离散数学-第六章的完整

合集下载

离散数学第六章 集合-包含与排斥原理

离散数学第六章 集合-包含与排斥原理

│A1∪A2│=│A1│+│A2│–│A1∩A2│ = 12+18-5 = 2Ar是r个有限集。则
| A1 A2 Ar | | Ai |
i 1
r
1i j r j
| A A
i
j
|

1i j k r
| A A
例 (p71-72) 求出在1和300之间,不能被2、3、5、7中 任意一个整除的整数的个数。
分析:
A1表示1和300之间能被2整除的整数集合 A2表示1和300之间能被3整除的整数集合 A3表示1和300之间能被5整除的整数集合 A4表示1和300之间能被7整除的整数集合
│A1∪A2∪A3∪A4 │=?
a1表示1和300之间能被2整除的整数集合a2表示1和300之间能被3整除的整数集合a表示1和300之间能被5整除的整数集合a3表示1和300之间能被5整除的整数集合a4表示1和300之间能被7整除的整数集合a1a2a3a4
第六章 集合
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与自然数集 6.5 包含与排斥原理
例 (p71-72)求出在1和300之间,不能被2、3、5、7中
任意一个整除的整数的个数。
解:设A1,A2,A3,A4分别表示1和300之间能被2整除的、能被3整除的 、能被5整除的和能被7整除的整数集合。故有: │A1│=150,│A2│=100,│A3│=60,│A4│=42, │A1∩A2│=50,│A1∩A3│=30,│A1∩A4│=21 │A2∩A3│=20,│A2∩A4│=14,│A3∩A4│=8 │A1∩A2 ∩A3 │=10,│A1∩A2 ∩A4 │=7 │A1∩A3 ∩A4 │=4, │A2∩A3 ∩A4 │=2 │A1∩A2 ∩A3 ∩A4 │=1 于是,我们有: │A1∪A2∪A3∪A4 │ =150+100+60+42– (50+30+21+20+14+8)+(10+7+4+2)–1 =231 因此, 所求个数为 300-231=69.

离散数学第6章 格与布尔代数

离散数学第6章 格与布尔代数
设c是a∧b 的任一下界,即c ≤ a,c ≤ b 则 c∧a=c, c∧b=c c∧(a∧b)=(c∧a)∧b=c∧b=c ∴c ≤ a∧b 故 a∧b是a和b的最大下界
6-1 格的概念
5)下面证明 a∧b=aa∨b=b 若a∧b=a 则 a∨b=(a∧b)∨b=b 反之,若a∨b=b 则 a∧b=a∧(a∨b)=a
b用a∨b代替(∵两式中b是相互独立的) ∴a∨(a∧(a∨b))=a 即 a∨a=a. (2)格的等价定理:〈A,∨,∧〉代数系统,∨.∧满足交换性, 结合性,吸收性,则A上存在偏序关系≤,使〈A,≤〉是一个格
从格可引出代数系统〈A,∨,∧〉; 而从满足三个条件的〈A,∨,∧〉也可导出格〈A,≤〉 证明见书:(格中⑻⑼⑾三个性质很重要,决定了格)
(11) 要证 a≤a∨(a∧b) 第一式显然成立
a∨(a∧b)≤a
a≤a
a∧b≤a
∴a∨(a∧b) ≤a
∴a=a∨(a∧b)
6-1 格的概念
6、格的等价原理:格〈A,≤〉 (1)引理6-1.1:〈A,∨,∧〉代数系统,若∨, ∧满足吸收性,
则∨, ∧满足幂等性 证:a,b∈A. a∨(a∧b)=a a∧(a∨b)=a.
第六章 格与布尔代数
格论是近代数学的一个重要分支,由它所引出的布尔 代数在计算机科学中有很多直接应用。
格的概念 分配格 有补格 布尔代数 布尔表达式
6-1 格的概念
1、回忆偏序集〈A,≤〉,≤偏序关系:满足自反性,反对称性, 传递性。有限集合上的偏序集可用哈斯图来表示:
COV (A) {a,c, b,c, c, d, d,e, d, f }
∧也易求得 ∴ A,∨,∧〉是格〈A,|〉 诱导的代数系统
6-1 格的概念

离散数学第六章 集合-集合的基本运算

离散数学第六章 集合-集合的基本运算

第六章 集合
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与 {x 存在一个 i, 1 i k,x Pi }
把P1∩P2∩┅∩Pk简记为
k
i 1
Pi
k
i 1
Pi {x 对于所有的 i, 1 i k,x Pi }
推论 (p67)
设A, Pi (1≤i≤k)是k+1个集合, 则
A Pi ( A Pi ) i 1 i 1
A
B
C
例1
(p66)
(A-B)∪(A-C)=A在何条件下成立?
分析: A的元素a既是B的元素、也是C的元素,则等式不成立。 解: 根据分析当且仅当 A∩(B∩C)=Ø时,等式成立。 首先,假若(A-B)∪(A-C)=A, 要证明A∩(B∩C)=Ø。 用反证法。 若A∩B∩C≠Ø, 则∃x∊A∩B∩C, 所以 x∊A, x∊B , x∊C 。 由x∊A,x∊B, 有 x ∉A-B, 又由x∊A,x∊C, 有x ∉A-C, 所以有 x ∉ (A-B)∪(A-C)=A。 矛盾说明A∩B∩C=Ø。
对称差
定义2:A,B是两个集合,存在一个集合,它的 元素是所有的或者属于A不属于B,或者属 于B不属于A,称它为集合A和集合B的对 称差,记为A⊕B,即:
A⊕B={x│x∊A且x∉B,或x∊B且x∉A}
A⊕B
由定义,不难知: A⊕B = (A–B)∪(B–A) A⊕ A = Ø A⊕ Ø = A
命题
对于任意的x,若x∊ A∪(B∩C),则 x∊ A,或x∊B∩C 。 当x∊ A,则x∊ A∪B 且x∊ A∪C,所以 x∊ (A∪B)∩(A∪C) ; 当x∊B∩C,则x∊B 且x∊C,就有x∊ A∪B, 且x∊ A∪C, 所以 x∊ (A∪B)∩(A∪C) 。 故 A∪(B∩C)⊆(A∪B)∩(A∪C)

《离散数学》课件_第6章

《离散数学》课件_第6章
a ≼ b∨d, c ≼ b∨d 这表明b∨d是a和c的一个上界, 而a∨c是a和c的最小上界,
a∨c ≼b∨d 类似地, 可以证明a∧c ≼ b∧d
推论 设〈L, ∨, ∧〉是由偏序格〈L, ≼ 〉诱导的 代数系统, 对于a, b, c∈L, 如果b ≼c, 则a∨b ≼a∨c , a∧b a∧c。≼
第6章 格与布尔代数
6.1 格的概念 6.2 子格和格同态 6.3 特殊的格 6.4 布尔代数 6.5 布尔代数的结构和布尔函数
6.1 格 的 概 念
6.1.1 格的定义
定义6.1.1 设〈 L , ≼ 〉是一个偏序集合, 若对任意 a, b∈L, {a, b} 均存在最小上界和最大下界, 则称〈 L , ≼ 〉为偏序格(lattice)
6.1.2
定理6.1.1 设〈L, ∨, ∧〉是代数格, 则∨和∧满足 等幂律, 即对于任何a∈L,
a∨a=a, a∧a=a 证明 任取a∈L, a∨a=a∨(a∧(a∨a))=a, a∧a=a∧(a∨(a∧a))=a
定义6.1.3 设〈L, ≼ 〉是一个偏序格, 在L上定义两 个二元运算∨和∧, 对于任何a, b∈L, a∨b= lub{a, b}, a∧b=glb{a, b}, 则称∨和∧分别为L上的并和交运算, 称 〈L, ∨, ∧ 是由偏序格〈L, ≼ 〉诱导的代数系统。
证毕
定理6.1.5 设〈L, ∨, ∧〉是代数格, 在L上定义
二元关系 ≼ : 对于任何a, b∈L, a ≼ba∨b=b, 则
〈L, ≼〉是一个偏序格, 并称〈L, ≼〉是由代数格〈L,
∨, ∧〉
证明
≼L
任取a∈L, 根据定理6.1.1可知, 〈L, ∨, ∧〉满足
等幂律, 有a∨a=a, 即a ≼a, 所以,在L

离散数学第六章 集合 自然数与自然数集

离散数学第六章 集合 自然数与自然数集

学一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世
称欧阳文忠公。北宋政治家、文学家、史学家,与韩愈、柳宗元、王安石、苏洵、苏轼、苏辙、曾巩合称“唐宋八大家”。后人又将其与韩愈、柳宗元和苏轼合称“千古文章四大家”。
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与自然数集 6.5 包含与排斥原理
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受
当n=0时,已经证明了结论成立。 对n作归纳假设,假设对任意自然数m, 有n∊m, 或者n=m,或者m∊n三者之一成立。 现在考察对于n+=n+1的情况。
n+=n∪{n},对于任意自然数m, 若n∊m, 则由对m用归纳法可以证明 n+∊m或者n+=m之一成立(见前页)。 若n=m,则m∊{m}={n},即m∊n∪{n}=n+。 若m∊n,则m∊n∪{n}=n+。
,使得0=m+。 4.n和m均是自然数,如果n+=m+,那么n=m。 5.如S是N的子集,有性质
(1) 0∊S, (2) 如果n∊S,那么n+∊S , 则有 S=N。
数学归纳法——皮亚诺公设的第5条

离散数学第六章---群论

离散数学第六章---群论
得Computer仍是字母串。
第6章 群论
定理6.1 一个半群(S,),如果它有一个子代 数 (M, ) ,则此子代数也是一个半群。
定义6.2 一个半群(S,)的子代数 (M, )也是 半群,称为(S,)的子半群。
第6章 群论
一个半群(S,)中的元素a ,可定义它的幂: a1=a , a2=a a , …,an+1=an a
第6章 群论
定理6.5 一个单位半群(S,),如果存在一个
子代数 (M, ) ,且其单位元 e ∈M,则 (M, )
也是一个单位半群。
定义6.5 一个单位半群(S,),如果存在一个
子代数 (M, ) ,且其单位元 e ∈M,则 (M, )
也是一个单位半群,称为(S,)的子单位半群 。
Hale Waihona Puke 第6章 群论定义6.5 :一个单位半群(S,)如果由它的一个 元素a 所生成,则称为由 a 所生成的循环单位半 群,元素 a 称为此单位半群的生成元素。
定理6.6 :一个循环单位半群是一个可换单位半 群。
第6章 群论
6.2 群
一、群与群的同构 1、群的有关定义
定义6.7 如果代数系统(G, )满足 (1) (G, )为一半群; (2) (G, )中有单位元e; (3) (G,)中每一元素a∈G都有逆元 a-1 则称代数系统(G, )为群。
第6章 群论
第六章 群论 6.1 半群与单元半群 6.2 群
第6章 群论
群在代码的查错、改错的研究,自动机理论等 方面都有应用。
第6章 群论
6.1 半群与单元半群
半群与群都是具有一个二元运算的代数系 统,群是半群的特殊例子。事实上,群是历史 上最早研究的代数系统,它比半群复杂一些, 而半群概念是在群的理论发展之后才引进的。 逻辑关系见图6.1.1。

离散数学_第06章代数结构概念及性质

离散数学_第06章代数结构概念及性质

【例】(1)以实数集 R 为基集,加法运算" +"为二元,运算组成一代数系统,记为〈R, +〉。 (2)以全体n×n实数矩阵组成的集合 M为基集,矩阵加"+"为二元运算,组成一代 数系统,记为〈M,+〉。 (3)设 S A { | 是集合A上的关系}, “ ” 是求复合关系的运算。它们构成代数 系统S A , 。
有了集合上运算的概念后,便可定义代数结
构了。
定义6.1.2 设S是个非空集合且fi是S上的 ni元运算,其中i=1,2,…,m。由S及f1, f2,…,fm组成的结构,称为代数结构,记 作<S,f1,f2,…,fm>。
此外,集合S的基数即|S|定义代数结构 的基数。如果S是有限集合,则说代数结构 是有限代数结构;否则便说是无穷代数结构。
分配律,或者⊙对于○是可左分配的,即
(x)(y)(z)
(x,y,z∈S→x⊙(y○z))=(x⊙y)○(x⊙z))。
运算⊙对于○满足右分配律或⊙对于○是可 右分配的,即(x)(y)(z) (x,y,z∈S→(y○z)⊙x=(y⊙x)○(z⊙x)) 类似地可定义○对于⊙是满足左或右分配律。 若⊙对于○既满足左分配律又满足右分配律, 则称⊙对于○满足分配律或是可分配的。同样可 定义○对于⊙满足分配律。
x为关于⊙的右逆元:=(y)(y∈S∧y⊙x=e);
x为关于⊙可逆的:=(y)(y∈S∧y⊙x=x⊙y=e)
给定<S,⊙>及幺元e;x,y∈S,则 y为x的左逆元:=y⊙x=e
y为x的右逆元:=x⊙y=e
y为x的逆元:=y⊙x=x⊙y=e
显然,若y是x的逆元,则x也是y的逆元,
因此称x与y互为逆元。通常x的逆元表为x-1。

离散数学第六章集合代数

离散数学第六章集合代数
15
集合算律
6.3 集合恒等式
1.只涉及一个运算的算律:
交换律、结合律、幂等律
交换 结合
幂等
AB=BA (AB)C =A(BC) AA=A
AB=BA (AB)C= A(BC)
AA=A
AB=BA (AB)C =A(BC)
16
2.涉及两个不同运算的算集律合:算 律 分配律、吸收律

分配
A(BC)=
(AB)(AC)
A(BC)=
(AB)(AC)
吸收
A(AB)=A
A(AB)=A

A(BC) =(AB)(AC)
17
3.涉及补运算的算律: 集合算律 DM律,双重否定律
D.M律
双重否定
A(BC)=(AB)(A C)
A(BC)=(AB)(A C)
(BC)=BC (BC)=BC
A=A
18
4.涉及全集和空集的算律集:合 算 律 补元律、零律、同一律、否定律
解 (1)、(3)、(4)、(5)、(6)、(7)为真,其余为假.
28
(1) 判断元素a与集合A的隶属关系是否成立基本方法:
把 #2022 a 作为整体检查它在A中是否出现,注意这里的 a 可
能是集合表达式.
(2) 判断AB的四种方法
若A,B是用枚举方式定义的,依次检查A的每个元素是否 在B中出现.
(交换律)
八. = A E
(零律)
九. = A
(同一律)
22
例6 证明AB AB=B AB=A AB=
#2022




证明思路:
确定问题中含有的命题:本题含有命题 ①, ②, ③, ④

离散数学第六章的课件

离散数学第六章的课件

05 离散随机变量
随机变量的定义与性质
随机变量定义
随机变量是从样本空间到实数的可测 函数,用于描述随机现象的结果。
随机变量性质
随机变量具有可测性、可加性和可数 性等性质,这些性质在概率论和统计 学中具有重要应用。
离散概率分布
离散概率分布定义
离散概率分布描述的是随机变量取离散值时的概率规律,通 常用概率质量函数或概率函数表示。
离散概率分布性质
离散概率分布具有非负性、归一性和可数性等性质,这些性 质是离散概率分布的基本要求。
期望与方差
期望定义
期望是随机变量所有可能取值 的概率加权和,是描述随机变 量取值“平均水平”的重要指
标。
期望性质
期望具有线性性、可加性和正 定性等性质,这些性质在概率 论和统计学中具有重要应用。
方差定义
感谢您的观看
THANKS
方差是描述随机变量取值分散 程度的重要指标,是随机变量 与期望之差的平方的期望。
方差性质
方差具有非负性、归一性和可 加性等性质,这些性质是方差
的基本要求。
06 离散概率论的应用
蒙提霍尔问题
总结词
蒙提霍尔问题是一个著名的概率论问题,涉 及到概率论中的独立性概念和组合数学。
详细描述
蒙提霍尔问题是一个经典的组合数学问题, 它涉及到概率论中的独立性概念。该问题问 的是,如果有n个盒子,每个盒子被选中的 概率是1/2,那么在最优策略下,选中至少 一个盒子的最有可能的盒子数是多少?这个 问题涉及到概率论中的独立性概念和组合数
学。
抓阉问题
要点一
总结词
抓阉问题是一个经典的离散概率论问题,涉及到概率论中 的随机性和独立性概念。
要点二

离散数学第六章代数系统

离散数学第六章代数系统

6.2 代数系统的基本性质
性质4 吸收率
给定<S,⊙,*>,则 ⊙对于*满足左吸收律:(x)(y)(x,y∈S→x⊙(x*y)=x) ⊙对于*满足右吸收律:(x)(y)(x,y∈S→(x*y)⊙x=x) 若⊙对于*既满足左吸收律又满足右吸收律,则称⊙对于*满足吸收律或
者可吸收的。
*对于⊙满足左、右吸收律和吸收律类似地定义。 若⊙对于*是可吸收的且*对于⊙也是可吸收的,则⊙和*是互为吸收的或
代数﹝Algebra﹞是数学的其中一门分支,可大致分为初等代数学和抽象 代数学两部分。
代数的由来
初等代数学:是指19世纪中期以前发展的方程理论,主要研究某一方程﹝ 组﹞是否可解,如何求出方程所有的根﹝包括近似根﹞,以及方程的根有 何性质等问题。
抽象代数:是在初等代数学的基础上产生和发展起来的。它起始于十九世 纪初,形成于20世纪30年代。在这期间,挪威数学家阿贝尔(N.H. Abel)、 法国数学家伽罗瓦(E′. Galois)、英国数学家德·摩根(A. De Morgan) 和布尔(G. Boole)等人都做出了杰出贡献,荷兰数学家范德瓦尔登(B.L. Van Der Waerden)根据德国数学家诺特(A.E. Noether)和奥地利数学家阿 廷(E. Artin)的讲稿,于1930年和1931年分别出版了《近世代数学》一卷 和二卷,标志着抽象代数的成熟。
同态与同构
PART 同余、商代数、积代数
04
PART 05
代数系统实例
6.1 代数系统的定义
定义6.1 设S是个非空集合且函数f: Sn→S ,则称f为S上的一个 n元运算。其中n是自然数,称为运算的元数或阶。
当n = 1时,称f为一元运算,当n = 2时,称f为二元运算,等等。 定义6.2 如果对给定集合的成员进行运算,从而产生了象点,而

离散数学第六章

离散数学第六章

6.1.6 循环群和置换群
§循环群 在循环群G=<a>中, 生成元a的阶与群G的阶是一样 的. 如果a是有限阶元, |a|=n, 则称G为n阶循环群. 如 果a是无限阶元, 则称G为无限阶循环群. 例如: <Z,+>是无限阶循环群; <Z6,>是n阶循环群. 注意:(1) 对9 无限阶循环群G=<a>, G的生成元是a和a-1; (2) 对n阶循环群G=<a>=<e,a,…,an-1>,G的生成元是at 当且仅当t与n互素, 如12阶循环群中, 与12互素的数 有1、5、7、11. 那么G的生成元有a1=a、a5、a7、 a11. (3) N阶循环群G=<a>, 对于n的每个正因子d, G恰好有 一个d阶子群H=<an/d>.
6.1.3 子群
例如, 群<Z6,>中由2生成的子群包含2的各次 幂, 20=e=0, 21=2, 22=22=4, 23=222=0, 所 以由2生成的子群:<2>={0,2,4}.
对于Klein四元群G={e,a,b,c}来说, 由它的每个 元素生成的子群是 <e>={e}, <a>={e,a}, <b>={e,b}, <c>={e,c}
6.1.6 循环群和置换群
§循环群
定义6.7 在群G中, 如果存在aG使得 G={ak|kZ} 则称G为循环群, 记作G=<a>,称a为G的生成元. ☆ 循环群必定是阿贝尔群, 但阿贝尔群不一定 是循环群. 证明: 设<G,*>是一个循环群, 它的生成元是a, 那么,对于任意x,yG, 必有r,sZ, 使得 x=as,y=at, 而且x*y=as*at=as+t=at*as=y*x 由此可见<G,*>是一个阿贝尔群. 例如,<Z,+>是一个循环群, 其生成元是1或-1.

离散数学第6章

离散数学第6章

33
图的运算
v2 v1 v3 v7 v2 v4 v6 v3 v8 G1∪G2 v5 v2 v4 v2 v5 v4 v6 v2 v3 v8 v7 v4 v6 v3 v8 G1 G2
34
v7 v4 v5
v1
Байду номын сангаасv1
v3 v5 G1∩G2 v5
图的运算


若V1∩V2=空集,说明图G1和G2没有公 共顶点, G1∩G2是空图。称G1和G2不 相交。 若E1∩E2=空集,说明图G1和G2没有公 共边,则
3
无向图与有向图
定义 有向图D=<V,E>, 其中 (1) V同无向图的顶点集, 元素也称 为顶点 (2) E为VV的多重子集,其元素 称为有向边,简称弧. 用无向边代替D的所有有向边 所得到的无向图称作D的基图 右图是有向图,试写出它的V和E
4
图的基本概念




边又分为两种:有向边和无向边。在有向边的两个端 点中,一个是始点,另一个是终点,有向边的箭头方 向自始点指向终点。 如果图中各边都是有向边,则称此图为有向图。 如果图中各边都是无向边,则称此图为无向图。 如果图中既有有向边又有无向边,则称此图为混合图 由于无向边可以用两条方向相反的有向边来替代,所 以混合图可以转化为有向图。
若vi vj, 则称ek与vi ( vj)的关联次 数为1; 若vi = vj, 则称ek为环, 此时称ek与 vi 的关联次数为2; 若vi不是ek端点, 则称ek与vi 的关
联次数为0.
无边关联的顶点称作孤立点.
8
定义 设无向图G=<V,E>, 边e=(a,b),则称a,b为边e的两个端 点,称点a,b是邻接的; 关联于同一顶点的边是相邻(邻 接)的.

离散数学第六章 集合-全集和集合的补

离散数学第六章 集合-全集和集合的补
第六章 集合
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与自然数集 6.5 包含与排斥原理
ห้องสมุดไป่ตู้
全集
定义: 我们在研究某一个具体问题时,往往 规定一个集合,使所涉及的集合都是它 的子集合,称这个集合为全集, 记为U (或E )。
全集是个有相对性的概念,不同的问题, 可以规定不同的全集。
任一集合的补集合是唯一的。
推论
设A是任意一个集合,则
A A
定理3 德· 摩根定律
(Augustus De Morgan, 1806-1871, 英國數學家)
A B A B
A B A B
证明:( A B) ( A B)
[ A ( A B)] [ B ( A B)] [( A A) B] [(B B) A] [ B] [ A]
补运算: Ā
定义:设A是一个集合,U 是全集合,我们 称集合U–A为A的补集,记为Ā,即有: Ā={ x│x∉A且x∊U }
Ā
A
U
定理1 A是一个任意集合,则
A∪Ā= U A∩Ā= Ø
定理2 Ā=B当且仅当A∪B=U且A∩B=Ø
证明: “” 由定理1结论成立。 “” 设A∪B=U 且A∩B=Ø ,则 B =B∩U =B∩(A∪Ā)=(B∩A)∪(B∩Ā) =Ø∪(B∩Ā) = (A∩Ā) ∪(B∩Ā) =(A∪B)∩Ā=U∩Ā=Ā
因而结论得证。
例 (p68)
证明:
(A–B)∩(A–C)=A– (B∪C)
( A B) ( A C ) ( A B) ( A C ) A (B C) A (B C) A (B C)

离散数学 第6章 命题逻辑

离散数学 第6章 命题逻辑

(P Q) R m1 m3 m5 m6 m7 (1,3,5,6,7)
三、主合取范式
如组成合取范式的每一个括号中都包括所有的命题 变项或其否定形式,则该合取范式称为主合取范式。 在主合取范式中的每一个括号是一个包括所有的命题 变项或其否定形式的简单析取式,称为大项。 如果将大项中各命题变项看成为0,其否定看成为1, 按字母顺序排列后的二进制数为i,该大项表示为 M i , 注意:M 1不是 (P Q R) ,而是 ( P Q R) 例如,在某命题公式A中P,Q,R为(0,0,1)和(1,1,1)时真 值为0,则A的主合取范式可记作为:
(P Q R) (P Q R) (1,7)
由主析取范式可直接求出主合取范式
例如,上面的例3 ( P Q) R 主析取范式已经求得,为 那么,它的主合取范式为:
(1,3,5,6,7)
( P Q R) ( P Q R) (P Q R)
5。等价 如果两个命题P和Q有 P Q P Q 的真值表 同时又有 Q P 则记作 P Q P Q P Q P Q 就是 ( P Q) (Q P) 0 0 1 合取、析取和等价都满足交换 0 1 0 律,而蕴含是不满足交换律的。 1 0 0 P 例如, Q Q P , P Q Q P 1 1 1 P Q Q P 在一个命题公式中如果没有括号, 各种联结词的运算顺序从先到后依次为:
例题5: 用真值表证明命题公式P ( P Q R) 是重言式 解: P ( P Q R) P Q R PQ R 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1

离散数学第六章

离散数学第六章
2019/3/20 离散数学 2
树的举例
树G:
a
取a为根: 取b为根:b
a a d c
取e为根:
e
b
c
d
e c
b
d e a
e
d
b
取d为根: d
b
c
e
a c
显然它们是同构的。 数据结构中的树指定了一个特殊的顶点为根。
2019/3/20 离散数学
3
树的应用举例
树的用途极其广泛,比如计算机网络中的最短
2019/3/20 离散数学 6
树是点比边多一的连通图
证明:因G是树,所以G连通,
明 q=p–1: (1) p=1时,显然q=p–1 ; (2)假设对顶点数少于p的树,结论成立; (3) 对于p个顶点的树G ,p2 , 取e=uv ∈E(G) , 由 定理6.1.1知,e是唯一的(u,v)––通路,于是, G–e不连通而且恰有两个连通分支G1(p1,q1)和 G2(p2,q2),显然,p1<p且p2<p .由归纳假设, q1=p1–1 , q2=p2–1 , 从而q=q1+q2+1=p1+p2–1=p–1 。
2019/3/20
离散数学
11
少条边就不连通的图是树的证明图示
P不含e:
u
C
v
P含e:
u
C
v
x
e
y
x
e y
P
P
G
2019/3/20 离散数学
G
12
平凡树和森林
只有一个顶点的图(平凡图)称为平凡
树。 具有多个连通分支,且每个连通分支都 是树的图称为森林。
2019/3/20

离散数学第六章课件

离散数学第六章课件
2018/11/12 4


2.格

定义6-1.1格:设<A,≤>是一个偏序集,如果 A中任意两个元素都存在着最大下界和最小上 界,则称<A,≤>是格。
以上5个图中,任何两个元素都有最小上界和最大下界
2018/11/12 5
格的判定
例6-1.1 判断下列偏序集是否是格?
e
e d
f b c
d
c
a b
2018/11/12 3
最小上界、最大下界

最小上界:设<A,≤>为一偏序集且BA,a为 B的任一上界,若对B的所有上界y均有a≤y,则 称a为B的最小上界(上确界),记作LUB B
最大下界:若b为B的任一下界,若对B的所有 下界z,均有z≤b,则称b为B的最大下界(下确 界),记作GLB B 把具有两个元素集合{a,b}的最小上界(最大 下界)称为元素a,b的最小上界(最大下界)
2018/11/12 15
6.格相关的性质定理
定理6-1.1 在一个格<A,≤>,对于任意的a,b 结论很有用!!! A,都有 a≤a∨b, b≤a∨b a∧b≤a, a∧b≤b

证明: a和b的并是a、b的最小上界,所以 a≤a∨b 同理 b≤a∨b 由对偶原理: a∧b≤a, a∧b≤b
子格判定
注意证明方法
例6-1.4:<s,≤>是一个格,任取a s,构造s的 子集:T={x|xs且x≤a},则<T,≤>是<s,≤>的 子格.

证明:对于任意的x,yT,必有x≤a,y≤a a是x,y的上界,最小上界≤任一上界 x∨y≤a x∧y≤x≤a 所以x∨yT, x∧yT <T,≤>是<s,≤>的子格
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.元素与集合的关系 隶属关系:或者
3.集合的树型层次结构
例如:集合A={a,{b,c},d,{{d}}} .
规定:A A
3
集合与集合
集合与集合之间的关系:, ⊈, =, , , , 定义6.1 设A,B为集合,如果B中的每个元素都是A中的元素,则称B是A 的子集合,简称子集。这时也称B被A包含,或A包含B,记作B A。如果 B不被A包含,则记作B ⊈ A。
根据集合相等的定义,有1 = 2
所以得出结论:
是惟一的
。 .
5
空集、全集和幂集
含有n个元素的集合简称n元集,它的含有m(m≤n)个元素 的子集叫做它的m元子集。任给一个n元集,怎样求出它的 全部子集呢?
例6.1 A={1,2,3},将A的子集分类: 解:0元子集,也就是空集,只有一个: ; 1元子集,即单元集:{1},{2},{3}; 2元子集:{1,2},{1,3},{2,3}; 3元子集:{1,2,3}。
定义6.3 设A,B为集合,如果B A且B≠A,则称B是A的真子集,记作B A。 如果B不是A的真子集,则记作B A。 符号化表示为: B A B A B A 例如N Z Q R C,但N N。
注意: 和 是不同层次的问题,如. A={a,{a}}和{a}
4
空集、全集和幂集
.
6
空集、全集和幂集
定义6.5 幂集:设A为集合,把A的全部子集构成的集合叫 做A的幂集,记作P(A)(或PA,2A)。 符号化表示为:P(A)={ x | x A } 实例:P()={}, P({})={,{}} 计数:如果 |A|=n,则 |P(A)|=2n.
定义6.6 全集 E:包含了所有集合的集合 全集具有相对性:与问题有关,不存在绝对的全集
广义交 A= { x | z ( zA xz )}
例6.2 设 A={{a,b,c},{a,c,d},{a,e,f}} B={{a}} C={a,{c,d}}
则 ∪A={a,b,c,d,e,f},∪B={a},C=a∪{c,d}
∩A={a},∩B={a},∩C=a. ∩{c,d}
12
广义运算
1. 集合的广义并与广义交
第二部分 集合论
第六章 集合代数 主要内容 集合的基本概念
属于、包含 幂集、空集 文氏图等 集合的运算 有穷集的计数 集合恒等式 集合运算的算律、恒等式的证明方法
.
1
6.1 集合的基本概念
1. 集合定义 集合没有精确的数学定义 理解:由离散个体构成的整体称为集合,称这些个体为集 合的元素 常见的数集:N, Z, Q, R, C 等分别表示自然数、整数、有 理数、实数、复数集合
2. 集合表示法
列元素法----列出集合的所有元素,所有元素之间用逗号隔 开,并把它们用花括号括起来
谓词表示法----用谓词来概括集合中元素的性质
实例:
列元素法 自然数集合 N={0,1,2,3,…}
谓词表示法 S={ x | x . R x21=0}
2
元素与集合
1. 集合的元素具有的性质 无序性:元素列出的顺序无关 相异性:集合的每个元素只计 数一次 确定性:对任何元素和集合都 能确定这个元素是否 为该集合的元素 任意性:集合的元素也可以是 集合
定义6.10 设A为集合,A的元素的元素构成的集合称为A的广 义并,记为∪A。符号化表示为
广义并 A = { x | z ( zA xz )}
定义6.11 设A为非空集合,A的所有元素的公共元素构成的 集合称为A的广义交,记为∩A。符号化表示为
符号化表示为:B A x ( xB xA ) B ⊈ A x ( xB xA )
例如N Z Q R C,但Z ⊈ N。显然对任何集合A都有A A。
定义6.2 设A,B为集合,如果A B且B A,则称A与B相等,记作A=B。 如果A与B不相等,则记作A≠B。
符号化表示为: A = B A B B A
A B AB = AB = AB = A
.
11
广义运算
1. 集合的广义并与广义交
定义6.10 设A为集合,A的元素的元素构成的集合称为A的广 义并,记为∪A。符号化表示为
广义并 A = { x | z ( zA xz )}
定义6.11 设A为非空集合,A的所有元素的公共元素构成的 集合称为A的广义交,记为∩A。符号化表示为
.
7
6.2 集合的运算
初级运算
集合的基本运算有并,交,相对补和对称差
定义6.7 设A,B为集合,A与B的并集A∪B,交集A∩B,B 对A的相对补集A-B分别定义如下:

AB = {x | xA xB}

AB = {x | xA xB}
相对补 AB = {x | xA xB}
例如:A={a,b,c},B={a},C={b,d}
AB= {a,b,c},
AB ={a},
AB={b,c} ,
B-A= ,
B C=
若两个集合的交集为 ,则称.这两个集合是不交的
8
6.2 集合的运算
定义6.8 设A,B为集合,A与B的对称差集A B定义为: 对称差 AB = (AB)(BA)
另一种定义是:AB = (AB) (AB) 例如:A={a,b,c},B={b,d},AB ={a,c,d}
定义6.4 空集 :不含有任何元素的集合 符号化表示为: ={x | x ≠ x } 实例: { x | xR x2+1=0 }
定理6.1 空集是任何集合的子集。 证 对于任意集合A,
A x (xxA) 1(恒真命题)
推论 是惟一的
证明:假设存在空集1 和 2 ,由定理6.1有:
1 2 和 2 1
定义6.9 在给定全集E以后,A E,A的绝对补集~A定义如下: 绝对补 A = EA = {x|x∈E∧xA} = {x|x A}
例如:E={a,b,c,d},A={a,b,c},则~A={d}。
.

集合运算的表示
文氏图
A
B
AB
A
B
AB
A
B
AB .
A
B
A–B
E A
~A
10
几点说明
并和交运算可以推广到有穷个集合上,即 A1 A2 … An = { x | xA1 xA2 … xAn} A1 A2 … An = { x | xA1 xA2 … xAn}
相关文档
最新文档