电力电子技术 第5章交交变流电路
第五章直流交流(DCAC)变换.

第五章直流—交流(DC—AC)变换5.1 逆变电路概述5.1.1 晶闸管逆变电路的换流问题DC—AC变换原理可用图5-1所示单相逆变电路来说明,其中晶闸管元件VT1、VT4,VT2、VT3成对导通。
当VT1、VT4导通时,直流电源E通过VT1、VT4向负载送出电流,形成输出电压左(+)、右(-),如图5-1(a)所示。
当VT2、VT3导通时,设法将VT1、VT4关断,实现负载电流从VT1、VT4向VT2、VT3的转移,即换流。
换流完成后,由VT2、VT3向负载输出电流,形成左(-)、右(+)的输出电压,如图5-1(b)所示。
这两对晶闸管轮流切换导通,则负载上便可得到交流电压,如图5-1(c)波形所示。
控制两对晶闸管的切换导通频率就可调节输出交流频率,改变直流电压E的大小就可调节输出电压幅值。
输出电流的波形、相位则决定于交流负载的性质。
图5-1 DC—AC变换原理要使逆变电路稳定工作,必须解决导通晶闸管的关断问题,即换流问题。
晶闸管为半控器件,在承受正向电压条件下只要门极施加正向触发脉冲即可导通。
但导通后门极失去控制作用,只有使阳极电流衰减至维持电流以下才能关断。
常用的晶闸管换流方法有:(1)电网换流(2)负载谐振式换流(3)强迫换流5.1.2 逆变电路的类型逆变器的交流负载中包含有电感、电容等无源元件,它们与外电路间必然有能量的交换,这就是无功。
由于逆变器的直流输入与交流输出间有无功功率的流动,所以必须在直流输入端设置储能元件来缓冲无功的需求。
在交—直—交变频电路中,直流环节的储能元件往往被当作滤波元件来看待,但它更有向交流负载提供无功功率的重要作用。
根据直流输入储能元件类型的不同,逆变电路可分为两种类型:图5-4 电压源型逆变器图5-5 无功二极管的作用1.电压源型逆变器电压源型逆变器是采用电容作储能元件,图5-4为一单相桥式电压源型逆变器原理图。
电压源型逆变器有如下特点:1)直流输入侧并联大电容C用作无功功率缓冲环节(滤波环节),构成逆变器低阻抗的电源内阻特性(电压源特性),即输出电压确定,其波形接近矩形,电流波形与负载有关,接近正弦。
《电力电子技术》第五章AC-AC变换技术应用

第五章 AC-AC变换技术应用
第5章 AC-AC变换技术
概述 5.1 交流调压电路
5.1.1 单相交流调压电路 5.1.2 三相交流调压电路 5.2 其他交流电力控制电路 4.2.1 交流调功电路 4.2.2 交流电力电子开关 5.3 交交变频电路 5.3.1 单相交交变频电路 5.3.2 三相交交变频电路 5.4 矩阵式变频电路 本章小结
VT1提前通,L被过充电,放电时间延长, VT1的导 通角超过π
■
5.1 交流调压电路
交流调压电路的应用:
灯光控制(如调光台灯和舞台灯光控制) 异步电动机软起动 异步电动机调速 供用电系统对无功功率的连续调节 在高压小电流或低压大电流直流电源中,用于
调节变压器一次电压
■
5.1.1 单相交流调压电路
1.电阻负载
工作原理:
在VT1u和1的VT正2半的周开和通负角半a进周行,控分制别就对可
Io = 2IT
Z I TN = I T 2U1
IVTN
j = 90°
7650°° 45°
0.5 0.4 j = 0 0.3 0.2 0.1
0
40
80
120
160 180
a /(°)
图4-4
图4-4 单相交流调压电路a为参变量时
a IVTN和 关系曲线(显示放大图)
■
5.1.1 单相交流调压电路
a < j 时的工作情况
晶闸管电流有效值
IVT =
1
2
a
a
2U1 Z
s in( t
j
)
电力电子技术最新版配套习题答案详解第5章

目录第1章电力电子器件 (1)第2章整流电路 (4)第3章直流斩波电路 (20)第4章交流电力控制电路和交交变频电路 (26)第5章逆变电路 (31)第6章PWM控制技术 (35)第7章软开关技术 (40)第8章组合变流电路 (42)第5章逆变电路1.无源逆变电路和有源逆变电路有何不同?答:两种电路的不同主要是:有源逆变电路的交流侧接电网,即交流侧接有电源。
而无源逆变电路的交流侧直接和负载联接。
2.换流方式各有那几种?各有什么特点?答:换流方式有4种:器件换流:利用全控器件的自关断能力进行换流。
全控型器件采用此换流方式。
电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。
负载换流:由负载提供换流电压,当负载为电容性负载即负载电流超前于负载电压时,可实现负载换流。
强迫换流:设置附加换流电路,给欲关断的晶闸管强迫施加反向电压换流称为强迫换流。
通常是利用附加电容上的能量实现,也称电容换流。
晶闸管电路不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫换流3种方式。
3.什么是电压型逆变电路?什么是电流型逆变电路?二者各有什么特点。
答:按照逆变电路直流测电源性质分类,直流侧是电压源的称为逆变电路称为电压型逆变电路,直流侧是电流源的逆变电路称为电流型逆变电路电压型逆变电路的主要特点是:①直流侧为电压源,或并联有大电容,相当于电压源。
直流侧电压基本无脉动,直流回路呈现低阻抗。
②由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。
而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。
③当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
电流型逆变电路的主要特点是:①直流侧串联有大电感,相当于电流源。
直流侧电流基本无脉动,直流回路呈现高阻抗。
②电路中开关器件的作用仅是改变直流电流的流通路径,因此交流侧输出电流为矩形波,并且与负载阻抗角无关。
电力电子技术课后答案6

第5章逆变电路1.无源逆变电路和有源逆变电路有何不同?答:两种电路的不同主要是:有源逆变电路的交流侧接电网,即交流侧接有电源。
而无源逆变电路的交流侧直接和负载联接。
2.换流方式各有那几种?各有什么特点?答:换流方式有4种:器件换流:利用全控器件的自关断能力进行换流。
全控型器件采用此换流方式。
电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。
负载换流:由负载提供换流电压,当负载为电容性负载即负载电流超前于负载电压时,可实现负载换流。
强迫换流:设置附加换流电路,给欲关断的晶闸管强迫施加反向电压换流称为强迫换流。
通常是利用附加电容上的能量实现,也称电容换流。
晶闸管电路不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫换流3种方式。
3.什么是电压型逆变电路?什么是电流型逆变电路?二者各有什么特点。
答:按照逆变电路直流测电源性质分类,直流侧是电压源的称为逆变电路称为电压型逆变电路,直流侧是电流源的逆变电路称为电流型逆变电路电压型逆变电路的主要特点是:①直流侧为电压源,或并联有大电容,相当于电压源。
直流侧电压基本无脉动,直流回路呈现低阻抗。
②由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。
而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。
③当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
电流型逆变电路的主要特点是:①直流侧串联有大电感,相当于电流源。
直流侧电流基本无脉动,直流回路呈现高阻抗。
②电路中开关器件的作用仅是改变直流电流的流通路径,因此交流侧输出电流为矩形波,并且与负载阻抗角无关。
而交流侧输出电压波形和相位则因负载阻抗情况的不同而不同。
③当交流侧为阻感负载时需要提供无功功率,直流侧电感起缓冲无功能量的作用。
因为反馈无功能量时直流电流并不反向,因此不必像电压型逆变电路那样要给开关器件反并联二极管。
电力电子技术(第四版)课后答案

第5章逆变电路5.l.无源逆变电路和有源逆变电路有何不同?答:两种电路的不同主要是:有源逆变电路的交流侧接电阿,即交流侧接有电源。
而无源逆变电路的交流侧直接和负载联接。
5.2.换流方式各有那儿种?各有什么特点?答:换流方式有4种:器件换流:利用全控器件的自关断能力进行换流。
全控型器件采用此换流方式。
电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。
负载换流:由负载提供换流电压,当负载为电容性负载即负载电流超前于负载电压时,可实现负载换流。
强迫换流:设置附加换流电路,给欲关断的晶闸管强追施加反向电压换流称为强迫换流。
通常是利用附加电容上的能量实现,也称电容换流。
晶闸管电路不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫换流3种方式。
5.3.什么是电压型逆变电路?什么是电流型逆变电路?二者各有什么特点?答:按照逆变电路直流测电源性质分类,直流侧是电压源的称为逆变电路称为电压型逆变电路,直流侧是电流源的逆变电路称为电流型逆变电路电压型逆变电路的主要持点是:①直流侧为电压源,或并联有大电容,相当于电压源。
直流侧电压基本无脉动,直流回路呈现低阻抗。
②由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。
而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。
③当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
电流型逆变电路的主要特点是:①直流侧串联有大电感,相当于电流源。
直流侧电流基本无脉动,直流回路呈现高阻抗。
②电路中开关器件的作用仅是改变直流电流的流通路径,因此交流侧输出电流为矩形波,并且与负载阻抗角无关。
而交流侧输出电压波形和相位则因负载阻抗情况的不同而不同。
③当交流侧为阻感负载时需要提供无功功率,直流测电惑起缓冲无功能量的作用。
因为反馈无功能量时直流电流并不反向,因此不必像电压型逆变电路那样要给开关器件反并联二极管。
电力电子技术课后答案

电力电子技术课后答案第2章 电力电子器件1. 使晶闸管导通的条件是什么?答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。
或:u AK >0且u GK >0。
2. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。
要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。
3. 图1-43中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为I m ,试计算各波形的电流平均值I d1、I d2、I d3与电流有效值I 、I 、I 。
π4π4π25π4a)b)c)图1-431图1-43 晶闸管导电波形解:a)I d1=π21⎰ππωω4)(sin t td I m=π2mI (122+)≈0.2717 I m I 1=⎰ππωωπ42)()sin (21t d t I m=2mIπ2143+≈0.4767 I m b) I d2=π1⎰ππωω4)(sin t td I m=πmI (122+)≈0.5434 I m I 2 =⎰ππωωπ42)()sin (1t d t Im =22m I π2143+≈0.6741I mc) I d3=π21⎰20)(πωt d I m =41 I mI 3 =⎰22)(21πωπt d I m=21 I m4. 上题中如果不考虑安全裕量,问100A 的晶闸管能送出的平均电流I d1、I d2、I d3各为多少?这时,相应的电流最大值I m1、I m2、I m3各为多少?解:额定电流I T(AV) =100A 的晶闸管,允许的电流有效值I =157A ,由上题计算结果知a) I m1≈4767.0I≈329.35, I d1≈0.2717 I m1≈89.48b) I m2≈6741.0I≈232.90, I d2≈0.5434 I m2≈126.56c) I m3=2 I = 314,I d3=41I m3=78.59. 试说明IGBT、GTR、GTO和电力MOSFET各自的优缺点。
电力电子第五章 ACDC变换器(整流和有源逆变电路)

5.2 不控整流电路
• 利用电力二极管的单相导电性可以十分简单 地实现交流—直流电力变换。
• 由于二极管整流电路输出的直流电压与交流 输入电压的大小有关,不能通过电路本身控 制其数值,故称为不控整流电路。
5.2.1 单相不控整流电路
u1
u2 O ud
uVDO1 O
VD4
VD2
a)
VD3
R VD4
VD1
-
ud AC + VD2
b)
VD3 R ud
VD4
c)
a)单相桥式整流电路 b)交流输入正半周单相桥式整流电路工作图 c)交流输入负半周单相桥式整流电路工作图
5.2.1 单相不控整流电路
AC +
ud
VD3
VD2
VD2
b)
图5-2 单相全波整流电路
u2
R
c)
d)
u2
共阳极连接 VD4
2 t
5.2.1 单相不控整流电路
VD1
VD1
VD3 VD1
u2 R
AC
+ -
R
-
AC +
R
t
u2
AC + -
ud
VACD1
+
ud
VD2
VD2
u2
VD2
VbD)3
u2
c)
d)
u2
R
VD2
u2 VD4
VD4
带续流二极管的单相 半波整流电路
b)
d)
u2
u2
t1
O
2
t1
t
O
2
电力电子习题(木答案)

《电力电子技术》教学内容及要求绪论掌握电力电子技术的基本概念、学科地位、基本内容和发展历史了解电力电子技术的应用范围了解电力电子技术的发展前景了解本课程的内容、任务与要求第1章电力电子器件掌握各种二极管重点掌握半控型器件:晶闸管重点掌握典型全控型器件:GTO、电力MOSFET、IGBT、BJT了解IGCT、MCT、SIT、STIH等其他电力电子器件掌握电力电子器件的驱动电路了解功率集成电路和智能功率模块掌握电力电子器件的保护掌握电力电子器件的串并联第2章整流电路掌握单相可控整流电路重点掌握三相可控整流电路掌握变压器漏抗对整流电路的影响掌握电容滤波的二极管整流电路掌握整流电路的谐波和功率因数了解大功率整流电路掌握整流电路的有源逆变工作状态了解晶闸管直流电动机系统掌握相位控制电路第3章直流斩波电路重点掌握降压斩波电路重点掌握升压斩波电路掌握升降压斩波电路掌握复合斩波电路了解多相多重斩波电路第4章交流—交流电力变换电路重点掌握单相相控式交流调压电路掌握三相相控式交流调压电路掌握交流调功电路了解交流电子开关掌握单相输出交—交变频电路了解三相输出交—交变频电路了解矩阵式变频电路第5章逆变电路掌握换流方式重点掌握电压型逆变电路掌握电流型逆变电路掌握多重逆变电路和多电平逆变电路第6章脉宽调制(PWM)技术重点掌握PWM控制的基本原理掌握PWM逆变电路的控制方式掌握PWM波形的生成方法了解PWM逆变电路的谐波分析了解跟踪型PWM控制技术了解PWM整流电路及其控制方法第7章软开关技术了解软开关的基本概念掌握软开关技术的分类掌握各种软开关电路的原理及应用第8章组合变流电路掌握间接交流变流电路交—直—交变频电路(VVVF)恒压恒频变流电路(CVCF)掌握间接直流变流电路(间接DC/DC变换器)开关电源结束语了解电力电子技术的发展趋势第一章电力电子器件填空题:1.电力电子器件一般工作在________状态。
2.在通常情况下,电力电子器件功率损耗主要为________,而当器件开关频率较高时,功率损耗主要为________。
电力电子技术课后习题重点(第五章~第七章)

4-4电压型逆变电路中反馈二极管的作用是什么?为什么电流型逆变电路中没有反馈二极管?在电压型逆变电路中,当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
当输出交流电压和电流的极性相同时,电流经电路中的可控开关器件流通,而当输出电压电流极性相反时,由反馈二极管提供电流通道。
4-8.逆变电路多重化的目的是什么?如何实现?串联多重和并联多重逆变电路备用于什么场合?答:逆变电路多重化的目的之一是使总体上装置的功率等级提高,二是可以改善输出电压的波形。
因为无论是电压型逆变电路输出的矩形电压波,还是电流型逆变电路输出的矩形电流波,都含有较多谐波,对负载有不利影响,采用多重逆变电路,可以把几个矩形波组合起来获得接近正弦波的波形。
逆变电路多重化就是把若干个逆变电路的输出按一定的相位差组合起来,使它们所含的某些主要谐波分量相互抵消,就可以得到较为接近正弦波的波形。
组合方式有串联多重和并联多重两种方式。
串联多重是把几个逆变电路的输出串联起来,并联多重是把几个逆变电路的输出并联起来。
串联多重逆变电路多用于电压型逆变电路的多重化。
并联多重逆变电路多用于电流型逆变电路的多重化。
在电流型逆变电路中,直流电流极性是一定的,无功能量由直流侧电感来缓冲。
当需要从交流侧向直流侧反馈无功能量时,电流并不反向,依然经电路中的可控开关器件流通,因此不需要并联反馈二极管。
5-1简述图5-la 所示的降压斩波电路工作原理。
答:降压斩波器的原理是:在一个控制周期中,让V 导通一段时间on t 。
,由电源E 向L 、R 、M 供电,在此期间,Uo=E 。
然后使V 关断一段时间off t ,此时电感L 通过二极管VD 向R 和M 供电,Uo=0。
一个周期内的平均电压0on offE t U t ⋅=⋅输出电压小于电源电压,起到降压的作用。
5-2.在图5-1a 所示的降压斩波电路中,已知E=200V ,R=10Ω,L 值微大,E=30V ,T=50μs ,ton=20μs ,计算输出电压平均值U o ,输出电流平均值I o 。
电力电子技术课件05直流-交流(DC-AC)变换

第五章直流-交流(DC-AC)变换一、概述DC-AC变换器(无源逆变器)V1、V4和V2、V3轮流切换导通,u o为交变电压(1)电网换流 利用电网电压换流,只适合可控整流、有源逆变电路、交—交变频器(2)负载谐振式换流 利用负载回路中形成的振荡特性,使电流自动过零,只要负载 电流超前于电压时间大于t q ,即能实现换流,分串,并联。
VT 2、VT 3通后,u 0经VT 2、VT 3反向加在VT 1、VT 4上1. 晶闸管逆变电路的换流方式换流概念:直流供电时,如何使已通元件关断VT 1导通,C 充电左(-)右(+),为换流做准备; VT 2导通,C 上电压反向加至VT 1,换流,C 反向充电。
(3)强迫换流附加换流环节,任何时刻都能换流直接耦合式强迫换流2. 逆变电路的类型(1)电压源型逆变器电流源型逆变器电流源型逆变器功率流向控制(3)两类逆变器的比较比较点电流型电压型直流回路滤波环节电抗器电容器输出电压波形决定于负载,当负载为异步电动机时,近似为正弦波矩形输出电流波形矩形近似正弦波,有较大谐波分量输出动态阻抗大小续流二极管不需要需要过流及短路保护容易困难线路结构较简单较复杂适用范围适用于单机拖动,频繁加减速下运行,需经常反向的场合适用于多机供电不可逆拖动,稳速工作,快速性不高的场合二、强迫换流式逆变电路1.串联二极管式电流源型逆变器结构VT1~VT6为晶闸管C1~C6为换流电容VD1~VD6为隔离二极管2.工作过程(换流机理)(1)换流前运行阶段(2)晶闸管换流与恒流充、放电阶段(3)二极管换流阶段(4)换流后运行阶段diL dt引起三、逆变器的多重化技术及多电平化1. 多重化技术改善方波逆变的输出波形:中小容量:SPWM大容量:多重化技术思路:用阶梯波逼近正弦波(1)串联多重化特点:适合于电压源型逆变器二重化三相电压源逆变器单个三相逆变电路输出电压波形桥Ⅱ输出电压相位比桥Ⅰ滞后30º桥Ⅰ输出变压器△/Y,桥Ⅱ输出变压器△/Z变比为1变比为13二重化逆变电路输出电压比单个逆变电路输出电压台阶更多、更接近正弦。
第五章 交流-交流变换技术

5.2 单相交流调压电路
工作波形示意
特点:
感性负载电流滞后,电 压过零点附近,电感电 流方向与电压方向反向, 此时开关组的切换也造 成电流的断续。因此, 为防止过电压还需要采 取其他措施,如使用缓 冲电路、电压电流过零 检测等,这是互补控制 方式的不足之处。
5.2 单相交流调压电路
常用控制模式
电压同步。 Y连接时三相中至少要有两相导通才能构成电流通路,因
此单窄脉冲是无法启动三相交流调压电路的。为保证起始 工作电流的流通,触发信号应采用大于/3的宽脉冲(或 脉冲列),或采用间隔/3的双窄脉冲。
工 作 波 形 分 析
30o
5.3 三相交流调压电路
PWM斩控三相交流调压电路
sin( ) sin( )e tan
的情况:
负载电流只有稳态分量i1,导通角 ,π电流连续。在这种状态下,
电感续流结束时刻正好是下一个控制脉冲到来的时刻,负载电流 处于临界连续状态,负载电压是完整的正弦波( )u,o 而u负i 载
电流则是一个滞后于电压 角的纯 正弦波,电路无调压作用。
(2)负载电流有效值:
I or ms
Uorms R
Urms R
sin2 π
2π
π
负载电流等于交流电源电流
5.2 单相交流调压电路
(3)流过晶闸管的电流平均值和有效值:
IVTrms
1π (
2Urms sint )2 d(t ) Urms
2π
R
R
sin2 π
5.3 三相交流调压电路
三相交流调压电路常见结构
5.3 三相交流调压电路
电力电子技术期末考试试题及答案(史上最全)

电力电子技术期末考试试题及答案(史上最全)电力电子技术试题第1章电力电子器件1.电力电子器件普通工作在__开关__状态。
2.在通常事情下,电力电子器件功率损耗要紧为__通态损耗__,而当器件开关频率较高时,功率损耗要紧为__开关损耗__。
3.电力电子器件组成的系统,普通由__操纵电路__、_驱动电路_、 _主电路_三部分组成,由于电路中存在电压和电流的过冲,往往需添加_爱护电路__。
4.按内部电子和空穴两种载流子参与导电的事情,电力电子器件可分为_单极型器件_ 、 _双极型器件_ 、_复合型器件_三类。
5.电力二极管的工作特性可概括为_承受正向电压导通,承受反相电压截止_。
6.电力二极管的要紧类型有_一般二极管_、_快恢复二极管_、 _肖特基二极管_。
7.肖特基二极管的开关损耗_小于_快恢复二极管的开关损耗。
8.晶闸管的基本工作特性可概括为 __正向电压门极有触发则导通、反向电压则截止__ 。
9.对同一晶闸管,维持电流IH与擎住电流IL在数值大小上有IL__大于__IH 。
10.晶闸管断态别重复电压UDSM与转折电压Ubo数值大小上应为,UDSM_大于__Ubo。
11.逆导晶闸管是将_二极管_与晶闸管_反并联_(怎么连接)在同一管芯上的功率集成器件。
的__多元集成__结构是为了便于实现门极操纵关断而设计的。
的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的_截止区_、前者的饱和区对应后者的__放大区__、前者的非饱和区对应后者的_饱和区__。
14.电力MOSFET的通态电阻具有__正__温度系数。
的开启电压UGE(th)随温度升高而_略有下落__,开关速度__小于__电力MOSFET 。
16.按照驱动电路加在电力电子器件操纵端和公共端之间的性质,可将电力电子器件分为_电压驱动型_和_电流驱动型_两类。
的通态压落在1/2或1/3额定电流以下区段具有__负___温度系数,在1/2或1/3额定电流以上区段具有__正___温度系数。
电力电子技术4版第5章 交流变换电路-精选文档

第5章 交流变换电路
5.1 5.2 5.3 5.4
交流调压电路 交流调功电路 交流电力电子开关 交-交变频电路
5.1 交流调压电路
1、交流调压电路:用来变换交流电压幅值(或有效值) 的电路。
2、交流调压的实现方法:通过控制晶闸管在每一个电源 周期内的导通角的大小(相位控制)来调节输出电压的大小。 3、交流调压电路应用: 电炉的温度控制 • 灯光调节 (如舞台灯光控制) 异步电机软起动 异步电机调速 调节整流变压器一次侧电压
t
(5.1.9) (5.1.10)
2 1 U 2 2 tan I ( ) [sin( t ) sin( ) e ] d t T Z 2
图5.1.1 电阻性负载时单 向交流电压电路及 输出电压波形
5.1.1 单相交流调压电路
电阻性负载数量关系:
负载电压的有效值
U 0
1 a 1 2 U sin( 2 a ) ( 2 U sin t ) d t 2 (5.1.1)
负载电流的有效值
U 1 0 I sin 2 0 R R2
单向交流调压电路的工作情况与它的负载性质有关
5.1.1 单相交流调压电路
1、电阻性负载
电源正半周:晶闸管T1承受正向电 压,当ωt=α时,触发T1使其导通, 负载上得到缺α角的正弦半波电压; 电源电压过零: T1 管电流下降为零 而关断; 电源电压负半周:晶闸管 T2 承受正 向电压,当 ωt=π+α 时,触发 T2 使 其导通,则负载上又得到了缺α角的 正弦负半波电压。持续这样控制, 在负载电阻上便得到每半波缺α角的 正弦电压; 改变α角的大小,便改变了输出电压有 效值的大小。
电力电子技术试卷及答案-第五章

电力电子技术试题(第五章)一、填空题1、整流是把电变换为电的过程;逆变是把电变换为电的过程。
1、交流、直流;直流、交流。
2、逆变电路分为逆变电路和逆变电路两种。
2、有源、无源。
3、逆变角β与控制角α之间的关系为。
3、α=π-β4、逆变角β的起算点为对应相邻相的交点往度量。
4、负半周、左。
5、当电源电压发生瞬时与直流侧电源联,电路中会出现很大的短路电流流过晶闸管与负载,这称为或。
5、顺极性串、逆变失败、逆变颠覆。
6、为了保证逆变器能正常工作,最小逆变角应为。
6、30°~35°7、由两套晶闸管组成的变流可逆装置中,每组晶闸管都有四种工作状态,分别是状态、状态、状态和状态。
7、待整流、整流、待逆变、逆变。
8、将直流电源的恒定电压,通过电子器件的开关控制,变换为可调的直流电压的装置称为器。
8、斩波。
9、反并联可逆电路常用的工作方式为,以及三种。
在工业上得到广泛应用的是方式。
9、逻辑无环流、有环流、错位无环流、逻辑无环流。
10、采用接触器的可逆电路适用于对要求不高、不大的场合。
10、快速性,容量。
11、某半导体器件的型号为KN 100 / 50 —7,其中KN表示该器件的名称为100表示,50表示,7表示。
11、逆导晶闸管,晶闸管额定电流为100A,二极管额定电流为50A,额定电压100V。
12、晶闸管整流装置的功率因数定义为侧与之比。
12、交流、有功功率、视在功率13、晶闸管装置的容量愈大,则高次谐波,对电网的影响。
13、愈大,愈大。
14、在装置容量大的场合,为了保证电网电压稳定,需要有补偿,最常用的方法是在负载侧。
14、无功功率;并联电容。
15、变频电路从变频过程可分为变频和变频两大类。
15、交流—交流,交流—直流—交流。
16、脉宽调制变频电路的基本原理是:控制逆变器开关元件的和时间比,即调节来控制逆变电压的大小和频率。
16、导通,关断,脉冲宽度。
二、判断题对的用√表示、错的用×表示(每小题1分、共10分)1、把交流电变成直流电的过程称为逆变。
电力电子技术习题2

第5章直流斩波电路1.直流斩波电路完成得是直流到_直流_的变换。
2.直流斩波电路中最基本的两种电路是_降压斩波电路和_升压斩波电路_。
3.斩波电路有三种控制方式:_脉冲宽度调制(PWM)_、_频率调制_和_(t on和T都可调,改变占空比)混合型。
4.升压斩波电路的典型应用有_直流电动机传动_和_单相功率因数校正_等。
8.斩波电路用于拖动直流电动机时,降压斩波电路能使电动机工作于第__1__象限,升压斩波电路能使电动机工作于第__2__象限,_电流可逆斩波电路能使电动机工作于第1和第2象限。
9.桥式可逆斩波电路用于拖动直流电动机时,可使电动机工作于第_1、2、3、4_象限。
10.复合斩波电路中,电流可逆斩波电路可看作一个_升压_斩波电路和一个__降压_斩波电路的组合;多相多重斩波电路中,3相3重斩波电路相当于3个__基本__斩波电路并联。
第6章交流—交流电力变换电路1.改变频率的电路称为_变频电路_,变频电路有交交变频电路和_交直交变频_电路两种形式,前者又称为_直接变频电路__,后者也称为_间接变频电路_。
2.单相调压电路带电阻负载,其导通控制角α的移相范围为_0-180O_,随 α 的增大, Uo_降低_,功率因数λ_降低__。
3.单相交流调压电路带阻感负载,当控制角α<ϕ(ϕ=arctan(ωL/R) )时,VT1的导通时间_逐渐缩短_,VT2的导通时间__逐渐延长_。
6.把电网频率的交流电直接变换成可调频率的交流电的变流电路称为__交交变频电路_。
7.单相交交变频电路带阻感负载时,哪组变流电路工作是由_输出电流的方向_决定的,交流电路工作在整流还是逆变状态是根据_输出电流方向和输出电压方向是否相同_决定的。
8.当采用6脉波三相桥式电路且电网频率为50Hz时,单相交交变频电路的输出上限频率约为_20Hz__。
9.三相交交变频电路主要有两种接线方式,即_公共交流母线进线方式_和_输出星形联结方式_,其中主要用于中等容量的交流调速系统是_公共交流母线进线方式_。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ωo
(5-2)
t) (5
−
3)
γ = Uom
U do
(0 ≤ γ ≤ 1)
(4-3)式 为求控制角α的基本公式 γ称为输出电压比:
余弦交点法图解
1. 线电压uAB、 uAC 、 uBC 、 uBA 、 uCA和uCB依次用u1-u6表示;
2. 相邻两个线电压的交点对应于 α=0;
3. u1-u6所对应的同步信号分别用 us1-us6表示 ;
第三阶段:i0>0, u0>0。正组整流器工作在整流状态,反组 整流器被封锁;
第四阶段:i0>0, u0<0。正组整流器工作有源逆变状态,反 组整流器仍被封锁;
第五阶段:电流为零,为无环流死区,正、反组均封锁;
第六阶段:i0<0, u0<0,反组整流器工作在整流状态,正组整 流器被封锁;
内,控制角α 随ωot 变化
的情况如右图,图中 :
α =cos−1(γ sinωot)
=
π
2
−sin−1(γ
sinωot)
γ 较小,即输出电压较低 时,α只在离90°很近的
范围内变化,电路的输入
功率因数非常低。
相位控制角α/(° )
180
150
120
γ=0
90
60
30
γ = 0.1
0.2 0.3
0.8 0.9 1.0
2) 采用宽脉冲或脉冲列触发,使第二个晶闸管的导通角φ<π 。即 可使两个晶闸管的导通角θ=1800达到平衡。解决失控现象。 当α ≤ф 时,并采用宽脉冲或脉冲列触发,负载电压、电流总是完 整的正弦波,改变控制角α ,负载电压、电流的有效值不变,即电路
失去交流调压的作用。在电感负载时,要实现交流调压的目的,则最
1.0
0.9 0.8
0.3 0.2 0.1
0
π
π
3π 2π
2
2
输出相位ω 0 t
不同γ时α和ωot的关系
9/53
■输入输出特性 ◆输出上限频率 ☞输出频率增高时,输出电压一周期所含电网电压段数减
少,波形畸变严重,电压波形畸变及其导致的电流波形畸 变和转矩脉动是限制输出频率提高的主要因素。 ☞就输出波形畸变和输出上限频率的关系而言,很难确定一 个明确的界限。 ☞当采用6脉波三相桥式电路时,一般认为输出上限频率不 高于电网频率的1/3~1/2,电网频率为50Hz时,交交变频 电路的输出上限频率约为20Hz。
)
功率因数为:
λ = Pin = 3872 = 0.8
U1Io 220 × 22
实际上,此时的功率因数也就是负载阻抗角的余弦。
② α = π 时,先计算晶闸管的导通角,由式(6-7)得
3
sin(π
+θ
−0.6435)
=
sin(π
−θ
−0.6435)etanϕ
3
3
解上式可得晶闸管导通角为:
θ =2.727=156.2°
▲接线复杂,如采用三相桥式电路的三相交交变 频器至少要用36只晶闸管。
▲受电网频率和变流电路脉波数的限制,输出频 率较低;输入功率因数较低。
▲输入电流谐波含量大,频谱复杂
▲控制电路复杂,但随着计算机控制技术的成
熟 采 数 化 交 交变
路
相控式交流调压器主电路
交流调压电路是用来变换交流电压幅值(或有效值) 的电路。
波电压;
2电源电压过零: VT1管电流下降为零而关断;
3电源电压负半周:晶闸管VT2承受正向电压,当
ωt=π+α时,触发VT2使其导通,则负载上又得到了 缺α角的正弦负半波电压。持续这样控制,在负载电 阻上便得到每半波缺α角的正弦电压;
改变α角的大小,便改变了输出电压有效值的大小。
u1
u1
O uo
两个晶闸管反并联后串联在交流电路中,控制晶闸管 就可控制交流电力。
•每半个周波控制晶闸 管开通相位,调节输出 电压有效值。
电路属于相位控制, 采用电网自然换相。
u
设电源电压为
V1
V 2
uo R
u = 2U sin ωt
相控调压器电阻性负载
工作原理(参见下页图)
1电源正半周:晶闸管VT1承受正向电压,当ωt=α 时,触发VT1使其导通,负载上得到缺α角的正弦半
π
相控调压器阻感性负载
工作原理
单相交流电压器带阻感负载
u1
时,工作情况同可控整流电 u1 路带电感负载相似;
O
当电源电压反向过零时,负 uG1
载电感产生感应电动势阻止 uGO2
电流的变化,故电流不能立
O uo
即为零;
O
晶闸管的导通角θ的大小与
io
控制角a 、负载阻抗角φ都
O uVT
⎪⎩u π + α ≤ ωt < 2π
(5 − 5)
输出电压有效值
Uo = U
1 sin 2α + π − α
2π
π
(5 − 6)
负载电流有效值为IO=UO/R
电源的有功功率为P= IO UO,视在功率为S= IO U
电源功率因数为
λ = P = 1 sin 2α + π − α
S 2π
交-交变频器的优缺点
优点 1. 不经过直-交逆变环节,减少了换流损耗,变 流效率高。 2. 电网自然换流,工作可靠性高。 3.低频输出波形接近正弦波。 4. 可实现整流和逆变两种工作状态,由其供电 的电力拖动系统可实现四象限运行。
交-交变频器的优缺点
缺点
▲输出电压的最高频率受电源频率的限制,一般 不能超过电源频率的1/2。而且输出电压波形随 频率升高而变坏,所以一般只在低速、大容量 的电力拖动系统中应用。
23/53
I VT =
U1
2π Z
θ − sinθ cos(2α + ϕ + θ ) cos ϕ
= 220 × 2.727 − sin 2.727 × cos(2π 3 + 0.6435 + 2.727)
2π ×10
0.8
=13.55(A)
Iin = Io = 2IVT = 19.16(A)
Pin = Ii2nR= 2937(W)
广泛用于大功率交流电动机调速传动系统, 实用的主要是三相输出交交变频电路
交-交变频器的基本结构
由具有相同特征的两组晶闸管整流电路(正 组整流器和反组整流器 )反并联构成;
单相交-交变频器主电路结构
交-交变频器的基本结构
三相交-交变频器的主电路结构
交-交变频器的工作原理
正组整流器工作,反组整流器被封锁,负载端输出电压为上正 下负;
第五章 晶闸管交-交变频电路
本章要点 1. 交-交变频器的基本结构 2. 交-交变频器的电压控制 3. 交-交变频器在滞后负载时的工作状态 4. 交流调压器的基本结构 5. 交流调功器
交-交变频器
晶闸管交-交变频电路,也称周波变换器
交-交变频器实际上是由晶闸管全控整流电 路组合而成的交流电路,通过对各全控整流 电路输出电压大小和方向的组合控制,使负 载得到一个电压和频率可控的交流电。
交流调功电路直接调节对象是电路的平均输出功率;
控制对象时间常数很大,以周波数为单位控制;
晶闸管导通时刻为电源电压过零的时刻,负载电压电 流都是正弦波,不对电网电压电流造成通常意义的谐 波污染。
■交流调功电路工作原理 ☞和交流调压电路的电路形式完全相同,只是控制方式不同。 ☞通过改变接通周波数与断开周波数的比值来调节负载所消 耗的平均功率。
形断续愈严重。
2、α =ф此时,晶闸管轮流导通,相当于晶闸管被短接。负载电流处
于连续状态,为完全的正弦波。
3、α <ф
1)如果采用窄脉冲触发,会出现先触发的一只晶闸管导通,而另一只 管子在电流下降为零时,因其门极脉冲已经消失不能导通的失控现象。 回路中将出现很大的直流电流分量,无法维持电路的正常工作。
4. us1-us6比相应的u1-u6超前30°, us1-us6的最大值和相应线电压α =0的时刻对应;
5. α =0为零时刻,则us1-us6为余 弦信号;
6. 各晶闸管触发时刻由相应的同步 电压us1-us6的下降段和输出电压 uo的交点来决定;
余弦交点法图解
◆不同输出γ 的情况下,
在输出电压的一个周期
哪组整流器电路工作是由输出电流决定,而与输出电压极性无 关;
变流电路是工作在整流状态还是逆变状态,则是由输出电压方 向和输出电流方向的异同决定;
交-交变频器输出电压波形控制
1.方波输出交-交变频器
在变频器工作与稳态时,各变流器控制角相同,输出电压每 半个周期的平均值为常量,可视为输出电压为正负交变的方 波电压。这种方式的优点是控制简单,缺点是负载电压中谐 波含量较大。
λ = Pin = 2937 = 0.697
U1Io 220 ×19.16
24/53
常用三相交流控调压电路
常用三相交流控调压电路
常用三相交流控调压电路
晶闸管交流调功器
与调压电路的比较:
电路形式完全相同。控制方式不同,以交流电源周波 数为控制单位, 对电路通断进行控制,改变通断周波 数的比值来调节负载所消耗的平均功率。
交-交变频器输出电压波形控制
输出正弦波电压的调制方法
◆介绍最基本的余弦交点法。
设Ud0为α=0时整流电路的理想空载电压,则有:
uo= Ud0 cos α
(5-1)
希望输出的正弦波电压为
比较cosα式=(UUodmo5s-i1nuω)oo=t 与=Uγ s(oimnω5c0-to2s)ωα ,=0tc则os−1有(γ sin