图经设计、机加工和铸工等部门共同会签之后方为有效。
应依照正式铸造工艺图和会签后的铸件图进行各种工装图的设计。
机器造型、制芯用的模板、砂箱、芯盒及成型压头等,还应满足铸造设备的要求。
近代化造型流水线和造芯机,如高压造型、射压造型、气动微震造型线以及热芯盒射
芯机等的工艺工装设计的基本知识。
第六章铸造工艺装备设计
第六章 铸造工艺装备设计第一节 概 述铸造工艺装备是造型、制芯和合箱过程中所使用的模具和装置的总称,其内容见教材表 61。
第二节 模样设计一、材质的选择1.木模适用于单件、小批量生产的各种铸件。
2.金属模样常用的金属为:适用于大量、成批生产的各种铸件。
3.聚苯乙烯泡沫塑料模(消失模)用于实型造型法、磁丸造型的中、小铸件和单件生产的中、大型铸钢件。
二、金属模样的结构设计1.模样本体结构类型平装式结构简单,容易加工,最常用。
嵌入式在特殊条件下应用,如模样部分表面凹入分型面以 下(图 62a);分型面以上模样过薄,加工、固定困难(图 62b);分型面通过模样圆角(图62c);很 小的模样(图 62d)而方便于加工、定位和固定等。
选定模样结构后,即可依铸造工艺图确定模样的外形。
图 6-2 嵌入式模样1-模样 2-底板2.壁厚及加强筋应尽量减轻模样的质量。
除了薄小模样(小于 50 ㎜×50 ㎜或高度低于 30 ㎜)以外,都应制成空 心结构。
平均轮廓尺寸大于 150 ㎜的模样,内部设加强筋。
3.固定和定位孔模样在模底板上的固定,可用螺钉或螺栓,用定位销定位。
模样上钻通孔,螺钉穿过模样与模底 板固定,称为上固定法,如图 64a 。
优点有:便于选择螺孔位置,钻孔和装配方便;缺点是:破坏模 样的工作表面,紧固后需用塑料或铝等填平模样表面上之螺孔坑。
模底板上钻通孔,模样上攻螺纹孔的 固定方法称下固定法,如图 64b 。
优点是模样工作表面不受损害;缺点是确定螺孔位置要避开模底板 底部之筋条,还要让出扳手空间,安装不甚方便。
下固定法用于模样高大且四周没有低矮的凸边可以利 用的条件下。
定位销孔的位置应选在模样上矮而平的部位,两孔间距尽量远。
每块模样上至少应设 2 个。
图6-4 模样的固定和定位a )上固定法b )下固定法1-模样 2-模底板 3-螺钉 4-定位销4.模样(芯盒)的尺寸标注模样(芯盒)的尺寸有两类:一类是与铸件有关的尺寸;另一类为非关联尺寸,如芯头长度等。
第五 六章 铸造工艺工装设计
6.工作内腔尺寸
热(壳)芯盒内腔尺寸只考虑铸造收缩率。
7.芯盒的定位与夹紧
多用定位销定位。静芯盒上 装销,动芯盒上装套。销直径 为φ15㎜、φ20㎜。 采用可靠的夹紧操作手柄。
8.排气
分盒面上开排气槽,死角处 钻孔,装排气塞。 可利用镶块、顶芯杆的间隙 排气。 总排气道面积应为射口面积 的0.1~0.2倍。
二、铸造工艺符号、表示方法和注意事项
铸造工艺符号及表示 方法是由原国家机械工 业部统一规定的,详见 教材 P148~158。 绘制铸造工艺图的注 意事项将在下一节结合 典型铸件铸造工艺图的 介绍中给予提示。
第二节
车轮轮毂
典型铸件铸造工艺图
Hale Waihona Puke 铸件重13.6 ㎏ ;HT200;主要壁厚为15mm;法兰盘 厚19mm;重要加工表面φ90和φ92 (内装轴承外圈)。
Lm ( L j Ly )(1 K )
式中
Lm —模样尺寸; Lj —零件尺寸; Ly —工艺尺寸,如机械加工余量、
起模斜度等。 K—铸造合金的线收缩率 铸件相关尺寸,可准确到0.1 ㎜ 。
模样标注实例
3)模样(芯盒)的壁厚及加强肋
为减轻质量,模 样(芯盒)都应制成 空心结构。 平均轮廓尺寸大于 150 mm的模样,内部 设加强肋。 金属模(芯盒)的 壁厚及加强肋见右图。
第一节
铸造工艺图
一、铸造工艺图的内容
以符合国家统一标准的 各种铸造工艺符号及表示 方法,在产品图上用不同 颜色反映全面工艺内容, 是完成后续工艺装备设计 的技术依据。
下 上
Ⅰ
上
下
Ⅱ
支架铸造工艺图
图中标出浇注 位置、分型面、加 工余量、不铸孔和 砂芯形状。浇注系 统、冒口、芯座及 芯头间隙等必要内 容。
铸造工艺及工装的设计共52页文档
为操作方便将砂芯分块的实例
(三)保证铸件壁厚均匀
使砂芯的起模斜度和模样的起模斜度 大小、方向一致,保证铸件壁厚均匀
保证铸件壁厚均匀
a) 不合理
b) 合理
(四)应尽量减少砂芯数目
用砂胎(自带砂 芯)或吊砂可减少砂 芯 , 右 图 为 12VB 柴 油机曲轴定位套的机 器造型方案。
砂胎
在手工造型时,遇到难
铸造工艺设计参数主要有:
铸件尺寸公差
铸件重量公差
机械加工余量
铸造收缩率 起模斜度 最小铸出孔及槽 工艺补正量 分型负数 反变形量 砂芯负数
非加工壁厚的负余量
分芯负数
一、铸件的尺寸公差 指铸件各部分尺寸允许的极限偏差
我国的铸件尺寸公差标准GB6414-86
ISO8062-1984《铸件尺寸公差制》
3
2
2
1
2
345
6
78
9 10 11 12 13 14 15 16
CT1
精度
CT16
铸件尺寸公差数值 (mm)
铸件基本尺寸
公差等级CT
大于 至 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-
10
- - 0.18 0.26 0.36 0.52 0.74 1.0 1.5 2.0 2.8 4.2 - - - -
除上述的原则外,还应使没块砂芯有足够的断面, 保证有一定的强度和刚度,并能顺利排出砂芯中的气 体;使芯盒结构简单,便于制造和使用等。
二、芯头设计
芯头伸出铸件以外不与金属接触的砂芯部分。 ➢ 对芯头的要求
✓ 定位和固定砂芯,使砂芯在铸造中有准确 的位 置,并能承受砂芯重力及浇注时液体 金属对砂芯的浮力,使之不破坏
轴承座铸造工艺及工装设计 说明书
毕业设计论文设计(论文)题目:轴承座铸造工艺及工装设计下达日期: 2007 年 4 月 28 日开始日期: 2007 年 4 月 28 日完成日期: 2007 年 6 月 8 日指导教师:韩小峰学生专业: 材料成型与控制技术班级:材料0401学生姓名:李春晖教研室主任:材料工程系摘要铸造是一种将金属熔炼成流动的液态合金,然后浇入一定的几何形状、尺寸大小的型腔之中,凝固冷却后成为成为所需要的零件毛坯的一种制作方法。
本文通过对铸造这一特殊工种的诠释和此铸件的特点相结合给予了比较合理的方法.从铸造工艺的设计到整个铸造工艺的设计我们对此都作了比较详细的论证、对比、数据和计算,并且从中选择较优的方法和方案给以了较合理的应用和实施。
首先我们对所设计的的铸件进行了认真的分析,读懂零件图的几何形状、主要结构和特殊部位以及铸件的工艺要求、工装要求等给以较合理的思考。
其次设计此铸件的整个工艺过程:其中包括铸造方法的选择、分型面的选择及确定、浇注系统的选择及计算设计、铁液的凝固、以及对所要产生缺陷的防止方法和补缩等问题上午考虑设计。
然后对所设计的工艺过程进行工装设计:其中包括模样的设计、模底板的设计、芯盒的设计、砂箱的设计等,而且对这些工装的定位及夹紧等问题进行解决。
最后对所设计的整个过程给以检验、总结。
进一步对此设计的成功率给以进一步的保障。
关键词:铸造,工艺,工装,缺陷BEARINGSEAT TECHNRQUE FROCK DEVISEABSTRACTMaking the smelt metal become the mobile liquid state alloy,pouring—in solidifies in the type cavity having the certain geometry form and dimension,becoming something be needed part blank after cooling down。
7.3铸造工艺设计解析
冒口
上
上
中
下
单件小批
中 下
放收缩率1% 余量:上面>侧面>下面
手工三箱造型 大批量
外 型 芯 块
两箱机器造型
7.3.5铸造工艺设计示例
例:支架零件如下图所示,材料为HT200, 单件、小批量生产工作时承受中等静载荷, 试进行铸造工艺设计。 1.零件结构分析:筒壁过厚,转角处未采用 圆角。修改后的结构如图b)所示。 2.选择铸造方法及造型方法 采用砂型铸造 (手工造型)中的两箱造型。 3.选择浇注位置和分型面
1.铸造工艺图: 利用各种的工艺符号,把制造模型和
铸型所需的资料直接绘在零件图上所得到 的图样。
即表示铸型浇注位置、分型面、浇冒口 系统、工艺参数、型芯结构尺寸、控制凝 固措施等的图样。
2. 铸件图:又称毛坯图,是反映铸件实际形 状、尺寸和技术要求的图样,也是铸造生产、 铸件检验与验收的主要依据。
(1)定义: 指铸件从线收缩开始温度冷却至室温时,
线尺寸的相对收缩量。 (2)选取: 大件、重要件不同部位可选取不同的收缩率; 一般件可选取同一收缩率。
4. 起模斜度
(1)定义:为了起模方便,在平行于起模方向的侧壁 加放的一定斜度。
(2)选取:对同一件,尽可能选用同一起模斜度; 立壁愈高,斜度应越小; 内壁的斜度值应大于外壁; 机器造型比手工造型斜度小; 金属模比木模斜度小。
3.铸型装配图:表示合型后铸型各组元之间
装配关系的工艺图。包括:浇注位置、型芯、 浇冒口系统和冷铁布置及砂箱结构和尺寸等。
7.3.2 铸造方法和造型方法选择
1.选择依据: 1)零件结构特点;2)合金种类; 3)生产批量等
2.选择原则: 单件、小批生产时一般采用砂型铸造
铸造工艺及工装设计
第二节 造型、造芯方法的选择
三、造型方法应适合工厂条件 每个铸工车间只有很少的几种造型、造芯方法,所以选择的 方法应切合现场实际条件。
四、要兼顾铸件的精度要求和成本 各种造型、造芯方法所获得的铸件精度不同,初投资和生产
率也不一致,最终的经济效益也有差异。
第三节 浇注位置的选择
浇注位置的选择
浇注位置:金属浇注时铸件所处的空间位置。同一个铸件, 可以有多种浇注位置。
交错接头适用于中小型铸件; 环形接头适用于大型铸件;
一、从避免缺陷方面审查铸件结构
(六)铸件内壁应壁均衡散热。
阀体的结构改进
一、从避免缺陷方面审查铸件结构
(七)壁厚力求均匀,减少肥厚部分,防止形成热节 热结处易造成缩孔、缩松和 热裂纹。
一、从避免缺陷方面审查铸件结构
零件结构的铸造工艺性分析 浇注位置 分型面的选择
1、机械加工余 量和最小铸出孔 2、拔模斜度 3、收缩率 4、铸造圆角 5、型芯头
铸造工艺参数
型芯的数量及其设计
浇注系统设计
冒口、冷铁、铸筋设计
模型图 合箱图 绘制铸造工艺图
第二章 铸造工艺方案
第一节 零件结构的铸造工艺性
零件的铸造工艺性指的是零件的结构应符合铸造生产 的要求,易于保证铸件品质,简化铸造工艺过程和降低 成本。 对产品零件图进行审查、分析作用: (1)审查零件结构是否符合铸造工艺的要求。 (2)在既定的零件结构条件下,考虑铸造过程中可能 出现的主要缺陷,在工艺设计中采取措施予以防止。
一、从避免缺陷方面审查铸件结构
(一)铸件应有合适的壁厚 最小壁厚:在各种工艺条下,铸造合金能充满型腔的最小 厚度。主要取决于合金的种类、铸件的大小及形状等因素。 临界壁厚:各种铸造合金都存在一个临界壁厚,砂型铸造, 临界壁厚约=3x最小壁厚。 缺陷分析: 铸件壁厚小于 “最小壁厚”。浇不足、冷隔。 铸件壁厚大于 “临界壁厚”。缩孔、 缩松、结晶组织粗 大。
铸造工艺及工装设计任务书
铸造工艺及工装设计课程设计任务书
1,用CAD绘制符合国家制图标准的铸件零件二维三视图(零件图就是第4次作业绘制的铸件图),经过指导老师检查合格打印出图,图纸采用A0图幅;(12月16日至17日,2天);
2、在A0铸件图样上用红蓝铅笔做铸造工艺设计,包括分型面、加工余量、分型(芯)负数、拔模斜度、铸造体(线)收缩率、补正量、冷铁,浇注系统设计、冒口设计、砂芯设计、工艺说明等;必须设计3种分型方案,从中选取一种合适的方案做铸造工艺设计,设计中冒口及浇注系统等设计须有详细的计算过程和计算依据;(12月18日至23日,6天)
3、铸造工艺图设计完成后,根据铸造工艺图设计金属模板装配图、金属芯盒装配图(中等难度砂芯),用A2图幅打印出图;(12月24日至29日,6天)
4、撰写铸造工艺及工装设计说明书,说明书必须是打印文件;(12月30日至元月3日,5天)
5、答辩。
(元月4日至元月5日,2天)
注:1)做课程设计时间包括星期六和星期天。
2)提前完成的同学经指导老师检查认可后,可以申请提前答辩,
提前答辩时间安排在12月29日至31日其中的一天。
3)本次课程设计时间及进程安排不受学校提前放假日期的影响,
完全按学校制定的原教学计划执行。
铸造方案设计
铸造方案设计铸造工艺方案设计,是整个铸造工艺及工装设计中最基本而又最重要的部分之一。
正确的铸造工艺方案,可以提高铸件质量,简化铸造工艺,提高劳动生产率。
铸造工艺方案设计的内容主要有:铸造工艺方法的选择;铸件浇注位置及分型面的选择;铸件初加工基准面的选择;铸造工艺设计有关工艺参数的选择,型芯的设计等。
一、铸造工艺方法的选择目前铸造方法的种类繁多,按生产方法可分为砂型铸造和特种铸造两大类,而砂型铸造按浇注时砂型是否经过了烘干又分为湿型、干型、表面干型和自硬型铸造。
特种铸造可分为金属型铸造、压力铸造、低压铸造、离心铸造、壳型铸造,熔模铸造、陶瓷型铸造,等等。
各种铸造方法都有其特点和应用范围,究竟应该采用哪一种方法,应根据零件特点、合金种类、批量大小、铸件技术要求的高低以及经济性加以综合考虑。
1.零件结构特点零件的结构特点主要包括铸件的壁厚大小、形状及重量大小等,应根据不同铸件的结构特点选择合适的铸造工艺方法。
(1)砂型铸造的特点①由于内部砂芯、活块模样、气化模及其他特殊的造型技术等有利条件,可以生产结构形状比较复杂的铸件。
②铸件的大小和重量几乎不受限制,铸件重量一般是几十克到几百千克。
③砂型铸造对铸件最小壁厚有一定限制。
(2)熔模铸造的特点①可以铸出形状极为复杂的铸件,其复杂程度是任何其他方法难以达到的。
虽然一个压型所能制出的熔模形状较简单,但可用几个压型分别制出复杂零件的不同部分,然后焊合在一起,组成复杂零件的熔模。
②熔模铸造可铸出清晰的花纹、文字。
③能铸出孔的最小直径可达0.5mm,铸件的最小壁厚为0.3mm,但不宜铸造壁厚大的铸件。
其比较适宜生产的铸件重量为几十克至几千克,但它能生产的铸件重量为几克至几十千克。
(3)金属型铸造的特点①金属型铸造的铸件重量范围一般为0.1~135kg,个别可达225kg。
②由于金属型的型腔是用机械加工方法制出的,所以铸件的结构形状不能很复杂,更应考虑从铸型中取出铸件的可能性。
砂型铸造工艺及工装设计
砂型铸造工艺及工装设计一、工艺流程设计砂型铸造的工艺流程设计是整个工艺的基础,包括以下步骤:设计铸造模具:根据产品需求和工艺要求,设计铸造模具的结构和尺寸。
制作砂型:根据模具和产品需求,制作符合要求的砂型。
浇注:将熔融的金属液体注入砂型,填充模具的型腔。
冷却:让金属液体冷却凝固,形成铸件。
脱模:将凝固的铸件从砂型中脱出,完成整个铸造过程。
二、铸造模具设计铸造模具的设计是整个工艺的核心,直接影响产品的质量和工艺的效率。
设计时需考虑以下几点:模具材料选择:根据产品需求和工艺要求,选择合适的模具材料。
模具结构确定:根据产品形状和尺寸,设计模具的结构和形状。
模具尺寸精度:根据产品要求和工艺条件,确定模具的尺寸精度。
浇口设计:浇口是金属液体注入模具的通道,设计时需考虑浇口的尺寸、位置和形式。
排气口设计:排气口是排除模具内的空气和挥发物的通道,设计时需考虑排气口的位置和大小。
三、砂型制作工艺设计砂型制作是整个工艺的重要环节,其质量直接影响产品的质量和工艺的效率。
设计时需考虑以下几点:砂型材料选择:选择符合要求的砂型材料,如黄沙、石英砂等。
砂型紧实度控制:控制砂型的紧实度,以保证砂型的强度和稳定性。
砂型透气性控制:控制砂型的透气性,以保证浇注过程中金属液体能够顺利填充模具的型腔。
砂型表面处理:对砂型的表面进行处理,以提高产品的表面质量。
四、浇注系统设计浇注系统是金属液体注入模具的通道,其设计直接影响到金属液体的流动和填充效果。
设计时需考虑以下几点:浇注系统结构形式:根据产品要求和工艺条件,选择合适的浇注系统结构形式。
浇注系统尺寸精度:根据产品要求和工艺条件,确定浇注系统的尺寸精度。
浇注速度控制:控制浇注速度,以保证金属液体能够平稳、充足地填充模具的型腔。
浇口位置选择:根据产品形状和模具结构,选择合适的浇口位置。
溢流槽设计:溢流槽是收集多余金属液体的结构,设计时需考虑溢流槽的位置和大小。
过滤网设置:过滤网是过滤金属液体中的杂质和气泡的结构,设计时需考虑过滤网的形式和材料。
砂型铸造工艺与工装设计
详细描述
针对大型船用柴油机缸盖的工装设计,采用了高强度和刚性的材料,确保了工装的稳定性和精度。同 时,加强筋和支撑结构的设计提高了工装的耐久性和使用寿命,减少了维修和更换的频率。
实例四:复杂阀体的工装设计
总结词
结构紧凑、定位准确、操作简便
VS
详细描述
复杂阀体的工装设计采用了紧凑的结构布 局,减少了占地面积和制造成本。准确定 位和夹紧系统保证了阀体的加工精度和一 致性,提高了产品质量。同时,人性化的 操作界面和便捷的调整方式使得操作过程 简单易懂,降低了操作难度和培训成本。
砂型铸造工艺的应用范围
机械制造
砂型铸造广泛应用于机械制造领域,如汽车、船舶、 航空航天等。
农业机械
在农业机械领域,砂型铸造工艺用于生产各种农机具 和零部件。
五金工具
五金工具制造中,砂型铸造工艺用于生产各种刀具、 量具等。
砂型铸造工艺的历史与发展
历史
砂型铸造工艺起源于古代中国,随着技术的发展和进步,逐渐传播到世界各地 。
发展
现代砂型铸造工艺不断改进和创新,采用新型材料和工艺技术,提高了铸件质 量和生产效率。
02
CATALOGUE
砂型铸造工装设计基础
砂型铸造工装设计的原则
功能性原则
工装设计应满足铸造生产的功 能需求,确保能够实现预定的
铸造工艺过程。
标准化原则
工装设计应遵循标准化原则, 尽量采用标准化的零部件和材 料,以提高互换性和降低成本 。
实例二:汽车发动机缸体的工装设计
总结词
模块化、柔性、高精度
详细描述
汽车发动机缸体的工装设计采用了模块化结构,便于后期维护和升级。同时,柔性化的设计使得工装能够适应不 同型号的缸体生产,提高了设备的利用率。高精度的定位和测量系统确保了缸体的加工精度和产品质量。
高锰钢锤头铸造工艺及工装设计毕业设计答辩PPT
壹 简介 贰 铸造工艺方案确定 叁 工艺设计 肆 华铸CAE模拟分析 伍 铸造工艺装备设计 陆 热处理工艺
一、简 介
高锰钢锤头是矿山、水泥等行业破碎物 料的易耗件,也是锤式破碎机核心零件之 一,锤头在破碎机高速运转时直接打碎物 料,工作环境恶劣,质量要求高,尤其是 锤头头部需要较高的耐磨性和抗冲击性。 其结构如下图所示。
下模样图
下模板图
3.热芯盒的设计
材料:HT200
芯盒内腔尺寸按公式: :Ab=(Ac±At)(1+εt) 计算
4.砂箱的设计
采用整铸式机器造型用 砂箱,材质为HT200
采用Z1410A顶箱 震压造型机,其 最大内框尺寸为 1200×800×350
六、热处理工艺
水韧处理定义:将钢加热到Acm以上保温一 段时间,使铸态组织中的碳化物溶解、共 析类型组织进行奥氏体化,铸态组织全部 消除,得到化学成分均匀的单相奥氏体组 织,然后快速冷却得到过冷的奥氏体固溶 体组织。
1.加热温度
对于不含其他合金元素的常规成分的高锰 钢的水韧处理温度以1050℃~1100℃最为 合适。
2.保温时间
适宜的保温时间与铸件壁厚有关,经 查阅资料得,保温时间取1~2h最好。
3.冷却
采用水淬冷却,并且时间要快,因为 冷却速度不足会在奥氏体中析出碳化物。
谢 谢!
二、铸造工艺方案确定
铸造工艺方案的确定主要有以下内容: 1.工艺性分析 2.造型材料的选择 3.造型、造芯方法的选择 4.分型面和浇注位置的确定
分型面的选择有两种方案,如图所示:
三、工艺设计
主要内容: 1.工艺参数的确定
机械加工余量:由于高锰钢硬度大,难于加工,因此不设定 加工余量。 铸造收缩率:由于高锰钢线收缩较大,常规的Mn13的线收缩 率为2.4%~3.0%,本次设计取3.0%。
铸造工艺方案及工艺图示例PPT课件
属液易于填充。缺点是凸台E、A和槽C都需采用活块或型
芯,而内腔型芯上大下小、稳定性差;若铸出轴孔,则
其缺点与方案Ⅱ同。
整理版课件
19
上述诸方案虽各有其优缺点,但结合具体条件,仍可找出 最佳方案。
(1)大批量生产 为减少切削加工量,九个轴孔应当铸 出。
此时,为了简化造型工艺只能采用方案工分型。为便于采用机器造 型,凸台和凹槽均应采用型芯。
可以看出,方案Ⅱ、 Ⅲ的优点多于方案I。
整理版课件
11
但在不同生产批量下,具体方案可选择如下: (1)单件、小批生产
由于轴孔直径较小、
勿需铸出,而手工造
型便于进行挖砂和活
块造型,此时依靠方
下
案Ⅱ分型较为经济合
上
理。
整理版课件
12
但在不同生产批量下,具体方案可选择如下:
(2)大批量生产
机器造型难以使用活 块,故应采用型芯制 出轴孔内凸台。
整理版课件
9
(2)方案Ⅱ 沿底面分型,铸件全 部位于下箱,为铸出 110 mm凹槽必须采用 挖砂造型。
方案Ⅱ克服了方案工的 缺点,但轴孔内凸台 妨碍起模,必须采用 两个活块或下型芯。 当采用活块造型时, φ30 mm轴孔难以下芯。
整理版课件
10
(3)方案Ⅲ 沿110 mm凹槽底面分 型。
优缺点与方案Ⅱ类同, 仅是将挖砂造型改用 分模造型或假箱造型, 以适应不同的生产条 件。
⑤冷铁的形状、位置、尺寸和数量;
⑥ 其他。
整理版课件
7
铸造工艺方案示例1
整理版课件
8
(1)方案I 沿底板中心线分型,即 采用分模造型。
优点:底面上110 mm凹槽 容易铸出,轴孔下芯方 便,轴孔内凸台不妨碍 起模。
《砂型铸造工艺及工装》课程设计说明书
《砂型铸造工艺及工装》课程设计说明书目录1绪言················································2铸造工艺设计···············2.1铸件结构的铸造工艺性·········2. 2铸造工艺方案的确定·················2.3参数的选择工艺2. 4砂芯设计2. 5浇注系统设计·············3铸造的工艺装备设计······3. 1模样设计·······3. 2模底板的设计·······················3. 3模样在模底板上的装配············4结束语·······参考文献1绪言我本次课程设计的任务是对灰铸铁支承座进行铸造工艺及工装设计。灰铸铁具有良好的铸造性能良好的减振性、良好的耐磨性能良好的切削加工性能、低的缺口敏感性。灰铸铁的抗拉强度、塑性和韧性远低于钢,力学性能较差,但抗压强度与钢相当。铸造是指将液态合金注入铸型中使其冷却、凝固,并进行后处理,最终成为金属制品的一种生产方法。铸件的生产过程,也就是从零件图开始,一直到铸件成品检验合格入库为止,要经过很多道工序,铸件的生产过程称为铸造生产工艺过程。本次设计采用砂型铸造,其最大优点就是生产成本低,为机械制造行业中广泛应用的毛坯生产工艺方法。在砂型铸造的过程中,考虑到铸件的结构,生产条件以及加工批量等因素,要对铸件工艺的设计作全面分析,为避免铸件的缺陷,我们要根据标准选择合理的工艺设计方法。由于每个铸件的生产任务和要求不同,生产条件不同,因此铸造工艺及工装设计的内容也不同。一般情况下,铸造工艺设计包括以下几种技术文件:铸造工艺图,铸造工艺卡,铸型装配图,铸件图,模样图,‘芯盒图,砂箱图,模板图。铸造工艺及工装设计的过程如下:(1)对零件图纸进行审查和进行铸造工艺性分析(2)选择铸造方法,确定铸造工艺方法(3)绘制铸造工艺图(4)绘制铸件图(5)绘制铸型装配图(6)绘制各种铸造工艺装配图工装图要以铸造工艺图为主要设计依据。2铸造工艺设计2. 1铸件结构的铸造工艺性生产铸件,不仅需要采用先进的合理的铸造工艺和设备,而且还要使零件结构本身符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。这种对于铸造工艺过程来说的铸件结构的合理性,称为铸件的“铸造工艺性’,它和铸造合金的种类,产量的多少,铸造方法和生产条件等有密切的关系。2. 1 .1审查铸件结构(一)铸件应有合适的壁厚避免浇不到、冷隔等缺陷,铸件不应太薄。本次设计的铸件材料为HT200,最大尺寸为194 X 155mm。查表得,铸件尺寸在200 X 200mm以下时,灰铸铁最小允许壁厚为x-6mm,铸件最小壁厚满足情况。从合金的结晶特点可知,随着壁厚的增加,中心部分的晶粒变粗大,常出现缩孔、缩松等缺陷,导致力学性能降低。表2-1指出,随着壁厚的增加,灰铸铁件的相对强度不断的降低。表2-1 壁厚与灰铸铁相对强度的关系所以铸件也不应设计得太厚,各种合金铸件的临界壁厚可按最小壁厚的3倍来考虑,铸件最大壁厚不满足情况,但由于铸型刚度要求较低,所以设计可行。(二)铸件有最小铸出孔最小铸出孔的尺寸和铸件的生产批量、合金种类、铸件大小、孔处铸件壁厚、孔的长度以及孔的直径有关。1.加工圆孔表2-2灰铸铁铸件的最小铸出孔(mm)<50mm,零件上的加工孔直径均小于30mm,所以均不用铸出。2.不加工孔一般情况下应尽量铸出。但是孔径<30毫米(小批生产),或孔的长度和孔的直径之比大于4时,则不便铸出。本设计中有一个可切削出来的的孔槽,因槽深度只有6mm,不用铸造出来。工艺图上有说明。(三)铸件结构不应造成严重的收缩阻碍注意壁厚过渡和圆角两壁交接若呈直角形,翔形成热节,铸件收缩时阻力较大,在此处经常出现热裂。铸件薄、厚壁的相接、拐弯、等厚度的壁与壁的各种交接,都应采用逐渐过渡和转变的形式,使用较大的圆角相连接,避免因应力集中导致裂纹缺陷。铸件有一处两壁成直角交接,该用圆角过渡,如工艺图所示.其余地方成直角相接的两壁,薄、厚壁相接都用圆角过渡,满足情况。(四)铸件内壁应薄于外壁铸件的内壁和肋等,散热条件较差,应薄于外壁,以使内壁、外壁能均匀的冷却,减轻内应力和防止裂纹。此铸件没有内壁和肋,不予考虑。(五)壁厚力求均匀,减少肥厚部分,防止形成热节薄厚不均的铸件在冷却过程中会形成较大的内应力,在热节处易于造成缩孔、缩松和热裂纹,因此应取消那些不必要的厚大部分。因零件的结构要求不可改变铸件的内外壁形状,不能达到厚度均匀,铸件各个部分不同壁厚的连接采用的是逐渐过渡。(六)利于补缩和实现顺序凝固对于铸钢等体收缩大的合金铸件,易于形成收缩缺陷,应仔细审查零件结构实现顺序凝固的可能性。但是此次设计的灰铸铁的结晶范围窄,更接近于层状凝固。凝固时的膨胀和液态收缩趋于相互补偿,补缩效果好,铸件品质良好。(七)防止铸件翘曲变形某些壁厚均匀的细长形铸件、较大的平板形铸件及壁厚不均的长形箱体,会产生翘曲变形。主要原因是结构刚度差,铸件各面冷却条件的差别引起的内应力,或者是壁厚相差悬殊,冷却过程中引起较大的内应力,造成铸件变形。本次设计的铸件结构不会翘曲变形。(八)避免浇注位置上有水平的大平面结构在浇注时,如果型腔内有较大的水平面存在,当金属液上升到该位置时,由于断面突然扩大,金属液面上升速度变得非常小,灼热的金属液面较长时间地、近距离烘烤顶面型壁,极易造成夹砂、渣孔、砂孔或浇不到等缺陷。应尽可能把水平壁改进为稍带倾斜的壁或曲面壁。本次设计的浇注位置上无水平大平面,符合条件,见工艺图。2.1.2从简化铸造工艺方面改进零件结构(一)改进妨碍起模的凸台、凸缘和肋板的结构铸件侧壁上的凸台(搭子)、凸缘和肋板等常妨碍起模,为此,机器造型中不得不增加砂芯。设计中由于分型面横切肋的最大截面和铸件的形状特点,不存在妨碍起模的问题。(二)取消铸件外表侧凹铸件外侧壁上有凹入部分必然妨碍起模,需要增加砂芯才能形成铸件形状。常可稍加改进,即可避免凹入部分。但由于此铸件结构不能改变,因此工艺图上必须设计1#砂芯。(三)改进铸件内腔结构以减少砂芯铸件内腔的肋条,凸台和凸缘的结构欠妥,常是造成砂芯多、工艺复杂的重要原因。改进后需简化工艺、工装设计,降低铸件成本。本次设计的铸件内腔无复杂形状,无需改进。(四)减少和简化分型面若铸件必须采用不平分型面,增加了制造模样和模板的工作量,尽量改进用一平直的分割面进行造型。铸件平面分型,所容易选择地分型面位置如图所示,上下型形状相同。(五)有利于砂芯的固定和排气工艺图上的2#砂芯,原本是一个水平轴孔砂芯和一个悬臂式砂芯,悬臂砂芯需用芯撑固定,改进后,悬臂砂芯和轴孔砂芯,连成一体,变成一个砂芯,取消了芯撑。(六)减少清理铸件的工作量铸件清理包括:消除表面粘砂、内部残留砂芯,上除浇注系统、冒口和飞翅等操作。这些操作劳动量大且环境恶劣,铸件结构设计应注意减轻清理的工作量。(七)简化模具的制造单件、小批生产中,模样和芯盒的费用占铸件成本的很大比例。为节约模具制造工时和材料,铸件应设计成规则的、容易加工的形状。这次设计的铸件形状易加工,无需改变其形状。(八)大型复杂件的分体铸造和简单小件的联合铸造有些大而复杂的铸件可考虑分成几个简单的铸件,铸造后再用焊接方法或用螺栓将其连接起来。一些很小的零件,如小轴套等,常可把许多小件毛坯连接成为一个较长的大铸件,这种方法称为联合铸造。这次设计的铸件为小铸件,但是也无需联合铸造。2. 2铸造工艺方案的确定铸造工艺方案概括地说明了铸件生产的基本过程和方法,包括造型和造芯方法、铸型类型、浇注位置和分型面等的方案确定。确定合理而先进的铸造工艺方案,对获得优质铸件,简化工艺过程,提高生产率,改善劳动条件,以及降低生产成本等起着决定性的作用。2. 2. 1造型、造芯方法及铸型种类砂型铸造不受零件形状、大小及其复杂程度的限制,原材料来源广,见效快、成本低。(一)造型和造芯方法及其选择选择铸造方法时应该根据铸件的结构特点、合金种类、铸件的生产批量和数量、铸件的尺寸精度及其车间的生产条件等进行。虽然手工造型和造芯所使用的工艺装备简单,灵活多样,适用性强,对小批量或成批量以及形状复杂的铸件有着广泛的用途,但是他的生产率低,铸造出来的铸件不易稳定,所以此次设计采用机器造型和造芯,从而提高效率保证铸造的要求,适用于成批或大批量生产中。在本次设计过程中,造型采用砂型造型,砂型铸造是一种以砂作为主要造型材料,制作铸型的传统铸造工艺。砂型铸造的适应性很广,小件、大件,简单件、复杂件,单件、大批量都可采用。砂型比金属型耐火度更高,但是砂型铸造也有一些不足之处:每个砂质铸型只能浇注一次,获得铸件后铸型即损坏,必须重新造型,所以砂型铸造的生产效率较低;又因为砂的整体性质软而多孔,所以砂型铸造的铸件尺寸精度较低,表面也较粗糙。(二)铸型的选择砂型铸造常用的铸型有干型,表面干燥型,湿型,自硬型和铁模复砂型。其中干型,表面干燥型,自硬型可适用于很多铸件,但一般用于中大型铸件。在本次设计中,结合铸件的尺寸分析,属于中小型铸件,采用的铸型为湿型。其特点为铸型不烘干,优点是成本低,生产率高,劳动条件得到改善易于实现机械化自动化。但是铸型水分多、强度低,易产生呛火、夹砂、气孔、冲砂、粘砂、涨箱等铸造缺陷。主要应用于单件、成批和大量生产的中小件,机械化,自动化的流水线生产中。在一般情况下,中小型铸件应尽可能的选用湿型,因为大批大量机械化的流水线生产中不可能采取干型,所以此次设计采用湿型。2.2.2浇注位置和分型面的确定浇注位置是指浇注时铸件所处的位置,分型面是指两半个铸型相互接触的表面。一般先从保证铸件的质量出发来确定浇注位置,然后从工艺操作方便出发确定分型面。一些质量要求不高或者外形复杂,生产批量又不大,为了简化工艺操作,也可以优先考虑分型面。铸件浇注位置要符合铸件的凝固方式,保证铸型的充填,注意以下几个原则:(1)一般情况下铸件浇注位置的上面比下面缺陷多,所以应将铸件的重要加工面或者主要受力使用面等要求较高的部位放在下面,若有困难则可放在侧面或斜面。(2)浇注位置的选择应有利于铸型的充填和型腔中气体的排除,所以,薄壁铸件应将大的平面放在下面或者侧立、倾斜,以防出现浇不足和冷隔等缺陷。(3)当铸件壁厚不均,需要补缩时,应从顺序凝固的原则出发,将厚大部分放在上面或者侧面,以便于安放冒口和冷铁。对于收缩较小的灰铸铁件,当壁厚差别不大时,也可以将厚部分放在下面靠自身上部的铁水补缩而不用冒口(4)确定浇注位置时应尽量减少砂芯的数量,同时有利于砂芯的定位、稳定、排气和检验方便。因此,较大的砂芯应尽可能使芯头朝下,尽可能避免砂芯吊在上箱或仅靠芯撑来固定。可采用多个铸件共用一个砂芯。根据以上的浇注位置的选择原则,设计的铸件的浇注位置选在铸件的侧面,如工艺图所表示的位置。分型面确立的基本原则是:(1)为了起模方便,分型面一般选在铸件的最大截面处,但是注意不要使模样在一箱内过高。(2)尽量将铸件的重要加工面或大部分加工面和加工基准面放在同一个砂箱内,而且尽可能放在下箱。以保证铸件尺寸的精确,减少铸件的飞边毛刺。(3)为简化操作过程,保证铸件尺寸精度应尽量减少分型面的数目,减少活块的数目。(4)为了便于生产,减少制造工艺装备的费用,分型面应尽量采用平直面。(5)分型面的选择应尽量减少砂芯的数目。(6)分型面的确定尽可能考虑到内浇口的引入位置,并使合箱后与浇注位置一致,以避免盒箱后再翻动铸型。综合上述,在本次设计中,铸件是对称的结构,对称的部分也方便取模,若是在最大截面分型铸件不易取出,将分型面选在对称面处,将整体均分放入上下箱,如工艺图所示。2. 2. 3砂箱中铸件数目的确定当铸件的造型方法、浇注位置和分型面确定后,应当初步确定一箱中放几个铸件,作为进行浇冒口设计的依据。一箱中的铸件数目,应该是在保证铸件质量的前提下越多越好。本铸件在一砂箱中高约97mm,长约202mm,宽约163mm,重约13. 47Kg。这里选用一箱一件,根据本铸件分型面的确定,可以先确定下箱的尺寸。根据铸件重量在11-}-25kg时,查得模型的最小吃砂量a=30mm,h=50mm, c=60mm, d或e=50mm, f=30mm, g=30mm,先确定下箱的尺寸,再根据表格我们可以选择标准的砂箱。选用Z145A顶杆式起模的震实式造型机,砂箱最大内尺寸为500mm X 400mm X 300mm。根据本铸件的大概尺寸,在本次设计中采用一箱一件,因为浇注系统位于上箱,所以上砂箱的高度我们还要考虑到浇注系统才可以确定。2. 3参数的选择工艺铸件的工艺设计,除了根据铸件的特点和具体的生产条件正确地选择铸造方法和确定铸造工艺方案以外,还应该正确地选择合适的工艺参数。2. 3. 1铸造收缩率的确定铸件在冷却和凝固过程中,体积一般都要收缩。由于铸件的固态收缩(线收缩)在使铸件各部分的尺寸小于模样原来的尺寸,为了使铸件冷却后的尺寸与铸件图示尺寸一致,则需要在模样或者芯盒上加上其收缩的尺寸。增加的这部分尺寸为铸件的收缩量,一般用铸造收缩率表示:k=(L模样一L铸件)/L铸件X 100% 式中:L模样—模样尺寸;L 铸件—铸件尺寸铸造收缩率主要和铸造合金的种类及成分有关,同时还取决于铸件在收缩时受到阻碍的大小等因素。在本次工装设计中模样材料为铸铝,铸造收缩率选为1%。而灰铸铁的结晶范围窄,更接近于层状凝固,凝固时的膨胀和液态收缩趋于相互补偿,所以铸造工艺设计时可不考虑灰铸铁的收缩给尺寸带来的影响。2. 3. 2机械加工余量的确定机械加工余量是指在铸件加工表面上留下的、准备用机械加工方法切去的金属层的厚度,目的是获得精确的尺寸和光洁的表面,以符合设计的要求。铸件加工余量的大小,要根据铸件的合金种类,生产方法,尺寸大小和复杂程度,以及加工面的要求和所处的浇注位置等因素来确定。表2-3 二级精度灰铸铁件机械加工余量(mm)查表得,顶面加工余量为5mm,底、侧面为4mm。2. 3. 3拔模斜度的确定为了在造型和制芯时便于起模而不致损坏砂型和砂芯,应该在模样或芯盒的出模方向带有一定的斜度。如果零件本身没有设计出相应的结构斜度时,就要在铸型工艺设计时给出拔模斜度。拔模斜度的大小应根据模样的高度,模样的尺寸和表面光洁度以及造型方法来确定,见表2-4表2-4 拔模斜度金属模测量高度在20- 50mm,a=0.5-1.2mm,α=0°45′-2°;测量高度在x-100mm, a=1.0一1. 5mm,a =0°45′-1°。2. 4砂芯设计砂芯主要用于形成铸件的内腔和孔,影响铸件的质量,铸造工艺过程和铸造工艺装备。一个铸件所需要的砂芯数量,主要取决于铸件的结构和铸造工艺方案。在满足砂芯支撑稳固、定位准确和排气通畅的情况下,芯头的数量越少越好,本铸件决定使用2个砂芯。芯头是砂芯的重要组成部分,其作用一般为定位、支撑和排气。定位主要是通过芯头与芯座的配合,便于将砂芯准确的安放在砂型中;支撑主要是砂芯通过芯头支撑在铸型中,保证砂芯在它本身的重力和金属液的浮力作用下位置不变;排气主要是在浇注凝固过程中,保证砂芯中产生的大量气体能够及时的从芯头排出铸型。一个砂芯的芯头能否满足这三方面的要求,主要是由芯头的形式、个数、形状和尺寸决定的。根据芯头在砂型中的位置,可分为垂直芯头和水平芯头。考虑铸件结构将砂芯设计为两个,砂芯1#和2#配合在一起,砂芯2#为铸件内的水平大砂芯,砂芯1#为悬臂砂芯。表2-5 水平芯头的长度(mm)2#最长两端,芯头长40mm,短端芯头长30mm, 1#为悬臂砂芯,另外查得芯头长30~40mm.在大量的生产中,为了加速下芯合箱及保证铸件质量,在芯头的模样上常常做出压环、防压环和集砂槽。压环用来阻止金属液钻进砂芯的通气道;防压环用来防止芯头压坏芯座的边缘后,散砂落入型肿:集砂槽用于存放散落的砂粒。表2一6 压环、防压环和集砂槽的尺寸(mm)芯头横截面的尺寸,一般决定于铸件相应部位孔眼的尺寸,为了便于下芯合箱,芯头应有一定的斜度,芯头和芯座之间应留一定的间隙。表2-7 芯头斜度经查表得下芯头的斜度为1°30',芯头与芯座的间隙为0. 5mm。本次设计过程中砂芯1#和2#芯头的尺寸较小,作用在芯头上的重力和浮力不大,因此不必验算芯头的尺寸。2. 5浇注系统设计芯头浇注系统是砂芯中引导液态合金流入型腔的通道。生产中常常因浇注系统设计安排不合理,造成砂眼、夹砂、气孔、粘砂、缩孔、缩松、浇不足、变形、裂纹、偏析等缺陷。浇注系统与获得优质铸件,提高生产效率和降低铸件成本的关系是密不可分的。常用的浇注系统大多由浇口杯、直浇道、横浇道、内浇道等部分组成。2. 5. 1浇注系统的类型选择表2-8浇注系统各组元选择浇注系统分为开放式,封闭式,半封闭式,封闭一开放式几种类型,考虑本铸件采用湿型铸造且铸件本身较小的特点,以及浇注系统各组元的断面比关系,内浇道对铸件型腔的引注高度,浇道的结构等,选择封闭式浇注系统,断面F直>F横>F内。浇注开始时液态合金很快充满浇注系统,铸件成品率高,撇渣能力较强,浇注初期也有一定的撇渣能力。2. 5. 2浇注系统断面尺寸的确定(1)水力学近似计算公式:计算浇注系统,主要是确定最小断面积(阻流断面),然后按经验比例确定其他组元的断面积。封闭式浇注系统的最小断面是内浇道,以伯努利方程为基础的水力学近似计算公式是:F内=G/(μ×t×0. 31 √Hp) ( cm2)式中:F内—内浇道总断面积(cm2);G—流经内浇道的液态合金重量(Kg );μ—流量总耗损系数;t—浇注时间(s);Hp—平均静压力头(cm).(2)液态合金重量:灰铸铁的密度为7. 8kg/cm3,算出铸件的质量为12.47kg,加上浇注系统中金属液的损耗,铸件G=12.47kg X (1+20% ) =14.965kg.(3)浇注时间t:G==14.965kg,铸件壁厚在8-15mm,系数S取2. 2 。t=S G=8. 51s(4)流量系数μ:a =0. 5(铸型阻力小)按表修正:有两个内浇道,阻力加大,μ值取0. 05.得μ=0. 5-0. 05=0. 45。确定平均压头Hp:中间注入,p=c/2, c=194cm.由Hp=H0-p2/2c=Ho-c/8, Ho=H M+c/2>Ltan a +c/2其中,L=200mm,铸件壁厚在8 ~15mm,压力角α=9°~10°,取10°,得H0>131mm,取H0=150mm,H0为上砂箱高度。得Hp=12.6cm, H M= 53mm。F内=14.965/(0. 45 X 8. 51X 0. 31 X √12.6) =3. 55cm2。设置两个内浇道,则每个内浇道截面积为1. 78cm2。查表得选择II型内浇道,取F内=1.8cm2。则内浇道总截面积为3.6 cm2截面尺寸:A=16mm, B=12mm, C=13mm由封闭式系统各组元的断面比为:F内: F横: F直=1: 1. 1: 1. 15。则F横=3. 96cm2,查表得选择II型横浇道,取F横=4cm2截面尺寸:A=30mm, B=18mm, R=13mmF直= 4.14cm2,圆形截面,查表可得,直浇道下部最小直径为25mm。查表得,浇口杯尺寸:D1=66mm, D2=62mm, h=50mm.-.(6)核算最小剩余压头HMH M=-上砂箱的高度,直浇道中心到铸件最高最远点距离L=200mm,若压力角α=10°,我们只需要H M大于35.3mm即可,这样进行浇铸,就能得到轮廓清晰的完整铸件。考虑到浇注系统的高度,我们取上箱高度为150mm,即上箱的尺寸为500x400x150mm。2.5.3冒口的设计常见的铸造缺陷如缩孔、缩松、裂纹等都与铸件的凝固和收缩有关,在铸件的厚实部位常设置冒口,并按顺序凝固原则使冒口最后凝固。灰铸铁的结晶范围窄,更接近于层状凝固。凝固时的膨胀和液态收缩趋于相互补偿。故灰铸铁件补缩所需要的铁水的量少,铸型刚度要求较低,一般灰铸铁件可不设置冒口。3铸造的工艺装备设计3. 1模样设计本次设计的是下模样。本设什中来用就是金属模样,选ZL102铸造铝合金,其收缩率为1%模样结构的设计过程如下:1)模样尺寸的确定模样的尺寸=铸件尺寸X (1+K);式中,K为铸件收缩率。计算得模样外尺寸:A=273.1mm, B=256.1mm, H=98.0mm。对于芯头及冒口尺寸按原工艺图计算。因模样壁厚为8mm,查表得模样非工作面圆角半径为3mm。2)模样的壁厚和加强筋模样平均轮尺寸(A+B) /2=(273.1+256.1)/2mm=246.6mm<500mm,查表得,铝合金模样壁厚8mm。模样加强筋取知道分型面上的筋,一般将加强筋的厚度设计为模样壁厚8mm,查表加强筋下端厚度为6mm,铸造圆角为5mm。因模样形状属于非圆形截面,加强筋的布置属II类,根据(A+B) /2在250-500mm, A/B=273.1/256.1=1.1,查得,a=140mm, b=175mm因为a>A/2, b>B/2,则仅在模样长度和宽度中心轴上设有交叉十字形加强筋。模样高度98. 0mm< 100mm,查得筋的斜度取1°30'。3)模样类型的选择本次设计采用机器造型用金属单面模样。4)模样技术要求模样表面光洁度:模样工作表面为▽6,模样分型面为▽4,模样定位销孔为▽6~▽7。模样装配凸耳采用外凸耳。3. 2模底板的设计本次设计的是下模板,单面模板采取的是顶杆式,模底板材料决定为灰铸铁。本次设计选用的Z145A造型机为可调节顶杆式起模的镇压式造型机,顶杆起模行程为150mm。Z145A 造型机砂箱最大内形尺寸为500 X 400mm 。模样外尺寸:A=273.1mm, B=256.1mm,H=98.0mm。根据铸件重量在11~25kg,查得模型的最小吃砂a=30mm,b=50mm,c=60mm,d=50mm,H=98. 0mm。砂箱最大尺寸适合,且其内只能放一个模样,砂箱高度>98.0mm+60mm=158mm.造型选用的砂箱尺寸500 X 400 X 180mm。材料为铸铁。砂箱平均尺寸<500mm,高度<200mm,查表得b=18mm。其配合的模底板尺寸:A0=A+2b=536mm,B0=B+2b=436mm 模底板的材料为铸铁,高度在80~150mm,取90mm,小于顶杆的起模行程。加强筋的距离由模板的平均轮廓尺寸决定,查表为K=300mm,K1=250mm.因模底板尺寸A0= 536mm,B0=436mm,所以在模底板上将加强筋布置成工装图上所示。表3-1 壁厚和加强筋(单位:mm)模底板定位销孔中心距应根据所配用砂箱销套的中心距C来确定,用同一钻模钻出。表3-2(单位:mm )本设计中选用直径20mm的定位销。M的值取75mm,则C=A+2M=600+2 X 75=750mm。模底板与砂箱之间常常用定位销和销套定位,此处只设计定位销。在造型过程中为使砂箱不被卡死常。
第三讲 铸造工艺装备设计PPT课件
5
3. 砂箱结构设计应注意的问题
1)强度要求: ❖ 砂箱应有足够的强度和刚度,以保证使 用过程中不变形、不断裂, ❖ 在起吊时、翻箱时操作方便,安全可靠, ❖ 浇注时能承受金属液的压力和热作用。 ❖ 在满足强度和刚度要求的前提下应使砂 箱的重量最轻。
6
2)功能要求: ❖砂箱应满足铸件在生产过程中的各项工
38
39
五、 砂箱的紧固装置
合箱后还要将上下箱夹紧,以防搬运时和浇 注时抬箱。常用的夹紧装置有以下几种:
1.楔形卡,常用于成批和大量生产的中小 型砂箱。
2.弓形卡和夹紧框用于单件小批生产的中 小型砂箱。另外,在大量流水生产和脱箱造 型时常用成型压铁。
40
41
42
六、 砂箱的吊运装置
砂箱的吊运装置,主要应考虑搬运时安全可靠, 翻箱时灵活方便。
应用最多的是圆销。
36
37
3. 定位销套
为了增加耐磨性,在箱耳的销孔内应镶销 套。另外在砂箱使用过程中,由于受热或受型 砂的张力作用,很容易变形,使两端定位销的 中心距增大。为了适应这种情况,将砂箱一端 的销套内孔作成圆形的(称为定位销套);另 一端的销套内孔作成椭圆形的(称为导向销 套)。
销套与箱耳孔的配合采用基孔制二级精度 静配合或过渡配合;当砂箱不大或要求不高时, 也可选用三级或四级精度的静配合。销套与定 位销的配合是基轴制。
18
19
3)砂箱角
砂箱角是应力集中处,使用和铸造时常出现裂纹,应 给予特别的注意。 本次课程设计采用不同心的圆形砂箱角。
4)砂箱的加强筋
为了提高砂箱的强度和刚度,节省材料,通常在砂 箱壁上作出纵、横加强筋。一般中大型砂箱都设有加 强筋。
①平均轮廓尺寸小于750mm的小砂箱可不设加强筋, ②高度大于300mm在拐角处设横筋,其它部位设竖筋; ③ 高 度 300mm—500mm 的 砂 箱 设 一 道 横 筋 , 500mm 以上设两道横筋。
“铸造工艺与工装设计”课程教学做方案设计与实施
、
高职 铸 造专 业学 生特 征
美 国心理学 家霍华 德 . 力 Ⅱ 德 纳在 2 0世 纪 8 0年代 提 出多元 智 能理 论 ( 见图 1 ) . 将人 的智 能分 为 8种 类 型。 根 据多元 智能理 论 , 每个 个体 的智能 结构不 同 , 表
义 的工作 环境 中 .依 靠学 生 自我 行动 来 构建 其工 作
程具 有知识量大 和综合性强 的特 点 , 课程教 学难度 大 。 依据 现代职业教育 理念 . 遵 循 的职 业教育规 律 . 构建 高
现代 构 建主 义认 为 .直 正有 意 义 的学 习是 根据 个 体 已有 的 经验 和现 存 的文本 与 理念 . 由个 体 主动
职教学课程 内容和教学体 系 .探讨 和创新 高职教 学方 法. 培养高 素质的铸造专业 技术人才 是“ 铸造工 艺与工
一
3 5
“ 铸造工 艺与工装 设计 " 课程 教学做方 案设ቤተ መጻሕፍቲ ባይዱ 与实施
◎ 高 宗 为
摘 要: 文章在分析“ 铸造工艺与工装设计” 课程特点及 高职 学生智力与心理类型的基础上, 基 于对 行 动导 向教 学 方法 “ 教 学做 一 体 ” 的深 入理 解 , 重构课 程教 学体 系 , 制订 “ 教 学做 一体 ” 的 实施 方案 。 关键 词 : 铸造工艺; 教 学做 一体 ; 行 动 导向 ; 工装 设计
三、 “ 铸 造 工 艺 与 工 装 设 计 ” 教 学 做 一 体 教 学 体
系构建
1 . 课 改思路
性. 这 类学 生 教学 需 要 根 据 知 识 结 构 类
知
传统 的课 堂教 学法 \内 人际 省 / / \ \ 逻辑 J 而 动觉 、 视 觉智 能 型
砂型铸造工艺与工装设计
1. 设备能力:包括起重运输机的吨位和最大起重高度,熔
炉的形式,吨位和生产率,造型和制芯机的种类,机械化程
度,烘干炉和热处理的能力,地坑尺寸,厂房高度和大门尺
寸等。
第三页,共20页。
2. 车间原料的应用情况和供应情况。
3. 工人技术水平和生产经验。 4. 模具等工艺装备和制造车间的加工能力及生产经验。
第十三页,共20页。
工装图 模样图 模板图 芯盒图 砂箱图 压铁图 量具图 样板图 夹具图
铸造工艺设计程序:
零件的铸造工艺性分析
工艺设计(画出工艺图)
写出工艺卡
进行工装设计(画出相关工装图)
模具加工组装的依据
工装模具设计的依据
第十四页,共20页。
绘制 铸造工艺图 及铸件图
按 JB2435— 78 《铸造工艺符号及其表示方法》
第九页,共20页。
铸造+455工艺图
第十页,共20页。
支座的铸造工艺图、模样图及合箱图
图 支座的铸造工艺图、模样图及合型图
a)零件图 b)铸造工艺图(左)和模样图(右) c)合型图
第十一页,共20页。
衬套零件图、铸造工艺图、铸件图
零件图
铸造工艺图
铸件图
第十二页,共20页。
轮毂的零件图与铸造工艺图
第一节
铸造工艺设计的概念、依据、内容和程序
第一页,共20页。
ห้องสมุดไป่ตู้
一. 概念 铸造工艺设计:就是根据铸造零件的特
点,技术要求,生产批量和生产条件等,确 定铸造方案和工艺参数,绘制工艺卡等技术 文件的过程。
第二页,共20页。
二、设计依据
(一) 生产任务
a. 铸造零件图样 b. 零件的技术要求 c. 产品数量及生产期限
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 铸造工艺设计的概念、设计依据、内容 及程序
铸造 工艺 设计
要求根据零件的结构特点,技术要求, 生产批量和生产条件,确定铸造方案 和工艺参数,绘制铸造工艺图,编制 工艺卡等技术文件的过程。
第一节 铸造工艺设计的概念、设计依据、内容及程序
一、铸造生产的特点 1.适应范围广 2.可制造各种合金。如铸铁、铸钢、铸铜等 3. 铸件尺寸精度高 4.成本低
2 重要加工面应朝下或呈直立状态
第三节 浇注位置的确定 3 使铸件的大平面朝下,避免夹砂结疤类缺陷
第一节 零件结构的铸造工艺性 3 改进铸件内腔结构以减少砂芯 4 减少和简化分型面
5 有利于芯子的排气和固定
第一节 零件结构的铸造工艺性
6 减少清理铸件的工作量
7 简化模具的制造
第一节 零件结构的铸造工艺性 8 大型复杂件分体铸造和简单小件联合铸造
第二节 造型、造芯方法的选择
一 造型方 法的选择
第二节 铸造工艺设计经济指标和环境保护 的关系
铸件的工艺出品率=
铸件重量 铸件+浇冒系统
100%
铸件成品率=
铸件重量 投入的金属原料总重
100%
第二章 铸造工艺方案的确定
第一节 零件结构的铸造工艺性
零件结构的 铸造工艺性
零件结构应符合铸造生产的要求,
易于保证铸件品质,简化铸造工 艺过程和降低成本
第三节 浇注位置的确定
二 浇注位置的确定原则
1 铸件的中重要部分应尽量置于下部 2 重要加工面应朝下或呈直立状态 3使铸件的大平面朝下,避免夹砂结疤类缺 陷 4 应保证铸件能充满 5 有利于铸件的补缩 6 要注意保证砂芯在铸型中的稳定,排气顺 畅,下芯检验方便
第三节 浇注位置的确定
1 铸件的中重要部分应尽量置于下部。 下部分在静压力作用下凝固并得到补缩,组织致密
1 优先选用湿型 2 造型及造芯方法的选择应 与实际生产相适应 3 造型方法应适合工艺条件 4 要兼顾成本
第二节 造型、造芯方法的选择
(1)铸件过高,金属静
应 用 湿 型 注
压力超过湿型的抗压强 度时,考虑干型等
(2)铸件上部有较大的 水平壁
(3)造型过程长或需长
1)手工造型,一 般选用普通粘土
2)机器造型,一 般膨润土,造型
3)干、湿铸型的 比较
意
时间等待浇注的砂型
的
(4)型内防止冷铁较多
问
时,应避免使湿型,表
题
干型的烘干深度一般在
15~80mm
第二节 造型、造芯方法的选择
干、 湿铸 型的 比较
A 干铸型比湿铸型强度高 高度较高,轮廓较大的铸型用干型 大平面铸件用干型 B 干比湿抗压能力强 C 干比湿耐高温能力强 D干型内腔空气润湿度高 E 金属凝固时间长用于干型 干型 (表面干型,铸型表面 20~30mm,全干型)
第三节 浇注位置的确定
一、浇注位置 铸件在浇注时在型内所处的位置与状态
1、找出铸 件三大重要 部位
2、考虑如 何避免缺陷
3、控制凝 固
1)重要的机械加工面 2)重要的受力面 3)重要的承压面
1)厚大部分容易出现收缩缺陷 2)薄壁部分易出现浇不足,冷隔, 3)大平面易出现鼠尾夹砂 4)壁厚差距大部分易出现应力集中 ,裂纹
第一节 零件结构的铸造工艺性
1 铸件应有适宜的壁厚
主要原因: 1 )避免冷隔和浇不足 2 )合金成分 3 )浇注温度 4 )铸件尺寸大小 5)铸型本身的冷却能力
第一节 零件结构的铸造工艺性
2 铸件壁的连接应逐渐过渡(避免热节) 两壁成直角连接就形成热节,收缩时一旦受阻, 就易形成裂纹,为此壁与壁之间应以圆角过渡。
6 防止铸件翘曲变形(上表面散热快,上 表面边缘先结壳) 7避免浇注位置上有水平的大平面结构
第一节 零件结构的铸造工艺性
二 从简化铸造工艺改进零件结构
1 改进妨碍起模的凸台,凸缘和肋 板的结构 2取消铸件的外表侧凹 3 改进铸件内腔结构以减少砂芯 4 减少和简化分型面
第一节 零件结构的铸造工艺性 1 改进妨碍起模的凸台,凸缘和肋板的结构 2取消铸件的外表侧凹
零件 设计 步骤
1 功用设计 2 依据铸造经验修改和简化设计 3 熔化设计 4 经济效益
第一节 零件结构的铸造工艺性
审查、分 析零件图 的作用
1 审查零件结构是否符合铸造工艺的 要求
2 分析铸造过程中可能出现的主要缺 陷,在工艺设计中采取措施加以防止
审查 的主 要方 面Fra bibliotek一 从避免缺陷方面审核铸件结构 二 从简化铸造工艺改进零件结构 三 加工基准和某些技术条件的合理 性
1 内容
1)根据零件图绘制铸造工艺图 2)根据工艺图绘制铸件图 3)铸型装配图 4)铸造工艺卡 5)铸件操作工艺规程 6)铸件模具及工装的设计图 7)数值模拟
第一节 铸造工艺设计的概念、设计依据、内容及程序
三 设计内容和程序
2 程序
1)零件的技术条件及结构工艺性分析 2)选择铸造及造型方法 3)确定浇注位置及分型面 4)选择工艺参数 5)设计浇冒系统以及冷铁,铸肋 6)砂芯设计 7)在完成工艺图基础上,绘制铸件图 8)在完成砂箱图基础上 绘制铸型装配图 9)编制工艺卡 10)在工艺图基础上设计模具图与模具装配图
第一节 零件结构的铸造工艺性
从避 免缺 陷方 面审 核铸 件结 构
1 铸件应有适宜的壁厚, 2 铸件壁的连接应逐渐过渡(避免热节) 3 铸件的内壁薄于铸件外壁(内外散热 有别) 4 壁厚力求均匀,减少肥厚部分,防止 出现热节 5 有利于补缩,和实现顺序凝固 6 防止铸件翘曲变形 7避免浇注位置上有水平的大平面结构
第一节 零件结构的铸造工艺性
3 铸件的内壁薄于铸件外壁(内外散热有别) 由于散热条件的差异,避免产生较大的应力。
4 壁厚力求均匀,减少肥厚部分,防止出现热节
第一节 零件结构的铸造工艺性
5 有利于补缩,和实现顺序凝固
凝固——收缩——体积亏损(孔 松) ——补给(重力 压力)——液体在顶 端
第一节 零件结构的铸造工艺性
第一节 铸造工艺设计的概念、设计依据、内容及程序
二 设计依据
1 生产任务 2 生产条件 3 考虑经济性
1)铸件零件图 2)零件的技术要求 3)产品数量级生产期限
1)设备能力 2)车间原料 3) 工人技术水平和生产经验 4)模具及装备的加工能力
第一节 铸造工艺设计的概念、设计依据、内容及程序
三 设计内容和程序