场论与张量运算简介PPT课件

合集下载

1_场论与张量基础

1_场论与张量基础
2.张量表示法
张量表示法
张量表示法具有书写简洁,运算方便的优点。 在张量表示法中我们将坐标改写成 x1,x2,x3。 并引进以下 几种符号。 (1)ai 表示一个矢量, i 是自由指标,可取1,2,3,符号
a 可任取。
例如的 grad 张量表示法为
xi
18/72
第二节 张量
张量表示法
(2)约定求和法则。为书写简便,我们约定在同一
张量表示法
ijk
例如:

0 1
两个以上(含两个)下标相同 下标为偶排列或奇排列
a b ijk a j bk ak rota ijk x j
ijk ist js kt jt ks
20/72
第二节 张量
3. 二阶张量
二阶张量性质
(1)二阶张量的主值、主轴及不变量
场论中的奥高公式可以推广到张量中去。设 P 是 n 阶张量,则张量情形下的奥高公式可写为:
rotn a lim
S 0
a d r
L
S
11/72
第一节 场论
8.无旋场及其性质
环量与旋度
rota 0 的矢量场称为无旋场。
无旋场最重要的性质是无旋场和位势场的等价性。
即若 a 是位势场,则 a 必为无旋场。
a grad rota 0
反之,若矢量 a 是无旋场,则 a 必为位势场。
( 1) P的反对称性不因坐标转化而改变;
(2)反对称张量的三个分量 1 ,2 , 3 组成一矢量 ;

(3)反对称张量 P 和矢量 b 的内积等于矢量 和 b 的矢积,即:
P b aij bj ijk b jk ikjkb j b

0-场论与张量(数学基础)

0-场论与张量(数学基础)

(1)指标表示法和符号约定
哈密顿算子
利用哈密顿算子进行运算时,需分别进行微分和矢量两 种运算。
梯度
散度
ei ( ) ei xi xi
a j ai a j a ei x a j e j ei e j x ij x x i i i i
i j k (2) v w 1 2 5 i (2 1 1 5) j ( 3 5 1 1) k ( 1 1 2 3) 3 1 1 3 i 16 j 7 k
e1 e2 e3 a b a1 b1 a2 b2 a3 b3
26
ij ji
12 21, 31 13
ij a j ai
1 j a j 11a1 12a2 13a3 a1 , 2 j a j a2 , 3 j a j a3
ij 与 a j 相乘,相当于把 a j 的下标 j 置换为 i。
18
(2)笛卡尔张量
共轭张量、对称张量、反对称张量和张量的分解 张量分解定理 一个二阶张量可以唯一地分解为一个对称张量和一个反对 称张量之和
P 1 1 P Pc P Pc 2 2
容易验证上式右边第一项是对称张量,第二项是反对称张 量。
19
梯度、散度和旋度 2.1 哈密尔顿(Hamilton)算子 哈密尔顿(Hamilton)算子是矢量微分算子,其定义如下:
i, j, k 奇排列, 213,321,132
9
(1)指标表示法和符号约定
置换符号
ijk
ijk 有以下重要性质:
ijk ist js kt jt ks

【张量分析ppt课件】张量分析课件第三章 张量代数

【张量分析ppt课件】张量分析课件第三章 张量代数

按§2.5节三中(g)式面积矢量记法有:
dH 0 r u(r ) (r )dV
试证明物体 Ω 对o点的动量矩为:
H0 J ω
Ω
式中 称为物体 Ω 对o点的二阶惯性矩张量(注:J 不是四阶单位张量。但 J表达式中的 I是二阶单位张量)。 u (r ) ω r 证: H (r u) dV r (ω r ) dV (r r )ω (r ω)r ) dV
I u (ii ii ) (u j i j ) u j iiij ui ii u
设存在另一二阶张量 I ,且满足 u I I u 。则: u I u I o ; uo ∵ I I O ; I I (唯一性) ∴ 3.
A : J ( Amn imin ) : (ii i j ii i j ) Amnmi jn ii i j Amn imin A
二阶张量与二阶张量的(一)点乘:
A B (Aij ii i j) ( Bmn imin) (Aij Bmn )ii (i j im )in Aij Bjn ii in
二阶张量与二阶张量的(双)点乘:
A : B ( Aij ii i j ) : ( Bmn imin ) ( Aij Bmn )(ii im )(i j in ) Aij Bij
A P2 A P2
A0 P2 Φ0 P4
Φ0 P4
(3.1-11)
A : Φ0 A
0 0
的 n ; A ; A ; ; 分别称为一阶单位张量、二阶单位张量和四 阶单位张量。 上式定义的一阶、二阶和四阶单位张量具有性质: u u V n 1. u A0 A0 ii ii ij ii i j (3.1-12) 2. I 为单位二阶张量。 ii i j 且记 A ; A 为 I 。即 I ii ii ij。并称

流体力学-第一讲 场论与张量分析初步ppt精选课件

流体力学-第一讲 场论与张量分析初步ppt精选课件


标量场(scalar
field):f
(r,t)
• 向量场(vector field):g (r,t) g=f(r,t)
• 均匀场(homogeneous field):f c
• •
非 定均常匀流场场((nstoen-adhyomfoigeelndou)s:ffi(erl)d): field):f(r,t)
a x b x a yb y a zb z 标量
18.06.2021
ppt精选版
9
1
如a、b正交 ,则
abab0
2
如a、b平行 ,则
aba b
3 4
如 分a在 配b正 律交 ab投 c影 aba表 用 b示 ac
m a b a m b m a b
a
ax2ay 2az2
散度是标量,而不是向量。
diav l
im sa dsaxayaz a
v 0 v x y z
于是Gauss定理可以写作:
sa n d s sa d s v( a x x a y y a z z)d v v( a )dv
18.06.2021
ppt精选版
28
div A 0 的场称为无源场。其性质:
运动学 动力学
以实际流体为主
18.06.2021
ppt精选版
2
主要内容:
第一章 场论与张量分析初步
第二章 流体运动学
第三章 流体力学基本方程组
第四章 粘性流动基础
第五章 Navier-Stokes 方程的解
第六章 边界层理论
第七章 流体的旋涡运动
第八章 湍流理论
18.06.2021
ppt精选版
3

流体力学-第一讲 场论与张量分析初步

流体力学-第一讲 场论与张量分析初步

ax ay az
10.01.2021
18
所以有: (向量线方程)
dx dy dz
ax ay az
向量管:在场内取任一非向量的封闭曲线C,通过C上每一点 作矢(向)量线,则这些矢量曲线的区域为向量管。
流线方程 迹线方程
dx dy dz ux uy uz dx dy dz dt ux uy uz
迹线的描述 是从欧拉法
15
二、场的几何表示
变化快
变化慢
1、scalar field:
(1)用等值线(面)表示
令:
t0 f(r,t0)f0
t1 f(r,t1 )f1
等值线(等位面)图
(2)它的疏密反映了标量函数的变化情况
10.01.2021
16
二、场的几何表示
2、 vector field: 大小:标量. 可以用上述等位线(等位面)的概念来几何表示。
10.01.2021
12
数量三重积: c ab
ax ay az
a bc abc abc bx by bz
cx cy cz
a b c c a b b c a
abcacb
循环置换向量次序, 结果不变.
改变循环向量次序, 符号改变.
10.01.2021
③在任一方向的变形等于该方向的方向导数。
④梯度的方向是标量变化最快的方向。
10.01.2021
25
梯度的基本运算法则有:
C C
C( 为 常 数 )
1 2 1 2
1 2 1 2 2 1
f f
10.01.2021
26
四、向量的散度(divergence)
a ba xi a yj a zkb xi b yj b zk

流体力学-第一讲,场论与张量分析初步

流体力学-第一讲,场论与张量分析初步

x2 y2
方向导数
f l
li m 0 f(xx,yy)f(x,y)
方向 f导 fc 数 o sfsin
运动学 动力学
以实际流体为主
24.11.2020
h
2
主要内容:
第一章 场论与张量分析初步
第二章 流体运动学
第三章 流体力学基本方程组
第四章 粘性流动基础
第五章 Navier-Stokes 方程的解
第六章 边界层理论
第七章 流体的旋涡运动
第八章 湍流理论
24.11.2020
h
3
第一章 场论与张量分析初步
h
8
矢量的标量积(数量积)(点积)(内积):
功:当力F作用在质点上使之移动一无限小位移 ds,此力所做功定义为力在位移方向的投影乘以
位移的大小.
a b a b co a ,b s
coa ,sb axbxa yb yazbz ab
a ba xi a yj a zkb xi b yj b zk
cx cy cz
a a b b c c c a c a b b b c a
循环置换向量次序, 结果不变.
改变循环向量次序, 符号改变.
24.11.2020
h
13
数量三重积几何意义:作为平行六面体的体积 。
a b c
c a b = 0 , 是 a ,b ,c 共 面 的 充 分 条 件
矢量线的描述是从欧拉法引出
矢量线方程:

dr
是矢量线的切向元素,
则据矢量线的定义有
a d r0
直角坐标:
d r id x jd k y d z a ia x ja y k a z
则有:

第一章-场论及张量初步分析

第一章-场论及张量初步分析

全国范围内温度场分布
速度场
速度场
速度场
电场
磁场
均匀场:同一时刻场内各点 函数值都相等
定常场:场内函数值不随时 间t改变
均匀场
定常场
1.2 场的几何表示
等高线
等高线
根据等高线的相对位置、疏密程度 看出标量函数-高度的变化状况
矢量场的几何表示
矢量的大小是一个标量,可以用等位 面的概念来几何表示,矢量的方向则 采用矢量线来表示。
rotxa
az y
a y z
rot y a
ax z
az x
rot z a
a y x
ax y
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系 中值公式:面积分与函数值的关系
i jk
rota
x y z
ax ay az
1.6 环量. 旋度. 斯托克斯定理
矢量线:线上每一点的切线方向与该 点的矢量方向重合
dr
r r
根据矢量定义有: a dr 0
直角坐标形式:
1.3 梯度-标量场不均匀性的量度
对于给定标量场 (r,t),用它的梯度
来表明在任一时刻标量场中每点邻域 内的函数变化。
函数在M点上沿曲线S方 向的方向导数:
表明函数φ(r,t)在M点上 沿曲线S方向的变化率
p31
p13
1 2
p23
p32
0
二阶反对称张量
2 1
0
张量分解定理
二阶张量可以唯一地分解成为一个对称张 量和一个反对称张量之和。
P
1 2
P
Pc
1 2
P
Pc

张量分析及场论

张量分析及场论
示作用在该点上的力,则该力对物体质点所做的功为
u
w
v
图 1.1、矢量加法的平行四边形法则
W | F || u | cos

其中 F 、| u |分别表示矢量 F 、 u 的大小,θ表示矢量 F 与矢量 u 之间的夹角,这就 定义了一种称为点积的运算。




点积的定义: 设 u ,v 为两个任意不为零的矢量, 设| u |, | v |分别为其大小 (也称为模) 。 θ为这两个矢量之间的夹角,则 u 与 v 的点积为
张 量 分 析 及 场 论 Tensor Analysis and Field Theory
刘长根第一章 张量代数 ..................................................................................................................... 1 §1.1 点积、矢量分量及记号 ij .......................................................................................... 1 1.2 记号 ijk 、矢积(叉乘)、 关系 ........................................................................ 5 1.3、坐标变换 ...................................................................................................................... 9 1.4、并矢、张量 ................................................................................................................ 12 1.5 张量的代数运算 ........................................................................................................... 14 1.6 张量识别定理(商判则) ........................................................................................... 16 1.7、二阶张量 .................................................................................................................... 17 1.8、张量举例 .................................................................................................................... 21 习题一 ................................................................................................................................. 36 第二章 正交曲线坐标系中的张量分析与场论 ................................................................. 39 2.1、矢量函数、及其导数与微分 .................................................................................... 39 2.2 场 ................................................................................................................................... 43 2.3、曲线坐标 .................................................................................................................... 45 2.4、标量场的方向导数、梯度 ........................................................................................ 49 2.5、矢量场的通量、散度、奥高定理 ............................................................................ 53 2.6、矢量场的环量、旋度、斯托克斯公式 .................................................................... 56 2.7、哈密顿算子 ................................................................................................................ 58 2.8、基矢量对坐标的导数及其应用 ................................................................................ 62 2.9、几种重要的场 ............................................................................................................ 69 习题二 ................................................................................................................................. 75 第三章 一般曲线坐标系中的张量分析初步 ....................................................................... 77 3.1、曲线坐标,基矢量,度量张量 ................................................................................ 77 3.2、克里斯托弗尔符号及其性质 .................................................................................... 80 3.3、协变导数,逆变导数 ................................................................................................ 82

高等流体力学—场论及张量初步67页PPT

高等流体力学—场论及张量初步67页PPT
Than心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
高等流体力学—场论及张量 初步
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。

第一章场论及张量初步知识分享

第一章场论及张量初步知识分享

证明:其他方向的方向导数可以由过M点的法 线方向上的方向导数来表示
lim(M1)(M)
n MM 1 0
MM 1
lim (M)(M)
s M M 0 M M
当M1无限接近M时,近 似为过M1点的切线
(M)(M 1)
M1 M M M co n,s s)(
MM MM1 cosn(,s)
(M)(M 1)
对于给定的矢量场a(r,t) ,在场内取一点M, 围绕M取无限小封闭曲线L,张于L上的曲面 为S,按右手螺旋法则定义S的法线方向n。
速度场
速度场
电场
磁场
均匀场:同一时刻场内各点 函数值都相等
定常场:场内函数值不随时 间t改变
均匀场
定常场
1.1 场的几何表示
等高线
等高线
根据等高线的相对位置、疏密程度 看出标量函数-高度的变化状况
矢量场的几何表示
矢量的大小是一个标量,可以用等位 面的概念来几何表示,矢量的方向则 采用矢量线来表示。
V a xx a yy a zz d V V a xx a yy a zz Q
函数在体积V上的积分
在积分体上Q点处的函数值
注意:Q点是积分体上的一个确定点
sandSVaxx
ay y
az z
Q
1.4 矢量的通量.散度.奥高定理
sandSVaxx
ay y
az z
Q
它来描述M点邻域内函数的变化状况,是标量 场不均匀性的量度。
g rad n
n
其他方向的方向导数可以由过M点的梯度 的大小来表示
g rad n
n
cosn,(s)
s
n
s•grad
梯度在直角坐标系中的表达式

场论和张量初步

场论和张量初步

w ∫∫ ρV ⋅ dS
Σ
K
K =− ∂ρ =单位体积空间内的质量变化率的负值, ∂t
δτ
即单位时间从单位体积空间流出的质量。为精确表述空间任意一点 M 0 处的质量变化率,可
对 δτ 取极限, lim
w ∫∫ ρV ⋅ dS
Σ
K
K =−
Σ→ M 0
δτ
K ∂ρ 。可见 div ( ρV ) 表示单位时间内从单位空间体积表 ∂t
δ ls
K
K M ( x + δ x, y + δ y , z + δ z , t ) ,密度沿方向 s 上的
变化率为
δ l →0
M ( x, y , z )
lim
ρ ( x + δ x, y + δ y, z + δ z , t ) − ρ ( x, y, z , t ) ∂ρ . = δl ∂l
K K 磁通量 w B ∫∫ ⋅ dS = 0
Σ
一般地,对于任意矢量场 m ,定义其散度 div m = lim 散度是标量。 3)散度计算公式(直角坐标系)
K
K
K K m w ∫∫ ⋅ dS
Σ
Σ→ M 0
Hale Waihona Puke τ。以体积通量为例。 以 M 0 ( x0 , y0 , z 0 ) 为中心取正六面体形状的闭合曲面 Σ , 边长分别为
⎛ ∂u ⎜ ∂x K ⎛ δ u ⎞ ⎛ gradu ⋅ δ r ⎞ ⎜ K ⎟ ⎜ ∂v ⎜ ⎟ ⎜ δ δ = ⋅ =⎜ v gradv r ⎜ ⎟ ⎜ K⎟ ⎜ δ w ⎟ ⎜ gradw ⋅ δ r ⎟ ⎜ ∂x ⎝ ⎠ ⎝ ⎠ ⎜∂ w ⎜ ∂x ⎝ ∂u ∂y ∂v ∂y ∂w ∂y ∂u ⎞ ⎟ ∂z ⎟ ⎛δ x ⎞ ∂v ⎟ ⎜ ⎟ ⎟ δ y⎟ ∂z ⎟ ⎜ ⎜δ z ⎟ ⎝ ⎠ ∂w ⎟ ∂z ⎟ ⎠

高等流体力学—场论及张量初步

高等流体力学—场论及张量初步
diva lim
Vz diva lim V 0 x y z Q
1.4 矢量的通量.散度.奥高定理
a x a y a z diva lim V 0 x y z Q
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系 中值公式:面积分与函数值的关系
az a y rotx a y z a x a z rot y a z x a y ax rotz a x y
1.6 环量. 旋度. 斯托克斯定理
grad i j k x y x
dr dxi dyj dzk
梯度的主要性质
grad i j k x y z
dr dxi dyj dzk
dr grad
dx dy dz x y z
an:矢量a在法线方向的投影 an dS:矢量a通过面积元dS的通量
1.4 矢量的通量.散度.奥高定理
在整个曲面上积分,得矢量a通过S面的通量
a dS n
s
实质上相当于函数的面积分
1.4 矢量的通量.散度.奥高定理
当S面为封闭曲面时,通量为:
a dS n
s
1.4 矢量的通量.散度.奥高定理
S 0
a dr
L
S
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系
a dr a dx a dy a dz x y z
L L
a z a y cos(n, x) s z y
i rota x ax j y ay k i z x az x j y y k 0 z z

张量概念及其基本运算PPT课件

张量概念及其基本运算PPT课件
◆ 求和约定只适用于字母标号,不适用于数字标号。
◆ 在运算中,括号内的求和标号应在进行其它运算前
优先求和。例:
aii2a121a222a323
(aii)2(a1 1a22 a3)32
.
7
★ 关于自由标号:
◆在同一方程式中,各张量的自由标号相同,
即同阶且标号字母相同。
◆自由标号的数量确定了张量的阶次。
张量可以用矩阵表示,称为张量矩阵,如:
a11 a12 a13
aij a21
a22
a23
a31 a32 a33
凡是同阶的两个或几个张量可以相加(或相减), 并得到同阶的张量,它的分量等于原来张量中标号 相同的诸分量之代数和。 即:
a ijb ijcij
其中各分量(元素)为:
aij bij cij
张量概念及其基本运算
1、张量概念
◆ 张量分析是研究固体力学、流体力学及连续介 质力学的重要数学工具 。
◆ 张量分析具有高度概括、形式简洁的特点。
◆ 所有与坐标系选取无关的量,统称为物理恒量。
◆ 在一定单位制下,只需指明其大小即足以被说明 的物理量,统称为标量。例如温度、质量、功等。
◆ 在一定单位制下,除指明其大小还应指出其方向 的物理量,称为矢量。例如速度、加速度等。
◆ 重复出现,且只能重复出现一次的下标符号称
为哑标号或假标号。哑标号在其方程内先罗列, 再求和。
.
4
3.求和约定
关于哑标号应理解为取其变程n内所有数值,然后再求和, 这就叫做求和约定。 例如:
3
aibi aibi a1b1a2b2a3b3 i1
3
aib j j aib j j ai1b1ai2b2ai3b3 j1

第一章 场论和张量初步

第一章 场论和张量初步

第一章 场论和张量初步1.1 场的定义及分类设在空间中的某个区域内定义标量函数或矢量函数,则称定义在此空间区域内的函数为场。

均匀场:同一时刻内各点函数的值都相等。

反之为不均匀场。

定常场:场内函数值不依赖于时间。

反之为不定常场。

1.2场的几何表示标量场:等位线。

矢量场:矢量线的微分方程:(,,,)(,,,)(,,,)x y z dx dy dza x y z t a x y z t a x y z t ==积分,将t 看成参数,即得矢量线的分析表达式。

1.3梯度——标量场不均匀性的量度梯度:大小为n ϕ∂∂,方向为n ,的矢量称为标量函数ϕ的梯度,以grad n n ϕϕ∂=∂表之。

在s 方向上的方向导数等于梯度矢量在s 方向上的投影。

梯度grad ϕ在直角坐标系中的表达式为grad i j k x y z ϕϕϕϕ∂∂∂=++∂∂∂总结起来,梯度的主要性质是:1)梯度grad ϕ描写了场内任一点M 领域内函数ϕ的变化状况,它是标量场不均匀性的量度。

2)梯度grad ϕ的方向与等位面的法线重合,且指向ϕ增长的方向,大小是n 方向上的方向导数n ϕ∂∂;3)梯度矢量grad ϕ在任一方向s 上的投影等于该方向的方向导数;4)梯度grad ϕ的方向,即等位线的法线方向是函数ϕ变化最快的方向。

定理1 梯度grad ϕ满足关系式d dr grad ϕϕ=∙定理2 若a grad ϕ=,且ϕ是矢径r 的单值函数,则沿任一封闭曲线L 的线积分La dr⋅⎰等于零,反之,若矢量a 沿任一封闭曲线L 的线积分La 0dr ⋅=⎰则矢量a 必为某一标量函数ϕ的梯度。

例:计算仅与矢径大小r 有关的标量函数ϕ(r )的梯度ϕgrad 。

I )利用性质(2),标量函数=ϕϕ(r )的等位面是以坐标原点为心的球面,而球面的法线方向,即矢径r 的方向,故ϕgrad 的方向就是矢径r 的方向其次的大小是=r r ϕϕ∂∂’()于是rii )利用性质(5),显然x d r dr x ϕϕ∂∂=∂∂,d r y dr y ϕϕ∂∂=∂∂,z d rdr z ϕϕ∂∂=∂∂因222r x y z =++故r x x r ∂=∂,r y y r ∂=∂,r z z r ∂=∂于是x d x r dr ϕϕ∂=∂,y d y r dr ϕϕ∂=∂,z z d r dr ϕϕ∂=∂而=r r xi yj zk d grad ij k x y z r dr ϕϕϕϕϕϕϕ∂∂∂++∂=++==∂∂∂∂’()iii )利用定理1,r r dr rdrrϕϕϕ=’’()d (r)=()因2r r r ⋅=微分得r dr rdr ⋅=于是r d r drrϕϕ=⋅’()根据定理1r最后我们指出,写成a grad ϕ=的矢量场亦称位势场,ϕ称为位势函数。

《场量定义和计算》课件

《场量定义和计算》课件
应变场
在固体力学中,应变场表示物体内部 各点的应变状态。通过分析应变场, 可以研究材料的力学行为和破坏机制 ,应用于结构分析和优化设计。
应力场
在材料力学中,应力场表示物体内部 各点的应力状态。通过分析应力场, 可以研究材料的强度和稳定性,应用 于结构安全评估和优化设计。
04
场量计算工具介绍
数学软件介绍
场量的分类
要点一
总结词
根据物理量的性质和特征,可以将场量分为标量场、矢量 场和张量场等类型。
要点二
详细描述
根据物理量的性质和特征,可以将场量分为不同的类型。 其中,标量场表示只有大小的物理量,例如温度、压力等 ;矢量场表示既有大小又有方向的物理量,例如速度、力 等;张量场则表示更为复杂的物理量,包括多个标量和矢 量的组合。不同类型的场量具有不同的数学表达方式和物 理意义,它们在描述不同物理现象时具有重要的作用。
场量的物理意义
总结词
场量反映了物理量在空间中的分布特征,通过场量可以了解物理量的空间变化规律。
详细描述
场量的物理意义在于它能够描述物理量在空间中的分布情况,从而揭示物理量的空间变化规律。例如,温度场量 可以表示温度在不同位置的变化情况,速度场量可以表示速度在不同位置的方向和大小。通过对场量的分析,可 以深入了解物理现象的本质。
在电磁学中,磁场是一个向量场,由磁力线表示。通过分析 磁场,可以研究电磁感应、电磁力和电磁波等物理现象,应 用于电机、变压器、磁悬浮列车等领域。
速度场
在流体动力学中,速度场表示流体的速度矢量在空间中的分 布。通过分析速度场,可以研究流体运动规律,应用于流体 机械、船舶和航空航天领域。
张量场应用实例
标量场应用实例
温度场
在传热学中,温度场是一个标量场,表示空间中各点的温度分布。通过分析温 度场,可以研究热能的传递和分布规律,应用于热工设备的设计和优化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欧拉方法
着眼点:寻求空间中每个点上描述 流体运动随时间的变化状态
vv(r,t)
M
M’
5
流体力学基本概念
泰勒展开(Taylor Series)
一维:
f( x ) f( x 0 ) 1 1 ! ( x x 0 ) d d f x x x 0 2 1 ! ( x x 0 ) 2 d d 2 x f 2 3 1 ! ( x x 0 ) 3 d d 3 x f 3 ...
张量乘的阶数
乘法符号 无 x . :
结果的阶数 Σ
Σ-1 Σ-2 Σ-4
例子
v,vw
v×w, uv×uw v ·w, uv ·wv
uv : wv
标量—0阶张量; 矢量— 1阶张量; 张量—本课通指2阶张量
25
标量、矢量和张量乘结果的表示
标量、矢量和张量乘结果的表示
括号类型 () [] {}
结果类型 标量 矢量 张量
τyx yy yzxy yy yz
zx
zy
z
z
xz
yz
zz
τxy:剪应力的 y 分量作用于 x 面上的力
16
场论
定义: 设在空间中的某个区域内定义标量函数或矢量 函数,则称定义在此空间内的函数为场
B
A
A
17
场论——场的分类
标量场(温度场、密度场) 矢量场(力场、电磁场、速度场)
均匀场 不均匀场
a v d d v t v t v x v x v y v y v z v z t v t ( v • ) v
7
流体力学基本概念
流体速度分解定律——速度类型
1. 平移速度 2. 旋转速度 3. 变形速度
例子: A. 速度均匀的平移流动 B. 平行剪流 C. 简单的环形流动 D. 流线是圆形的无旋流动
三维:
f(x,y,z)f(x0,y0,z0)1 1!(xx0) fx(yy0) fy(zz0) fz(x0,y0,z0)
j 21 j!(xx0)x(yy0)y(zz0)zj f(x0,y0,z0)
6
流体力学基本概念
欧拉方法表达加速度
lim dv v(M ,t t)v(M ,t)
dt t 0
t
矢量乘法——叉乘
两个矢量矢量积(叉乘、叉积)
[vw ]{vs wiv n} w n vw
几何意义?
交换率(NA): [vw][wv] 结合率(NA): [u [v w ] ][u [ v ] w ] 分配率(OK): [u { v } w ] [u v ] [v w ]
[vv]?
24
张量乘的阶数计算
1. 空间尺度(microscope, mesoscope, macroscope)
2. 时间尺度(飞秒、皮秒 、纳秒、微秒、毫秒、秒)
3
流体力学基本概念
拉格朗日方法
着眼点:寻求质点位置变化规律
rr(x,y,z,t)
v r(x, y, z,t) t
avvt 2r(x,ty2,z,t)
4
流体力学基本概念
例子 ( v ·w ) [v×w] { uv + wv }
8
流体力学基本概念
流体速度分解定律——刚体运动
vv0ωr rovt2ω
vv0
1rovtr 2
v0 : 平移速度
rotv : 旋度
ω:角速度
9
流体力学基本概念
流体速度分解定律——旋度
旋度物理意义:刚体旋转时的2倍旋转角速度
旋度几何意义:设想一向量场,每一点都有一个向量,则在有旋度的点 处周围很小的空间里,会有向量绕成一个闭合的平面旋涡状,像水的旋 涡, 这一点的很小的一个空间里的平均的向量旋转角速度称为旋度。
22
矢量乘法——点乘
两个矢量标量积(点乘、点积)
(v•w)vw covsw
交换率(OK): u ● v = v ● u 结合率(NA): ( u ● v ) w ≠ u ( w ● v ) 分配率(OK): u ● {v + w} = u ● v + u ● w
v ● v = ? 几何意义?
23
——传递过程
本章内容
1. 流体力学基本概念 2. 一点的应力状态——应力张量 3. 场论 4. 二阶张量运算 5. 流体力学本构方程 6. 小结
2
流体力学基本概念
连续介质假设和微团
真实流体所占有的空间可近似看作是由“流体质点”连续地无 空隙地充满着的。
10
流体力学基本概念
流体速度分解定律
vv01 2rov trS•r
S:变形速度张量
11
流体力学基本概念
涡量
Ω
Ω =rot v
M L
v
12
流体力学基本概念
体力 —— 单位体积流体上受到的力
ρg
g—矢量
面力 —— 流体单位面积上受到的力
与面有关,张量描述
13
一点的应力状态——应力张量
张量的物理概念(Tensor) 1. 是矢量 2. 是面力,与作用面有关
lim lim d v v ( M ,t t) v ( M ,t) v ( M ,t) v ( M ,t)
d t t 0
t
t 0 t
v 泰勒展开: v(M ,t)v(M xvxt,Myvyt,M zvzt,t) v(M x,My,M z,t) v xvxt v yvyt v zvzt
定态场(不随时间改变) 非定态场
无源场(管式场)——散度为零 无旋场(势场)—— 旋度为零
18
场论——标量、矢量和张量表示
s =标量(不加黑的斜体字母) v =矢量(加黑的斜体字母)
τ =张量(加黑的希腊字母)
19
矢量的定义
矢量定义:具有一定的量值和方向的量
v v
矢量相等:量值相等、方向相同(可以是 非共线、非同一作用原点)
20
矢量加减法
矢量加减法
交换率 v + w = w + v 结合率 ( v + w )+u = v + ( w +u )
21
矢量乘法——矢量和标量
矢量和标量的乘法 交换率(OK): sv = vs 结合率(OK): r (s v ) = ( r s ) v 分配率(OK): ( q + r + s ) v = q v + r v + s v
标量、矢量、n 阶张量的关系
14
一点的应力状态——应力张量
压力张量
1. 面力 2. 各向同性
p 0 0 0 p 0 pE 0 0 p
p 0 0 nx pxn 压力: pn 0 p 0•nypynpn
0 0 p nz pzn
15
一点的应力状态——应力张量
剪应力张量
xx xy xz xx xy xz
相关文档
最新文档