触发器与时序逻辑电路
电工电子技术基础 第2版 第11章 触发器与时序逻辑电路
RD
SD
Q
0
1
0
1
0
1
1
1
不变
0
0
禁用
基本 RS 触发器状态表
节首页 上一页 下一页
第11章 触发器和时序逻辑电路——双稳态触发器
逻辑功能
RD SD 00 01 10 11
Q 不定
0 1 保持
功能 不允许
置0 置1 记忆
第一节 双稳态触发器 第二节 寄存器 第三节 计数器
节首页 上一页 下一页
第11章 触发器和时序逻辑电路
思政引例ห้องสมุดไป่ตู้
非学无以广才, 非志无以成学。
——诸葛亮
章目录 上一页 下一页
第11章 触发器和时序逻辑电路
思政引例
触发器(Flip-Flop,FF)具有记忆功能的时序逻辑 组件,记录二进制数字“0”和“1”。触发器由逻辑门 电路组合而成,电路在任一时刻输出信号不仅取决于该 时刻电路输入信号,而且还决定于电路原来状态。时序 逻辑电路具有记忆功能。计数器、寄存器电路。RS触发 器、K触发器和D触发器逻辑符号和逻辑功能,弄清触 发器翻转条件。了解数码寄存器和移位寄存器及二进制 计数器和二一十进制计数器的工作原理。
电路结构
四门钟控型 维持阻塞型
主从型
T触发器
章目录 上一页 下一页
第11章 触发器和时序逻辑电路——双稳态触发器
11.1 双稳态触发器
两个稳定的工作状态(1态和0态 分类: a. 按逻辑功能
RS 触发器、 JK 触发器、D 触发器
b. 按其结构 主从型触发器、维持阻塞型触发器
触发器与时序逻辑电路
将状态1100 反馈到清零端 归零
将状态1011 反馈到清零端 归零
第2页
用异步归零构成十二进制计数器,存在一个极短暂的过渡状态1100。十二进制计数器从状态0000开始计数,计到状态1011时,再来一个CP计数脉冲,电路应该立即归零。然而用异步归零法所得到的十二进制计数器,不是立即归零,而是先转换到状态1100,借助1100的译码使电路归零,随后变为初始状态0000。
触发器有两个稳定的状态:“0”状态和“1’状态; 不同的输入情况下,它可以被置成0状态或1状态; 当输入信号消失后,所置成的状态能够保持不变。
第2页
1
2
3
4
10.1 触发器
一对具有互非关系的输出端,其中Q 的状态称为触发器的状态。
第2页
1.1. RS触发器
一对输入端子均为低电或有效。
基本RS触发器
F1:在Q0为1时,再来一个CP计数脉冲才翻转,但在Q3为1时不得翻转;
第2页
F0:每来一个CP计数脉冲翻转一次; 选用4个CP下降沿触发的JK触发器F0、F1、F2 、F3。
10.2.2 十进制计数器
驱动方程
第2页
2、异步十进制加法计数器
第2页
由触发器组成的N进制计数器的一般分析方法是:对于同步计数器,由于计数脉冲同时接到每个触发器的时钟输入端,因而触发器的状态是否翻转只需由其驱动方程判断。而异步计数器中各触发器的触发脉冲不尽相同,所以触发器的状态是否翻转除了考虑其驱动方程外,还必须考虑其时钟输入端的触发脉冲是否出现。
状态转换真值表
第2页
用上升沿触发的D触发器构成的4位异步二进制加法计数器及其波形图
F0每输入一个时钟脉冲翻转一次。 F1在Q0由1变0时翻转, F2在Q1由1变0时翻转, F3在Q2由1变0时翻转。
第21章 触发器和时序逻辑电路
第二十一章 触发器和时序逻辑电路
第二节 JK触发器
CC4027是国产CMOS型集成边沿JK触发器,CP输入端 没有小圆圈表示触发器改变状态的时刻是在CP的上升沿(正跳 变);异步输入端(直接置位、复位端)SD、RD为高电平有效。 特别注意:CMOS触发器的输入端不能悬空,必须通过电 阻接电源置为l。
第二十一章 触发器和时序逻辑电路
第三节 D触发器
• 例6-2 由一片双D触发器CC4013组成的移相电路如图所示, 可输出两个频率相同,相位差900的脉冲信号,已知CP波 形,试画出Q1和Q2端的波形,设F1和F2的初态为0。
0 1 0 1
Q1 Q2
0
1
第二十一章 触发器和时序逻辑电路
第四节 T触发器及各种触发器逻辑功能的相互转换 一、T触发器 T触发器是一种受控制的计数式触发器,也称为受控翻转触发器。
第二十一章 触发器和时序逻辑电路
本章提要 触发器是具有记忆功能、能存储数字信息的最常用的 一种基本单元电路。其特点:电路在某一时刻的输出 状态,不仅取决于当时输入信号的状态,而且与电路 的原始状态有关。当输入信号消失后,输入信号对电 路的影响将以新的输出状态保持在输出端。本章主要 讨论以下几个问题: 1. RS、JK、D、T、T′触发器的逻辑功能及各种触发器逻 辑功能的相互转换; 2. 寄存器、计数器的工作原理;
第一节 RS触发器
计数式触发器的空翻现象。
第二十一章 触发器和时序逻辑电路
第二节 JK触发器
结构及逻辑符号
第二十一章 触发器和时序逻辑电路
第二节 JK触发器
JK触发器的状态方程
Q n 1 JQ n KQ n
CP
真值表: J 0 0 1 K 0 1 0 Qn+1 Qn 0 1 Qn
第11章触发器和时序逻辑电路
第11章 触发器和时序逻辑电路 11章
基本RS触发器图形符号如图11-1b所示,图中 RD S下标的D , D 表示直接输入,非号表示触发信号0时对电路有效,RD 故称 S D 称直接置"1"(直接置位)端, 直接置"0"(直接复位)端, Q 逻辑符号中的小圆圈"○" 表示非号,在 端同样加 "○". 输 入 输 基本RS触发器的逻辑功能表,如下表所示. 出
第11章 触发器和时序逻辑电路 11章
11.1.3. 边沿型JK触发器
边沿触发器是利用电路内部速度差来克服"空翻"现 象的时钟触发器.它的触发方式为边沿触发,通常为下降 沿触发方式,即输入数据仅在时钟脉冲的下降沿这一"瞬 间"起作用.在图11-4b的逻辑符号中,CP输入端用小圆 圈表示低电平有效,而加一三角来表示边沿触发,则CP表 示为下降沿触发. JK触发器是应用最广的基本"记忆"部件,用它可以 组成多种具有其它功能的触发器和数字器件.集成JK触发 器有各种型号和规格,常用的有74HC73A,74HC107A, 74HC76A,等TTL触发器;CC4027,CC4013等CMOS触 发器.
由表11-2可见,R,S全是"1"的输入组合是应当禁止的, 因为当CP=1时,若R=S=1,则导引门G3,G4均输出"0"态, 致使Q==1,当时钟脉冲过去之后,触发器恢复成何种稳态 是随机的.在同步RS触发器中,通常仍设有RD和SD,它们只 允许在时钟脉冲的间歇期内使用,采用负脉冲使触发器置 "1"或置"0",以实现清零或置数,使之具有指定的初始状 态.不用时"悬空",即高电平.R,S端称同步输入端,触 发器的状态由CP脉冲来决定. 同步RS触发器结构简单,但存在两个严重缺点:一是会出 现不确定状态.二是触发器在CP持续期间,当R,S的输入 状态变化时,会造成触发器翻转,造成误动作,导致触发器 的最后状态无法确定.
触发器和时序逻辑电路
Q
.
& G1
.
& G2
1 SD
被封锁
1
& G3
1
& G4 0 被封锁 R C
章目录 返回
RD1
R,S 输入状态 不起作用。 触发器状态不变
S
上一页 下一页
当C=1时 触发器状态由R,S 输入状态决定。
Q
Q
.
& G1
.
& G2
触发器的翻转 1 SD 时刻受C控制 (C高电平时 打开 & G 3 翻转),而触 发器的状态由 R,S的状态决页
22.1.1 R-S 触发器
1. 基本 R-S 触发器 两互补输出端 正常情况下, 两输出端的状态 保持相反。通常 以Q端的逻辑电 平表示触发器的 状态,即Q=1, Q=0时,称为“1‖ 态;反之为“0‖ 态。 Q Q
.
& G1 SD 两输入端
.
反馈线
& G2
RD
章目录 返回 上一页 下一页
Q
.1
& G2
触发器置“0‖
1
& G3
0 RD 1
& G4 1
触发器置“1‖
S0
C
R1
章目录 返回 上一页 下一页
(4) S =1, R= 1
Q=0 1 Q
若先翻
Q 1 Q=1
.
& G1 1 1
. 若先翻
& G2
当时钟由 1变 0 后 触发器状态不定
1 SD
0 1
0 RD 1 1
& G3
& G4
S1
章目录 返回 上一页 下一页
触发器和时序逻辑电路
(2) 第二位触发器 FF1 ,在 Q0 = 1 时再来一种时钟脉冲才翻转,故 J1 = K1 = Q0 ;
大家网:
(3) 第三位触发器 FF2 ,在 Q1= Q0 = 1 时再来一种时钟脉冲才翻转,故 J2 = K2 = Q1Q0 ;
大家网:
只有当初钟脉冲来到后,即 CP = 1 时,触发器才按 R 、S 端旳输入状态 来决 定其输出状态。
触发器置R和D0 或置是S1直D,接一置般0用和于直置接初置态1。端在,工就作是过不程经中过它时们钟处脉于冲1 旳态控。制能够对基本
可控 RS 触发器旳逻辑式
Q S CP Q ,
可分四种情况分析CP = 1 时触 发器旳状态转换和逻辑功能,如右 表所示。
转一次,即
,具有计数功能。
SD
S
Q
D
1D
CP
C1
Q
RD
R
Q Q n1
n
上升沿 D 触发 器图形符号
1D
Q
CP
C1
Q
D 触发器转换 为 T 触发器
大家网:
返回
14.2 寄存器
寄存器用来临时存储参加运算旳数据和运算成果。
14.2.1 数码寄存器
下图是由 D 触发器(上升沿触发)构成旳四位数码寄存器,这是并行输入/并行 输出旳寄存器。工作之初要先清零。
时序逻辑电路旳特点:它旳输出状态不但决定于当初旳输入状态,而且还与电 路旳原来状态有关,也就是时序逻辑电路具有记忆功能。
触发器是时序逻辑电路旳基本单元。
大家网:
14.1 双稳态触发器
14.1.1 RS 触发器
时序逻辑电路特点
时序逻辑电路特点什么是时序逻辑电路?时序逻辑电路是数字电路中的一种重要类型,它是通过将逻辑门与时钟信号结合起来,实现对输入信号状态的记忆和控制。
时序逻辑电路能够对输入信号进行存储、延迟和触发,通过时钟信号的作用,在特定的时间进行功能运算和状态转换。
时序逻辑电路的基本单元时序逻辑电路的基本单元是触发器(Flip-Flop)。
触发器是一种具有两个稳定状态(0和1)的存储设备,可以将输入信号的状态在时钟信号的控制下保持不变,直到下一次时钟信号的到来。
常见的触发器有RS触发器、D触发器、JK触发器和T触发器等。
时序逻辑电路的特点1.存储能力:时序逻辑电路能够存储上一时钟周期内的输入信号状态,在下一时钟周期进行处理。
通过触发器的稳定状态保持,可以实现各种功能的状态记忆和控制。
2.时序性:时序逻辑电路在不同的时间阶段对输入信号进行处理和响应,它可以根据时钟信号的控制,在特定的时间点进行状态转换、数据传输和计算操作。
3.同步性:时序逻辑电路的操作是由外部时钟信号驱动的,同步性很强。
所有触发器的时钟输入端连接在一起,通过时钟信号的上升或下降沿,触发器的状态同时发生变化,实现电路中各部分的同步动作。
4.可插拔性:时序逻辑电路的设计灵活,可以根据具体要求进行组合和连接。
各种触发器可以根据需要的功能进行选择和应用,同时也可以通过级联和并联的方式构建复杂的时序逻辑电路。
5.实现复杂功能:时序逻辑电路可以通过组合和连接基本的触发器,实现各种复杂的功能和算法。
例如,时序逻辑电路可以用于实现计数器、移位寄存器、状态机、序列检测器等。
6.时延存在:由于时序逻辑电路中的触发器在时钟的作用下才会发生状态改变,所以在信号传输和处理过程中会引入一定的时延。
时序逻辑电路的时延是由信号传播延迟、触发器响应时间等因素决定的。
时序逻辑电路的应用时序逻辑电路广泛应用于各种数字系统和电子设备中,其特点使得它适合处理与时间相关的问题。
以下是一些常见的应用场景:1.计数器:时序逻辑电路可用于实现各种计数器,如二进制计数器、BCD计数器等。
使用触发器设计时序逻辑电路的流程
使用触发器设计时序逻辑电路的流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!使用触发器设计时序逻辑电路的流程详解在数字电路设计中,时序逻辑电路是一种重要的类型,它依赖于内部状态来决定其输出。
第12章 触发器与时序逻辑电路
数字电子技术
基本RS触发器是由输入信号直接控制触发器的输出状态。也 就是说R或S的到来,基本RS触发器将随之翻转,这在实际应用 中会有许多不便,尤其在时间关系上难以控制,弄不好会在各触 发器的状态转换关系上造成错乱。在实际工作中,常常要求某些 触发器按照一定的频率协调同步动作,为此我们希望有一种这样 的触发器,它们在一个称为时钟脉冲信号CP的控制下翻转,没有 CP就不翻转,CP来到后才翻转。以保证触发器在同步时刻到来 时才由输入信号控制输出状态。我们把这个控制脉冲信号称为时 钟脉冲CP(Clock Pulse),此时触发器的输出状态就由时钟脉 冲CP和输入信号共同决定。 这种由时钟脉冲和输入信号共同决定输出状态的触发器,称 为同步触发器或时钟触发器。同步RS触发器是其中最基本的一种 电路结构。
数字电子技术
基本RS触发器是触发器电路的基本结构形式,是构成其它类 型触发器的基础。从内部结构看,可分为由与非门组成的基本RS 触发器和或非门组成的基本RS触发器两种。
12.1.1 由与非门组成的基本RS触发器
1.电路结构及逻辑符号 由与非门组成的基本RS触发器内部电路结构及逻辑符号如图 12.1所示,它由两个与非门相互交叉耦合而成。有两个信号输入 端和,一般情况下,字母上的“非”表示低电平有效;有两个输 出端Q和,正常情况下,二者是相反的逻辑状态。这里所加的输 入信号(低电平)称为触发信号,由它们导致的转换过程称为翻 转。由于这里的触发信号是电平,因此这种触发器称为电平控制 触发器。
数字电子技术 综上所述,基本RS触发器具有复位(Q =0)、臵位(Q =1)、保持原状态三种功能,R为复位输入端,S为臵位输入端, 可以是低电平有效,也可以是高电平有效,取决于触发器的结构。 其缺点是由于输入信号直接控制触发器的输出状态,虽然电 路结构简单,但电路的抗干扰能力差;另外输入端R和S之间有约 束,限制了触发器的使用。
常用的时序逻辑电路
常用的时序逻辑电路时序逻辑电路是数字电路中一类重要的电路,它根据输入信号的顺序和时序关系,产生对应的输出信号。
时序逻辑电路主要应用于计时、控制、存储等领域。
本文将介绍几种常用的时序逻辑电路。
一、触发器触发器是一种常见的时序逻辑电路,它具有两个稳态,即SET和RESET。
触发器接受输入信号,并根据输入信号的变化产生对应的输出。
触发器有很多种类型,常见的有SR触发器、D触发器、JK 触发器等。
触发器在存储、计数、控制等方面有广泛的应用。
二、时序计数器时序计数器是一种能按照一定顺序计数的电路,它根据时钟信号和控制信号进行计数。
时序计数器的输出通常是一个二进制数,用于驱动其他电路的工作。
时序计数器有很多种类型,包括二进制计数器、BCD计数器、进位计数器等。
时序计数器在计时、频率分频、序列生成等方面有广泛的应用。
三、时序比较器时序比较器是一种能够比较两个信号的大小关系的电路。
它接受两个输入信号,并根据输入信号的大小关系产生对应的输出信号。
时序比较器通常用于判断两个信号的相等性、大小关系等。
常见的时序比较器有两位比较器、四位比较器等。
四、时序多路选择器时序多路选择器是一种能够根据控制信号选择不同输入信号的电路。
它接受多个输入信号和一个控制信号,并根据控制信号的不同选择对应的输入信号作为输出。
时序多路选择器常用于多路数据选择、时序控制等方面。
五、时序移位寄存器时序移位寄存器是一种能够将数据按照一定规律进行移位的电路。
它接受输入信号和时钟信号,并根据时钟信号的变化将输入信号进行移位。
时序移位寄存器常用于数据存储、数据传输等方面。
常见的时序移位寄存器有移位寄存器、移位计数器等。
六、状态机状态机是一种能够根据输入信号和当前状态产生下一个状态的电路。
它由状态寄存器和状态转移逻辑电路组成,能够实现复杂的状态转移和控制。
状态机常用于序列识别、控制逻辑等方面。
以上是几种常用的时序逻辑电路,它们在数字电路设计中起着重要的作用。
触发器及时序逻辑电路
Q
D
Q
J
Q4
Q
D
Fd Q
Rd
Q Rd
Q Rd K
a)
Q3
Q2
Q1
Q
D
F3
Q Rd
Q
J1
F2
Q
K
1
Rd
b) 图14-4 例14-3图
Q
J
F1 K
Rd
1 CP 1
Rd
触发器及时序逻辑电路
例14-4
分析图14-5电路实现何种逻辑功能,其 中 X是控制端,对X=0和X=1分别分析,假定 初始状态为Q2=1,Q1=1。
触发器及时序逻辑电路
置数脉冲
S1 SRG4(1)
CP
A
B
C
&
&
&
A1
A2
A3
(加数)
S2
1
QD D
&
A4
Ai
Si
全 Bi 加
器
CI-1
C1
S1 SRG4(2)
CP
QD
Q
D
CP
A
B
C
D S2
1
&
&
&
&
进位触发器C
R CP
送数脉冲
B1
B2
B3
B4
(被加数)
移位脉冲
触发器及时序逻辑电路
SRG4(3)
高 &
K2 =1
CP
X
Q1
Q2 J2 =X + Q1
K2 =1
J1 =X + Q2
K1 =1
触发器和时序逻辑电路
课题十四:【学习内容】触发器按照其稳定工作状态分为多中类型,为了实现一定程序的运算,需要含有记忆功能的元件-触发器,它的输出状态不仅决定于当时的输入状态,而且还与电路的原来工作状态有关。
【学习重点】RS触发器的性质【学习难点】RS触发器的工作波形图RS触发器的“空翻”现象【学习内容】双稳态触发器组合电路和时序电路是数字电路的两大类。
门电路式组合电路的基本单元;触发器是时序电路的基本单元。
触发器按其稳定工作状态可分为双稳定触发器,单稳定触发器,无稳态触发器(多谐振荡器)等。
双稳态触发其按其逻辑功能可分为RS触发器,JK触发器,D触发器和T触发器等;按其结构可分为主从触发器和维持阻塞型触发器等。
基本RS触发器可由两个“与非”门交叉连接而成,如下图所示。
基本RS触发器可由两个“与非”门交叉连接而成,如下图所示。
Q与是基本触发器的输出端,两者的逻辑状态在正常条件下能保持相反。
这种触发器有两种稳定状态:一个状态是Q=1,=0,称为置位状态(“1”态);另一个状态是Q=0,=1,称为复位状态(“0”态)。
相应的输入端分别称为直接置位端或直接置“1”端()和直接复位端“0”端()。
基本RS触发器输出与输入的逻辑关系。
1)=1,=0所谓=1,就是将端保持高电位;而=0,就是在端加一个负脉冲。
设触发器的初始状态为“1”态,即Q=1,=0。
这时“与非”门G2有一个输入端为“0”,其输出端变为“1”;而“与非”门G1的两个输入端全为“1”,其输出端Q变为“0”。
因此,在端加负脉冲后,触发器就由“1”态翻转为“0”态。
如果它的初始态为“0”态,触发器仍保持“0”态不变。
2)=0,=1设触发器的初始状态为“0”态,即Q=0,=1。
这是“与非”门G1有一个输入端为“0”,其输出端Q变为“1”;而“与非”门G2的两个输入端全为“1”,其输出端变为“0”。
因此,在端加负脉冲后,触发器就由“0”态翻转为“1”态。
如果它的初始状态为“1”态,触发器人保持“1”太不变。
触发器与时序逻辑电路
哈尔滨工业大学电工学教研室第22章触发器与时序逻辑电路目录22.1双稳态触发器22.2寄存器22.3计数器22.4单稳态触发器22.5多谐振荡器概述触发器是时序逻辑电路的基本单元组合逻辑电路的输出状态完全由当时的输入变量的组合状态决定,与电路的原状态无关。
时序逻辑电路的输出状态不仅决定于当时的输入状态,而且与电路原来的状态有关,具有记忆功能。
22.1 双稳态触发器稳态触发器、无稳态触发器(多谐振荡器)。
双稳态触发器中又包含RS触发器、JK触发器、D触发器和T触发器等。
1 R S 触发器1.基本RS 触发器&G1&G2由两个与非门交叉连接而成Q QD R DSD S D R 0 11 01 10 01不变不定Q &G1&G2Q QD R DSD D 1Q 0Q ==10101011输出变为:0Q 1Q ==&G1&G2Q Q D R D SD D 00110101输出保持:0Q 1Q ==&G1&G2Q Q D R D S=D,1=R时,触发器原状态若为“0”,D S则新状态为“1”。
若原状态为“1”,则新状态仍为“1”。
即无论原状态如何,基本RS触发器都输出“1”,所谓“置位”状态。
0,1==D D R S 时考虑到电路的对称性,触发器的输出状态应为“0”,即所谓“复位”状态。
D R D S 直接复位端(RESET )直接置位端(SET )低电平有效D D 1011101输出保持原状态:0Q 1Q ==0Q 1Q ==&G1&G2Q QDR DSD D 1Q 0Q ==01110110输出保持原状态:1Q 0Q ==&G1&G2Q QDR DS结论时,触发器原状态若为“0”,则新状态为“0”。
若原状态为“1”,则新状态仍为“1”。
即无论原状态如何,基本RS 触发器输出都保持原状态不变。
1,1==D D S R输入R D =0, S D =0时011输出全是1与逻辑功能相矛盾且当同时变为1时,速度快的门输出先变为0,另一个不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.进行计算,列状态表
现态
次态
Q2n
Q1n
Q0n
Q2n+1 Q1n+1 Q0n+1
0
0
0
0
0
1
0
0
1
0
1
1
0
1
0
1
0
1
0
1
1
1
1
1
1
0
0
0
0
0
1
0
1
0
1
0
1
1
0
1
0
0
1
1
1
驱动方程 J0 Q2n K0 Q2n
2.求状态方程
J1 Q0n K1 Q0n J2 Q1n K2 Q1n
将驱动方程代入JK触发器特征方
Q 程n1JQKQn
得触发器状态方程
Q 0 n 1 J 0 Q 0 n K 0 Q 0 n Q 2 n Q 0 n Q 2 n Q 0 n Q 2 n Q 1 n 1 J 1 Q 1 n K 1 Q 1 n Q 0 n Q 1 n Q 0 n Q 1 n Q 0 n
特性表
记忆(保持)
符号 表示延迟
CP
R S Qn
Qn+1
×
××0
0
×
××1
1
↓
000
0
↓
001
1 CP
↓
010
1
↓
011
1
↓
100
0
↓
101
0
↓
110
1*
↓
111
1*
S
Q
C1
R
Q
脉冲下降 沿到来状 态变化
特征方程
Qn1SRQn
RS0
约束条件
状态转换图
R=0
S=1
R=× S=0
0
1
R=1 S=0
R=0 S=×
Q0
Q1 Q2 Y
分析时序逻辑电路。
&
D Q Q0 CF1F0
01
01
&
1R
R 1 S 1
触发器原态为1
10 10 Q
触发器次态为1
Q
触发器次态为0
01
10
触发器原态为0
0S
&
& 0R
R 0 S 0
1 这种状态是触发器工
Q
作的非正常状态,是 不允许出现的。
Q 1
次态都为1
RS触发器的特性表
逻辑符号
R S Qn Qn+1
功能
000 001 010 011 100 101 110 111
G3
D TG1
1
TG1
1
Q
CP CP
CP TG2
CP CP
CP TG2
1 G2
主触发器
1 G4
从触发器
特性表
符号
CP D
Qn+1
D
Q
××
Qn
CP
C1
↑
0
0
Q
↑
1
1
脉冲上升沿到 来状态变化
特征方程
Qn1 D
状态转换图
D=1
D=0 0
1
D=1
D=0
波形图
CP 1 2 3 4 5 6
7
D
Q
12.2 时序逻辑电路分析
↓
110
↓
111
0 1 0 1 CP 0 0 1 1 1 0
记忆(保持)
置0
置1
J
Q
C1
K
Q
脉冲下降沿到 来状态变化
翻转
特征方程
Qn1JQnKQn
状态转换图
J=1 K=×
J=0 K=×
0
1
J=× K=1
J=× K=0
波形图
CP 1 2 3 4 5 6
7
J
K
Q
12.1.3D触发器
CP
CP
Q
G1 D
1
1
0
输出
Y
1 1 1 1 0 1 1 1
4.画状态图和时序图有效效状循态环与有
/1
/1
/1
/1
/1
000
001
011
111
110
100
/0
/1
010
101
无效状态与无 效循环
/1
不能能自自启启动动::在若时有序无逻效辑状电态路存中在,,虽它然们存之在间无又效 形状成态了,循但环他,们这没样有的形时成序循电环路,被这称样之的为时不序能电自路 启叫动能的自时启序动电的路时。序本电例路电。路就不能自启动。
G5 &
G7
&
Q
& &
Q′
1 G4
G6
0
G9
&
Q
G8
主触发器工作 从触发器被封锁
RS确定主触发器状态
从触发器保持状态不变
S G1 CP
R
G1 &
G3 Q′ &
G5 &
G2
&
& &
Q′
1 G4
G6
G7
&
Q
&
Q
G8
当CP从1
变到0
G9 主触发器被封锁 状态不变
从触发器接收主触发器 输出端状态,
从触发器的状态变化
Q 0 Q 1 称为0态
& R
Q 现态与次态
输入端
输出端
逻辑功能
1S
&
01
10
&
0R
复位端
R 0 S 1
触发器原态为1
10 0 Q
触发器次态为0
Q
01 11 触发器原态为0
置位端
00 S
&
01
1
&
11 R
R 1 S 0
触发器原态为1
10 1 Q
触发器次态为1
Q
01
0 触发器原态为0
1S
&
1* 1*
不可用
0 0
置0(复位)
1 1
置1(置位)
0 1
记忆
SQ RQ
低电平有效
工作波形
R
S
置0 保持 置1 保持 ቤተ መጻሕፍቲ ባይዱ0 置1 不定
Q
不定
Q
不定
或非门组成的基本RS触发器
置1端(置位端)
S
≥1
Q
SQ
≥1 R 置0端(复位端)
RQ Q
高电平有效
或非门组成的基本RS触发器的特性表
R S Qn
000 001 010 011 100 101 110 111
Qn+1
记忆
0
1
置1
1
1 0
置0
0
1*
不可用
1*
12.1.2主从RS触发器及主从JK触发器
1.主从RS触发器
S
G1
主触发器 G3
&
&
Q′
G5 &
从触发器 G7 &
Q
CP
G2
&
& &
&
Q
R
Q′
1 G4
G6
G8
主、从触发器CP脉
G9
冲相反
G1
S
&
1
CP G2
& R
当CP=1时 CP′=0
G3 Q′ &
第12章 触发器与时序逻辑电路
12.1 双稳态触发器 12.2 时序逻辑电路分析 12.3 寄存器 12.4 计数器
主页面
【知识要求】
➢了解时序逻辑电路的特点; ➢掌握触发器的电路结构与工作原理; ➢学会时序逻辑电路的基本分析方法。
【能力要求】
➢具备数字集成块的识别与简单应用能力; ➢具有常用测量仪表的使用能力; ➢具备线路板元件插装和焊接能力。
12.2.1 时序电路的基本分析方法
写方程
求状态方程
进行计算
画状态图、列状态表、画时序图
功能说明
12.2.2时序逻辑电路分析举例
分析时序逻辑电路。
J FFQ0 C1
KQ
J
Q FF1
C1
KQ
JQ FF2 C1
KQ
& Y
CP
1.写出方程
时钟方程:各触发器的触发时钟是相同的
输出方程: YQ2nQ1nQ0n
波形图
CP 1 2 3 4 5 6
7
R
S
Q
1.主从RS触发器
主、从触发器CP脉 冲相反
J
G1 &
G3 Q′ &
G5 &
G7
&
Q
CP
G2
&
& &
&
Q
K
Q′
1 G4
G6
G8
G9 主触发器
从触发器
特性表
保持
符号
CP
J K Qn Qn+1
× ××0
× ××1
↓
000
↓
001
↓
010
↓
011
↓
100
↓
101
根据触发器电路结构特点
基本RS触发器 同步RS触发器 主从触发器 维持阻塞触发器 CMOS边沿触发器
根据触发器逻辑功能不同
RS触发器 JK触发器 D触发器 T触发器
时序逻辑电路分同步和异步时序逻辑电路
12.1 双稳态触发器