Fluent经典实例分析
fluent 案例
fluent 案例
- 电池仿真计算:该案例使用Fluent中的电池仿真模块,基于前期实验获取的数据,根据NTGK模型模拟稳定的充放电过程。
计算原理是需要提供不同倍率下的DOD与电压曲线。
- 动网格实例:动网格模型可以用来模拟由于流域边界运动引起流域形状随时间变化的流动情况,如汽车发动机中的气缸运动、阀门的开启与关闭、机翼的运动、飞机投弹等。
- 离心泵空化:利用Fluent中的Mixture多相流模型仿真计算离心泵内的空化情况。
案例描述为离心泵入口总压0.6MPa,出口静压0.2MPa,叶轮旋转速度1200RPM。
流体域内介质为液态水,其在当前工作条件下饱和蒸汽压为3540Pa。
- 板式换热器CFD仿真:本案例在ANSYS2019R3中演示了如何利用Fluent进行板式换热器CFD仿真。
首先在SpaceClaim中建立几何模型,并进行命名边界条件,接着导入Fluent Meshing进行网格划分,然后利用Fluent进行求解,最后在CFD-POST中进行后处理。
这些案例展示了Fluent在不同领域的应用,如果你对其中某个案例感兴趣,可以继续向我提问。
ansys fluent2020综合应用案例详解
ansys fluent2020综合应用案例详解随着计算流体力学(CFD)技术的快速发展,越来越多的工程领域开始使用CFD软件来进行流体分析和模拟。
在众多的CFD软件中,ANSYS Fluent无疑是最受欢迎和广泛使用的软件之一。
本文将详细介绍ANSYS Fluent 2020在综合应用方面的案例,以帮助读者更好地理解和使用这一强大的工具。
一、背景介绍ANSYS Fluent是由ANSYS公司开发的一款流体力学分析软件,广泛应用于航空航天、汽车工程、能源、环境保护、化工等领域。
Fluent 2020是该软件的最新版本,具有更强大的功能和更高的计算效率。
本文将通过详细介绍几个典型的应用案例,展示Fluent 2020在不同领域中的综合应用能力。
二、燃烧室模拟案例燃烧室是内燃机、煤气轮机等燃烧设备的核心组成部分,燃烧室内的燃烧过程直接影响着整个系统的性能和排放。
利用Fluent 2020的燃烧模型,可以模拟和分析燃烧室内的温度、压力、燃烧产物浓度等关键参数,并优化燃烧室的设计。
三、风洞模拟案例风洞模拟是航空航天领域常用的手段,用于模拟飞行器在不同飞行状态下的气动性能。
通过运用Fluent 2020的湍流模型和多相流模型,可以精确地模拟风洞中的气流传输和飞行器表面的气动力状况,为飞行器设计和优化提供可靠的依据。
四、液体输送模拟案例液体输送系统在石油、化工、食品等行业中扮演着重要角色。
利用Fluent 2020的多相流模型,可以模拟液体在管道中的流动情况,并分析管道的压降、流速分布、混合等特性。
通过优化管道的设计和操作参数,可以提高液体输送系统的效率和经济性。
五、散热器设计案例散热器在电子设备、汽车引擎等领域中广泛应用,用于降低设备的温度并保持其正常运行。
利用Fluent 2020的传热模型和流动模型,可以模拟和优化散热器内的流动和热传输过程,以提高散热效果并减少能量消耗。
六、船舶流体力学模拟案例船舶的航行性能直接受流体力学特性的影响,因此对船舶的流体力学性能进行模拟和优化十分重要。
Fluent经典实例分析
一年一度的毕业设计就要到来了,CAE软件依然是流体专业众多学子毕设的拦路虎,为了使各高校流体同学顺利完成毕业设计以及有志于在流体行业有一番作为的青年才俊迅速掌握一门技能,从而更好地适应职场需求,北京经纬云图仿真科技有限公司感谢各位同行的支持和厚爱,特组织各方面CAE软件专家长期进行免费在线网络培训,诚邀您的参与!特此声明:本公司的所有培训将主要以工程实例为基础进行,让您真正的学到知识,懂得原理,而不仅仅是简单的软件操作。
最重要的一点是为了回馈广大同仁们,本公司的培训完全免费,机不可失失不再来啊!主办单位:北京经纬云图仿真科技有限公司培训时间:每周五晚8:00---9:30培训方式:在线免费网络培训培训2000人QQ群:281194860(参与培训请加入,注明:FLUENT培训)培训内容:见附录附录:1,基础流动计算以AICD装置为例,说明利用fluent进行基础的流动模拟的步骤,包括计算设置和简单的后处理2,两相流Mix模型应用以某烟雾报警器为例,利用mix两相流模型,预测烟雾报警器内部的烟雾浓度分布3,空化问题以某拉瓦尔喷管型的空化装置为例,利用mix两相流模型和空化模型,计算装置内的水的空化情况4,水的蒸发和凝结以某水蒸气动力装置为例,利用mix两相流模型和蒸发凝结模型(fluent自带蒸发凝结模型和udf编程),并利用瞬态计算的方法,得到装置的瞬时流场分布和水凝结情况5,湿空气的露点问题以某实验装置为例,说明露点问题与蒸发凝结问题的本质区别,利用mix两相流模型和udf 露点模型,计算过冷空气中的水析出的问题,并与理论结果进行对比6,萃取问题(溶液间传质问题)以某反应塔的一层为例,利用mix两相流模型、组分输运模型和udf传质模型,计算甲苯的萃取过程,以及利用瞬态计算的方法,得到脉动进口条件对于萃取过程的影响7,水中气泡上升以某鱼缸中通过气泡的模型为例,利用vof两相流模型和udf气泡源,利用瞬态计算的方法,得到水中的连续气泡上升的流动动画8,融化、蒸发联合作用问题以低压力环境中的固态铝加热为例,利用vof两相流模型、融化凝固模型、蒸发凝结模型和udf加热源,利用瞬态计算的方法,计算铝融化后的液面形状9,粒子冲蚀问题以某钻井装置为例,利用DPM模型和粒子冲蚀模型,计算在钻井的过程中,钻头以及装置各部分的磨损情况10,高温粒子喷涂问题以某高温粒子喷涂装置为例,利用DPM模型和粒子融化、蒸发模型,计算在高温喷涂的过程中,不同半径粒子的运动轨迹,和粒子的融化、蒸发情况11,二维齿轮动网格以某二维齿轮泵为例,利用动网格模型中的刚体运动模型,模拟齿轮泵的啮合工作过程12,Six dof动网格问题以三维空间中小球斜射入水的问题为例,利用动网格模型和six dof模型,模拟小球从空气中斜射入水过程中的运动和受力情况13,流热耦合问题以某水泵的相关部件为例,利用流热耦合方法和udf热源,模拟水泵工作过程中的摩擦生热问题,以及冷却问题14,电磁搅拌问题以带有电磁搅拌的坩埚为例,利用udf体积力源项和mix两相流模型的方法,模拟电磁搅拌对于坩埚内合金金属的浓度分布的影响15,多孔介质问题以某带有多孔漏斗装置的化学反应塔为例,首先对多孔漏斗进行直接数值模拟得到多孔介质的属性参数,然后利用多孔介质和组分输运模型进行计算,得到反应塔内部各组分的浓度分布。
【Fluent案例】02:Tesla阀
【Fluent案例】02:Tesla阀本案例利用 FLUENT 计算 Tesla 阀的内部流场特征。
Tesla 阀是一种没有运动部件的微型阀门,通常用于微机电系统,其操作原理基于流体流动的方向。
在相同的压力降下,正向流动的流量大于逆向流动的流量,换句话说,在相同流量情况下,正向压降要远小于逆向压降。
本案例的研究正是基于此原理,研究的阀门型式如图所示,给定正向或反向流动速度为 10m/s ,考察在此速度条件下,正向流动与逆向流动的压力降。
案例采用的模型几何尺寸如图所示,采用3D 模型进行计算,流动介质为水,其密度为 1000kg/m 3 ,粘度 0.001Pa.s 。
流动雷诺数:计算采用层流模型。
阀门的几何模型如图所示(图中单位为微米)。
三维几何模型如图所示。
案例网格模型如图所示。
总网格数量 93482 。
Step 1 :启动 FLUENT•启动 FLUENT 。
•利用菜单【File 】 > 【 Read 】 > 【Mesh… 】,选择网格文件 Ex2-1.mshStep 2 :缩放网格按以下步骤操作:•鼠标选择模型操作树节点General 右侧面板中的Scale… 按钮,如图所示。
Scale Mesh 对话框显示的模型尺寸范围如下图所示。
可以看到模型尺寸与实际几何尺寸存在偏差。
实际几何 Z 方向厚度为 120 微米,而对话框显示尺寸为 0.12m ,相差了 1000 倍,在 X , Y 方向同样如此,因此需要对模型的 X,Y,Z 三方向同时缩小 1000 倍。
•选择 Mesh Was Created In 下拉框为 mm ,点击 Scale 按钮,如图所示进行操作。
小提示:对于用于CFD 计算的几何建模,在建模的时候根本不需要关注模型尺寸及单位,只需要按照几何比例创建模型即可,在求解器导入模型后通常需要确认导入的模型是否与实际几何尺寸一致。
缩放后几何尺寸如图所示。
可以更改View Length Unit In 下拉框中的选项为 mm,这样看起来更顺眼一些,当然也可以不选,此选项只是方便查看而已,并不会影响几何的尺寸。
fluent软件应用超详细实例
fluent软件应用超详细实例f l u e n t软件应用超详细实例Newly compiled on November 23, 2020Fluent应用实例冷热水混合器内的三维流动与换热问题问题描述:冷水与热水分别自混合器的两侧沿水平切向方向流入,在容器内混合后经过下部渐缩通道流入等径的出流管,最后流入大气,混合器简图见下图所示。
一.利用gambit建立混合器计算模型步骤1:启动gambit并选定求解器(fluent5/6)步骤2:创建混合器主体大圆柱图1圆柱体设置对话框图2混合器主体步骤3:设置混合器的切向入流管1.创建小圆柱图3小圆柱设置对话框图4创建的小圆柱体及混合器主体2将入流管移到混合器中部的边缘图5移动复制对话框图6将入流管移到混合器主体的边缘上3.将小入流管以Z轴为轴旋转1800复制图7旋转复制对话框图8将入流管旋转复制后的混合器步骤4:去掉小圆柱与大圆柱相交的多余部分,并将三个圆柱联接成一个整体图9体积列表框图10合并体积后的混合器步骤5:创建混合器下部的圆锥台图11锥台设置对话框图12创建锥台后的混合器步骤6:创建出流小管1.创建出流小圆管图13出流小管设置对话框图14创建出流小管后的混合器2.将其移动并与锥台相接图15移动小出流圆管设置对话框图16移动小出流圆管后的混合器步骤7将混合器上部、渐缩部分和下部出流小管组合为一个整体图17体积列表框图18合并体积后的混合器步骤8:混合内区域划分网格图19网格设置对话框图20划分好的表面网格图步骤9检查网格划分情况图21网格检查设置对话框图22最差网格形状及其质量步骤10设置边界类型图23边界类型设置对话框步骤11msh文件的输出二.利用fluent3D求解器进行求解步骤1启动fluent并选择求解器3D步骤2检查网格并定义长度单位1.读入网格文件(下图为读入的图示)2.确定单位长度为cm图24长度单位设置对话框3.检查网格4.显示网格图25显示网格设置对话框图26显示网格图步骤2创建计算模型1.设置求解器图27求解器设置对话框2.启动能量方程图28能量方程设置对话框2.使用εk湍流模型-图29湍流模型设置对话框步骤3设置流体的材料属性图30材料属性设置对话框图31流体材料库对话框步骤4设置边界条件图32边界条件设置对话框1.设置入口1的边界条件图33速度边界设置对话框2.设置入口2的边界条件图34速度入口2的设置对话框2.设置出流口的边界条件图35出口边界设置对话框步骤5:求解初始化图36初始化设置对话框步骤6:设置监视器图37监视器设置对话框步骤7:保存case和data文件步骤8:求解计算图38迭代计算设置对话框图39残差曲线图图40出口速度监控图三.计算结果的后处理步骤1:创建等(坐标)值面1.创建一个z=4cm的平面,命名为surf-12.创建一个x=0的平面,命名为surf-2图41等值面设置对话框步骤2:绘制温度与压强分布图1.绘制温度分布图图42水平面上的温度分布图2.绘制壁面上的温度分布图43壁面上的温度分布图3.绘制垂直平面surf-2上的压力分布图44竖直面上的温度分布图步骤3:绘制速度矢量1.显示在surf-1上的速度矢量图45水平面上的速度矢量图2..显示在surf-2上的速度矢量图图46竖直面上的速度矢量图。
fluent的一个实例(波浪管道的内部流动模拟).
基于FLUENT 的波浪管道热传递耦合模拟CFD 可以对热传递耦合的流体流动进行模拟。
CFD 模拟可以观察到管道内部的流动行为和热传递,这样可以改进波浪壁面复杂通道几何形状中的热传递。
目的:(1) 创建由足够数量的完整波浪组成的波浪管道,提供充分发展条件; (2) 应用周期性边界条件创建波浪通道的一部分; (3) 研究不同湍流模型以及壁面函数对求解的影响; (4) 采用固定表面温度以及固定表面热流量条件,确定雷诺数与热特性之间的关系。
问题的描述:通道由重复部分构成,每一部分由顶部的直面和底部的正弦曲面构成,如图。
图1 管道模型空气的流动特性如下: 质量流量: m=0.816kg/s; 密度: ρ=1kg/m 3;动力粘度:μ=0.0001kg/(m ·s); 流动温度: Tb=300K ;流体其他热特性选择默认项。
流动初试条件:x 方向的速度=0.816m/s ; 湍动能=1m 2/s 2;湍流耗散率=1×105m 2/s 3。
所有湍流模型中均采用增强壁面处理。
操作过程:一、 完整波浪管道模型的数值模拟(1) 计算Re=u H/v=0.816×1/ (0.0001/1) =8160Cf/2=0.0359Re -0.2=0.0359× (8160)-0.2=0.00592590628.00059259.0816.02=⨯==f t C u uy +=u t y/v y=0.00159(2)创建网格本例为波浪形管道,管道壁面为我们所感兴趣的地方所以要局部细化。
入口和出口处的边界网格设置如图。
图2 边网格生成面网格图3 管道网格(3)运用Fluent进行计算本例涉及热传递耦合,所以在fluent中启动能量方程,如图。
图4 能量方程设定条件,湍流模型选择标准k-e模型,近壁面处理选择增强壁面处理。
图5 湍流模型设定材料,密度为1,动力粘度改为0.0001如图。
图6 材料设定设定边界条件,入口速度为0.816,湍动能为1,湍流耗散率为100000。
fluent 土木案例
fluent 土木案例Fluent土木案例Fluent是一款流体力学模拟软件,可用于模拟各种流体现象,包括空气、水、油等。
在土木工程领域,Fluent可以用于模拟建筑物风荷载、水力学问题等。
本文将介绍一个Fluent在土木工程领域的应用案例。
案例背景:某城市的一座高层建筑在建设过程中出现了风荷载过大的问题。
建筑物位于城市中心,周围有许多高楼大厦,风场非常复杂。
为了解决这个问题,工程师们使用了Fluent进行数值模拟分析。
分析过程:1. 建立模型首先,工程师们需要建立一个建筑物的三维模型。
他们使用了CAD软件绘制了该建筑物的平面图和立面图,并将其导入到Fluent中进行三维重构。
由于该建筑物比较复杂,需要花费一定时间来完成三维重构。
2. 设定边界条件在模型建立完成后,工程师们需要设定边界条件。
由于该建筑物位于城市中心,周围有许多高楼大厦和道路,在设定边界条件时需要考虑这些因素。
工程师们将周围建筑物和道路的影响考虑在内,并设置了适当的边界条件。
3. 进行数值模拟在设定好边界条件后,工程师们开始进行数值模拟。
他们使用了Fluent中的风场模块,对建筑物受到的风荷载进行了模拟分析。
由于该建筑物高度较大,需要考虑不同高度处的风荷载情况。
4. 分析结果经过数值模拟分析,工程师们得出了该建筑物在不同风速下的受力情况。
他们发现,在某些风速下,该建筑物受到的风荷载超过了设计标准,存在安全隐患。
5. 优化方案根据分析结果,工程师们提出了一些优化方案。
他们通过增加建筑物表面的细节设计、改变建筑物形状等方式来减小风荷载。
然后再次使用Fluent进行数值模拟分析,并得出最终方案。
6. 结果验证最后,工程师们对最终方案进行了实验验证,并发现其有效性得到证实。
他们成功地解决了该建筑物在施工过程中遇到的风荷载过大的问题。
总结:通过Fluent的数值模拟分析,工程师们成功地解决了该建筑物在施工过程中遇到的风荷载过大的问题。
Fluent为土木工程领域提供了一种高效、准确、可靠的分析方法,为工程师们提供了有力的帮助。
fluent相关案例
fluent相关案例
1.某高科技公司使用Fluent进行空气动力学仿真,优化产品设计,提高性能和效率。
2. 某汽车制造商利用Fluent进行流体力学仿真,改进汽车外形设计,提高燃油经济性和稳定性。
3. 一家能源公司使用Fluent模拟油井生产过程,优化开采方案,提高产量和效益。
4. 一家医疗器械制造商使用Fluent分析血流动力学,改进器械设计,提高治疗效果和安全性。
5. 一家航空公司使用Fluent进行飞机气动性能仿真,改进飞机设计,提高飞行效率和稳定性。
6. 一家建筑设计公司使用Fluent进行建筑空气动力学仿真,优化建筑结构设计,提高能耗效率和舒适性。
- 1 -。
FLUENT实例5个-fluent仿真模拟实例
前言为了使学生尽快熟悉计算流体软件FLUENT以及更好的掌握计算流体力学的计算模型,本书编制了几个简单的模型,包括了组分燃烧、管内流动、换热和房间温度场四个方面的内容。
其中概括了二维和三维的模型,描述详细,可根据步骤建模、划分网格和计算以及后处理。
本书不可能面面具到并进行详细讲解,但相信读者通过本书的学习,一定能领会其中的技巧。
目录前言﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1 燃烧器内甲烷和空气的燃烧﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3 管内层流流动数值计算﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 38 蒸汽喷射器内的传热模拟﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 52 组分传输与气体燃烧算例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 75 空调房间温度场的模拟﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍102燃烧器内甲烷和空气的燃烧问题描述这个问题在图1中以图解的形式表示出来。
此几何体包括一个简化的向燃烧腔加料的燃料喷嘴,由于几何结构对称可以仅做出燃烧室几何体的1/4模型。
喷嘴包括两个同心管,其直径分别是4个单位和10个单位,燃烧室的边缘与喷嘴下的壁面融合在一起。
图1:问题图示一、利用GAMBIT建立计算模型启动GAMBIT。
第一步:选择一个解算器选择用于进行CFD计算的求解器。
操作:Solver -> FLUENT5/6第二步:生成两个圆柱体1、生成一个柱体以形成燃烧室操作:GEOMETRY-> VOLUME-> CREATE VOLUME R打开Create Real Cylinder窗口,如图2所示图2:生成圆柱对话框a)在柱体的Height中键入值1.2。
b)在柱体的Radius 1中键入值0.4。
Radius 2的文本键入框可留为空白,GAMBIT将默认设定为Radius1值相等。
c)选择Positive Z(默认)作为Axis Location。
d)点击Apply按钮。
2、按照上述步骤以生成一个Height =2,Radius 1 =1并以positive z为轴的柱体。
fluent旋转机械案例
fluent旋转机械案例
本文将介绍一些基于Fluent的旋转机械案例。
Fluent是一款用于流体力学仿真的商业软件,它可以用来模拟液体、气体和多相流的运动。
在旋转机械领域,Fluent可以用来模拟叶轮、泵、涡轮等旋转设备的流动特性。
下面是一些基于Fluent的旋转机械案例:
1. 叶轮流动分析:叶轮是旋转机械中最常见的一种,它的流动特性对于性能和效率至关重要。
利用Fluent,可以对叶轮的流动进行仿真分析,以确定最佳设计参数和流动特性。
2. 离心泵性能分析:离心泵是一种常见的旋转机械,它的性能与设计参数和流动特性密切相关。
使用Fluent可以对离心泵的性能进行分析,以优化其设计并提高效率。
3. 涡轮模拟:涡轮是一种能量转换设备,可以将流体动能转换为机械能。
Fluent可以用来模拟涡轮的流动特性,以确定其性能和效率,并优化其设计。
以上是几个基于Fluent的旋转机械案例,利用这些案例可以更好地了解Fluent在旋转机械领域的应用和优势。
- 1 -。
FLUENT实例5个(转自他人)
前言为了使学生尽快熟悉计算流体软件FLUENT以及更好的掌握计算流体力学的计算模型,本书编制了几个简单的模型,包括了组分燃烧、管内流动、换热和房间温度场四个方面的内容。
其中概括了二维和三维的模型,描述详细,可根据步骤建模、划分网格和计算以及后处理。
本书不可能面面具到并进行详细讲解,但相信读者通过本书的学习,一定能领会其中的技巧。
目录前言﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1 燃烧器内甲烷和空气的燃烧﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3 管内层流流动数值计算﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 38 蒸汽喷射器内的传热模拟﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 52 组分传输与气体燃烧算例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 75 空调房间温度场的模拟﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍102燃烧器内甲烷和空气的燃烧问题描述这个问题在图1中以图解的形式表示出来。
此几何体包括一个简化的向燃烧腔加料的燃料喷嘴,由于几何结构对称可以仅做出燃烧室几何体的1/4模型。
喷嘴包括两个同心管,其直径分别是4个单位和10个单位,燃烧室的边缘与喷嘴下的壁面融合在一起。
图1:问题图示一、利用GAMBIT建立计算模型启动GAMBIT。
第一步:选择一个解算器选择用于进行CFD计算的求解器。
操作:Solver -> FLUENT5/6第二步:生成两个圆柱体1、生成一个柱体以形成燃烧室操作:GEOMETRY-> VOLUME-> CREATE VOLUMER打开Create Real Cylinder 窗口,如图2所示a) 在柱体的Height 中键入值1.2。
b) 在柱体的Radius 1 中键入值0.4。
Radius 2的文本键入框可留为空白,GAMBIT 将默认设定为Radius 1值相等。
c) 选择Positive Z (默认)作为Axis Location 。
d) 点击Apply 按钮。
2、按照上述步骤以生成一个Height =2,Radius 1 =1并以positive z 为轴的柱体。
fluent实例-二维三通管内流体的流动分析
二维三通管内流体的流动分析一、实例概述在实际输水、输油、输气的管路工程中,经常会遇到分支或交叉的管路,三通管就是其中最为常见的一种。
下图所示为水平放置的输水管路中的三通管,干管为100mm的钢管,管段中间位置接入50mm 的支管,干管水流方向为水平方向从左至右,流速2m/s。
支管的水流速度为1m/s.那么,支管水流汇入后对干管水流产生多大影响,交会后在下游的流动情况如何。
二、模型建立1、启动GAMBIT。
2、绘制点(0,0.05,0)、点(0,-0.05,0)、点(10,-0.05,0)、点(10,0.05,0)、点(4.975,-0.05,0)、点(4.975,-5,0)、点(5.025,-5,0)、点(5.025,-0.05,0)、点(5.025,0.05,0)、点(4.975,0.05,0),共10个点。
3、建立两点之间线段,共13条。
如图:4、生成几何面,如图:三、网格划分考虑到水流近壁面粘性效应,首先绘制边界层网格。
1、选取线2,按1:1的边界生成方式,设第一个点距壁面距离为0.001m,递增比例因子为1.2,边界层为4层。
2、按同样的方法生成线段3、线段4、线段5、线段8、线段9的边界层网格。
3、在Mesh Edges面板选中线2、5、9、4、11、13,选择Interval Size 方式,值为0.1.4、按同样的方法,将线段1、3、8、10、12等5条线段以Interval Size为0.01划分。
如图:5、运用Quad单元与Map方法对面进行划分,如图:面网格划分好后,需要定义边界类型。
6、将线段1和线段12定义为速度入口,名称为in1与in2,将线段10定义为自由出流,名称为out,如图:边界类型定义完成后,需要将网格文件输出。
7、输出为liuye.msh,并选中Export 2-D(X-Y)Mesh,表示输出的为二维模型网格文件。
四、求解计算1、打开FLUENT6.3.26,选择2d计算器。
fluent融化案例
Fluent融化案例分析:福斯特冰淇淋的成功故事1. 背景福斯特冰淇淋(Foster’s Ice Cream)是一家位于美国纽约州的冰淇淋制造商,成立于1980年。
创始人约翰·福斯特(John Foster)梦想着打造一家能够提供优质冰淇淋的公司,通过创新口味和独特的制作工艺来吸引消费者。
然而,在成立初期,福斯特冰淇淋并没有取得太大的成功,销量一直较低。
2. 过程2.1 发现问题福斯特冰淇淋的创始人约翰·福斯特意识到,他们的冰淇淋虽然口感不错,但在市场上并没有太大的竞争优势。
他决定寻找一种方法来改进冰淇淋的质量和口感,以吸引更多的消费者。
2.2 引入Fluent技术约翰·福斯特了解到Fluent技术可以用于改进食品的质量和口感,因此他决定引入Fluent技术来提升福斯特冰淇淋的质量。
Fluent技术是一种先进的流体力学仿真软件,可以模拟和优化流体的流动和传热过程。
在食品行业中,Fluent技术可以用于优化食品的加工工艺,改进产品的质量和口感。
2.3 应用Fluent技术改进冰淇淋制作工艺福斯特冰淇淋的研发团队使用Fluent技术对冰淇淋的制作工艺进行了仿真和优化。
他们通过模拟冰淇淋混合物的流动和传热过程,找到了最佳的加工参数和工艺条件。
具体来说,他们使用Fluent技术模拟了冰淇淋混合物在搅拌和冷冻过程中的流动情况,并分析了温度和浓度分布的变化。
通过优化搅拌速度、冷冻时间和温度等参数,他们成功改进了冰淇淋的质量和口感。
2.4 推出改进后的冰淇淋产品经过Fluent技术的优化,福斯特冰淇淋成功改进了产品的质量和口感。
他们推出了一系列口感更加细腻、口味更加丰富的冰淇淋产品,包括各种口味的巧克力、草莓、香草等。
福斯特冰淇淋通过改进后的产品吸引了更多的消费者,销量大幅度增长。
他们的冰淇淋成为当地最受欢迎的品牌之一,甚至开始向其他地区扩张。
3. 结果福斯特冰淇淋通过引入Fluent技术成功改进了产品的质量和口感,取得了可观的商业成果。
FLUENT实例-搅拌桨-动网格讲解
搅拌桨底部十字挡板流场分析动网格实例教程搅拌设备在各个行业运用的十分广泛,搅拌就是为了更够更快速更高效的将物质与介质充分混合,发生充分的反应,而搅拌中存在着许多不利于混合的情况,比如液体旋流。
为了解决这个问题,之前很多人提出在罐体的侧壁上增加挡板,可以抵消大部分旋流,然后大部分都是研究侧挡板的,对于底部挡板的研究十分少,本文就在椭圆底部挡板增加十字型挡板,对罐体中进行流场分析。
1.Gambit建模首先用Gambit建模图形如下:图1:Gambit建立的模型分为两个区域,里面的圆柱为动区域,外面包着的大圆柱设为静区域,静区域划分网格大,划分粗糙,内部动区域划分网格小,划分精细。
边界条件主要设置了轴,搅拌桨,底部挡板,上层液面。
以下就是fluent进行数值模拟。
2.fluent数值模拟2.1导入case文件2.2对网格进行检查Minimum volume的数值大于0即可。
图2网格检查2.3调节比例单位选择mm单位。
图3比例调节2.4定义求解器参数设置如图4所示图4设置求解器参数2.5设置能量线图5能量线2.6设置粘度模型,选择k-e模型k-e模型对该模型模拟十分实用。
图6粘度模型2.7定义材料介质选择液体水。
图7介质选择2.8定义操作条件由于存在着终于,建模时的方向向上,所以在Z轴增加一个重力加速度。
图8操作条件2.9定义边界条件在边界设置重,动区域如图所示,将材料设成水,motion type设成moving reference frame (相对滑动),转速设为10rad/s,单位可在Define中的set unit中的angular-velocity设置。
而在在轴的设置中,如上图所示,将wall motion设成moving wall,motion设成Absolute,速度设成-10,由于轴跟动区域速度是相对的,所以设成反的。
图9动区域边界条件图10轴边界条件2.10设置求解器求解器的设置如图11需将momentum改成0.5即可图11求解器2.11初值初始化在Slove中选择solution initialiation设置一下,初值全为0.2.12设置残留控制将plot点上,其他参数如图12所示。
Fluent教程案例7-油水两相流动数值模拟
实验七油水两相流弯管流动模拟-混合物模型弯管被广泛应用于石化、热能动力、给排水等工程领域的流体输送,其内部流体与管壁的相对运动将产生一定程度的振动而使管迫系统动力失稳,严重时会给系统运行带来灾难性的毁坏.而现今原油集输管线中普遍为油水两相流,流动复杂,且通过弯管时由于固壁的突变,使得流动特性更为复杂.因此,研究水平弯管内油水两相流的速度、压力分布等流动特性,不仅能够为安全输运、流动控制等提供依据. 还可为管线防腐、节能降耗措施选取等提供依据.混合物模型(Mixlure 模型)典型的应用包括低质量载荷的粒子负载流、气泡流、沉降旋风分离器等,混合模型也可以用于没有离散相相对速度的均匀多相流。
一、实例概述选取某输油管道工程管径600mm的90°水平弯管道,弯径比为3,并在弯管前后各取5m直管段进行建模,其几何模型如图所示。
为精确比较流体流经弯管过程中的流场变化,可截取图所示的5个截面进行辅助分析。
弯管进出口的压差为800Pa,油流含水率为20%。
2500500018002500600二、模型建立1.启动GAMBIT,选择圆面生成面板的Plane为ZX,输入半径Radius为0.3,生成圆面,如图所示。
2.移动圆面,选择圆面,Move在Global下的x栏输入1.8,完成该面的移动操作。
3.选取面,Angle栏输入-90,Axis选择为(0,0,0)→(0,0,1),生成弯管主体,如图。
4.在Create Real Cylinder面板的Height栏输入5,在Radius1栏输入0.3,选择AxisLocation 为Positive X,生成沿x方向的5m直管段,如图所示。
5.同方法,改变Axis Location为Positive Y生成沿y方向的5m直管段,如图所示。
6.将直管段移动至正确位置,执行Volume面板中的Move/Copy命令,选中沿y轴的直管段,在x栏输入1.8,即向x轴正向平移1.8。
fluent燃烧案例
fluent燃烧案例
一个典型的fluent燃烧案例可以是用于模拟内燃机燃烧过程。
内燃机通过燃烧混合气体(通常是汽油或柴油)来产生动力。
利用FLUENT软件,可以模拟燃烧室内燃烧过程的流动和热
学性质,以及燃烧产物的生成和分布。
在该案例中,首先需要建立内燃机的几何模型。
这可以通过CAD软件绘制出引擎的各个部分,包括气缸、活塞、阀门等。
然后,将模型导入FLUENT中,并设置适当的边界条件和初
始条件。
接下来,需要定义燃烧模型。
根据燃料的类型和燃烧室的设计,可以选择适当的燃烧模型,如预混合燃烧模型、不完全燃烧模型等。
还需要输入燃料的物理性质参数,如燃烧温度、燃烧速率等。
然后,设置求解器和数值方法。
FLUENT提供了多种求解器
和数值方法,用于求解Navier-Stokes方程、能量守恒方程、
物质守恒方程等。
根据具体情况,选择合适的求解器和数值方法。
最后,进行模拟计算并进行后处理。
通过求解器和数值方法,可以得到燃烧室内流场、温度场和燃烧产物分布。
利用后处理工具,可以对这些结果进行可视化、统计和分析,以评估燃烧过程的效率和性能。
总之,上述案例展示了利用FLUENT进行内燃机燃烧过程模
拟的一般流程。
通过模拟和分析,可以优化燃烧室的设计,并预测燃烧产物的生成和分布,从而提高内燃机的燃烧效率和排放性能。
ansys fluent实例详解
ansys fluent实例详解
ANSYS Fluent是一款流体动力学模拟软件,适用于广泛的流体动力学分析和优化,如流场分析、传热分析、反应器分析和多相流分析等。
下面我们来详细介绍一下ANSYS Fluent实例。
1. 加热器模拟
在加热器模拟中,我们需要对流动领域进行分析。
通过ANSYS Fluent,我们可以对加热器的流场、温度分布和速度分布进行分析。
在这个模拟中,我们需要输入材料的物理性质、几何结构和热负载,然后进行计算。
最终,我们可以得到加热器内的流场分布和其它相关的计算结果。
2. 管道流动模拟
3. 燃烧模拟
在燃烧模拟中,我们需要对燃烧过程进行分析。
利用ANSYS Fluent,我们可以输入燃料和氧气的初始条件,然后进行数值模拟。
我们可以得到燃烧的温度、压力、燃料和氧气的比例以及产生的废气等相关的计算结果。
4. 风扇模拟
5. 船舶流场模拟
总之,ANSYS Fluent实例可以应用于多种领域,如化工、机械、航空航天、能源、汽车等。
利用它可以帮助我们更好地了解流体行为和流体流动中的一些问题,并且优化设计和工程流程。
fluent瞬态流体仿真 案例
fluent瞬态流体仿真案例
瞬态流体仿真是指模拟计算流体在瞬间产生的变化过程,例如流
体在阀门的开关过程中的变化、气泡在管道中的移动以及燃烧室中燃
烧过程的变化。
以下是一些关于fluent瞬态流体仿真的案例:
1. 过热器管道水侧结垢问题的仿真分析
针对某火力发电厂的一个过热器管道水侧结垢问题,应用fluent 瞬态流体仿真技术对管道内传输流体的流动和传热特性进行了仿真分析。
通过对不同管道结垢程度的仿真实验,得出了结垢程度超过20%时传热系数的下降趋势。
此外,仿真结果还为探究管道结垢问题的原因
提供了参考。
2. 火箭发动机喷口流场的仿真模拟
利用fluent瞬态流体仿真技术,对一种特定型号火箭发动机的
喷口进行了仿真模拟。
通过对喷口流场中的速度、压力、温度等参数
的计算,得到了喷口流场的分布规律,并对其进行了优化设计。
仿真
结果显示,优化后的喷口出口速度和总压损失均有所改善。
3. 水下油泄漏扩散的瞬态流体仿真
在某一港口进行了水下油泄漏扩散的瞬态流体仿真。
采用fluent 仿真软件,建立了油泄漏扩散的数学模型,并通过对海底地形、海流、风速等因素的考虑,计算了油泄漏在瞬间引起的油污扩散范围。
仿真
结果为预测和应对水下油泄漏事故提供了科学依据。
以上是一些关于fluent瞬态流体仿真的案例,这些案例应用可
视化的软件模拟流动现象,有助于在实际应用中优化设计、提高效率,具有广泛的应用价值。
fluent 简单案例
fluent 简单案例
当然可以,以下是一个简单的 Fluent 案例,用于模拟一个简单的二维管道流。
1. 模型建立:
首先,在 Gambit 中创建一个二维管道模型。
例如,一个长为 1m,直径为的圆管。
2. 网格划分:
使用 Gambit 对模型进行网格划分,选择适当的网格类型和尺寸。
3. 边界条件设置:
入口:速度入口,速度为 m/s。
出口:压力出口,压力为一个大气压。
管壁:无滑移壁面。
4. 求解器设置:
选择压力基求解器,湍流模型选择标准 k-ε 模型。
设置迭代次数为 500,收敛残差为 1e-6。
5. 开始模拟:
完成以上步骤后,可以开始模拟。
Fluent 将计算流场,并显示流速、压力、湍流强度等变量的分布。
6. 后处理:
模拟完成后,可以使用 Fluent 的后处理功能来查看和分析结果。
例如,可
以绘制速度、压力、湍流强度的云图或矢量图。
以上是一个简单的 Fluent 案例,用于模拟二维管道流。
实际应用中,可能
需要根据具体问题调整模型、网格、边界条件和求解器设置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一年一度的毕业设计就要到来了,CAE软件依然是流体专业众多学子毕设的拦路虎,为了使各高校流体同学顺利完成毕业设计以及有志于在流体行业有一番作为的青年才俊迅速掌握一门技能,从而更好地适应职场需求,北京经纬云图仿真科技有限公司感谢各位同行的支持和厚爱,特组织各方面CAE软件专家长期进行免费在线网络培训,诚邀您的参与!特此声明:本公司的所有培训将主要以工程实例为基础进行,让您真正的学到知识,懂得原理,而不仅仅是简单的软件操作。
最重要的一点是为了回馈广大同仁们,本公司的培训完全免费,机不可失失不再来啊!
主办单位:北京经纬云图仿真科技有限公司
培训时间:每周五晚8:00---9:30
培训方式:在线免费网络培训
培训2000人QQ群:281194860(参与培训请加入,注明:FLUENT培训)
培训内容:见附录
附录:1,基础流动计算
以AICD装置为例,说明利用fluent进行基础的流动模拟的步骤,包括计算设置和简单的后处理
2,两相流Mix模型应用
以某烟雾报警器为例,利用mix两相流模型,预测烟雾报警器内部的烟雾浓度分布
3,空化问题
以某拉瓦尔喷管型的空化装置为例,利用mix两相流模型和空化模型,计算装置内的水的空化情况
4,水的蒸发和凝结
以某水蒸气动力装置为例,利用mix两相流模型和蒸发凝结模型(fluent自带蒸发凝结模型和udf编程),并利用瞬态计算的方法,得到装置的瞬时流场分布和水凝结情况
5,湿空气的露点问题
以某实验装置为例,说明露点问题与蒸发凝结问题的本质区别,利用mix两相流模型和udf 露点模型,计算过冷空气中的水析出的问题,并与理论结果进行对比
6,萃取问题(溶液间传质问题)
以某反应塔的一层为例,利用mix两相流模型、组分输运模型和udf传质模型,计算甲苯的萃取过程,以及利用瞬态计算的方法,得到脉动进口条件对于萃取过程的影响
7,水中气泡上升
以某鱼缸中通过气泡的模型为例,利用vof两相流模型和udf气泡源,利用瞬态计算的方法,得到水中的连续气泡上升的流动动画
8,融化、蒸发联合作用问题
以低压力环境中的固态铝加热为例,利用vof两相流模型、融化凝固模型、蒸发凝结模型和udf加热源,利用瞬态计算的方法,计算铝融化后的液面形状
9,粒子冲蚀问题
以某钻井装置为例,利用DPM模型和粒子冲蚀模型,计算在钻井的过程中,钻头以及装置各部分的磨损情况
10,高温粒子喷涂问题
以某高温粒子喷涂装置为例,利用DPM模型和粒子融化、蒸发模型,计算在高温喷涂的过程中,不同半径粒子的运动轨迹,和粒子的融化、蒸发情况
11,二维齿轮动网格
以某二维齿轮泵为例,利用动网格模型中的刚体运动模型,模拟齿轮泵的啮合工作过程
12,Six dof动网格问题
以三维空间中小球斜射入水的问题为例,利用动网格模型和six dof模型,模拟小球从空气中斜射入水过程中的运动和受力情况
13,流热耦合问题
以某水泵的相关部件为例,利用流热耦合方法和udf热源,模拟水泵工作过程中的摩擦生热问题,以及冷却问题
14,电磁搅拌问题
以带有电磁搅拌的坩埚为例,利用udf体积力源项和mix两相流模型的方法,模拟电磁搅拌对于坩埚内合金金属的浓度分布的影响
15,多孔介质问题
以某带有多孔漏斗装置的化学反应塔为例,首先对多孔漏斗进行直接数值模拟得到多孔介质的属性参数,然后利用多孔介质和组分输运模型进行计算,得到反应塔内部各组分的浓度分布。